]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/kvm/svm.c
e51f6b7f8ff3a193cdd182863a4468e528c468ac
[linux-2.6-omap-h63xx.git] / drivers / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16
17 #include "kvm_svm.h"
18 #include "x86_emulate.h"
19 #include "irq.h"
20
21 #include <linux/module.h>
22 #include <linux/kernel.h>
23 #include <linux/vmalloc.h>
24 #include <linux/highmem.h>
25 #include <linux/profile.h>
26 #include <linux/sched.h>
27
28 #include <asm/desc.h>
29
30 MODULE_AUTHOR("Qumranet");
31 MODULE_LICENSE("GPL");
32
33 #define IOPM_ALLOC_ORDER 2
34 #define MSRPM_ALLOC_ORDER 1
35
36 #define DB_VECTOR 1
37 #define UD_VECTOR 6
38 #define GP_VECTOR 13
39
40 #define DR7_GD_MASK (1 << 13)
41 #define DR6_BD_MASK (1 << 13)
42
43 #define SEG_TYPE_LDT 2
44 #define SEG_TYPE_BUSY_TSS16 3
45
46 #define KVM_EFER_LMA (1 << 10)
47 #define KVM_EFER_LME (1 << 8)
48
49 #define SVM_FEATURE_NPT  (1 << 0)
50 #define SVM_FEATURE_LBRV (1 << 1)
51 #define SVM_DEATURE_SVML (1 << 2)
52
53 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
54 {
55         return container_of(vcpu, struct vcpu_svm, vcpu);
56 }
57
58 unsigned long iopm_base;
59 unsigned long msrpm_base;
60
61 struct kvm_ldttss_desc {
62         u16 limit0;
63         u16 base0;
64         unsigned base1 : 8, type : 5, dpl : 2, p : 1;
65         unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
66         u32 base3;
67         u32 zero1;
68 } __attribute__((packed));
69
70 struct svm_cpu_data {
71         int cpu;
72
73         u64 asid_generation;
74         u32 max_asid;
75         u32 next_asid;
76         struct kvm_ldttss_desc *tss_desc;
77
78         struct page *save_area;
79 };
80
81 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
82 static uint32_t svm_features;
83
84 struct svm_init_data {
85         int cpu;
86         int r;
87 };
88
89 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
90
91 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
92 #define MSRS_RANGE_SIZE 2048
93 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
94
95 #define MAX_INST_SIZE 15
96
97 static inline u32 svm_has(u32 feat)
98 {
99         return svm_features & feat;
100 }
101
102 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
103 {
104         int word_index = __ffs(vcpu->irq_summary);
105         int bit_index = __ffs(vcpu->irq_pending[word_index]);
106         int irq = word_index * BITS_PER_LONG + bit_index;
107
108         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
109         if (!vcpu->irq_pending[word_index])
110                 clear_bit(word_index, &vcpu->irq_summary);
111         return irq;
112 }
113
114 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
115 {
116         set_bit(irq, vcpu->irq_pending);
117         set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
118 }
119
120 static inline void clgi(void)
121 {
122         asm volatile (SVM_CLGI);
123 }
124
125 static inline void stgi(void)
126 {
127         asm volatile (SVM_STGI);
128 }
129
130 static inline void invlpga(unsigned long addr, u32 asid)
131 {
132         asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
133 }
134
135 static inline unsigned long kvm_read_cr2(void)
136 {
137         unsigned long cr2;
138
139         asm volatile ("mov %%cr2, %0" : "=r" (cr2));
140         return cr2;
141 }
142
143 static inline void kvm_write_cr2(unsigned long val)
144 {
145         asm volatile ("mov %0, %%cr2" :: "r" (val));
146 }
147
148 static inline unsigned long read_dr6(void)
149 {
150         unsigned long dr6;
151
152         asm volatile ("mov %%dr6, %0" : "=r" (dr6));
153         return dr6;
154 }
155
156 static inline void write_dr6(unsigned long val)
157 {
158         asm volatile ("mov %0, %%dr6" :: "r" (val));
159 }
160
161 static inline unsigned long read_dr7(void)
162 {
163         unsigned long dr7;
164
165         asm volatile ("mov %%dr7, %0" : "=r" (dr7));
166         return dr7;
167 }
168
169 static inline void write_dr7(unsigned long val)
170 {
171         asm volatile ("mov %0, %%dr7" :: "r" (val));
172 }
173
174 static inline void force_new_asid(struct kvm_vcpu *vcpu)
175 {
176         to_svm(vcpu)->asid_generation--;
177 }
178
179 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
180 {
181         force_new_asid(vcpu);
182 }
183
184 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
185 {
186         if (!(efer & KVM_EFER_LMA))
187                 efer &= ~KVM_EFER_LME;
188
189         to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
190         vcpu->shadow_efer = efer;
191 }
192
193 static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
194 {
195         struct vcpu_svm *svm = to_svm(vcpu);
196
197         svm->vmcb->control.event_inj =          SVM_EVTINJ_VALID |
198                                                 SVM_EVTINJ_VALID_ERR |
199                                                 SVM_EVTINJ_TYPE_EXEPT |
200                                                 GP_VECTOR;
201         svm->vmcb->control.event_inj_err = error_code;
202 }
203
204 static void inject_ud(struct kvm_vcpu *vcpu)
205 {
206         to_svm(vcpu)->vmcb->control.event_inj = SVM_EVTINJ_VALID |
207                                                 SVM_EVTINJ_TYPE_EXEPT |
208                                                 UD_VECTOR;
209 }
210
211 static int is_page_fault(uint32_t info)
212 {
213         info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
214         return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
215 }
216
217 static int is_external_interrupt(u32 info)
218 {
219         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
220         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
221 }
222
223 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
224 {
225         struct vcpu_svm *svm = to_svm(vcpu);
226
227         if (!svm->next_rip) {
228                 printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
229                 return;
230         }
231         if (svm->next_rip - svm->vmcb->save.rip > MAX_INST_SIZE) {
232                 printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
233                        __FUNCTION__,
234                        svm->vmcb->save.rip,
235                        svm->next_rip);
236         }
237
238         vcpu->rip = svm->vmcb->save.rip = svm->next_rip;
239         svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
240
241         vcpu->interrupt_window_open = 1;
242 }
243
244 static int has_svm(void)
245 {
246         uint32_t eax, ebx, ecx, edx;
247
248         if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
249                 printk(KERN_INFO "has_svm: not amd\n");
250                 return 0;
251         }
252
253         cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
254         if (eax < SVM_CPUID_FUNC) {
255                 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
256                 return 0;
257         }
258
259         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
260         if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
261                 printk(KERN_DEBUG "has_svm: svm not available\n");
262                 return 0;
263         }
264         return 1;
265 }
266
267 static void svm_hardware_disable(void *garbage)
268 {
269         struct svm_cpu_data *svm_data
270                 = per_cpu(svm_data, raw_smp_processor_id());
271
272         if (svm_data) {
273                 uint64_t efer;
274
275                 wrmsrl(MSR_VM_HSAVE_PA, 0);
276                 rdmsrl(MSR_EFER, efer);
277                 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
278                 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
279                 __free_page(svm_data->save_area);
280                 kfree(svm_data);
281         }
282 }
283
284 static void svm_hardware_enable(void *garbage)
285 {
286
287         struct svm_cpu_data *svm_data;
288         uint64_t efer;
289 #ifdef CONFIG_X86_64
290         struct desc_ptr gdt_descr;
291 #else
292         struct Xgt_desc_struct gdt_descr;
293 #endif
294         struct desc_struct *gdt;
295         int me = raw_smp_processor_id();
296
297         if (!has_svm()) {
298                 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
299                 return;
300         }
301         svm_data = per_cpu(svm_data, me);
302
303         if (!svm_data) {
304                 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
305                        me);
306                 return;
307         }
308
309         svm_data->asid_generation = 1;
310         svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
311         svm_data->next_asid = svm_data->max_asid + 1;
