]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/kvm/kvm_main.c
KVM: Protect in-kernel pio using kvm->lock
[linux-2.6-omap-h63xx.git] / drivers / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
21 #include "irq.h"
22
23 #include <linux/kvm.h>
24 #include <linux/module.h>
25 #include <linux/errno.h>
26 #include <linux/percpu.h>
27 #include <linux/gfp.h>
28 #include <linux/mm.h>
29 #include <linux/miscdevice.h>
30 #include <linux/vmalloc.h>
31 #include <linux/reboot.h>
32 #include <linux/debugfs.h>
33 #include <linux/highmem.h>
34 #include <linux/file.h>
35 #include <linux/sysdev.h>
36 #include <linux/cpu.h>
37 #include <linux/sched.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41
42 #include <asm/processor.h>
43 #include <asm/msr.h>
44 #include <asm/io.h>
45 #include <asm/uaccess.h>
46 #include <asm/desc.h>
47
48 MODULE_AUTHOR("Qumranet");
49 MODULE_LICENSE("GPL");
50
51 static DEFINE_SPINLOCK(kvm_lock);
52 static LIST_HEAD(vm_list);
53
54 static cpumask_t cpus_hardware_enabled;
55
56 struct kvm_arch_ops *kvm_arch_ops;
57 struct kmem_cache *kvm_vcpu_cache;
58 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
59
60 static __read_mostly struct preempt_ops kvm_preempt_ops;
61
62 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
63
64 static struct kvm_stats_debugfs_item {
65         const char *name;
66         int offset;
67         struct dentry *dentry;
68 } debugfs_entries[] = {
69         { "pf_fixed", STAT_OFFSET(pf_fixed) },
70         { "pf_guest", STAT_OFFSET(pf_guest) },
71         { "tlb_flush", STAT_OFFSET(tlb_flush) },
72         { "invlpg", STAT_OFFSET(invlpg) },
73         { "exits", STAT_OFFSET(exits) },
74         { "io_exits", STAT_OFFSET(io_exits) },
75         { "mmio_exits", STAT_OFFSET(mmio_exits) },
76         { "signal_exits", STAT_OFFSET(signal_exits) },
77         { "irq_window", STAT_OFFSET(irq_window_exits) },
78         { "halt_exits", STAT_OFFSET(halt_exits) },
79         { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
80         { "request_irq", STAT_OFFSET(request_irq_exits) },
81         { "irq_exits", STAT_OFFSET(irq_exits) },
82         { "light_exits", STAT_OFFSET(light_exits) },
83         { "efer_reload", STAT_OFFSET(efer_reload) },
84         { NULL }
85 };
86
87 static struct dentry *debugfs_dir;
88
89 #define MAX_IO_MSRS 256
90
91 #define CR0_RESERVED_BITS                                               \
92         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
93                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
94                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
95 #define CR4_RESERVED_BITS                                               \
96         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
97                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
98                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
99                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
100
101 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
102 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
103
104 #ifdef CONFIG_X86_64
105 // LDT or TSS descriptor in the GDT. 16 bytes.
106 struct segment_descriptor_64 {
107         struct segment_descriptor s;
108         u32 base_higher;
109         u32 pad_zero;
110 };
111
112 #endif
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116
117 unsigned long segment_base(u16 selector)
118 {
119         struct descriptor_table gdt;
120         struct segment_descriptor *d;
121         unsigned long table_base;
122         typedef unsigned long ul;
123         unsigned long v;
124
125         if (selector == 0)
126                 return 0;
127
128         asm ("sgdt %0" : "=m"(gdt));
129         table_base = gdt.base;
130
131         if (selector & 4) {           /* from ldt */
132                 u16 ldt_selector;
133
134                 asm ("sldt %0" : "=g"(ldt_selector));
135                 table_base = segment_base(ldt_selector);
136         }
137         d = (struct segment_descriptor *)(table_base + (selector & ~7));
138         v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
139 #ifdef CONFIG_X86_64
140         if (d->system == 0
141             && (d->type == 2 || d->type == 9 || d->type == 11))
142                 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
143 #endif
144         return v;
145 }
146 EXPORT_SYMBOL_GPL(segment_base);
147
148 static inline int valid_vcpu(int n)
149 {
150         return likely(n >= 0 && n < KVM_MAX_VCPUS);
151 }
152
153 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
154 {
155         if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
156                 return;
157
158         vcpu->guest_fpu_loaded = 1;
159         fx_save(&vcpu->host_fx_image);
160         fx_restore(&vcpu->guest_fx_image);
161 }
162 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
163
164 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
165 {
166         if (!vcpu->guest_fpu_loaded)
167                 return;
168
169         vcpu->guest_fpu_loaded = 0;
170         fx_save(&vcpu->guest_fx_image);
171         fx_restore(&vcpu->host_fx_image);
172 }
173 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
174
175 /*
176  * Switches to specified vcpu, until a matching vcpu_put()
177  */
178 static void vcpu_load(struct kvm_vcpu *vcpu)
179 {
180         int cpu;
181
182         mutex_lock(&vcpu->mutex);
183         cpu = get_cpu();
184         preempt_notifier_register(&vcpu->preempt_notifier);
185         kvm_arch_ops->vcpu_load(vcpu, cpu);
186         put_cpu();
187 }
188
189 static void vcpu_put(struct kvm_vcpu *vcpu)
190 {
191         preempt_disable();
192         kvm_arch_ops->vcpu_put(vcpu);
193         preempt_notifier_unregister(&vcpu->preempt_notifier);
194         preempt_enable();
195         mutex_unlock(&vcpu->mutex);
196 }
197
198 static void ack_flush(void *_completed)
199 {
200         atomic_t *completed = _completed;
201
202         atomic_inc(completed);
203 }
204
205 void kvm_flush_remote_tlbs(struct kvm *kvm)
206 {
207         int i, cpu, needed;
208         cpumask_t cpus;
209         struct kvm_vcpu *vcpu;
210         atomic_t completed;
211
212         atomic_set(&completed, 0);
213         cpus_clear(cpus);
214         needed = 0;
215         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
216                 vcpu = kvm->vcpus[i];
217                 if (!vcpu)
218                         continue;
219                 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
220                         continue;
221                 cpu = vcpu->cpu;
222                 if (cpu != -1 && cpu != raw_smp_processor_id())
223                         if (!cpu_isset(cpu, cpus)) {
224                                 cpu_set(cpu, cpus);
225                                 ++needed;
226                         }
227         }
228
229         /*
230          * We really want smp_call_function_mask() here.  But that's not
231          * available, so ipi all cpus in parallel and wait for them
232          * to complete.
