]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/kvm/svm.c
3de9ec35ebf9d899e777d0b7fd29bacad080d6d8
[linux-2.6-omap-h63xx.git] / drivers / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16
17 #include "kvm_svm.h"
18 #include "x86_emulate.h"
19 #include "irq.h"
20
21 #include <linux/module.h>
22 #include <linux/kernel.h>
23 #include <linux/vmalloc.h>
24 #include <linux/highmem.h>
25 #include <linux/profile.h>
26 #include <linux/sched.h>
27
28 #include <asm/desc.h>
29
30 MODULE_AUTHOR("Qumranet");
31 MODULE_LICENSE("GPL");
32
33 #define IOPM_ALLOC_ORDER 2
34 #define MSRPM_ALLOC_ORDER 1
35
36 #define DB_VECTOR 1
37 #define UD_VECTOR 6
38 #define GP_VECTOR 13
39
40 #define DR7_GD_MASK (1 << 13)
41 #define DR6_BD_MASK (1 << 13)
42
43 #define SEG_TYPE_LDT 2
44 #define SEG_TYPE_BUSY_TSS16 3
45
46 #define KVM_EFER_LMA (1 << 10)
47 #define KVM_EFER_LME (1 << 8)
48
49 #define SVM_FEATURE_NPT  (1 << 0)
50 #define SVM_FEATURE_LBRV (1 << 1)
51 #define SVM_DEATURE_SVML (1 << 2)
52
53 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
54 {
55         return container_of(vcpu, struct vcpu_svm, vcpu);
56 }
57
58 unsigned long iopm_base;
59 unsigned long msrpm_base;
60
61 struct kvm_ldttss_desc {
62         u16 limit0;
63         u16 base0;
64         unsigned base1 : 8, type : 5, dpl : 2, p : 1;
65         unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
66         u32 base3;
67         u32 zero1;
68 } __attribute__((packed));
69
70 struct svm_cpu_data {
71         int cpu;
72
73         u64 asid_generation;
74         u32 max_asid;
75         u32 next_asid;
76         struct kvm_ldttss_desc *tss_desc;
77
78         struct page *save_area;
79 };
80
81 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
82 static uint32_t svm_features;
83
84 struct svm_init_data {
85         int cpu;
86         int r;
87 };
88
89 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
90
91 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
92 #define MSRS_RANGE_SIZE 2048
93 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
94
95 #define MAX_INST_SIZE 15
96
97 static inline u32 svm_has(u32 feat)
98 {
99         return svm_features & feat;
100 }
101
102 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
103 {
104         int word_index = __ffs(vcpu->irq_summary);
105         int bit_index = __ffs(vcpu->irq_pending[word_index]);
106         int irq = word_index * BITS_PER_LONG + bit_index;
107
108         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
109         if (!vcpu->irq_pending[word_index])
110                 clear_bit(word_index, &vcpu->irq_summary);
111         return irq;
112 }
113
114 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
115 {
116         set_bit(irq, vcpu->irq_pending);
117         set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
118 }
119
120 static inline void clgi(void)
121 {
122         asm volatile (SVM_CLGI);
123 }
124
125 static inline void stgi(void)
126 {
127         asm volatile (SVM_STGI);
128 }
129
130 static inline void invlpga(unsigned long addr, u32 asid)
131 {
132         asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
133 }
134
135 static inline unsigned long kvm_read_cr2(void)
136 {
137         unsigned long cr2;
138
139         asm volatile ("mov %%cr2, %0" : "=r" (cr2));
140         return cr2;
141 }
142
143 static inline void kvm_write_cr2(unsigned long val)
144 {
145         asm volatile ("mov %0, %%cr2" :: "r" (val));
146 }
147
148 static inline unsigned long read_dr6(void)
149 {
150         unsigned long dr6;
151
152         asm volatile ("mov %%dr6, %0" : "=r" (dr6));
153         return dr6;
154 }
155
156 static inline void write_dr6(unsigned long val)
157 {
158         asm volatile ("mov %0, %%dr6" :: "r" (val));
159 }
160
161 static inline unsigned long read_dr7(void)
162 {
163         unsigned long dr7;
164
165         asm volatile ("mov %%dr7, %0" : "=r" (dr7));
166         return dr7;
167 }
168
169 static inline void write_dr7(unsigned long val)
170 {
171         asm volatile ("mov %0, %%dr7" :: "r" (val));
172 }
173
174 static inline void force_new_asid(struct kvm_vcpu *vcpu)
175 {
176         to_svm(vcpu)->asid_generation--;
177 }
178
179 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
180 {
181         force_new_asid(vcpu);
182 }
183
184 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
185 {
186         if (!(efer & KVM_EFER_LMA))
187                 efer &= ~KVM_EFER_LME;
188
189         to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
190         vcpu->shadow_efer = efer;
191 }
192
193 static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
194 {
195         struct vcpu_svm *svm = to_svm(vcpu);
196
197         svm->vmcb->control.event_inj =          SVM_EVTINJ_VALID |
198                                                 SVM_EVTINJ_VALID_ERR |
199                                                 SVM_EVTINJ_TYPE_EXEPT |
200                                                 GP_VECTOR;
201         svm->vmcb->control.event_inj_err = error_code;
202 }
203
204 static void inject_ud(struct kvm_vcpu *vcpu)
205 {
206         to_svm(vcpu)->vmcb->control.event_inj = SVM_EVTINJ_VALID |
207                                                 SVM_EVTINJ_TYPE_EXEPT |
208                                                 UD_VECTOR;
209 }
210
211 static int is_page_fault(uint32_t info)
212 {
213         info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
214         return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
215 }
216
217 static int is_external_interrupt(u32 info)
218 {
219         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
220         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
221 }
222
223 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
224 {
225         struct vcpu_svm *svm = to_svm(vcpu);
226
227         if (!svm->next_rip) {
228                 printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
229                 return;
230         }
231         if (svm->next_rip - svm->vmcb->save.rip > MAX_INST_SIZE) {
232                 printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
233                        __FUNCTION__,
234                        svm->vmcb->save.rip,
235                        svm->next_rip);
236         }
237
238         vcpu->rip = svm->vmcb->save.rip = svm->next_rip;
239         svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
240
241         vcpu->interrupt_window_open = 1;
242 }
243
244 static int has_svm(void)
245 {
246         uint32_t eax, ebx, ecx, edx;
247
248         if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
249                 printk(KERN_INFO "has_svm: not amd\n");
250                 return 0;
251         }
252
253         cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
254         if (eax < SVM_CPUID_FUNC) {
255                 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
256                 return 0;
257         }
258
259         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
260         if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
261                 printk(KERN_DEBUG "has_svm: svm not available\n");
262                 return 0;
263         }
264         return 1;
265 }
266
267 static void svm_hardware_disable(void *garbage)
268 {
269         struct svm_cpu_data *svm_data
270                 = per_cpu(svm_data, raw_smp_processor_id());
271
272         if (svm_data) {
273                 uint64_t efer;
274
275                 wrmsrl(MSR_VM_HSAVE_PA, 0);
276                 rdmsrl(MSR_EFER, efer);
277                 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
278                 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
279                 __free_page(svm_data->save_area);
280                 kfree(svm_data);
281         }
282 }
283
284 static void svm_hardware_enable(void *garbage)
285 {
286
287         struct svm_cpu_data *svm_data;
288         uint64_t efer;
289 #ifdef CONFIG_X86_64
290         struct desc_ptr gdt_descr;
291 #else
292         struct Xgt_desc_struct gdt_descr;
293 #endif
294         struct desc_struct *gdt;
295         int me = raw_smp_processor_id();
296
297         if (!has_svm()) {
298                 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
299                 return;
300         }
301         svm_data = per_cpu(svm_data, me);
302
303         if (!svm_data) {
304                 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
305                        me);
306                 return;
307         }
308
309         svm_data->asid_generation = 1;
310         svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
311         svm_data->next_asid = svm_data->max_asid + 1;
312         svm_features = cpuid_edx(SVM_CPUID_FUNC);