312         svm_features = cpuid_edx(SVM_CPUID_FUNC);
313
314         asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
315         gdt = (struct desc_struct *)gdt_descr.address;
316         svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
317
318         rdmsrl(MSR_EFER, efer);
319         wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
320
321         wrmsrl(MSR_VM_HSAVE_PA,
322                page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
323 }
324
325 static int svm_cpu_init(int cpu)
326 {
327         struct svm_cpu_data *svm_data;
328         int r;
329
330         svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
331         if (!svm_data)
332                 return -ENOMEM;
333         svm_data->cpu = cpu;
334         svm_data->save_area = alloc_page(GFP_KERNEL);
335         r = -ENOMEM;
336         if (!svm_data->save_area)
337                 goto err_1;
338
339         per_cpu(svm_data, cpu) = svm_data;
340
341         return 0;
342
343 err_1:
344         kfree(svm_data);
345         return r;
346
347 }
348
349 static void set_msr_interception(u32 *msrpm, unsigned msr,
350                                  int read, int write)
351 {
352         int i;
353
354         for (i = 0; i < NUM_MSR_MAPS; i++) {
355                 if (msr >= msrpm_ranges[i] &&
356                     msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
357                         u32 msr_offset = (i * MSRS_IN_RANGE + msr -
358                                           msrpm_ranges[i]) * 2;
359
360                         u32 *base = msrpm + (msr_offset / 32);
361                         u32 msr_shift = msr_offset % 32;
362                         u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
363                         *base = (*base & ~(0x3 << msr_shift)) |
364                                 (mask << msr_shift);
365                         return;
366                 }
367         }
368         BUG();
369 }
370
371 static __init int svm_hardware_setup(void)
372 {
373         int cpu;
374         struct page *iopm_pages;
375         struct page *msrpm_pages;
376         void *iopm_va, *msrpm_va;
377         int r;
378
379         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
380
381         if (!iopm_pages)
382                 return -ENOMEM;
383
384         iopm_va = page_address(iopm_pages);
385         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
386         clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
387         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
388
389
390         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
391
392         r = -ENOMEM;
393         if (!msrpm_pages)
394                 goto err_1;
395
396         msrpm_va = page_address(msrpm_pages);
397         memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
398         msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
399
400 #ifdef CONFIG_X86_64
401         set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
402         set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
403         set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
404         set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
405         set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
406         set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
407 #endif
408         set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
409         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
410         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
411         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
412
413         for_each_online_cpu(cpu) {
414                 r = svm_cpu_init(cpu);
415                 if (r)
416                         goto err_2;
417         }
418         return 0;
419
420 err_2:
421         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
422         msrpm_base = 0;
423 err_1:
424         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
425         iopm_base = 0;
426         return r;
427 }
428
429 static __exit void svm_hardware_unsetup(void)
430 {
431         __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
432         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
433         iopm_base = msrpm_base = 0;
434 }
435
436 static void init_seg(struct vmcb_seg *seg)
437 {
438         seg->selector = 0;
439         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
440                 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
441         seg->limit = 0xffff;
442         seg->base = 0;
443 }
444
445 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
446 {
447         seg->selector = 0;
448         seg->attrib = SVM_SELECTOR_P_MASK | type;
449         seg->limit = 0xffff;
450         seg->base = 0;
451 }
452
453 static void init_vmcb(struct vmcb *vmcb)
454 {
455         struct vmcb_control_area *control = &vmcb->control;
456         struct vmcb_save_area *save = &vmcb->save;
457
458         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
459                                         INTERCEPT_CR3_MASK |
460                                         INTERCEPT_CR4_MASK;
461
462         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
463                                         INTERCEPT_CR3_MASK |
464                                         INTERCEPT_CR4_MASK;
465
466         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
467                                         INTERCEPT_DR1_MASK |
468                                         INTERCEPT_DR2_MASK |
469                                         INTERCEPT_DR3_MASK;
470
471         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
472                                         INTERCEPT_DR1_MASK |
473                                         INTERCEPT_DR2_MASK |
474                                         INTERCEPT_DR3_MASK |
475                                         INTERCEPT_DR5_MASK |
476                                         INTERCEPT_DR7_MASK;
477
478         control->intercept_exceptions = 1 << PF_VECTOR;
479
480
481         control->intercept =    (1ULL << INTERCEPT_INTR) |
482                                 (1ULL << INTERCEPT_NMI) |
483                                 (1ULL << INTERCEPT_SMI) |
484                 /*
485                  * selective cr0 intercept bug?
486                  *      0:   0f 22 d8                mov    %eax,%cr3
487                  *      3:   0f 20 c0                mov    %cr0,%eax
488                  *      6:   0d 00 00 00 80          or     $0x80000000,%eax
489                  *      b:   0f 22 c0                mov    %eax,%cr0
490                  * set cr3 ->interception
491                  * get cr0 ->interception
492                  * set cr0 -> no interception
493                  */
494                 /*              (1ULL << INTERCEPT_SELECTIVE_CR0) | */
495                                 (1ULL << INTERCEPT_CPUID) |
496                                 (1ULL << INTERCEPT_HLT) |
497                                 (1ULL << INTERCEPT_INVLPGA) |
498                                 (1ULL << INTERCEPT_IOIO_PROT) |
499                                 (1ULL << INTERCEPT_MSR_PROT) |
500                                 (1ULL << INTERCEPT_TASK_SWITCH) |
501                                 (1ULL << INTERCEPT_SHUTDOWN) |
502                                 (1ULL << INTERCEPT_VMRUN) |
503                                 (1ULL << INTERCEPT_VMMCALL) |
504                                 (1ULL << INTERCEPT_VMLOAD) |
505                                 (1ULL << INTERCEPT_VMSAVE) |
506                                 (1ULL << INTERCEPT_STGI) |
507                                 (1ULL << INTERCEPT_CLGI) |
508                                 (1ULL << INTERCEPT_SKINIT) |
509                                 (1ULL << INTERCEPT_MONITOR) |
510                                 (1ULL << INTERCEPT_MWAIT);
511
512         control->iopm_base_pa = iopm_base;
513         control->msrpm_base_pa = msrpm_base;
514         control->tsc_offset = 0;
515         control->int_ctl = V_INTR_MASKING_MASK;
516
517         init_seg(&save->es);
518         init_seg(&save->ss);
519         init_seg(&save->ds);
520         init_seg(&save->fs);
521         init_seg(&save->gs);
522
523         save->cs.selector = 0xf000;
524         /* Executable/Readable Code Segment */
525         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
526                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
527         save->cs.limit = 0xffff;
528         /*
529          * cs.base should really be 0xffff0000, but vmx can't handle that, so
530          * be consistent with it.