233          */
234         for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
235                 smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
236         while (atomic_read(&completed) != needed) {
237                 cpu_relax();
238                 barrier();
239         }
240 }
241
242 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
243 {
244         struct page *page;
245         int r;
246
247         mutex_init(&vcpu->mutex);
248         vcpu->cpu = -1;
249         vcpu->mmu.root_hpa = INVALID_PAGE;
250         vcpu->kvm = kvm;
251         vcpu->vcpu_id = id;
252         init_waitqueue_head(&vcpu->wq);
253
254         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
255         if (!page) {
256                 r = -ENOMEM;
257                 goto fail;
258         }
259         vcpu->run = page_address(page);
260
261         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
262         if (!page) {
263                 r = -ENOMEM;
264                 goto fail_free_run;
265         }
266         vcpu->pio_data = page_address(page);
267
268         r = kvm_mmu_create(vcpu);
269         if (r < 0)
270                 goto fail_free_pio_data;
271
272         return 0;
273
274 fail_free_pio_data:
275         free_page((unsigned long)vcpu->pio_data);
276 fail_free_run:
277         free_page((unsigned long)vcpu->run);
278 fail:
279         return -ENOMEM;
280 }
281 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
282
283 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
284 {
285         kvm_mmu_destroy(vcpu);
286         kvm_free_apic(vcpu->apic);
287         free_page((unsigned long)vcpu->pio_data);
288         free_page((unsigned long)vcpu->run);
289 }
290 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
291
292 static struct kvm *kvm_create_vm(void)
293 {
294         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
295
296         if (!kvm)
297                 return ERR_PTR(-ENOMEM);
298
299         kvm_io_bus_init(&kvm->pio_bus);
300         mutex_init(&kvm->lock);
301         INIT_LIST_HEAD(&kvm->active_mmu_pages);
302         kvm_io_bus_init(&kvm->mmio_bus);
303         spin_lock(&kvm_lock);
304         list_add(&kvm->vm_list, &vm_list);
305         spin_unlock(&kvm_lock);
306         return kvm;
307 }
308
309 /*
310  * Free any memory in @free but not in @dont.
311  */
312 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
313                                   struct kvm_memory_slot *dont)
314 {
315         int i;
316
317         if (!dont || free->phys_mem != dont->phys_mem)
318                 if (free->phys_mem) {
319                         for (i = 0; i < free->npages; ++i)
320                                 if (free->phys_mem[i])
321                                         __free_page(free->phys_mem[i]);
322                         vfree(free->phys_mem);
323                 }
324
325         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
326                 vfree(free->dirty_bitmap);
327
328         free->phys_mem = NULL;
329         free->npages = 0;
330         free->dirty_bitmap = NULL;
331 }
332
333 static void kvm_free_physmem(struct kvm *kvm)
334 {
335         int i;
336
337         for (i = 0; i < kvm->nmemslots; ++i)
338                 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
339 }
340
341 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
342 {
343         int i;
344
345         for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
346                 if (vcpu->pio.guest_pages[i]) {
347                         __free_page(vcpu->pio.guest_pages[i]);
348                         vcpu->pio.guest_pages[i] = NULL;
349                 }
350 }
351
352 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
353 {
354         vcpu_load(vcpu);
355         kvm_mmu_unload(vcpu);
356         vcpu_put(vcpu);
357 }
358
359 static void kvm_free_vcpus(struct kvm *kvm)
360 {
361         unsigned int i;
362
363         /*
364          * Unpin any mmu pages first.
365          */
366         for (i = 0; i < KVM_MAX_VCPUS; ++i)
367                 if (kvm->vcpus[i])
368                         kvm_unload_vcpu_mmu(kvm->vcpus[i]);
369         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
370                 if (kvm->vcpus[i]) {
371                         kvm_arch_ops->vcpu_free(kvm->vcpus[i]);
372                         kvm->vcpus[i] = NULL;
373                 }
374         }
375
376 }
377
378 static void kvm_destroy_vm(struct kvm *kvm)
379 {
380         spin_lock(&kvm_lock);
381         list_del(&kvm->vm_list);
382         spin_unlock(&kvm_lock);
383         kvm_io_bus_destroy(&kvm->pio_bus);
384         kvm_io_bus_destroy(&kvm->mmio_bus);
385         kfree(kvm->vpic);
386         kfree(kvm->vioapic);
387         kvm_free_vcpus(kvm);
388         kvm_free_physmem(kvm);
389         kfree(kvm);
390 }
391
392 static int kvm_vm_release(struct inode *inode, struct file *filp)
393 {
394         struct kvm *kvm = filp->private_data;
395
396         kvm_destroy_vm(kvm);
397         return 0;
398 }
399
400 static void inject_gp(struct kvm_vcpu *vcpu)
401 {
402         kvm_arch_ops->inject_gp(vcpu, 0);
403 }
404
405 /*
406  * Load the pae pdptrs.  Return true is they are all valid.
407  */
408 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
409 {
410         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
411         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
412         int i;
413         u64 *pdpt;
414         int ret;
415         struct page *page;
416         u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
417
418         mutex_lock(&vcpu->kvm->lock);
419         page = gfn_to_page(vcpu->kvm, pdpt_gfn);
420         if (!page) {
421                 ret = 0;
422                 goto out;
423         }
424
425         pdpt = kmap_atomic(page, KM_USER0);
426         memcpy(pdpte, pdpt+offset, sizeof(pdpte));
427         kunmap_atomic(pdpt, KM_USER0);
428
429         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
430                 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
431                         ret = 0;
432                         goto out;
433                 }
434         }
435         ret = 1;
436
437         memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
438 out:
439         mutex_unlock(&vcpu->kvm->lock);
440
441         return ret;
442 }
443
444 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
445 {
446         if (cr0 & CR0_RESERVED_BITS) {
447                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
448                        cr0, vcpu->cr0);
449                 inject_gp(vcpu);
450                 return;
451         }
452
453         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
454                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
455                 inject_gp(vcpu);
456                 return;
457         }
458
459         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
460                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
461                        "and a clear PE flag\n");
462                 inject_gp(vcpu);
463                 return;
464         }
465
466         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
467 #ifdef CONFIG_X86_64
468                 if ((vcpu->shadow_efer & EFER_LME)) {
469                         int cs_db, cs_l;
470
471                         if (!is_pae(vcpu)) {
472                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
473                                        "in long mode while PAE is disabled\n");
474                                 inject_gp(vcpu);
475                                 return;
476                         }
477                         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
478                         if (cs_l) {
479                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
480                                        "in long mode while CS.L == 1\n");
481                                 inject_gp(vcpu);
482                                 return;
483
484                         }
485                 } else
486 #endif
487                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
488                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
489                                "reserved bits\n");