313
314         asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
315         gdt = (struct desc_struct *)gdt_descr.address;
316         svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
317
318         rdmsrl(MSR_EFER, efer);
319         wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
320
321         wrmsrl(MSR_VM_HSAVE_PA,
322                page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
323 }
324
325 static int svm_cpu_init(int cpu)
326 {
327         struct svm_cpu_data *svm_data;
328         int r;
329
330         svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
331         if (!svm_data)
332                 return -ENOMEM;
333         svm_data->cpu = cpu;
334         svm_data->save_area = alloc_page(GFP_KERNEL);
335         r = -ENOMEM;
336         if (!svm_data->save_area)
337                 goto err_1;
338
339         per_cpu(svm_data, cpu) = svm_data;
340
341         return 0;
342
343 err_1:
344         kfree(svm_data);
345         return r;
346
347 }
348
349 static void set_msr_interception(u32 *msrpm, unsigned msr,
350                                  int read, int write)
351 {
352         int i;
353
354         for (i = 0; i < NUM_MSR_MAPS; i++) {
355                 if (msr >= msrpm_ranges[i] &&
356                     msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
357                         u32 msr_offset = (i * MSRS_IN_RANGE + msr -
358                                           msrpm_ranges[i]) * 2;
359
360                         u32 *base = msrpm + (msr_offset / 32);
361                         u32 msr_shift = msr_offset % 32;
362                         u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
363                         *base = (*base & ~(0x3 << msr_shift)) |
364                                 (mask << msr_shift);
365                         return;
366                 }
367         }
368         BUG();
369 }
370
371 static __init int svm_hardware_setup(void)
372 {
373         int cpu;
374         struct page *iopm_pages;
375         struct page *msrpm_pages;
376         void *iopm_va, *msrpm_va;
377         int r;
378
379         kvm_emulator_want_group7_invlpg();
380
381         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
382
383         if (!iopm_pages)
384                 return -ENOMEM;
385
386         iopm_va = page_address(iopm_pages);
387         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
388         clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
389         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
390
391
392         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
393
394         r = -ENOMEM;
395         if (!msrpm_pages)
396                 goto err_1;
397
398         msrpm_va = page_address(msrpm_pages);
399         memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
400         msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
401
402 #ifdef CONFIG_X86_64
403         set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
404         set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
405         set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
406         set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
407         set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
408         set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
409 #endif
410         set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
411         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
412         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
413         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
414
415         for_each_online_cpu(cpu) {
416                 r = svm_cpu_init(cpu);
417                 if (r)
418                         goto err_2;
419         }
420         return 0;
421
422 err_2:
423         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
424         msrpm_base = 0;
425 err_1:
426         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
427         iopm_base = 0;
428         return r;
429 }
430
431 static __exit void svm_hardware_unsetup(void)
432 {
433         __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
434         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
435         iopm_base = msrpm_base = 0;
436 }
437
438 static void init_seg(struct vmcb_seg *seg)
439 {
440         seg->selector = 0;
441         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
442                 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
443         seg->limit = 0xffff;
444         seg->base = 0;
445 }
446
447 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
448 {
449         seg->selector = 0;
450         seg->attrib = SVM_SELECTOR_P_MASK | type;
451         seg->limit = 0xffff;
452         seg->base = 0;
453 }
454
455 static void init_vmcb(struct vmcb *vmcb)
456 {
457         struct vmcb_control_area *control = &vmcb->control;
458         struct vmcb_save_area *save = &vmcb->save;
459
460         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
461                                         INTERCEPT_CR3_MASK |
462                                         INTERCEPT_CR4_MASK;
463
464         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
465                                         INTERCEPT_CR3_MASK |
466                                         INTERCEPT_CR4_MASK;
467
468         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
469                                         INTERCEPT_DR1_MASK |
470                                         INTERCEPT_DR2_MASK |
471                                         INTERCEPT_DR3_MASK;
472
473         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
474                                         INTERCEPT_DR1_MASK |
475                                         INTERCEPT_DR2_MASK |
476                                         INTERCEPT_DR3_MASK |
477                                         INTERCEPT_DR5_MASK |
478                                         INTERCEPT_DR7_MASK;
479
480         control->intercept_exceptions = 1 << PF_VECTOR;
481
482
483         control->intercept =    (1ULL << INTERCEPT_INTR) |
484                                 (1ULL << INTERCEPT_NMI) |
485                                 (1ULL << INTERCEPT_SMI) |
486                 /*
487                  * selective cr0 intercept bug?
488                  *      0:   0f 22 d8                mov    %eax,%cr3
489                  *      3:   0f 20 c0                mov    %cr0,%eax
490                  *      6:   0d 00 00 00 80          or     $0x80000000,%eax
491                  *      b:   0f 22 c0                mov    %eax,%cr0
492                  * set cr3 ->interception
493                  * get cr0 ->interception
494                  * set cr0 -> no interception
495                  */
496                 /*              (1ULL << INTERCEPT_SELECTIVE_CR0) | */
497                                 (1ULL << INTERCEPT_CPUID) |
498                                 (1ULL << INTERCEPT_HLT) |
499                                 (1ULL << INTERCEPT_INVLPGA) |
500                                 (1ULL << INTERCEPT_IOIO_PROT) |
501                                 (1ULL << INTERCEPT_MSR_PROT) |
502                                 (1ULL << INTERCEPT_TASK_SWITCH) |
503                                 (1ULL << INTERCEPT_SHUTDOWN) |
504                                 (1ULL << INTERCEPT_VMRUN) |
505                                 (1ULL << INTERCEPT_VMMCALL) |
506                                 (1ULL << INTERCEPT_VMLOAD) |
507                                 (1ULL << INTERCEPT_VMSAVE) |
508                                 (1ULL << INTERCEPT_STGI) |
509                                 (1ULL << INTERCEPT_CLGI) |
510                                 (1ULL << INTERCEPT_SKINIT) |
511                                 (1ULL << INTERCEPT_MONITOR) |
512                                 (1ULL << INTERCEPT_MWAIT);
513
514         control->iopm_base_pa = iopm_base;
515         control->msrpm_base_pa = msrpm_base;
516         control->tsc_offset = 0;
517         control->int_ctl = V_INTR_MASKING_MASK;
518
519         init_seg(&save->es);
520         init_seg(&save->ss);
521         init_seg(&save->ds);
522         init_seg(&save->fs);
523         init_seg(&save->gs);
524
525         save->cs.selector = 0xf000;
526         /* Executable/Readable Code Segment */
527         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
528                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
529         save->cs.limit = 0xffff;
530         /*
531          * cs.base should really be 0xffff0000, but vmx can't handle that, so
532          * be consistent with it.