531          *
532          * Replace when we have real mode working for vmx.
533          */
534         save->cs.base = 0xf0000;
535
536         save->gdtr.limit = 0xffff;
537         save->idtr.limit = 0xffff;
538
539         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
540         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
541
542         save->efer = MSR_EFER_SVME_MASK;
543
544         save->dr6 = 0xffff0ff0;
545         save->dr7 = 0x400;
546         save->rflags = 2;
547         save->rip = 0x0000fff0;
548
549         /*
550          * cr0 val on cpu init should be 0x60000010, we enable cpu
551          * cache by default. the orderly way is to enable cache in bios.
552          */
553         save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
554         save->cr4 = X86_CR4_PAE;
555         /* rdx = ?? */
556 }
557
558 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
559 {
560         struct vcpu_svm *svm;
561         struct page *page;
562         int err;
563
564         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
565         if (!svm) {
566                 err = -ENOMEM;
567                 goto out;
568         }
569
570         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
571         if (err)
572                 goto free_svm;
573
574         if (irqchip_in_kernel(kvm)) {
575                 err = kvm_create_lapic(&svm->vcpu);
576                 if (err < 0)
577                         goto free_svm;
578         }
579
580         page = alloc_page(GFP_KERNEL);
581         if (!page) {
582                 err = -ENOMEM;
583                 goto uninit;
584         }
585
586         svm->vmcb = page_address(page);
587         clear_page(svm->vmcb);
588         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
589         svm->asid_generation = 0;
590         memset(svm->db_regs, 0, sizeof(svm->db_regs));
591         init_vmcb(svm->vmcb);
592
593         fx_init(&svm->vcpu);
594         svm->vcpu.fpu_active = 1;
595         svm->vcpu.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
596         if (svm->vcpu.vcpu_id == 0)
597                 svm->vcpu.apic_base |= MSR_IA32_APICBASE_BSP;
598
599         return &svm->vcpu;
600
601 uninit:
602         kvm_vcpu_uninit(&svm->vcpu);
603 free_svm:
604         kmem_cache_free(kvm_vcpu_cache, svm);
605 out:
606         return ERR_PTR(err);
607 }
608
609 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
610 {
611         struct vcpu_svm *svm = to_svm(vcpu);
612
613         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
614         kvm_vcpu_uninit(vcpu);
615         kmem_cache_free(kvm_vcpu_cache, svm);
616 }
617
618 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
619 {
620         struct vcpu_svm *svm = to_svm(vcpu);
621         int i;
622
623         if (unlikely(cpu != vcpu->cpu)) {
624                 u64 tsc_this, delta;
625
626                 /*
627                  * Make sure that the guest sees a monotonically
628                  * increasing TSC.
629                  */
630                 rdtscll(tsc_this);
631                 delta = vcpu->host_tsc - tsc_this;
632                 svm->vmcb->control.tsc_offset += delta;
633                 vcpu->cpu = cpu;
634                 kvm_migrate_apic_timer(vcpu);
635         }
636
637         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
638                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
639 }
640
641 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
642 {
643         struct vcpu_svm *svm = to_svm(vcpu);
644         int i;
645
646         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
647                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
648
649         rdtscll(vcpu->host_tsc);
650 }
651
652 static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
653 {
654 }
655
656 static void svm_cache_regs(struct kvm_vcpu *vcpu)
657 {
658         struct vcpu_svm *svm = to_svm(vcpu);
659
660         vcpu->regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
661         vcpu->regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
662         vcpu->rip = svm->vmcb->save.rip;
663 }
664
665 static void svm_decache_regs(struct kvm_vcpu *vcpu)
666 {
667         struct vcpu_svm *svm = to_svm(vcpu);
668         svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
669         svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
670         svm->vmcb->save.rip = vcpu->rip;
671 }
672
673 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
674 {
675         return to_svm(vcpu)->vmcb->save.rflags;
676 }
677
678 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
679 {
680         to_svm(vcpu)->vmcb->save.rflags = rflags;
681 }
682
683 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
684 {
685         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
686
687         switch (seg) {
688         case VCPU_SREG_CS: return &save->cs;
689         case VCPU_SREG_DS: return &save->ds;
690         case VCPU_SREG_ES: return &save->es;
691         case VCPU_SREG_FS: return &save->fs;
692         case VCPU_SREG_GS: return &save->gs;
693         case VCPU_SREG_SS: return &save->ss;
694         case VCPU_SREG_TR: return &save->tr;
695         case VCPU_SREG_LDTR: return &save->ldtr;
696         }
697         BUG();
698         return NULL;
699 }
700
701 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
702 {
703         struct vmcb_seg *s = svm_seg(vcpu, seg);
704
705         return s->base;
706 }
707
708 static void svm_get_segment(struct kvm_vcpu *vcpu,
709                             struct kvm_segment *var, int seg)
710 {
711         struct vmcb_seg *s = svm_seg(vcpu, seg);
712
713         var->base = s->base;
714         var->limit = s->limit;
715         var->selector = s->selector;
716         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
717         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
718         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
719         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
720         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
721         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
722         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
723         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
724         var->unusable = !var->present;
725 }
726
727 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
728 {
729         struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
730
731         *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
732         *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
733 }
734
735 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
736 {
737         struct vcpu_svm *svm = to_svm(vcpu);
738
739         dt->limit = svm->vmcb->save.idtr.limit;
740         dt->base = svm->vmcb->save.idtr.base;
741 }
742
743 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
744 {
745         struct vcpu_svm *svm = to_svm(vcpu);
746
747         svm->vmcb->save.idtr.limit = dt->limit;
748         svm->vmcb->save.idtr.base = dt->base ;
749 }
750
751 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
752 {
753         struct vcpu_svm *svm = to_svm(vcpu);
754
755         dt->limit = svm->vmcb->save.gdtr.limit;
756         dt->base = svm->vmcb->save.gdtr.base;
757 }
758
759 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
760 {
761         struct vcpu_svm *svm = to_svm(vcpu);
762
763         svm->vmcb->save.gdtr.limit = dt->limit;
764         svm->vmcb->save.gdtr.base = dt->base ;
765 }
766
767 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
768 {
769 }
770
771 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
772 {