490                         inject_gp(vcpu);
491                         return;
492                 }
493
494         }
495
496         kvm_arch_ops->set_cr0(vcpu, cr0);
497         vcpu->cr0 = cr0;
498
499         mutex_lock(&vcpu->kvm->lock);
500         kvm_mmu_reset_context(vcpu);
501         mutex_unlock(&vcpu->kvm->lock);
502         return;
503 }
504 EXPORT_SYMBOL_GPL(set_cr0);
505
506 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
507 {
508         set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
509 }
510 EXPORT_SYMBOL_GPL(lmsw);
511
512 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
513 {
514         if (cr4 & CR4_RESERVED_BITS) {
515                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
516                 inject_gp(vcpu);
517                 return;
518         }
519
520         if (is_long_mode(vcpu)) {
521                 if (!(cr4 & X86_CR4_PAE)) {
522                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
523                                "in long mode\n");
524                         inject_gp(vcpu);
525                         return;
526                 }
527         } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
528                    && !load_pdptrs(vcpu, vcpu->cr3)) {
529                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
530                 inject_gp(vcpu);
531                 return;
532         }
533
534         if (cr4 & X86_CR4_VMXE) {
535                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
536                 inject_gp(vcpu);
537                 return;
538         }
539         kvm_arch_ops->set_cr4(vcpu, cr4);
540         mutex_lock(&vcpu->kvm->lock);
541         kvm_mmu_reset_context(vcpu);
542         mutex_unlock(&vcpu->kvm->lock);
543 }
544 EXPORT_SYMBOL_GPL(set_cr4);
545
546 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
547 {
548         if (is_long_mode(vcpu)) {
549                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
550                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
551                         inject_gp(vcpu);
552                         return;
553                 }
554         } else {
555                 if (is_pae(vcpu)) {
556                         if (cr3 & CR3_PAE_RESERVED_BITS) {
557                                 printk(KERN_DEBUG
558                                        "set_cr3: #GP, reserved bits\n");
559                                 inject_gp(vcpu);
560                                 return;
561                         }
562                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
563                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
564                                        "reserved bits\n");
565                                 inject_gp(vcpu);
566                                 return;
567                         }
568                 } else {
569                         if (cr3 & CR3_NONPAE_RESERVED_BITS) {
570                                 printk(KERN_DEBUG
571                                        "set_cr3: #GP, reserved bits\n");
572                                 inject_gp(vcpu);
573                                 return;
574                         }
575                 }
576         }
577
578         mutex_lock(&vcpu->kvm->lock);
579         /*
580          * Does the new cr3 value map to physical memory? (Note, we
581          * catch an invalid cr3 even in real-mode, because it would
582          * cause trouble later on when we turn on paging anyway.)
583          *
584          * A real CPU would silently accept an invalid cr3 and would
585          * attempt to use it - with largely undefined (and often hard
586          * to debug) behavior on the guest side.
587          */
588         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
589                 inject_gp(vcpu);
590         else {
591                 vcpu->cr3 = cr3;
592                 vcpu->mmu.new_cr3(vcpu);
593         }
594         mutex_unlock(&vcpu->kvm->lock);
595 }
596 EXPORT_SYMBOL_GPL(set_cr3);
597
598 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
599 {
600         if (cr8 & CR8_RESERVED_BITS) {
601                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
602                 inject_gp(vcpu);
603                 return;
604         }
605         if (irqchip_in_kernel(vcpu->kvm))
606                 kvm_lapic_set_tpr(vcpu, cr8);
607         else
608                 vcpu->cr8 = cr8;
609 }
610 EXPORT_SYMBOL_GPL(set_cr8);
611
612 unsigned long get_cr8(struct kvm_vcpu *vcpu)
613 {
614         if (irqchip_in_kernel(vcpu->kvm))
615                 return kvm_lapic_get_cr8(vcpu);
616         else
617                 return vcpu->cr8;
618 }
619 EXPORT_SYMBOL_GPL(get_cr8);
620
621 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
622 {
623         if (irqchip_in_kernel(vcpu->kvm))
624                 return vcpu->apic_base;
625         else
626                 return vcpu->apic_base;
627 }
628 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
629
630 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
631 {
632         /* TODO: reserve bits check */
633         if (irqchip_in_kernel(vcpu->kvm))
634                 kvm_lapic_set_base(vcpu, data);
635         else
636                 vcpu->apic_base = data;
637 }
638 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
639
640 void fx_init(struct kvm_vcpu *vcpu)
641 {
642         unsigned after_mxcsr_mask;
643
644         /* Initialize guest FPU by resetting ours and saving into guest's */
645         preempt_disable();
646         fx_save(&vcpu->host_fx_image);
647         fpu_init();
648         fx_save(&vcpu->guest_fx_image);
649         fx_restore(&vcpu->host_fx_image);
650         preempt_enable();
651
652         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
653         vcpu->guest_fx_image.mxcsr = 0x1f80;
654         memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
655                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
656 }
657 EXPORT_SYMBOL_GPL(fx_init);
658
659 /*
660  * Allocate some memory and give it an address in the guest physical address
661  * space.
662  *
663  * Discontiguous memory is allowed, mostly for framebuffers.
664  */
665 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
666                                           struct kvm_memory_region *mem)
667 {
668         int r;
669         gfn_t base_gfn;
670         unsigned long npages;
671         unsigned long i;
672         struct kvm_memory_slot *memslot;
673         struct kvm_memory_slot old, new;
674         int memory_config_version;
675
676         r = -EINVAL;
677         /* General sanity checks */
678         if (mem->memory_size & (PAGE_SIZE - 1))
679                 goto out;
680         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
681                 goto out;
682         if (mem->slot >= KVM_MEMORY_SLOTS)
683                 goto out;
684         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
685                 goto out;
686
687         memslot = &kvm->memslots[mem->slot];
688         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
689         npages = mem->memory_size >> PAGE_SHIFT;
690
691         if (!npages)
692                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
693
694 raced:
695         mutex_lock(&kvm->lock);
696
697         memory_config_version = kvm->memory_config_version;
698         new = old = *memslot;
699
700         new.base_gfn = base_gfn;
701         new.npages = npages;
702         new.flags = mem->flags;
703
704         /* Disallow changing a memory slot's size. */
705         r = -EINVAL;
706         if (npages && old.npages && npages != old.npages)
707                 goto out_unlock;
708
709         /* Check for overlaps */
710         r = -EEXIST;
711         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
712                 struct kvm_memory_slot *s = &kvm->memslots[i];
713
714                 if (s == memslot)
715                         continue;
716                 if (!((base_gfn + npages <= s->base_gfn) ||
717                       (base_gfn >= s->base_gfn + s->npages)))
718                         goto out_unlock;
719         }
720         /*
721          * Do memory allocations outside lock.  memory_config_version will
722          * detect any races.