533          *
534          * Replace when we have real mode working for vmx.
535          */
536         save->cs.base = 0xf0000;
537
538         save->gdtr.limit = 0xffff;
539         save->idtr.limit = 0xffff;
540
541         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
542         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
543
544         save->efer = MSR_EFER_SVME_MASK;
545
546         save->dr6 = 0xffff0ff0;
547         save->dr7 = 0x400;
548         save->rflags = 2;
549         save->rip = 0x0000fff0;
550
551         /*
552          * cr0 val on cpu init should be 0x60000010, we enable cpu
553          * cache by default. the orderly way is to enable cache in bios.
554          */
555         save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
556         save->cr4 = X86_CR4_PAE;
557         /* rdx = ?? */
558 }
559
560 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
561 {
562         struct vcpu_svm *svm;
563         struct page *page;
564         int err;
565
566         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
567         if (!svm) {
568                 err = -ENOMEM;
569                 goto out;
570         }
571
572         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
573         if (err)
574                 goto free_svm;
575
576         if (irqchip_in_kernel(kvm)) {
577                 err = kvm_create_lapic(&svm->vcpu);
578                 if (err < 0)
579                         goto free_svm;
580         }
581
582         page = alloc_page(GFP_KERNEL);
583         if (!page) {
584                 err = -ENOMEM;
585                 goto uninit;
586         }
587
588         svm->vmcb = page_address(page);
589         clear_page(svm->vmcb);
590         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
591         svm->asid_generation = 0;
592         memset(svm->db_regs, 0, sizeof(svm->db_regs));
593         init_vmcb(svm->vmcb);
594
595         fx_init(&svm->vcpu);
596         svm->vcpu.fpu_active = 1;
597         svm->vcpu.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
598         if (svm->vcpu.vcpu_id == 0)
599                 svm->vcpu.apic_base |= MSR_IA32_APICBASE_BSP;
600
601         return &svm->vcpu;
602
603 uninit:
604         kvm_vcpu_uninit(&svm->vcpu);
605 free_svm:
606         kmem_cache_free(kvm_vcpu_cache, svm);
607 out:
608         return ERR_PTR(err);
609 }
610
611 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
612 {
613         struct vcpu_svm *svm = to_svm(vcpu);
614
615         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
616         kvm_vcpu_uninit(vcpu);
617         kmem_cache_free(kvm_vcpu_cache, svm);
618 }
619
620 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
621 {
622         struct vcpu_svm *svm = to_svm(vcpu);
623         int i;
624
625         if (unlikely(cpu != vcpu->cpu)) {
626                 u64 tsc_this, delta;
627
628                 /*
629                  * Make sure that the guest sees a monotonically
630                  * increasing TSC.
631                  */
632                 rdtscll(tsc_this);
633                 delta = vcpu->host_tsc - tsc_this;
634                 svm->vmcb->control.tsc_offset += delta;
635                 vcpu->cpu = cpu;
636                 kvm_migrate_apic_timer(vcpu);
637         }
638
639         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
640                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
641 }
642
643 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
644 {
645         struct vcpu_svm *svm = to_svm(vcpu);
646         int i;
647
648         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
649                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
650
651         rdtscll(vcpu->host_tsc);
652 }
653
654 static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
655 {
656 }
657
658 static void svm_cache_regs(struct kvm_vcpu *vcpu)
659 {
660         struct vcpu_svm *svm = to_svm(vcpu);
661
662         vcpu->regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
663         vcpu->regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
664         vcpu->rip = svm->vmcb->save.rip;
665 }
666
667 static void svm_decache_regs(struct kvm_vcpu *vcpu)
668 {
669         struct vcpu_svm *svm = to_svm(vcpu);
670         svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
671         svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
672         svm->vmcb->save.rip = vcpu->rip;
673 }
674
675 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
676 {
677         return to_svm(vcpu)->vmcb->save.rflags;
678 }
679
680 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
681 {
682         to_svm(vcpu)->vmcb->save.rflags = rflags;
683 }
684
685 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
686 {
687         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
688
689         switch (seg) {
690         case VCPU_SREG_CS: return &save->cs;
691         case VCPU_SREG_DS: return &save->ds;
692         case VCPU_SREG_ES: return &save->es;
693         case VCPU_SREG_FS: return &save->fs;
694         case VCPU_SREG_GS: return &save->gs;
695         case VCPU_SREG_SS: return &save->ss;
696         case VCPU_SREG_TR: return &save->tr;
697         case VCPU_SREG_LDTR: return &save->ldtr;
698         }
699         BUG();
700         return NULL;
701 }
702
703 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
704 {
705         struct vmcb_seg *s = svm_seg(vcpu, seg);
706
707         return s->base;
708 }
709
710 static void svm_get_segment(struct kvm_vcpu *vcpu,
711                             struct kvm_segment *var, int seg)
712 {
713         struct vmcb_seg *s = svm_seg(vcpu, seg);
714
715         var->base = s->base;
716         var->limit = s->limit;
717         var->selector = s->selector;
718         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
719         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
720         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
721         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
722         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
723         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
724         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
725         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
726         var->unusable = !var->present;
727 }
728
729 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
730 {
731         struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
732
733         *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
734         *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
735 }
736
737 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
738 {
739         struct vcpu_svm *svm = to_svm(vcpu);
740
741         dt->limit = svm->vmcb->save.idtr.limit;
742         dt->base = svm->vmcb->save.idtr.base;
743 }
744
745 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
746 {
747         struct vcpu_svm *svm = to_svm(vcpu);
748
749         svm->vmcb->save.idtr.limit = dt->limit;
750         svm->vmcb->save.idtr.base = dt->base ;
751 }
752
753 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
754 {
755         struct vcpu_svm *svm = to_svm(vcpu);
756
757         dt->limit = svm->vmcb->save.gdtr.limit;
758         dt->base = svm->vmcb->save.gdtr.base;
759 }
760
761 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
762 {
763         struct vcpu_svm *svm = to_svm(vcpu);
764
765         svm->vmcb->save.gdtr.limit = dt->limit;
766         svm->vmcb->save.gdtr.base = dt->base ;
767 }
768
769 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
770 {
771 }
772
773 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
774 {
775         struct vcpu_svm *svm = to_svm(vcpu);
776
777 #ifdef CONFIG_X86_64