773         struct vcpu_svm *svm = to_svm(vcpu);
774
775 #ifdef CONFIG_X86_64
776         if (vcpu->shadow_efer & KVM_EFER_LME) {
777                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
778                         vcpu->shadow_efer |= KVM_EFER_LMA;
779                         svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
780                 }
781
782                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG) ) {
783                         vcpu->shadow_efer &= ~KVM_EFER_LMA;
784                         svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
785                 }
786         }
787 #endif
788         if ((vcpu->cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
789                 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
790                 vcpu->fpu_active = 1;
791         }
792
793         vcpu->cr0 = cr0;
794         cr0 |= X86_CR0_PG | X86_CR0_WP;
795         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
796         svm->vmcb->save.cr0 = cr0;
797 }
798
799 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
800 {
801        vcpu->cr4 = cr4;
802        to_svm(vcpu)->vmcb->save.cr4 = cr4 | X86_CR4_PAE;
803 }
804
805 static void svm_set_segment(struct kvm_vcpu *vcpu,
806                             struct kvm_segment *var, int seg)
807 {
808         struct vcpu_svm *svm = to_svm(vcpu);
809         struct vmcb_seg *s = svm_seg(vcpu, seg);
810
811         s->base = var->base;
812         s->limit = var->limit;
813         s->selector = var->selector;
814         if (var->unusable)
815                 s->attrib = 0;
816         else {
817                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
818                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
819                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
820                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
821                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
822                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
823                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
824                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
825         }
826         if (seg == VCPU_SREG_CS)
827                 svm->vmcb->save.cpl
828                         = (svm->vmcb->save.cs.attrib
829                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
830
831 }
832
833 /* FIXME:
834
835         svm(vcpu)->vmcb->control.int_ctl &= ~V_TPR_MASK;
836         svm(vcpu)->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
837
838 */
839
840 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
841 {
842         return -EOPNOTSUPP;
843 }
844
845 static int svm_get_irq(struct kvm_vcpu *vcpu)
846 {
847         struct vcpu_svm *svm = to_svm(vcpu);
848         u32 exit_int_info = svm->vmcb->control.exit_int_info;
849
850         if (is_external_interrupt(exit_int_info))
851                 return exit_int_info & SVM_EVTINJ_VEC_MASK;
852         return -1;
853 }
854
855 static void load_host_msrs(struct kvm_vcpu *vcpu)
856 {
857 #ifdef CONFIG_X86_64
858         wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
859 #endif
860 }
861
862 static void save_host_msrs(struct kvm_vcpu *vcpu)
863 {
864 #ifdef CONFIG_X86_64
865         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
866 #endif
867 }
868
869 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
870 {
871         if (svm_data->next_asid > svm_data->max_asid) {
872                 ++svm_data->asid_generation;
873                 svm_data->next_asid = 1;
874                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
875         }
876
877         svm->vcpu.cpu = svm_data->cpu;
878         svm->asid_generation = svm_data->asid_generation;
879         svm->vmcb->control.asid = svm_data->next_asid++;
880 }
881
882 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
883 {
884         return to_svm(vcpu)->db_regs[dr];
885 }
886
887 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
888                        int *exception)
889 {
890         struct vcpu_svm *svm = to_svm(vcpu);
891
892         *exception = 0;
893
894         if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
895                 svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
896                 svm->vmcb->save.dr6 |= DR6_BD_MASK;
897                 *exception = DB_VECTOR;
898                 return;
899         }
900
901         switch (dr) {
902         case 0 ... 3:
903                 svm->db_regs[dr] = value;
904                 return;
905         case 4 ... 5:
906                 if (vcpu->cr4 & X86_CR4_DE) {
907                         *exception = UD_VECTOR;
908                         return;
909                 }
910         case 7: {
911                 if (value & ~((1ULL << 32) - 1)) {
912                         *exception = GP_VECTOR;
913                         return;
914                 }
915                 svm->vmcb->save.dr7 = value;
916                 return;
917         }
918         default:
919                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
920                        __FUNCTION__, dr);
921                 *exception = UD_VECTOR;
922                 return;
923         }
924 }
925
926 static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
927 {
928         u32 exit_int_info = svm->vmcb->control.exit_int_info;
929         struct kvm *kvm = svm->vcpu.kvm;
930         u64 fault_address;
931         u32 error_code;
932         enum emulation_result er;
933         int r;
934
935         if (!irqchip_in_kernel(kvm) &&
936                 is_external_interrupt(exit_int_info))
937                 push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
938
939         mutex_lock(&kvm->lock);
940
941         fault_address  = svm->vmcb->control.exit_info_2;
942         error_code = svm->vmcb->control.exit_info_1;
943         r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
944         if (r < 0) {
945                 mutex_unlock(&kvm->lock);
946                 return r;
947         }
948         if (!r) {
949                 mutex_unlock(&kvm->lock);
950                 return 1;
951         }
952         er = emulate_instruction(&svm->vcpu, kvm_run, fault_address,
953                                  error_code);
954         mutex_unlock(&kvm->lock);
955
956         switch (er) {
957         case EMULATE_DONE:
958                 return 1;
959         case EMULATE_DO_MMIO:
960                 ++svm->vcpu.stat.mmio_exits;
961                 return 0;
962         case EMULATE_FAIL:
963                 vcpu_printf(&svm->vcpu, "%s: emulate fail\n", __FUNCTION__);
964                 break;
965         default:
966                 BUG();
967         }
968
969         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
970         return 0;
971 }
972
973 static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
974 {
975         svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
976         if (!(svm->vcpu.cr0 & X86_CR0_TS))
977                 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
978         svm->vcpu.fpu_active = 1;
979
980         return 1;
981 }
982
983 static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
984 {
985         /*
986          * VMCB is undefined after a SHUTDOWN intercept
987          * so reinitialize it.
988          */
989         clear_page(svm->vmcb);
990         init_vmcb(svm->vmcb);
991
992         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
993         return 0;
994 }
995
996 static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
997 {
998         u32 io_info = svm->vmcb->control.exit_info_1; //address size bug?