723          */
724         mutex_unlock(&kvm->lock);
725
726         /* Deallocate if slot is being removed */
727         if (!npages)
728                 new.phys_mem = NULL;
729
730         /* Free page dirty bitmap if unneeded */
731         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
732                 new.dirty_bitmap = NULL;
733
734         r = -ENOMEM;
735
736         /* Allocate if a slot is being created */
737         if (npages && !new.phys_mem) {
738                 new.phys_mem = vmalloc(npages * sizeof(struct page *));
739
740                 if (!new.phys_mem)
741                         goto out_free;
742
743                 memset(new.phys_mem, 0, npages * sizeof(struct page *));
744                 for (i = 0; i < npages; ++i) {
745                         new.phys_mem[i] = alloc_page(GFP_HIGHUSER
746                                                      | __GFP_ZERO);
747                         if (!new.phys_mem[i])
748                                 goto out_free;
749                         set_page_private(new.phys_mem[i],0);
750                 }
751         }
752
753         /* Allocate page dirty bitmap if needed */
754         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
755                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
756
757                 new.dirty_bitmap = vmalloc(dirty_bytes);
758                 if (!new.dirty_bitmap)
759                         goto out_free;
760                 memset(new.dirty_bitmap, 0, dirty_bytes);
761         }
762
763         mutex_lock(&kvm->lock);
764
765         if (memory_config_version != kvm->memory_config_version) {
766                 mutex_unlock(&kvm->lock);
767                 kvm_free_physmem_slot(&new, &old);
768                 goto raced;
769         }
770
771         r = -EAGAIN;
772         if (kvm->busy)
773                 goto out_unlock;
774
775         if (mem->slot >= kvm->nmemslots)
776                 kvm->nmemslots = mem->slot + 1;
777
778         *memslot = new;
779         ++kvm->memory_config_version;
780
781         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
782         kvm_flush_remote_tlbs(kvm);
783
784         mutex_unlock(&kvm->lock);
785
786         kvm_free_physmem_slot(&old, &new);
787         return 0;
788
789 out_unlock:
790         mutex_unlock(&kvm->lock);
791 out_free:
792         kvm_free_physmem_slot(&new, &old);
793 out:
794         return r;
795 }
796
797 /*
798  * Get (and clear) the dirty memory log for a memory slot.
799  */
800 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
801                                       struct kvm_dirty_log *log)
802 {
803         struct kvm_memory_slot *memslot;
804         int r, i;
805         int n;
806         unsigned long any = 0;
807
808         mutex_lock(&kvm->lock);
809
810         /*
811          * Prevent changes to guest memory configuration even while the lock
812          * is not taken.
813          */
814         ++kvm->busy;
815         mutex_unlock(&kvm->lock);
816         r = -EINVAL;
817         if (log->slot >= KVM_MEMORY_SLOTS)
818                 goto out;
819
820         memslot = &kvm->memslots[log->slot];
821         r = -ENOENT;
822         if (!memslot->dirty_bitmap)
823                 goto out;
824
825         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
826
827         for (i = 0; !any && i < n/sizeof(long); ++i)
828                 any = memslot->dirty_bitmap[i];
829
830         r = -EFAULT;
831         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
832                 goto out;
833
834         /* If nothing is dirty, don't bother messing with page tables. */
835         if (any) {
836                 mutex_lock(&kvm->lock);
837                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
838                 kvm_flush_remote_tlbs(kvm);
839                 memset(memslot->dirty_bitmap, 0, n);
840                 mutex_unlock(&kvm->lock);
841         }
842
843         r = 0;
844
845 out:
846         mutex_lock(&kvm->lock);
847         --kvm->busy;
848         mutex_unlock(&kvm->lock);
849         return r;
850 }
851
852 /*
853  * Set a new alias region.  Aliases map a portion of physical memory into
854  * another portion.  This is useful for memory windows, for example the PC
855  * VGA region.
856  */
857 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
858                                          struct kvm_memory_alias *alias)
859 {
860         int r, n;
861         struct kvm_mem_alias *p;
862
863         r = -EINVAL;
864         /* General sanity checks */
865         if (alias->memory_size & (PAGE_SIZE - 1))
866                 goto out;
867         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
868                 goto out;
869         if (alias->slot >= KVM_ALIAS_SLOTS)
870                 goto out;
871         if (alias->guest_phys_addr + alias->memory_size
872             < alias->guest_phys_addr)
873                 goto out;
874         if (alias->target_phys_addr + alias->memory_size
875             < alias->target_phys_addr)
876                 goto out;
877
878         mutex_lock(&kvm->lock);
879
880         p = &kvm->aliases[alias->slot];
881         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
882         p->npages = alias->memory_size >> PAGE_SHIFT;
883         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
884
885         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
886                 if (kvm->aliases[n - 1].npages)
887                         break;
888         kvm->naliases = n;
889
890         kvm_mmu_zap_all(kvm);
891
892         mutex_unlock(&kvm->lock);
893
894         return 0;
895
896 out:
897         return r;
898 }
899
900 static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
901 {
902         int i;
903         struct kvm_mem_alias *alias;
904
905         for (i = 0; i < kvm->naliases; ++i) {
906                 alias = &kvm->aliases[i];
907                 if (gfn >= alias->base_gfn
908                     && gfn < alias->base_gfn + alias->npages)
909                         return alias->target_gfn + gfn - alias->base_gfn;
910         }
911         return gfn;
912 }
913
914 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
915 {
916         int i;
917
918         for (i = 0; i < kvm->nmemslots; ++i) {
919                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
920
921                 if (gfn >= memslot->base_gfn
922                     && gfn < memslot->base_gfn + memslot->npages)
923                         return memslot;
924         }
925         return NULL;
926 }
927
928 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
929 {
930         gfn = unalias_gfn(kvm, gfn);
931         return __gfn_to_memslot(kvm, gfn);
932 }
933
934 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
935 {
936         struct kvm_memory_slot *slot;
937
938         gfn = unalias_gfn(kvm, gfn);
939         slot = __gfn_to_memslot(kvm, gfn);
940         if (!slot)
941                 return NULL;
942         return slot->phys_mem[gfn - slot->base_gfn];
943 }
944 EXPORT_SYMBOL_GPL(gfn_to_page);
945
946 /* WARNING: Does not work on aliased pages. */
947 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
948 {
949         struct kvm_memory_slot *memslot;
950
951         memslot = __gfn_to_memslot(kvm, gfn);
952         if (memslot && memslot->dirty_bitmap) {
953                 unsigned long rel_gfn = gfn - memslot->base_gfn;
954
955                 /* avoid RMW */
956                 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
957                         set_bit(rel_gfn, memslot->dirty_bitmap);
958         }
959 }
960
961 int emulator_read_std(unsigned long addr,
962                              void *val,
963                              unsigned int bytes,
964                              struct kvm_vcpu *vcpu)
965 {
966         void *data = val;
967
968         while (bytes) {
969                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
970                 unsigned offset = addr & (PAGE_SIZE-1);
971                 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
972                 unsigned long pfn;
973                 struct page *page;
974                 void *page_virt;
975
976                 if (gpa == UNMAPPED_GVA)
977                         return X86EMUL_PROPAGATE_FAULT;
978                 pfn = gpa >> PAGE_SHIFT;
979                 page = gfn_to_page(vcpu->kvm, pfn);
980                 if (!page)
981                         return X86EMUL_UNHANDLEABLE;
982                 page_virt = kmap_atomic(page, KM_USER0);
983
984                 memcpy(data, page_virt + offset, tocopy);
985
986                 kunmap_atomic(page_virt, KM_USER0);
987
988                 bytes -= tocopy;
989                 data += tocopy;
990                 addr += tocopy;
991         }
992
993         return X86EMUL_CONTINUE;
994 }
995 EXPORT_SYMBOL_GPL(emulator_read_std);
996
997 static int emulator_write_std(unsigned long addr,
998                               const void *val,
999                               unsigned int bytes,
1000                               struct kvm_vcpu *vcpu)
1001 {
1002         pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
1003         return X86EMUL_UNHANDLEABLE;
1004 }
1005
1006 /*
1007  * Only apic need an MMIO device hook, so shortcut now..