778         if (vcpu->shadow_efer & KVM_EFER_LME) {
779                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
780                         vcpu->shadow_efer |= KVM_EFER_LMA;
781                         svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
782                 }
783
784                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG) ) {
785                         vcpu->shadow_efer &= ~KVM_EFER_LMA;
786                         svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
787                 }
788         }
789 #endif
790         if ((vcpu->cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
791                 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
792                 vcpu->fpu_active = 1;
793         }
794
795         vcpu->cr0 = cr0;
796         cr0 |= X86_CR0_PG | X86_CR0_WP;
797         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
798         svm->vmcb->save.cr0 = cr0;
799 }
800
801 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
802 {
803        vcpu->cr4 = cr4;
804        to_svm(vcpu)->vmcb->save.cr4 = cr4 | X86_CR4_PAE;
805 }
806
807 static void svm_set_segment(struct kvm_vcpu *vcpu,
808                             struct kvm_segment *var, int seg)
809 {
810         struct vcpu_svm *svm = to_svm(vcpu);
811         struct vmcb_seg *s = svm_seg(vcpu, seg);
812
813         s->base = var->base;
814         s->limit = var->limit;
815         s->selector = var->selector;
816         if (var->unusable)
817                 s->attrib = 0;
818         else {
819                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
820                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
821                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
822                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
823                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
824                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
825                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
826                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
827         }
828         if (seg == VCPU_SREG_CS)
829                 svm->vmcb->save.cpl
830                         = (svm->vmcb->save.cs.attrib
831                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
832
833 }
834
835 /* FIXME:
836
837         svm(vcpu)->vmcb->control.int_ctl &= ~V_TPR_MASK;
838         svm(vcpu)->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
839
840 */
841
842 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
843 {
844         return -EOPNOTSUPP;
845 }
846
847 static int svm_get_irq(struct kvm_vcpu *vcpu)
848 {
849         struct vcpu_svm *svm = to_svm(vcpu);
850         u32 exit_int_info = svm->vmcb->control.exit_int_info;
851
852         if (is_external_interrupt(exit_int_info))
853                 return exit_int_info & SVM_EVTINJ_VEC_MASK;
854         return -1;
855 }
856
857 static void load_host_msrs(struct kvm_vcpu *vcpu)
858 {
859 #ifdef CONFIG_X86_64
860         wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
861 #endif
862 }
863
864 static void save_host_msrs(struct kvm_vcpu *vcpu)
865 {
866 #ifdef CONFIG_X86_64
867         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
868 #endif
869 }
870
871 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
872 {
873         if (svm_data->next_asid > svm_data->max_asid) {
874                 ++svm_data->asid_generation;
875                 svm_data->next_asid = 1;
876                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
877         }
878
879         svm->vcpu.cpu = svm_data->cpu;
880         svm->asid_generation = svm_data->asid_generation;
881         svm->vmcb->control.asid = svm_data->next_asid++;
882 }
883
884 static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
885 {
886         invlpga(address, to_svm(vcpu)->vmcb->control.asid); // is needed?
887 }
888
889 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
890 {
891         return to_svm(vcpu)->db_regs[dr];
892 }
893
894 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
895                        int *exception)
896 {
897         struct vcpu_svm *svm = to_svm(vcpu);
898
899         *exception = 0;
900
901         if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
902                 svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
903                 svm->vmcb->save.dr6 |= DR6_BD_MASK;
904                 *exception = DB_VECTOR;
905                 return;
906         }
907
908         switch (dr) {
909         case 0 ... 3:
910                 svm->db_regs[dr] = value;
911                 return;
912         case 4 ... 5:
913                 if (vcpu->cr4 & X86_CR4_DE) {
914                         *exception = UD_VECTOR;
915                         return;
916                 }
917         case 7: {
918                 if (value & ~((1ULL << 32) - 1)) {
919                         *exception = GP_VECTOR;
920                         return;
921                 }
922                 svm->vmcb->save.dr7 = value;
923                 return;
924         }
925         default:
926                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
927                        __FUNCTION__, dr);
928                 *exception = UD_VECTOR;
929                 return;
930         }
931 }
932
933 static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
934 {
935         u32 exit_int_info = svm->vmcb->control.exit_int_info;
936         struct kvm *kvm = svm->vcpu.kvm;
937         u64 fault_address;
938         u32 error_code;
939         enum emulation_result er;
940         int r;
941
942         if (!irqchip_in_kernel(kvm) &&
943                 is_external_interrupt(exit_int_info))
944                 push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
945
946         mutex_lock(&kvm->lock);
947
948         fault_address  = svm->vmcb->control.exit_info_2;
949         error_code = svm->vmcb->control.exit_info_1;
950         r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
951         if (r < 0) {
952                 mutex_unlock(&kvm->lock);
953                 return r;
954         }
955         if (!r) {
956                 mutex_unlock(&kvm->lock);
957                 return 1;
958         }
959         er = emulate_instruction(&svm->vcpu, kvm_run, fault_address,
960                                  error_code);
961         mutex_unlock(&kvm->lock);
962
963         switch (er) {
964         case EMULATE_DONE:
965                 return 1;
966         case EMULATE_DO_MMIO:
967                 ++svm->vcpu.stat.mmio_exits;
968                 return 0;
969         case EMULATE_FAIL:
970                 vcpu_printf(&svm->vcpu, "%s: emulate fail\n", __FUNCTION__);
971                 break;
972         default:
973                 BUG();
974         }
975
976         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
977         return 0;
978 }
979
980 static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
981 {
982         svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
983         if (!(svm->vcpu.cr0 & X86_CR0_TS))
984                 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
985         svm->vcpu.fpu_active = 1;
986
987         return 1;
988 }
989
990 static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
991 {
992         /*
993          * VMCB is undefined after a SHUTDOWN intercept
994          * so reinitialize it.
995          */
996         clear_page(svm->vmcb);
997         init_vmcb(svm->vmcb);
998
999         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1000         return 0;
1001 }
1002
1003 static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1004 {
1005         u32 io_info = svm->vmcb->control.exit_info_1; //address size bug?