999         int size, down, in, string, rep;
1000         unsigned port;
1001
1002         ++svm->vcpu.stat.io_exits;
1003
1004         svm->next_rip = svm->vmcb->control.exit_info_2;
1005
1006         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1007
1008         if (string) {
1009                 if (emulate_instruction(&svm->vcpu, kvm_run, 0, 0) == EMULATE_DO_MMIO)
1010                         return 0;
1011                 return 1;
1012         }
1013
1014         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1015         port = io_info >> 16;
1016         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1017         rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1018         down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
1019
1020         return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
1021 }
1022
1023 static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1024 {
1025         return 1;
1026 }
1027
1028 static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1029 {
1030         svm->next_rip = svm->vmcb->save.rip + 1;
1031         skip_emulated_instruction(&svm->vcpu);
1032         return kvm_emulate_halt(&svm->vcpu);
1033 }
1034
1035 static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1036 {
1037         svm->next_rip = svm->vmcb->save.rip + 3;
1038         skip_emulated_instruction(&svm->vcpu);
1039         return kvm_hypercall(&svm->vcpu, kvm_run);
1040 }
1041
1042 static int invalid_op_interception(struct vcpu_svm *svm,
1043                                    struct kvm_run *kvm_run)
1044 {
1045         inject_ud(&svm->vcpu);
1046         return 1;
1047 }
1048
1049 static int task_switch_interception(struct vcpu_svm *svm,
1050                                     struct kvm_run *kvm_run)
1051 {
1052         pr_unimpl(&svm->vcpu, "%s: task switch is unsupported\n", __FUNCTION__);
1053         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1054         return 0;
1055 }
1056
1057 static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1058 {
1059         svm->next_rip = svm->vmcb->save.rip + 2;
1060         kvm_emulate_cpuid(&svm->vcpu);
1061         return 1;
1062 }
1063
1064 static int emulate_on_interception(struct vcpu_svm *svm,
1065                                    struct kvm_run *kvm_run)
1066 {
1067         if (emulate_instruction(&svm->vcpu, NULL, 0, 0) != EMULATE_DONE)
1068                 pr_unimpl(&svm->vcpu, "%s: failed\n", __FUNCTION__);
1069         return 1;
1070 }
1071
1072 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1073 {
1074         struct vcpu_svm *svm = to_svm(vcpu);
1075
1076         switch (ecx) {
1077         case MSR_IA32_TIME_STAMP_COUNTER: {
1078                 u64 tsc;
1079
1080                 rdtscll(tsc);
1081                 *data = svm->vmcb->control.tsc_offset + tsc;
1082                 break;
1083         }
1084         case MSR_K6_STAR:
1085                 *data = svm->vmcb->save.star;
1086                 break;
1087 #ifdef CONFIG_X86_64
1088         case MSR_LSTAR:
1089                 *data = svm->vmcb->save.lstar;
1090                 break;
1091         case MSR_CSTAR:
1092                 *data = svm->vmcb->save.cstar;
1093                 break;
1094         case MSR_KERNEL_GS_BASE:
1095                 *data = svm->vmcb->save.kernel_gs_base;
1096                 break;
1097         case MSR_SYSCALL_MASK:
1098                 *data = svm->vmcb->save.sfmask;
1099                 break;
1100 #endif
1101         case MSR_IA32_SYSENTER_CS:
1102                 *data = svm->vmcb->save.sysenter_cs;
1103                 break;
1104         case MSR_IA32_SYSENTER_EIP:
1105                 *data = svm->vmcb->save.sysenter_eip;
1106                 break;
1107         case MSR_IA32_SYSENTER_ESP:
1108                 *data = svm->vmcb->save.sysenter_esp;
1109                 break;
1110         default:
1111                 return kvm_get_msr_common(vcpu, ecx, data);
1112         }
1113         return 0;
1114 }
1115
1116 static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1117 {
1118         u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
1119         u64 data;
1120
1121         if (svm_get_msr(&svm->vcpu, ecx, &data))
1122                 svm_inject_gp(&svm->vcpu, 0);
1123         else {
1124                 svm->vmcb->save.rax = data & 0xffffffff;
1125                 svm->vcpu.regs[VCPU_REGS_RDX] = data >> 32;
1126                 svm->next_rip = svm->vmcb->save.rip + 2;
1127                 skip_emulated_instruction(&svm->vcpu);
1128         }
1129         return 1;
1130 }
1131
1132 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1133 {
1134         struct vcpu_svm *svm = to_svm(vcpu);
1135
1136         switch (ecx) {
1137         case MSR_IA32_TIME_STAMP_COUNTER: {
1138                 u64 tsc;
1139
1140                 rdtscll(tsc);
1141                 svm->vmcb->control.tsc_offset = data - tsc;
1142                 break;
1143         }
1144         case MSR_K6_STAR:
1145                 svm->vmcb->save.star = data;
1146                 break;
1147 #ifdef CONFIG_X86_64
1148         case MSR_LSTAR:
1149                 svm->vmcb->save.lstar = data;
1150                 break;
1151         case MSR_CSTAR:
1152                 svm->vmcb->save.cstar = data;
1153                 break;
1154         case MSR_KERNEL_GS_BASE:
1155                 svm->vmcb->save.kernel_gs_base = data;
1156                 break;
1157         case MSR_SYSCALL_MASK:
1158                 svm->vmcb->save.sfmask = data;
1159                 break;
1160 #endif
1161         case MSR_IA32_SYSENTER_CS:
1162                 svm->vmcb->save.sysenter_cs = data;
1163                 break;
1164         case MSR_IA32_SYSENTER_EIP:
1165                 svm->vmcb->save.sysenter_eip = data;
1166                 break;
1167         case MSR_IA32_SYSENTER_ESP:
1168                 svm->vmcb->save.sysenter_esp = data;
1169                 break;
1170         default:
1171                 return kvm_set_msr_common(vcpu, ecx, data);
1172         }
1173         return 0;
1174 }
1175
1176 static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1177 {
1178         u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
1179         u64 data = (svm->vmcb->save.rax & -1u)
1180                 | ((u64)(svm->vcpu.regs[VCPU_REGS_RDX] & -1u) << 32);
1181         svm->next_rip = svm->vmcb->save.rip + 2;
1182         if (svm_set_msr(&svm->vcpu, ecx, data))
1183                 svm_inject_gp(&svm->vcpu, 0);
1184         else
1185                 skip_emulated_instruction(&svm->vcpu);
1186         return 1;
1187 }
1188
1189 static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1190 {
1191         if (svm->vmcb->control.exit_info_1)
1192                 return wrmsr_interception(svm, kvm_run);
1193         else
1194                 return rdmsr_interception(svm, kvm_run);
1195 }
1196
1197 static int interrupt_window_interception(struct vcpu_svm *svm,
1198                                    struct kvm_run *kvm_run)
1199 {
1200         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1201         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1202         /*
1203          * If the user space waits to inject interrupts, exit as soon as
1204          * possible
1205          */
1206         if (kvm_run->request_interrupt_window &&
1207             !svm->vcpu.irq_summary) {
1208                 ++svm->vcpu.stat.irq_window_exits;
1209                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1210                 return 0;
1211         }
1212
1213         return 1;
1214 }
1215
1216 static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
1217                                       struct kvm_run *kvm_run) = {
1218         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
1219         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
1220         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
1221         /* for now: */
1222         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
1223         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
1224         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
1225         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
1226         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
1227         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
1228         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
1229         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
1230         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
1231         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
1232         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