1008  */
1009 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1010                                                 gpa_t addr)
1011 {
1012         struct kvm_io_device *dev;
1013
1014         if (vcpu->apic) {
1015                 dev = &vcpu->apic->dev;
1016                 if (dev->in_range(dev, addr))
1017                         return dev;
1018         }
1019         return NULL;
1020 }
1021
1022 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1023                                                 gpa_t addr)
1024 {
1025         struct kvm_io_device *dev;
1026
1027         dev = vcpu_find_pervcpu_dev(vcpu, addr);
1028         if (dev == NULL)
1029                 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1030         return dev;
1031 }
1032
1033 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1034                                                gpa_t addr)
1035 {
1036         return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1037 }
1038
1039 static int emulator_read_emulated(unsigned long addr,
1040                                   void *val,
1041                                   unsigned int bytes,
1042                                   struct kvm_vcpu *vcpu)
1043 {
1044         struct kvm_io_device *mmio_dev;
1045         gpa_t                 gpa;
1046
1047         if (vcpu->mmio_read_completed) {
1048                 memcpy(val, vcpu->mmio_data, bytes);
1049                 vcpu->mmio_read_completed = 0;
1050                 return X86EMUL_CONTINUE;
1051         } else if (emulator_read_std(addr, val, bytes, vcpu)
1052                    == X86EMUL_CONTINUE)
1053                 return X86EMUL_CONTINUE;
1054
1055         gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1056         if (gpa == UNMAPPED_GVA)
1057                 return X86EMUL_PROPAGATE_FAULT;
1058
1059         /*
1060          * Is this MMIO handled locally?
1061          */
1062         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1063         if (mmio_dev) {
1064                 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1065                 return X86EMUL_CONTINUE;
1066         }
1067
1068         vcpu->mmio_needed = 1;
1069         vcpu->mmio_phys_addr = gpa;
1070         vcpu->mmio_size = bytes;
1071         vcpu->mmio_is_write = 0;
1072
1073         return X86EMUL_UNHANDLEABLE;
1074 }
1075
1076 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1077                                const void *val, int bytes)
1078 {
1079         struct page *page;
1080         void *virt;
1081
1082         if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
1083                 return 0;
1084         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1085         if (!page)
1086                 return 0;
1087         mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
1088         virt = kmap_atomic(page, KM_USER0);
1089         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1090         memcpy(virt + offset_in_page(gpa), val, bytes);
1091         kunmap_atomic(virt, KM_USER0);
1092         return 1;
1093 }
1094
1095 static int emulator_write_emulated_onepage(unsigned long addr,
1096                                            const void *val,
1097                                            unsigned int bytes,
1098                                            struct kvm_vcpu *vcpu)
1099 {
1100         struct kvm_io_device *mmio_dev;
1101         gpa_t                 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1102
1103         if (gpa == UNMAPPED_GVA) {
1104                 kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
1105                 return X86EMUL_PROPAGATE_FAULT;
1106         }
1107
1108         if (emulator_write_phys(vcpu, gpa, val, bytes))
1109                 return X86EMUL_CONTINUE;
1110
1111         /*
1112          * Is this MMIO handled locally?
1113          */
1114         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1115         if (mmio_dev) {
1116                 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1117                 return X86EMUL_CONTINUE;
1118         }
1119
1120         vcpu->mmio_needed = 1;
1121         vcpu->mmio_phys_addr = gpa;
1122         vcpu->mmio_size = bytes;
1123         vcpu->mmio_is_write = 1;
1124         memcpy(vcpu->mmio_data, val, bytes);
1125
1126         return X86EMUL_CONTINUE;
1127 }
1128
1129 int emulator_write_emulated(unsigned long addr,
1130                                    const void *val,
1131                                    unsigned int bytes,
1132                                    struct kvm_vcpu *vcpu)
1133 {
1134         /* Crossing a page boundary? */
1135         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1136                 int rc, now;
1137
1138                 now = -addr & ~PAGE_MASK;
1139                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1140                 if (rc != X86EMUL_CONTINUE)
1141                         return rc;
1142                 addr += now;
1143                 val += now;
1144                 bytes -= now;
1145         }
1146         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1147 }
1148 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1149
1150 static int emulator_cmpxchg_emulated(unsigned long addr,
1151                                      const void *old,
1152                                      const void *new,
1153                                      unsigned int bytes,
1154                                      struct kvm_vcpu *vcpu)
1155 {
1156         static int reported;
1157
1158         if (!reported) {
1159                 reported = 1;
1160                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1161         }
1162         return emulator_write_emulated(addr, new, bytes, vcpu);
1163 }
1164
1165 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1166 {
1167         return kvm_arch_ops->get_segment_base(vcpu, seg);
1168 }
1169
1170 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1171 {
1172         return X86EMUL_CONTINUE;
1173 }
1174
1175 int emulate_clts(struct kvm_vcpu *vcpu)
1176 {
1177         unsigned long cr0;
1178
1179         cr0 = vcpu->cr0 & ~X86_CR0_TS;
1180         kvm_arch_ops->set_cr0(vcpu, cr0);
1181         return X86EMUL_CONTINUE;
1182 }
1183
1184 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1185 {
1186         struct kvm_vcpu *vcpu = ctxt->vcpu;
1187
1188         switch (dr) {
1189         case 0 ... 3:
1190                 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1191                 return X86EMUL_CONTINUE;
1192         default:
1193                 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
1194                 return X86EMUL_UNHANDLEABLE;
1195         }
1196 }
1197
1198 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1199 {
1200         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1201         int exception;
1202
1203         kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1204         if (exception) {
1205                 /* FIXME: better handling */
1206                 return X86EMUL_UNHANDLEABLE;
1207         }
1208         return X86EMUL_CONTINUE;
1209 }
1210
1211 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1212 {
1213         static int reported;
1214         u8 opcodes[4];
1215         unsigned long rip = ctxt->vcpu->rip;
1216         unsigned long rip_linear;
1217
1218         rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1219
1220         if (reported)
1221                 return;
1222
1223         emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt->vcpu);
1224
1225         printk(KERN_ERR "emulation failed but !mmio_needed?"