1006         int size, down, in, string, rep;
1007         unsigned port;
1008
1009         ++svm->vcpu.stat.io_exits;
1010
1011         svm->next_rip = svm->vmcb->control.exit_info_2;
1012
1013         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1014
1015         if (string) {
1016                 if (emulate_instruction(&svm->vcpu, kvm_run, 0, 0) == EMULATE_DO_MMIO)
1017                         return 0;
1018                 return 1;
1019         }
1020
1021         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1022         port = io_info >> 16;
1023         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1024         rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1025         down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
1026
1027         return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
1028 }
1029
1030 static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1031 {
1032         return 1;
1033 }
1034
1035 static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1036 {
1037         svm->next_rip = svm->vmcb->save.rip + 1;
1038         skip_emulated_instruction(&svm->vcpu);
1039         return kvm_emulate_halt(&svm->vcpu);
1040 }
1041
1042 static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1043 {
1044         svm->next_rip = svm->vmcb->save.rip + 3;
1045         skip_emulated_instruction(&svm->vcpu);
1046         return kvm_hypercall(&svm->vcpu, kvm_run);
1047 }
1048
1049 static int invalid_op_interception(struct vcpu_svm *svm,
1050                                    struct kvm_run *kvm_run)
1051 {
1052         inject_ud(&svm->vcpu);
1053         return 1;
1054 }
1055
1056 static int task_switch_interception(struct vcpu_svm *svm,
1057                                     struct kvm_run *kvm_run)
1058 {
1059         pr_unimpl(&svm->vcpu, "%s: task switch is unsupported\n", __FUNCTION__);
1060         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1061         return 0;
1062 }
1063
1064 static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1065 {
1066         svm->next_rip = svm->vmcb->save.rip + 2;
1067         kvm_emulate_cpuid(&svm->vcpu);
1068         return 1;
1069 }
1070
1071 static int emulate_on_interception(struct vcpu_svm *svm,
1072                                    struct kvm_run *kvm_run)
1073 {
1074         if (emulate_instruction(&svm->vcpu, NULL, 0, 0) != EMULATE_DONE)
1075                 pr_unimpl(&svm->vcpu, "%s: failed\n", __FUNCTION__);
1076         return 1;
1077 }
1078
1079 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1080 {
1081         struct vcpu_svm *svm = to_svm(vcpu);
1082
1083         switch (ecx) {
1084         case MSR_IA32_TIME_STAMP_COUNTER: {
1085                 u64 tsc;
1086
1087                 rdtscll(tsc);
1088                 *data = svm->vmcb->control.tsc_offset + tsc;
1089                 break;
1090         }
1091         case MSR_K6_STAR:
1092                 *data = svm->vmcb->save.star;
1093                 break;
1094 #ifdef CONFIG_X86_64
1095         case MSR_LSTAR:
1096                 *data = svm->vmcb->save.lstar;
1097                 break;
1098         case MSR_CSTAR:
1099                 *data = svm->vmcb->save.cstar;
1100                 break;
1101         case MSR_KERNEL_GS_BASE:
1102                 *data = svm->vmcb->save.kernel_gs_base;
1103                 break;
1104         case MSR_SYSCALL_MASK:
1105                 *data = svm->vmcb->save.sfmask;
1106                 break;
1107 #endif
1108         case MSR_IA32_SYSENTER_CS:
1109                 *data = svm->vmcb->save.sysenter_cs;
1110                 break;
1111         case MSR_IA32_SYSENTER_EIP:
1112                 *data = svm->vmcb->save.sysenter_eip;
1113                 break;
1114         case MSR_IA32_SYSENTER_ESP:
1115                 *data = svm->vmcb->save.sysenter_esp;
1116                 break;
1117         default:
1118                 return kvm_get_msr_common(vcpu, ecx, data);
1119         }
1120         return 0;
1121 }
1122
1123 static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1124 {
1125         u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
1126         u64 data;
1127
1128         if (svm_get_msr(&svm->vcpu, ecx, &data))
1129                 svm_inject_gp(&svm->vcpu, 0);
1130         else {
1131                 svm->vmcb->save.rax = data & 0xffffffff;
1132                 svm->vcpu.regs[VCPU_REGS_RDX] = data >> 32;
1133                 svm->next_rip = svm->vmcb->save.rip + 2;
1134                 skip_emulated_instruction(&svm->vcpu);
1135         }
1136         return 1;
1137 }
1138
1139 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1140 {
1141         struct vcpu_svm *svm = to_svm(vcpu);
1142
1143         switch (ecx) {
1144         case MSR_IA32_TIME_STAMP_COUNTER: {
1145                 u64 tsc;
1146
1147                 rdtscll(tsc);
1148                 svm->vmcb->control.tsc_offset = data - tsc;
1149                 break;
1150         }
1151         case MSR_K6_STAR:
1152                 svm->vmcb->save.star = data;
1153                 break;
1154 #ifdef CONFIG_X86_64
1155         case MSR_LSTAR:
1156                 svm->vmcb->save.lstar = data;
1157                 break;
1158         case MSR_CSTAR:
1159                 svm->vmcb->save.cstar = data;
1160                 break;
1161         case MSR_KERNEL_GS_BASE:
1162                 svm->vmcb->save.kernel_gs_base = data;
1163                 break;
1164         case MSR_SYSCALL_MASK:
1165                 svm->vmcb->save.sfmask = data;
1166                 break;
1167 #endif
1168         case MSR_IA32_SYSENTER_CS:
1169                 svm->vmcb->save.sysenter_cs = data;
1170                 break;
1171         case MSR_IA32_SYSENTER_EIP:
1172                 svm->vmcb->save.sysenter_eip = data;
1173                 break;
1174         case MSR_IA32_SYSENTER_ESP:
1175                 svm->vmcb->save.sysenter_esp = data;
1176                 break;
1177         default:
1178                 return kvm_set_msr_common(vcpu, ecx, data);
1179         }
1180         return 0;
1181 }
1182
1183 static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1184 {
1185         u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
1186         u64 data = (svm->vmcb->save.rax & -1u)
1187                 | ((u64)(svm->vcpu.regs[VCPU_REGS_RDX] & -1u) << 32);
1188         svm->next_rip = svm->vmcb->save.rip + 2;
1189         if (svm_set_msr(&svm->vcpu, ecx, data))
1190                 svm_inject_gp(&svm->vcpu, 0);
1191         else
1192                 skip_emulated_instruction(&svm->vcpu);
1193         return 1;
1194 }
1195
1196 static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1197 {
1198         if (svm->vmcb->control.exit_info_1)
1199                 return wrmsr_interception(svm, kvm_run);
1200         else
1201                 return rdmsr_interception(svm, kvm_run);
1202 }
1203
1204 static int interrupt_window_interception(struct vcpu_svm *svm,
1205                                    struct kvm_run *kvm_run)
1206 {
1207         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1208         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1209         /*
1210          * If the user space waits to inject interrupts, exit as soon as
1211          * possible
1212          */
1213         if (kvm_run->request_interrupt_window &&
1214             !svm->vcpu.irq_summary) {
1215                 ++svm->vcpu.stat.irq_window_exits;
1216                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1217                 return 0;
1218         }
1219
1220         return 1;
1221 }
1222
1223 static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
1224                                       struct kvm_run *kvm_run) = {
1225         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
1226         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
1227         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
1228         /* for now: */
1229         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
1230         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
1231         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
1232         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
1233         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
1234         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
1235         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
1236         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
1237         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
1238         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
1239         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