1233         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
1234         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
1235         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
1236         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
1237         [SVM_EXIT_INTR]                         = nop_on_interception,
1238         [SVM_EXIT_NMI]                          = nop_on_interception,
1239         [SVM_EXIT_SMI]                          = nop_on_interception,
1240         [SVM_EXIT_INIT]                         = nop_on_interception,
1241         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
1242         /* [SVM_EXIT_CR0_SEL_WRITE]             = emulate_on_interception, */
1243         [SVM_EXIT_CPUID]                        = cpuid_interception,
1244         [SVM_EXIT_HLT]                          = halt_interception,
1245         [SVM_EXIT_INVLPG]                       = emulate_on_interception,
1246         [SVM_EXIT_INVLPGA]                      = invalid_op_interception,
1247         [SVM_EXIT_IOIO]                         = io_interception,
1248         [SVM_EXIT_MSR]                          = msr_interception,
1249         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
1250         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
1251         [SVM_EXIT_VMRUN]                        = invalid_op_interception,
1252         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
1253         [SVM_EXIT_VMLOAD]                       = invalid_op_interception,
1254         [SVM_EXIT_VMSAVE]                       = invalid_op_interception,
1255         [SVM_EXIT_STGI]                         = invalid_op_interception,
1256         [SVM_EXIT_CLGI]                         = invalid_op_interception,
1257         [SVM_EXIT_SKINIT]                       = invalid_op_interception,
1258         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
1259         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
1260 };
1261
1262
1263 static int handle_exit(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1264 {
1265         u32 exit_code = svm->vmcb->control.exit_code;
1266
1267         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
1268             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
1269                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1270                        "exit_code 0x%x\n",
1271                        __FUNCTION__, svm->vmcb->control.exit_int_info,
1272                        exit_code);
1273
1274         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1275             || svm_exit_handlers[exit_code] == 0) {
1276                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1277                 kvm_run->hw.hardware_exit_reason = exit_code;
1278                 return 0;
1279         }
1280
1281         return svm_exit_handlers[exit_code](svm, kvm_run);
1282 }
1283
1284 static void reload_tss(struct kvm_vcpu *vcpu)
1285 {
1286         int cpu = raw_smp_processor_id();
1287
1288         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1289         svm_data->tss_desc->type = 9; //available 32/64-bit TSS
1290         load_TR_desc();
1291 }
1292
1293 static void pre_svm_run(struct vcpu_svm *svm)
1294 {
1295         int cpu = raw_smp_processor_id();
1296
1297         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1298
1299         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1300         if (svm->vcpu.cpu != cpu ||
1301             svm->asid_generation != svm_data->asid_generation)
1302                 new_asid(svm, svm_data);
1303 }
1304
1305
1306 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
1307 {
1308         struct vmcb_control_area *control;
1309
1310         control = &svm->vmcb->control;
1311         control->int_vector = irq;
1312         control->int_ctl &= ~V_INTR_PRIO_MASK;
1313         control->int_ctl |= V_IRQ_MASK |
1314                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1315 }
1316
1317 static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
1318 {
1319         struct vcpu_svm *svm = to_svm(vcpu);
1320
1321         svm_inject_irq(svm, irq);
1322 }
1323
1324 static void svm_intr_assist(struct vcpu_svm *svm)
1325 {
1326         struct vmcb *vmcb = svm->vmcb;
1327         int intr_vector = -1;
1328         struct kvm_vcpu *vcpu = &svm->vcpu;
1329
1330         kvm_inject_pending_timer_irqs(vcpu);
1331         if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
1332             ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
1333                 intr_vector = vmcb->control.exit_int_info &
1334                               SVM_EVTINJ_VEC_MASK;
1335                 vmcb->control.exit_int_info = 0;
1336                 svm_inject_irq(svm, intr_vector);
1337                 return;
1338         }
1339
1340         if (vmcb->control.int_ctl & V_IRQ_MASK)
1341                 return;
1342
1343         if (!kvm_cpu_has_interrupt(vcpu))
1344                 return;
1345
1346         if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
1347             (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
1348             (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
1349                 /* unable to deliver irq, set pending irq */
1350                 vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
1351                 svm_inject_irq(svm, 0x0);
1352                 return;
1353         }
1354         /* Okay, we can deliver the interrupt: grab it and update PIC state. */
1355         intr_vector = kvm_cpu_get_interrupt(vcpu);
1356         svm_inject_irq(svm, intr_vector);
1357         kvm_timer_intr_post(vcpu, intr_vector);
1358 }
1359
1360 static void kvm_reput_irq(struct vcpu_svm *svm)
1361 {
1362         struct vmcb_control_area *control = &svm->vmcb->control;
1363
1364         if ((control->int_ctl & V_IRQ_MASK)
1365             && !irqchip_in_kernel(svm->vcpu.kvm)) {
1366                 control->int_ctl &= ~V_IRQ_MASK;
1367                 push_irq(&svm->vcpu, control->int_vector);
1368         }
1369
1370         svm->vcpu.interrupt_window_open =
1371                 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1372 }
1373
1374 static void svm_do_inject_vector(struct vcpu_svm *svm)
1375 {
1376         struct kvm_vcpu *vcpu = &svm->vcpu;
1377         int word_index = __ffs(vcpu->irq_summary);
1378         int bit_index = __ffs(vcpu->irq_pending[word_index]);
1379         int irq = word_index * BITS_PER_LONG + bit_index;
1380
1381         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1382         if (!vcpu->irq_pending[word_index])
1383                 clear_bit(word_index, &vcpu->irq_summary);
1384         svm_inject_irq(svm, irq);
1385 }
1386
1387 static void do_interrupt_requests(struct vcpu_svm *svm,
1388                                        struct kvm_run *kvm_run)
1389 {
1390         struct vmcb_control_area *control = &svm->vmcb->control;
1391
1392         svm->vcpu.interrupt_window_open =
1393                 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1394                  (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1395
1396         if (svm->vcpu.interrupt_window_open && svm->vcpu.irq_summary)
1397                 /*
1398                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1399                  */
1400                 svm_do_inject_vector(svm);
1401
1402         /*
1403          * Interrupts blocked.  Wait for unblock.
1404          */
1405         if (!svm->vcpu.interrupt_window_open &&
1406             (svm->vcpu.irq_summary || kvm_run->request_interrupt_window)) {
1407                 control->intercept |= 1ULL << INTERCEPT_VINTR;
1408         } else
1409                 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1410 }
1411
1412 static void post_kvm_run_save(struct vcpu_svm *svm,
1413                               struct kvm_run *kvm_run)
1414 {
1415         if (irqchip_in_kernel(svm->vcpu.kvm))
1416                 kvm_run->ready_for_interrupt_injection = 1;
1417         else
1418                 kvm_run->ready_for_interrupt_injection =
1419                                          (svm->vcpu.interrupt_window_open &&
1420                                           svm->vcpu.irq_summary == 0);
1421         kvm_run->if_flag = (svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0;
1422         kvm_run->cr8 = get_cr8(&svm->vcpu);
1423         kvm_run->apic_base = kvm_get_apic_base(&svm->vcpu);
1424 }
1425
1426 /*
1427  * Check if userspace requested an interrupt window, and that the
1428  * interrupt window is open.
1429  *
1430  * No need to exit to userspace if we already have an interrupt queued.