1226                " rip %lx %02x %02x %02x %02x\n",
1227                rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1228         reported = 1;
1229 }
1230
1231 struct x86_emulate_ops emulate_ops = {
1232         .read_std            = emulator_read_std,
1233         .write_std           = emulator_write_std,
1234         .read_emulated       = emulator_read_emulated,
1235         .write_emulated      = emulator_write_emulated,
1236         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
1237 };
1238
1239 int emulate_instruction(struct kvm_vcpu *vcpu,
1240                         struct kvm_run *run,
1241                         unsigned long cr2,
1242                         u16 error_code)
1243 {
1244         struct x86_emulate_ctxt emulate_ctxt;
1245         int r;
1246         int cs_db, cs_l;
1247
1248         vcpu->mmio_fault_cr2 = cr2;
1249         kvm_arch_ops->cache_regs(vcpu);
1250
1251         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1252
1253         emulate_ctxt.vcpu = vcpu;
1254         emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1255         emulate_ctxt.cr2 = cr2;
1256         emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1257                 ? X86EMUL_MODE_REAL : cs_l
1258                 ? X86EMUL_MODE_PROT64 : cs_db
1259                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1260
1261         if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1262                 emulate_ctxt.cs_base = 0;
1263                 emulate_ctxt.ds_base = 0;
1264                 emulate_ctxt.es_base = 0;
1265                 emulate_ctxt.ss_base = 0;
1266         } else {
1267                 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1268                 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1269                 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1270                 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1271         }
1272
1273         emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1274         emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1275
1276         vcpu->mmio_is_write = 0;
1277         vcpu->pio.string = 0;
1278         r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1279         if (vcpu->pio.string)
1280                 return EMULATE_DO_MMIO;
1281
1282         if ((r || vcpu->mmio_is_write) && run) {
1283                 run->exit_reason = KVM_EXIT_MMIO;
1284                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1285                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1286                 run->mmio.len = vcpu->mmio_size;
1287                 run->mmio.is_write = vcpu->mmio_is_write;
1288         }
1289
1290         if (r) {
1291                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1292                         return EMULATE_DONE;
1293                 if (!vcpu->mmio_needed) {
1294                         report_emulation_failure(&emulate_ctxt);
1295                         return EMULATE_FAIL;
1296                 }
1297                 return EMULATE_DO_MMIO;
1298         }
1299
1300         kvm_arch_ops->decache_regs(vcpu);
1301         kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1302
1303         if (vcpu->mmio_is_write) {
1304                 vcpu->mmio_needed = 0;
1305                 return EMULATE_DO_MMIO;
1306         }
1307
1308         return EMULATE_DONE;
1309 }
1310 EXPORT_SYMBOL_GPL(emulate_instruction);
1311
1312 /*
1313  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1314  */
1315 static void kvm_vcpu_kernel_halt(struct kvm_vcpu *vcpu)
1316 {
1317         DECLARE_WAITQUEUE(wait, current);
1318
1319         add_wait_queue(&vcpu->wq, &wait);
1320
1321         /*
1322          * We will block until either an interrupt or a signal wakes us up
1323          */
1324         while(!(irqchip_in_kernel(vcpu->kvm) && kvm_cpu_has_interrupt(vcpu))
1325               && !vcpu->irq_summary
1326               && !signal_pending(current)) {
1327                 set_current_state(TASK_INTERRUPTIBLE);
1328                 vcpu_put(vcpu);
1329                 schedule();
1330                 vcpu_load(vcpu);
1331         }
1332
1333         remove_wait_queue(&vcpu->wq, &wait);
1334         set_current_state(TASK_RUNNING);
1335 }
1336
1337 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1338 {
1339         ++vcpu->stat.halt_exits;
1340         if (irqchip_in_kernel(vcpu->kvm)) {
1341                 kvm_vcpu_kernel_halt(vcpu);
1342                 return 1;
1343         } else {
1344                 vcpu->run->exit_reason = KVM_EXIT_HLT;
1345                 return 0;
1346         }
1347 }
1348 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1349
1350 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1351 {
1352         unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1353
1354         kvm_arch_ops->cache_regs(vcpu);
1355         ret = -KVM_EINVAL;
1356 #ifdef CONFIG_X86_64
1357         if (is_long_mode(vcpu)) {
1358                 nr = vcpu->regs[VCPU_REGS_RAX];
1359                 a0 = vcpu->regs[VCPU_REGS_RDI];
1360                 a1 = vcpu->regs[VCPU_REGS_RSI];
1361                 a2 = vcpu->regs[VCPU_REGS_RDX];
1362                 a3 = vcpu->regs[VCPU_REGS_RCX];
1363                 a4 = vcpu->regs[VCPU_REGS_R8];
1364                 a5 = vcpu->regs[VCPU_REGS_R9];
1365         } else
1366 #endif
1367         {
1368                 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1369                 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1370                 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1371                 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1372                 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1373                 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1374                 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1375         }
1376         switch (nr) {
1377         default:
1378                 run->hypercall.nr = nr;
1379                 run->hypercall.args[0] = a0;
1380                 run->hypercall.args[1] = a1;
1381                 run->hypercall.args[2] = a2;
1382                 run->hypercall.args[3] = a3;
1383                 run->hypercall.args[4] = a4;
1384                 run->hypercall.args[5] = a5;
1385                 run->hypercall.ret = ret;
1386                 run->hypercall.longmode = is_long_mode(vcpu);
1387                 kvm_arch_ops->decache_regs(vcpu);
1388                 return 0;
1389         }
1390         vcpu->regs[VCPU_REGS_RAX] = ret;
1391         kvm_arch_ops->decache_regs(vcpu);
1392         return 1;
1393 }
1394 EXPORT_SYMBOL_GPL(kvm_hypercall);
1395
1396 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1397 {
1398         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1399 }
1400
1401 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1402 {
1403         struct descriptor_table dt = { limit, base };
1404
1405         kvm_arch_ops->set_gdt(vcpu, &dt);
1406 }
1407
1408 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1409 {
1410         struct descriptor_table dt = { limit, base };
1411
1412         kvm_arch_ops->set_idt(vcpu, &dt);
1413 }
1414
1415 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1416                    unsigned long *rflags)
1417 {
1418         lmsw(vcpu, msw);
1419         *rflags = kvm_arch_ops->get_rflags(vcpu);
1420 }
1421
1422 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1423 {
1424         kvm_arch_ops->decache_cr4_guest_bits(vcpu);
1425         switch (cr) {
1426         case 0:
1427                 return vcpu->cr0;
1428         case 2:
1429                 return vcpu->cr2;
1430         case 3:
1431                 return vcpu->cr3;
1432         case 4:
1433                 return vcpu->cr4;
1434         default:
1435                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1436                 return 0;
1437         }
1438 }
1439
1440 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1441                      unsigned long *rflags)
1442 {
1443         switch (cr) {
1444         case 0:
1445                 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1446                 *rflags = kvm_arch_ops->get_rflags(vcpu);
1447                 break;
1448         case 2:
1449                 vcpu->cr2 = val;
1450                 break;
1451         case 3:
1452                 set_cr3(vcpu, val);
1453                 break;
1454         case 4:
1455                 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1456                 break;
1457         default:
1458                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1459         }
1460 }
1461
1462 /*
1463  * Register the para guest with the host:
1464  */
1465 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1466 {
1467         struct kvm_vcpu_para_state *para_state;
1468         hpa_t para_state_hpa, hypercall_hpa;
1469         struct page *para_state_page;
1470         unsigned char *hypercall;
1471         gpa_t hypercall_gpa;
1472
1473         printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1474         printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1475
1476         /*
1477          * Needs to be page aligned:
1478          */
1479         if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1480                 goto err_gp;
1481
1482         para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1483         printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1484         if (is_error_hpa(para_state_hpa))
1485                 goto err_gp;
1486
1487         mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1488         para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1489         para_state = kmap(para_state_page);
1490
1491         printk(KERN_DEBUG "....  guest version: %d\n", para_state->guest_version);
1492         printk(KERN_DEBUG "....           size: %d\n", para_state->size);
1493
1494         para_state->host_version = KVM_PARA_API_VERSION;
1495         /*
1496          * We cannot support guests that try to register themselves
1497          * with a newer API version than the host supports:
1498          */
1499         if (para_state->guest_version > KVM_PARA_API_VERSION) {
1500                 para_state->ret = -KVM_EINVAL;
1501                 goto err_kunmap_skip;
1502         }
1503
1504         hypercall_gpa = para_state->hypercall_gpa;
1505         hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1506         printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1507         if (is_error_hpa(hypercall_hpa)) {
1508                 para_state->ret = -KVM_EINVAL;
1509                 goto err_kunmap_skip;
1510         }
1511
1512         printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1513         vcpu->para_state_page = para_state_page;
1514         vcpu->para_state_gpa = para_state_gpa;
1515         vcpu->hypercall_gpa = hypercall_gpa;
1516
1517         mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1518         hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1519                                 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1520         kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1521         kunmap_atomic(hypercall, KM_USER1);
1522
1523         para_state->ret = 0;
1524 err_kunmap_skip:
1525         kunmap(para_state_page);
1526         return 0;
1527 err_gp:
1528         return 1;
1529 }
1530
1531 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1532 {
1533         u64 data;
1534
1535         switch (msr) {
1536         case 0xc0010010: /* SYSCFG */
1537         case 0xc0010015: /* HWCR */
1538         case MSR_IA32_PLATFORM_ID:
1539         case MSR_IA32_P5_MC_ADDR:
1540         case MSR_IA32_P5_MC_TYPE:
1541         case MSR_IA32_MC0_CTL:
1542         case MSR_IA32_MCG_STATUS:
1543         case MSR_IA32_MCG_CAP:
1544         case MSR_IA32_MC0_MISC:
1545         case MSR_IA32_MC0_MISC+4:
1546         case MSR_IA32_MC0_MISC+8:
1547         case MSR_IA32_MC0_MISC+12:
1548         case MSR_IA32_MC0_MISC+16:
1549         case MSR_IA32_UCODE_REV:
1550         case MSR_IA32_PERF_STATUS:
1551         case MSR_IA32_EBL_CR_POWERON:
1552                 /* MTRR registers */
1553         case 0xfe:
1554         case 0x200 ... 0x2ff:
1555                 data = 0;
1556                 break;
1557         case 0xcd: /* fsb frequency */
1558                 data = 3;
1559                 break;
1560         case MSR_IA32_APICBASE:
1561                 data = kvm_get_apic_base(vcpu);
1562                 break;
1563         case MSR_IA32_MISC_ENABLE:
1564                 data = vcpu->ia32_misc_enable_msr;
1565                 break;
1566 #ifdef CONFIG_X86_64
1567         case MSR_EFER:
1568                 data = vcpu->shadow_efer;
1569                 break;
1570 #endif
1571         default:
1572                 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1573                 return 1;
1574         }
1575         *pdata = data;
1576         return 0;
1577 }
1578 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1579
1580 /*
1581  * Reads an msr value (of 'msr_index') into 'pdata'.
1582  * Returns 0 on success, non-0 otherwise.
1583  * Assumes vcpu_load() was already called.
1584  */
1585 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1586 {
1587         return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1588 }
1589
1590 #ifdef CONFIG_X86_64
1591
1592 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1593 {
1594         if (efer & EFER_RESERVED_BITS) {
1595                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1596                        efer);
1597                 inject_gp(vcpu);
1598                 return;
1599         }
1600
1601         if (is_paging(vcpu)
1602             && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1603                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1604                 inject_gp(vcpu);
1605                 return;
1606         }
1607
1608         kvm_arch_ops->set_efer(vcpu, efer);
1609
1610         efer &= ~EFER_LMA;
1611         efer |= vcpu->shadow_efer & EFER_LMA;
1612
1613         vcpu->shadow_efer = efer;
1614 }
1615
1616 #endif
1617
1618 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1619 {
1620         switch (msr) {
1621 #ifdef CONFIG_X86_64
1622         case MSR_EFER:
1623                 set_efer(vcpu, data);
1624                 break;
1625 #endif
1626         case MSR_IA32_MC0_STATUS:
1627                 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1628                        __FUNCTION__, data);
1629                 break;
1630         case MSR_IA32_MCG_STATUS:
1631                 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1632                         __FUNCTION__, data);
1633                 break;
1634         case MSR_IA32_UCODE_REV:
1635         case MSR_IA32_UCODE_WRITE:
1636         case 0x200 ... 0x2ff: /* MTRRs */
1637                 break;
1638         case MSR_IA32_APICBASE:
1639                 kvm_set_apic_base(vcpu, data);
1640                 break;
1641         case MSR_IA32_MISC_ENABLE:
1642                 vcpu->ia32_misc_enable_msr = data;
1643                 break;
1644         /*
1645          * This is the 'probe whether the host is KVM' logic:
1646          */
1647         case MSR_KVM_API_MAGIC:
1648                 return vcpu_register_para(vcpu, data);
1649
1650         default:
1651                 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
1652                 return 1;
1653         }
1654         return 0;
1655 }
1656 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1657
1658 /*
1659  * Writes msr value into into the appropriate "register".