1240         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
1241         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
1242         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
1243         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
1244         [SVM_EXIT_INTR]                         = nop_on_interception,
1245         [SVM_EXIT_NMI]                          = nop_on_interception,
1246         [SVM_EXIT_SMI]                          = nop_on_interception,
1247         [SVM_EXIT_INIT]                         = nop_on_interception,
1248         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
1249         /* [SVM_EXIT_CR0_SEL_WRITE]             = emulate_on_interception, */
1250         [SVM_EXIT_CPUID]                        = cpuid_interception,
1251         [SVM_EXIT_HLT]                          = halt_interception,
1252         [SVM_EXIT_INVLPG]                       = emulate_on_interception,
1253         [SVM_EXIT_INVLPGA]                      = invalid_op_interception,
1254         [SVM_EXIT_IOIO]                         = io_interception,
1255         [SVM_EXIT_MSR]                          = msr_interception,
1256         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
1257         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
1258         [SVM_EXIT_VMRUN]                        = invalid_op_interception,
1259         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
1260         [SVM_EXIT_VMLOAD]                       = invalid_op_interception,
1261         [SVM_EXIT_VMSAVE]                       = invalid_op_interception,
1262         [SVM_EXIT_STGI]                         = invalid_op_interception,
1263         [SVM_EXIT_CLGI]                         = invalid_op_interception,
1264         [SVM_EXIT_SKINIT]                       = invalid_op_interception,
1265         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
1266         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
1267 };
1268
1269
1270 static int handle_exit(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1271 {
1272         u32 exit_code = svm->vmcb->control.exit_code;
1273
1274         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
1275             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
1276                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1277                        "exit_code 0x%x\n",
1278                        __FUNCTION__, svm->vmcb->control.exit_int_info,
1279                        exit_code);
1280
1281         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1282             || svm_exit_handlers[exit_code] == 0) {
1283                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1284                 kvm_run->hw.hardware_exit_reason = exit_code;
1285                 return 0;
1286         }
1287
1288         return svm_exit_handlers[exit_code](svm, kvm_run);
1289 }
1290
1291 static void reload_tss(struct kvm_vcpu *vcpu)
1292 {
1293         int cpu = raw_smp_processor_id();
1294
1295         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1296         svm_data->tss_desc->type = 9; //available 32/64-bit TSS
1297         load_TR_desc();
1298 }
1299
1300 static void pre_svm_run(struct vcpu_svm *svm)
1301 {
1302         int cpu = raw_smp_processor_id();
1303
1304         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1305
1306         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1307         if (svm->vcpu.cpu != cpu ||
1308             svm->asid_generation != svm_data->asid_generation)
1309                 new_asid(svm, svm_data);
1310 }
1311
1312
1313 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
1314 {
1315         struct vmcb_control_area *control;
1316
1317         control = &svm->vmcb->control;
1318         control->int_vector = irq;
1319         control->int_ctl &= ~V_INTR_PRIO_MASK;
1320         control->int_ctl |= V_IRQ_MASK |
1321                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1322 }
1323
1324 static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
1325 {
1326         struct vcpu_svm *svm = to_svm(vcpu);
1327
1328         svm_inject_irq(svm, irq);
1329 }
1330
1331 static void svm_intr_assist(struct vcpu_svm *svm)
1332 {
1333         struct vmcb *vmcb = svm->vmcb;
1334         int intr_vector = -1;
1335         struct kvm_vcpu *vcpu = &svm->vcpu;
1336
1337         kvm_inject_pending_timer_irqs(vcpu);
1338         if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
1339             ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
1340                 intr_vector = vmcb->control.exit_int_info &
1341                               SVM_EVTINJ_VEC_MASK;
1342                 vmcb->control.exit_int_info = 0;
1343                 svm_inject_irq(svm, intr_vector);
1344                 return;
1345         }
1346
1347         if (vmcb->control.int_ctl & V_IRQ_MASK)
1348                 return;
1349
1350         if (!kvm_cpu_has_interrupt(vcpu))
1351                 return;
1352
1353         if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
1354             (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
1355             (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
1356                 /* unable to deliver irq, set pending irq */
1357                 vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
1358                 svm_inject_irq(svm, 0x0);
1359                 return;
1360         }
1361         /* Okay, we can deliver the interrupt: grab it and update PIC state. */
1362         intr_vector = kvm_cpu_get_interrupt(vcpu);
1363         svm_inject_irq(svm, intr_vector);
1364         kvm_timer_intr_post(vcpu, intr_vector);
1365 }
1366
1367 static void kvm_reput_irq(struct vcpu_svm *svm)
1368 {
1369         struct vmcb_control_area *control = &svm->vmcb->control;
1370
1371         if ((control->int_ctl & V_IRQ_MASK)
1372             && !irqchip_in_kernel(svm->vcpu.kvm)) {
1373                 control->int_ctl &= ~V_IRQ_MASK;
1374                 push_irq(&svm->vcpu, control->int_vector);
1375         }
1376
1377         svm->vcpu.interrupt_window_open =
1378                 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1379 }
1380
1381 static void svm_do_inject_vector(struct vcpu_svm *svm)
1382 {
1383         struct kvm_vcpu *vcpu = &svm->vcpu;
1384         int word_index = __ffs(vcpu->irq_summary);
1385         int bit_index = __ffs(vcpu->irq_pending[word_index]);
1386         int irq = word_index * BITS_PER_LONG + bit_index;
1387
1388         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1389         if (!vcpu->irq_pending[word_index])
1390                 clear_bit(word_index, &vcpu->irq_summary);
1391         svm_inject_irq(svm, irq);
1392 }
1393
1394 static void do_interrupt_requests(struct vcpu_svm *svm,
1395                                        struct kvm_run *kvm_run)
1396 {
1397         struct vmcb_control_area *control = &svm->vmcb->control;
1398
1399         svm->vcpu.interrupt_window_open =
1400                 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1401                  (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1402
1403         if (svm->vcpu.interrupt_window_open && svm->vcpu.irq_summary)
1404                 /*
1405                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1406                  */
1407                 svm_do_inject_vector(svm);
1408
1409         /*
1410          * Interrupts blocked.  Wait for unblock.
1411          */
1412         if (!svm->vcpu.interrupt_window_open &&
1413             (svm->vcpu.irq_summary || kvm_run->request_interrupt_window)) {
1414                 control->intercept |= 1ULL << INTERCEPT_VINTR;
1415         } else
1416                 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1417 }
1418
1419 static void post_kvm_run_save(struct vcpu_svm *svm,
1420                               struct kvm_run *kvm_run)
1421 {
1422         if (irqchip_in_kernel(svm->vcpu.kvm))
1423                 kvm_run->ready_for_interrupt_injection = 1;
1424         else
1425                 kvm_run->ready_for_interrupt_injection =
1426                                          (svm->vcpu.interrupt_window_open &&
1427                                           svm->vcpu.irq_summary == 0);
1428         kvm_run->if_flag = (svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0;
1429         kvm_run->cr8 = get_cr8(&svm->vcpu);
1430         kvm_run->apic_base = kvm_get_apic_base(&svm->vcpu);
1431 }
1432
1433 /*
1434  * Check if userspace requested an interrupt window, and that the
1435  * interrupt window is open.
1436  *
1437  * No need to exit to userspace if we already have an interrupt queued.