1431  */
1432 static int dm_request_for_irq_injection(struct vcpu_svm *svm,
1433                                           struct kvm_run *kvm_run)
1434 {
1435         return (!svm->vcpu.irq_summary &&
1436                 kvm_run->request_interrupt_window &&
1437                 svm->vcpu.interrupt_window_open &&
1438                 (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1439 }
1440
1441 static void save_db_regs(unsigned long *db_regs)
1442 {
1443         asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1444         asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1445         asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1446         asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1447 }
1448
1449 static void load_db_regs(unsigned long *db_regs)
1450 {
1451         asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1452         asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1453         asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1454         asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1455 }
1456
1457 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1458 {
1459         force_new_asid(vcpu);
1460 }
1461
1462 static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1463 {
1464         struct vcpu_svm *svm = to_svm(vcpu);
1465         u16 fs_selector;
1466         u16 gs_selector;
1467         u16 ldt_selector;
1468         int r;
1469
1470 again:
1471         r = kvm_mmu_reload(vcpu);
1472         if (unlikely(r))
1473                 return r;
1474
1475         clgi();
1476
1477         if (signal_pending(current)) {
1478                 stgi();
1479                 ++vcpu->stat.signal_exits;
1480                 post_kvm_run_save(svm, kvm_run);
1481                 kvm_run->exit_reason = KVM_EXIT_INTR;
1482                 return -EINTR;
1483         }
1484
1485         if (irqchip_in_kernel(vcpu->kvm))
1486                 svm_intr_assist(svm);
1487         else if (!vcpu->mmio_read_completed)
1488                 do_interrupt_requests(svm, kvm_run);
1489
1490         vcpu->guest_mode = 1;
1491         if (vcpu->requests)
1492                 if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
1493                     svm_flush_tlb(vcpu);
1494
1495         pre_svm_run(svm);
1496
1497         save_host_msrs(vcpu);
1498         fs_selector = read_fs();
1499         gs_selector = read_gs();
1500         ldt_selector = read_ldt();
1501         svm->host_cr2 = kvm_read_cr2();
1502         svm->host_dr6 = read_dr6();
1503         svm->host_dr7 = read_dr7();
1504         svm->vmcb->save.cr2 = vcpu->cr2;
1505
1506         if (svm->vmcb->save.dr7 & 0xff) {
1507                 write_dr7(0);
1508                 save_db_regs(svm->host_db_regs);
1509                 load_db_regs(svm->db_regs);
1510         }
1511
1512         if (vcpu->fpu_active) {
1513                 fx_save(&vcpu->host_fx_image);
1514                 fx_restore(&vcpu->guest_fx_image);
1515         }
1516
1517         asm volatile (
1518 #ifdef CONFIG_X86_64
1519                 "push %%rbx; push %%rcx; push %%rdx;"
1520                 "push %%rsi; push %%rdi; push %%rbp;"
1521                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1522                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1523 #else
1524                 "push %%ebx; push %%ecx; push %%edx;"
1525                 "push %%esi; push %%edi; push %%ebp;"
1526 #endif
1527
1528 #ifdef CONFIG_X86_64
1529                 "mov %c[rbx](%[svm]), %%rbx \n\t"
1530                 "mov %c[rcx](%[svm]), %%rcx \n\t"
1531                 "mov %c[rdx](%[svm]), %%rdx \n\t"
1532                 "mov %c[rsi](%[svm]), %%rsi \n\t"
1533                 "mov %c[rdi](%[svm]), %%rdi \n\t"
1534                 "mov %c[rbp](%[svm]), %%rbp \n\t"
1535                 "mov %c[r8](%[svm]),  %%r8  \n\t"
1536                 "mov %c[r9](%[svm]),  %%r9  \n\t"
1537                 "mov %c[r10](%[svm]), %%r10 \n\t"
1538                 "mov %c[r11](%[svm]), %%r11 \n\t"
1539                 "mov %c[r12](%[svm]), %%r12 \n\t"
1540                 "mov %c[r13](%[svm]), %%r13 \n\t"
1541                 "mov %c[r14](%[svm]), %%r14 \n\t"
1542                 "mov %c[r15](%[svm]), %%r15 \n\t"
1543 #else
1544                 "mov %c[rbx](%[svm]), %%ebx \n\t"
1545                 "mov %c[rcx](%[svm]), %%ecx \n\t"
1546                 "mov %c[rdx](%[svm]), %%edx \n\t"
1547                 "mov %c[rsi](%[svm]), %%esi \n\t"
1548                 "mov %c[rdi](%[svm]), %%edi \n\t"
1549                 "mov %c[rbp](%[svm]), %%ebp \n\t"
1550 #endif
1551
1552 #ifdef CONFIG_X86_64
1553                 /* Enter guest mode */
1554                 "push %%rax \n\t"
1555                 "mov %c[vmcb](%[svm]), %%rax \n\t"
1556                 SVM_VMLOAD "\n\t"
1557                 SVM_VMRUN "\n\t"
1558                 SVM_VMSAVE "\n\t"
1559                 "pop %%rax \n\t"
1560 #else
1561                 /* Enter guest mode */
1562                 "push %%eax \n\t"
1563                 "mov %c[vmcb](%[svm]), %%eax \n\t"
1564                 SVM_VMLOAD "\n\t"
1565                 SVM_VMRUN "\n\t"
1566                 SVM_VMSAVE "\n\t"
1567                 "pop %%eax \n\t"
1568 #endif
1569
1570                 /* Save guest registers, load host registers */
1571 #ifdef CONFIG_X86_64
1572                 "mov %%rbx, %c[rbx](%[svm]) \n\t"
1573                 "mov %%rcx, %c[rcx](%[svm]) \n\t"
1574                 "mov %%rdx, %c[rdx](%[svm]) \n\t"
1575                 "mov %%rsi, %c[rsi](%[svm]) \n\t"
1576                 "mov %%rdi, %c[rdi](%[svm]) \n\t"
1577                 "mov %%rbp, %c[rbp](%[svm]) \n\t"
1578                 "mov %%r8,  %c[r8](%[svm]) \n\t"
1579                 "mov %%r9,  %c[r9](%[svm]) \n\t"
1580                 "mov %%r10, %c[r10](%[svm]) \n\t"
1581                 "mov %%r11, %c[r11](%[svm]) \n\t"
1582                 "mov %%r12, %c[r12](%[svm]) \n\t"
1583                 "mov %%r13, %c[r13](%[svm]) \n\t"
1584                 "mov %%r14, %c[r14](%[svm]) \n\t"
1585                 "mov %%r15, %c[r15](%[svm]) \n\t"
1586
1587                 "pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
1588                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
1589                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
1590                 "pop  %%rdx; pop  %%rcx; pop  %%rbx; \n\t"
1591 #else
1592                 "mov %%ebx, %c[rbx](%[svm]) \n\t"
1593                 "mov %%ecx, %c[rcx](%[svm]) \n\t"
1594                 "mov %%edx, %c[rdx](%[svm]) \n\t"
1595                 "mov %%esi, %c[rsi](%[svm]) \n\t"
1596                 "mov %%edi, %c[rdi](%[svm]) \n\t"
1597                 "mov %%ebp, %c[rbp](%[svm]) \n\t"
1598
1599                 "pop  %%ebp; pop  %%edi; pop  %%esi;"
1600                 "pop  %%edx; pop  %%ecx; pop  %%ebx; \n\t"
1601 #endif
1602                 :
1603                 : [svm]"a"(svm),
1604                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1605                   [rbx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RBX])),
1606                   [rcx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RCX])),
1607                   [rdx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RDX])),
1608                   [rsi]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RSI])),
1609                   [rdi]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RDI])),