1438  */
1439 static int dm_request_for_irq_injection(struct vcpu_svm *svm,
1440                                           struct kvm_run *kvm_run)
1441 {
1442         return (!svm->vcpu.irq_summary &&
1443                 kvm_run->request_interrupt_window &&
1444                 svm->vcpu.interrupt_window_open &&
1445                 (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1446 }
1447
1448 static void save_db_regs(unsigned long *db_regs)
1449 {
1450         asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1451         asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1452         asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1453         asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1454 }
1455
1456 static void load_db_regs(unsigned long *db_regs)
1457 {
1458         asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1459         asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1460         asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1461         asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1462 }
1463
1464 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1465 {
1466         force_new_asid(vcpu);
1467 }
1468
1469 static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1470 {
1471         struct vcpu_svm *svm = to_svm(vcpu);
1472         u16 fs_selector;
1473         u16 gs_selector;
1474         u16 ldt_selector;
1475         int r;
1476
1477 again:
1478         r = kvm_mmu_reload(vcpu);
1479         if (unlikely(r))
1480                 return r;
1481
1482         clgi();
1483
1484         if (signal_pending(current)) {
1485                 stgi();
1486                 ++vcpu->stat.signal_exits;
1487                 post_kvm_run_save(svm, kvm_run);
1488                 kvm_run->exit_reason = KVM_EXIT_INTR;
1489                 return -EINTR;
1490         }
1491
1492         if (irqchip_in_kernel(vcpu->kvm))
1493                 svm_intr_assist(svm);
1494         else if (!vcpu->mmio_read_completed)
1495                 do_interrupt_requests(svm, kvm_run);
1496
1497         vcpu->guest_mode = 1;
1498         if (vcpu->requests)
1499                 if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
1500                     svm_flush_tlb(vcpu);
1501
1502         pre_svm_run(svm);
1503
1504         save_host_msrs(vcpu);
1505         fs_selector = read_fs();
1506         gs_selector = read_gs();
1507         ldt_selector = read_ldt();
1508         svm->host_cr2 = kvm_read_cr2();
1509         svm->host_dr6 = read_dr6();
1510         svm->host_dr7 = read_dr7();
1511         svm->vmcb->save.cr2 = vcpu->cr2;
1512
1513         if (svm->vmcb->save.dr7 & 0xff) {
1514                 write_dr7(0);
1515                 save_db_regs(svm->host_db_regs);
1516                 load_db_regs(svm->db_regs);
1517         }
1518
1519         if (vcpu->fpu_active) {
1520                 fx_save(&vcpu->host_fx_image);
1521                 fx_restore(&vcpu->guest_fx_image);
1522         }
1523
1524         asm volatile (
1525 #ifdef CONFIG_X86_64
1526                 "push %%rbx; push %%rcx; push %%rdx;"
1527                 "push %%rsi; push %%rdi; push %%rbp;"
1528                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1529                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1530 #else
1531                 "push %%ebx; push %%ecx; push %%edx;"
1532                 "push %%esi; push %%edi; push %%ebp;"
1533 #endif
1534
1535 #ifdef CONFIG_X86_64
1536                 "mov %c[rbx](%[svm]), %%rbx \n\t"
1537                 "mov %c[rcx](%[svm]), %%rcx \n\t"
1538                 "mov %c[rdx](%[svm]), %%rdx \n\t"
1539                 "mov %c[rsi](%[svm]), %%rsi \n\t"
1540                 "mov %c[rdi](%[svm]), %%rdi \n\t"
1541                 "mov %c[rbp](%[svm]), %%rbp \n\t"
1542                 "mov %c[r8](%[svm]),  %%r8  \n\t"
1543                 "mov %c[r9](%[svm]),  %%r9  \n\t"
1544                 "mov %c[r10](%[svm]), %%r10 \n\t"
1545                 "mov %c[r11](%[svm]), %%r11 \n\t"
1546                 "mov %c[r12](%[svm]), %%r12 \n\t"
1547                 "mov %c[r13](%[svm]), %%r13 \n\t"
1548                 "mov %c[r14](%[svm]), %%r14 \n\t"
1549                 "mov %c[r15](%[svm]), %%r15 \n\t"
1550 #else
1551                 "mov %c[rbx](%[svm]), %%ebx \n\t"
1552                 "mov %c[rcx](%[svm]), %%ecx \n\t"
1553                 "mov %c[rdx](%[svm]), %%edx \n\t"
1554                 "mov %c[rsi](%[svm]), %%esi \n\t"
1555                 "mov %c[rdi](%[svm]), %%edi \n\t"
1556                 "mov %c[rbp](%[svm]), %%ebp \n\t"
1557 #endif
1558
1559 #ifdef CONFIG_X86_64
1560                 /* Enter guest mode */
1561                 "push %%rax \n\t"
1562                 "mov %c[vmcb](%[svm]), %%rax \n\t"
1563                 SVM_VMLOAD "\n\t"
1564                 SVM_VMRUN "\n\t"
1565                 SVM_VMSAVE "\n\t"
1566                 "pop %%rax \n\t"
1567 #else
1568                 /* Enter guest mode */
1569                 "push %%eax \n\t"
1570                 "mov %c[vmcb](%[svm]), %%eax \n\t"
1571                 SVM_VMLOAD "\n\t"
1572                 SVM_VMRUN "\n\t"
1573                 SVM_VMSAVE "\n\t"
1574                 "pop %%eax \n\t"
1575 #endif
1576
1577                 /* Save guest registers, load host registers */
1578 #ifdef CONFIG_X86_64
1579                 "mov %%rbx, %c[rbx](%[svm]) \n\t"
1580                 "mov %%rcx, %c[rcx](%[svm]) \n\t"
1581                 "mov %%rdx, %c[rdx](%[svm]) \n\t"
1582                 "mov %%rsi, %c[rsi](%[svm]) \n\t"
1583                 "mov %%rdi, %c[rdi](%[svm]) \n\t"
1584                 "mov %%rbp, %c[rbp](%[svm]) \n\t"
1585                 "mov %%r8,  %c[r8](%[svm]) \n\t"
1586                 "mov %%r9,  %c[r9](%[svm]) \n\t"
1587                 "mov %%r10, %c[r10](%[svm]) \n\t"
1588                 "mov %%r11, %c[r11](%[svm]) \n\t"
1589                 "mov %%r12, %c[r12](%[svm]) \n\t"
1590                 "mov %%r13, %c[r13](%[svm]) \n\t"
1591                 "mov %%r14, %c[r14](%[svm]) \n\t"
1592                 "mov %%r15, %c[r15](%[svm]) \n\t"
1593
1594                 "pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
1595                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
1596                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
1597                 "pop  %%rdx; pop  %%rcx; pop  %%rbx; \n\t"
1598 #else
1599                 "mov %%ebx, %c[rbx](%[svm]) \n\t"
1600                 "mov %%ecx, %c[rcx](%[svm]) \n\t"
1601                 "mov %%edx, %c[rdx](%[svm]) \n\t"
1602                 "mov %%esi, %c[rsi](%[svm]) \n\t"
1603                 "mov %%edi, %c[rdi](%[svm]) \n\t"
1604                 "mov %%ebp, %c[rbp](%[svm]) \n\t"
1605
1606                 "pop  %%ebp; pop  %%edi; pop  %%esi;"
1607                 "pop  %%edx; pop  %%ecx; pop  %%ebx; \n\t"
1608 #endif
1609                 :
1610                 : [svm]"a"(svm),
1611                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1612                   [rbx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RBX])),
1613                   [rcx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RCX])),
1614                   [rdx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RDX])),
1615                   [rsi]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RSI])),
1616                   [rdi]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RDI])),