1610                   [rbp]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RBP]))
1611 #ifdef CONFIG_X86_64
1612                   ,[r8 ]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R8])),
1613                   [r9 ]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R9 ])),
1614                   [r10]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R10])),
1615                   [r11]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R11])),
1616                   [r12]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R12])),
1617                   [r13]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R13])),
1618                   [r14]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R14])),
1619                   [r15]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R15]))
1620 #endif
1621                 : "cc", "memory" );
1622
1623         vcpu->guest_mode = 0;
1624
1625         if (vcpu->fpu_active) {
1626                 fx_save(&vcpu->guest_fx_image);
1627                 fx_restore(&vcpu->host_fx_image);
1628         }
1629
1630         if ((svm->vmcb->save.dr7 & 0xff))
1631                 load_db_regs(svm->host_db_regs);
1632
1633         vcpu->cr2 = svm->vmcb->save.cr2;
1634
1635         write_dr6(svm->host_dr6);
1636         write_dr7(svm->host_dr7);
1637         kvm_write_cr2(svm->host_cr2);
1638
1639         load_fs(fs_selector);
1640         load_gs(gs_selector);
1641         load_ldt(ldt_selector);
1642         load_host_msrs(vcpu);
1643
1644         reload_tss(vcpu);
1645
1646         /*
1647          * Profile KVM exit RIPs:
1648          */
1649         if (unlikely(prof_on == KVM_PROFILING))
1650                 profile_hit(KVM_PROFILING,
1651                         (void *)(unsigned long)svm->vmcb->save.rip);
1652
1653         stgi();
1654
1655         kvm_reput_irq(svm);
1656
1657         svm->next_rip = 0;
1658
1659         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1660                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1661                 kvm_run->fail_entry.hardware_entry_failure_reason
1662                         = svm->vmcb->control.exit_code;
1663                 post_kvm_run_save(svm, kvm_run);
1664                 return 0;
1665         }
1666
1667         r = handle_exit(svm, kvm_run);
1668         if (r > 0) {
1669                 if (dm_request_for_irq_injection(svm, kvm_run)) {
1670                         ++vcpu->stat.request_irq_exits;
1671                         post_kvm_run_save(svm, kvm_run);
1672                         kvm_run->exit_reason = KVM_EXIT_INTR;
1673                         return -EINTR;
1674                 }
1675                 kvm_resched(vcpu);
1676                 goto again;
1677         }
1678         post_kvm_run_save(svm, kvm_run);
1679         return r;
1680 }
1681
1682 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1683 {
1684         struct vcpu_svm *svm = to_svm(vcpu);
1685
1686         svm->vmcb->save.cr3 = root;
1687         force_new_asid(vcpu);
1688
1689         if (vcpu->fpu_active) {
1690                 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
1691                 svm->vmcb->save.cr0 |= X86_CR0_TS;
1692                 vcpu->fpu_active = 0;
1693         }
1694 }
1695
1696 static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
1697                                   unsigned long  addr,
1698                                   uint32_t err_code)
1699 {
1700         struct vcpu_svm *svm = to_svm(vcpu);
1701         uint32_t exit_int_info = svm->vmcb->control.exit_int_info;
1702
1703         ++vcpu->stat.pf_guest;
1704
1705         if (is_page_fault(exit_int_info)) {
1706
1707                 svm->vmcb->control.event_inj_err = 0;
1708                 svm->vmcb->control.event_inj =  SVM_EVTINJ_VALID |
1709                                                 SVM_EVTINJ_VALID_ERR |
1710                                                 SVM_EVTINJ_TYPE_EXEPT |
1711                                                 DF_VECTOR;
1712                 return;
1713         }
1714         vcpu->cr2 = addr;
1715         svm->vmcb->save.cr2 = addr;
1716         svm->vmcb->control.event_inj =  SVM_EVTINJ_VALID |
1717                                         SVM_EVTINJ_VALID_ERR |
1718                                         SVM_EVTINJ_TYPE_EXEPT |
1719                                         PF_VECTOR;
1720         svm->vmcb->control.event_inj_err = err_code;
1721 }
1722
1723
1724 static int is_disabled(void)
1725 {
1726         u64 vm_cr;
1727
1728         rdmsrl(MSR_VM_CR, vm_cr);
1729         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
1730                 return 1;
1731
1732         return 0;
1733 }
1734
1735 static void
1736 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1737 {
1738         /*
1739          * Patch in the VMMCALL instruction:
1740          */
1741         hypercall[0] = 0x0f;
1742         hypercall[1] = 0x01;
1743         hypercall[2] = 0xd9;
1744         hypercall[3] = 0xc3;
1745 }
1746
1747 static void svm_check_processor_compat(void *rtn)
1748 {
1749         *(int *)rtn = 0;
1750 }
1751
1752 static struct kvm_arch_ops svm_arch_ops = {
1753         .cpu_has_kvm_support = has_svm,
1754         .disabled_by_bios = is_disabled,
1755         .hardware_setup = svm_hardware_setup,
1756         .hardware_unsetup = svm_hardware_unsetup,
1757         .check_processor_compatibility = svm_check_processor_compat,
1758         .hardware_enable = svm_hardware_enable,
1759         .hardware_disable = svm_hardware_disable,
1760
1761         .vcpu_create = svm_create_vcpu,
1762         .vcpu_free = svm_free_vcpu,
1763
1764         .vcpu_load = svm_vcpu_load,
1765         .vcpu_put = svm_vcpu_put,
1766         .vcpu_decache = svm_vcpu_decache,
1767
1768         .set_guest_debug = svm_guest_debug,
1769         .get_msr = svm_get_msr,
1770         .set_msr = svm_set_msr,
1771         .get_segment_base = svm_get_segment_base,
1772         .get_segment = svm_get_segment,
1773         .set_segment = svm_set_segment,
1774         .get_cs_db_l_bits = svm_get_cs_db_l_bits,
1775         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
1776         .set_cr0 = svm_set_cr0,
1777         .set_cr3 = svm_set_cr3,
1778         .set_cr4 = svm_set_cr4,
1779         .set_efer = svm_set_efer,
1780         .get_idt = svm_get_idt,
1781         .set_idt = svm_set_idt,
1782         .get_gdt = svm_get_gdt,
1783         .set_gdt = svm_set_gdt,
1784         .get_dr = svm_get_dr,
1785         .set_dr = svm_set_dr,
1786         .cache_regs = svm_cache_regs,
1787         .decache_regs = svm_decache_regs,
1788         .get_rflags = svm_get_rflags,
1789         .set_rflags = svm_set_rflags,
1790
1791         .tlb_flush = svm_flush_tlb,
1792         .inject_page_fault = svm_inject_page_fault,
1793
1794         .inject_gp = svm_inject_gp,
1795
1796         .run = svm_vcpu_run,
1797         .skip_emulated_instruction = skip_emulated_instruction,
1798         .patch_hypercall = svm_patch_hypercall,
1799         .get_irq = svm_get_irq,
1800         .set_irq = svm_set_irq,
1801 };
1802
1803 static int __init svm_init(void)
1804 {
1805         return kvm_init_arch(&svm_arch_ops, sizeof(struct vcpu_svm),
1806                               THIS_MODULE);
1807 }
1808
1809 static void __exit svm_exit(void)
1810 {
1811         kvm_exit_arch();
1812 }
1813
1814 module_init(svm_init)
1815 module_exit(svm_exit)