1617                   [rbp]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RBP]))
1618 #ifdef CONFIG_X86_64
1619                   ,[r8 ]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R8])),
1620                   [r9 ]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R9 ])),
1621                   [r10]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R10])),
1622                   [r11]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R11])),
1623                   [r12]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R12])),
1624                   [r13]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R13])),
1625                   [r14]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R14])),
1626                   [r15]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R15]))
1627 #endif
1628                 : "cc", "memory" );
1629
1630         vcpu->guest_mode = 0;
1631
1632         if (vcpu->fpu_active) {
1633                 fx_save(&vcpu->guest_fx_image);
1634                 fx_restore(&vcpu->host_fx_image);
1635         }
1636
1637         if ((svm->vmcb->save.dr7 & 0xff))
1638                 load_db_regs(svm->host_db_regs);
1639
1640         vcpu->cr2 = svm->vmcb->save.cr2;
1641
1642         write_dr6(svm->host_dr6);
1643         write_dr7(svm->host_dr7);
1644         kvm_write_cr2(svm->host_cr2);
1645
1646         load_fs(fs_selector);
1647         load_gs(gs_selector);
1648         load_ldt(ldt_selector);
1649         load_host_msrs(vcpu);
1650
1651         reload_tss(vcpu);
1652
1653         /*
1654          * Profile KVM exit RIPs:
1655          */
1656         if (unlikely(prof_on == KVM_PROFILING))
1657                 profile_hit(KVM_PROFILING,
1658                         (void *)(unsigned long)svm->vmcb->save.rip);
1659
1660         stgi();
1661
1662         kvm_reput_irq(svm);
1663
1664         svm->next_rip = 0;
1665
1666         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1667                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1668                 kvm_run->fail_entry.hardware_entry_failure_reason
1669                         = svm->vmcb->control.exit_code;
1670                 post_kvm_run_save(svm, kvm_run);
1671                 return 0;
1672         }
1673
1674         r = handle_exit(svm, kvm_run);
1675         if (r > 0) {
1676                 if (dm_request_for_irq_injection(svm, kvm_run)) {
1677                         ++vcpu->stat.request_irq_exits;
1678                         post_kvm_run_save(svm, kvm_run);
1679                         kvm_run->exit_reason = KVM_EXIT_INTR;
1680                         return -EINTR;
1681                 }
1682                 kvm_resched(vcpu);
1683                 goto again;
1684         }
1685         post_kvm_run_save(svm, kvm_run);
1686         return r;
1687 }
1688
1689 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1690 {
1691         struct vcpu_svm *svm = to_svm(vcpu);
1692
1693         svm->vmcb->save.cr3 = root;
1694         force_new_asid(vcpu);
1695
1696         if (vcpu->fpu_active) {
1697                 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
1698                 svm->vmcb->save.cr0 |= X86_CR0_TS;
1699                 vcpu->fpu_active = 0;
1700         }
1701 }
1702
1703 static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
1704                                   unsigned long  addr,
1705                                   uint32_t err_code)
1706 {
1707         struct vcpu_svm *svm = to_svm(vcpu);
1708         uint32_t exit_int_info = svm->vmcb->control.exit_int_info;
1709
1710         ++vcpu->stat.pf_guest;
1711
1712         if (is_page_fault(exit_int_info)) {
1713
1714                 svm->vmcb->control.event_inj_err = 0;
1715                 svm->vmcb->control.event_inj =  SVM_EVTINJ_VALID |
1716                                                 SVM_EVTINJ_VALID_ERR |
1717                                                 SVM_EVTINJ_TYPE_EXEPT |
1718                                                 DF_VECTOR;
1719                 return;
1720         }
1721         vcpu->cr2 = addr;
1722         svm->vmcb->save.cr2 = addr;
1723         svm->vmcb->control.event_inj =  SVM_EVTINJ_VALID |
1724                                         SVM_EVTINJ_VALID_ERR |
1725                                         SVM_EVTINJ_TYPE_EXEPT |
1726                                         PF_VECTOR;
1727         svm->vmcb->control.event_inj_err = err_code;
1728 }
1729
1730
1731 static int is_disabled(void)
1732 {
1733         u64 vm_cr;
1734
1735         rdmsrl(MSR_VM_CR, vm_cr);
1736         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
1737                 return 1;
1738
1739         return 0;
1740 }
1741
1742 static void
1743 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1744 {
1745         /*
1746          * Patch in the VMMCALL instruction:
1747          */
1748         hypercall[0] = 0x0f;
1749         hypercall[1] = 0x01;
1750         hypercall[2] = 0xd9;
1751         hypercall[3] = 0xc3;
1752 }
1753
1754 static void svm_check_processor_compat(void *rtn)
1755 {
1756         *(int *)rtn = 0;
1757 }
1758
1759 static struct kvm_arch_ops svm_arch_ops = {
1760         .cpu_has_kvm_support = has_svm,
1761         .disabled_by_bios = is_disabled,
1762         .hardware_setup = svm_hardware_setup,
1763         .hardware_unsetup = svm_hardware_unsetup,
1764         .check_processor_compatibility = svm_check_processor_compat,
1765         .hardware_enable = svm_hardware_enable,
1766         .hardware_disable = svm_hardware_disable,
1767
1768         .vcpu_create = svm_create_vcpu,
1769         .vcpu_free = svm_free_vcpu,
1770
1771         .vcpu_load = svm_vcpu_load,
1772         .vcpu_put = svm_vcpu_put,
1773         .vcpu_decache = svm_vcpu_decache,
1774
1775         .set_guest_debug = svm_guest_debug,
1776         .get_msr = svm_get_msr,
1777         .set_msr = svm_set_msr,
1778         .get_segment_base = svm_get_segment_base,
1779         .get_segment = svm_get_segment,
1780         .set_segment = svm_set_segment,
1781         .get_cs_db_l_bits = svm_get_cs_db_l_bits,
1782         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
1783         .set_cr0 = svm_set_cr0,
1784         .set_cr3 = svm_set_cr3,
1785         .set_cr4 = svm_set_cr4,
1786         .set_efer = svm_set_efer,
1787         .get_idt = svm_get_idt,
1788         .set_idt = svm_set_idt,
1789         .get_gdt = svm_get_gdt,
1790         .set_gdt = svm_set_gdt,
1791         .get_dr = svm_get_dr,
1792         .set_dr = svm_set_dr,
1793         .cache_regs = svm_cache_regs,
1794         .decache_regs = svm_decache_regs,
1795         .get_rflags = svm_get_rflags,
1796         .set_rflags = svm_set_rflags,
1797
1798         .invlpg = svm_invlpg,
1799         .tlb_flush = svm_flush_tlb,
1800         .inject_page_fault = svm_inject_page_fault,
1801
1802         .inject_gp = svm_inject_gp,
1803
1804         .run = svm_vcpu_run,
1805         .skip_emulated_instruction = skip_emulated_instruction,
1806         .patch_hypercall = svm_patch_hypercall,
1807         .get_irq = svm_get_irq,
1808         .set_irq = svm_set_irq,
1809 };
1810
1811 static int __init svm_init(void)
1812 {
1813         return kvm_init_arch(&svm_arch_ops, sizeof(struct vcpu_svm),
1814                               THIS_MODULE);
1815 }
1816
1817 static void __exit svm_exit(void)
1818 {
1819         kvm_exit_arch();
1820 }
1821
1822 module_init(svm_init)
1823 module_exit(svm_exit)