1660  * Returns 0 on success, non-0 otherwise.
1661  * Assumes vcpu_load() was already called.
1662  */
1663 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1664 {
1665         return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1666 }
1667
1668 void kvm_resched(struct kvm_vcpu *vcpu)
1669 {
1670         if (!need_resched())
1671                 return;
1672         cond_resched();
1673 }
1674 EXPORT_SYMBOL_GPL(kvm_resched);
1675
1676 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1677 {
1678         int i;
1679         u32 function;
1680         struct kvm_cpuid_entry *e, *best;
1681
1682         kvm_arch_ops->cache_regs(vcpu);
1683         function = vcpu->regs[VCPU_REGS_RAX];
1684         vcpu->regs[VCPU_REGS_RAX] = 0;
1685         vcpu->regs[VCPU_REGS_RBX] = 0;
1686         vcpu->regs[VCPU_REGS_RCX] = 0;
1687         vcpu->regs[VCPU_REGS_RDX] = 0;
1688         best = NULL;
1689         for (i = 0; i < vcpu->cpuid_nent; ++i) {
1690                 e = &vcpu->cpuid_entries[i];
1691                 if (e->function == function) {
1692                         best = e;
1693                         break;
1694                 }
1695                 /*
1696                  * Both basic or both extended?
1697                  */
1698                 if (((e->function ^ function) & 0x80000000) == 0)
1699                         if (!best || e->function > best->function)
1700                                 best = e;
1701         }
1702         if (best) {
1703                 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1704                 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1705                 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1706                 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1707         }
1708         kvm_arch_ops->decache_regs(vcpu);
1709         kvm_arch_ops->skip_emulated_instruction(vcpu);
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1712
1713 static int pio_copy_data(struct kvm_vcpu *vcpu)
1714 {
1715         void *p = vcpu->pio_data;
1716         void *q;
1717         unsigned bytes;
1718         int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1719
1720         q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1721                  PAGE_KERNEL);
1722         if (!q) {
1723                 free_pio_guest_pages(vcpu);
1724                 return -ENOMEM;
1725         }
1726         q += vcpu->pio.guest_page_offset;
1727         bytes = vcpu->pio.size * vcpu->pio.cur_count;
1728         if (vcpu->pio.in)
1729                 memcpy(q, p, bytes);
1730         else
1731                 memcpy(p, q, bytes);
1732         q -= vcpu->pio.guest_page_offset;
1733         vunmap(q);
1734         free_pio_guest_pages(vcpu);
1735         return 0;
1736 }
1737
1738 static int complete_pio(struct kvm_vcpu *vcpu)
1739 {
1740         struct kvm_pio_request *io = &vcpu->pio;
1741         long delta;
1742         int r;
1743
1744         kvm_arch_ops->cache_regs(vcpu);
1745
1746         if (!io->string) {
1747                 if (io->in)
1748                         memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1749                                io->size);
1750         } else {
1751                 if (io->in) {
1752                         r = pio_copy_data(vcpu);
1753                         if (r) {
1754                                 kvm_arch_ops->cache_regs(vcpu);
1755                                 return r;
1756                         }
1757                 }
1758
1759                 delta = 1;
1760                 if (io->rep) {
1761                         delta *= io->cur_count;
1762                         /*
1763                          * The size of the register should really depend on
1764                          * current address size.
1765                          */
1766                         vcpu->regs[VCPU_REGS_RCX] -= delta;
1767                 }
1768                 if (io->down)
1769                         delta = -delta;
1770                 delta *= io->size;
1771                 if (io->in)
1772                         vcpu->regs[VCPU_REGS_RDI] += delta;
1773                 else
1774                         vcpu->regs[VCPU_REGS_RSI] += delta;
1775         }
1776
1777         kvm_arch_ops->decache_regs(vcpu);
1778
1779         io->count -= io->cur_count;
1780         io->cur_count = 0;
1781
1782         if (!io->count)
1783                 kvm_arch_ops->skip_emulated_instruction(vcpu);
1784         return 0;
1785 }
1786
1787 static void kernel_pio(struct kvm_io_device *pio_dev,
1788                        struct kvm_vcpu *vcpu,
1789                        void *pd)
1790 {
1791         /* TODO: String I/O for in kernel device */
1792
1793         mutex_lock(&vcpu->kvm->lock);
1794         if (vcpu->pio.in)
1795                 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1796                                   vcpu->pio.size,
1797                                   pd);
1798         else
1799                 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1800                                    vcpu->pio.size,
1801                                    pd);
1802         mutex_unlock(&vcpu->kvm->lock);
1803 }
1804
1805 static void pio_string_write(struct kvm_io_device *pio_dev,
1806                              struct kvm_vcpu *vcpu)
1807 {
1808         struct kvm_pio_request *io = &vcpu->pio;
1809         void *pd = vcpu->pio_data;
1810         int i;
1811
1812         mutex_lock(&vcpu->kvm->lock);
1813         for (i = 0; i < io->cur_count; i++) {
1814                 kvm_iodevice_write(pio_dev, io->port,
1815                                    io->size,
1816                                    pd);
1817                 pd += io->size;
1818         }
1819         mutex_unlock(&vcpu->kvm->lock);
1820 }
1821
1822 int kvm_emulate_pio (struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1823                   int size, unsigned port)
1824 {
1825         struct kvm_io_device *pio_dev;
1826
1827         vcpu->run->exit_reason = KVM_EXIT_IO;
1828         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1829         vcpu->run->io.size = vcpu->pio.size = size;
1830         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1831         vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
1832         vcpu->run->io.port = vcpu->pio.port = port;
1833         vcpu->pio.in = in;
1834         vcpu->pio.string = 0;
1835         vcpu->pio.down = 0;
1836         vcpu->pio.guest_page_offset = 0;
1837         vcpu->pio.rep = 0;
1838
1839         kvm_arch_ops->cache_regs(vcpu);
1840         memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1841         kvm_arch_ops->decache_regs(vcpu);
1842
1843         pio_dev = vcpu_find_pio_dev(vcpu, port);
1844         if (pio_dev) {
1845                 kernel_pio(pio_dev, vcpu, vcpu->pio_data);
1846                 complete_pio(vcpu);
1847                 return 1;
1848         }
1849         return 0;
1850 }
1851 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
1852
1853 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1854                   int size, unsigned long count, int down,
1855                   gva_t address, int rep, unsigned port)
1856 {
1857         unsigned now, in_page;
1858         int i, ret = 0;
1859         int nr_pages = 1;
1860         struct page *page;
1861         struct kvm_io_device *pio_dev;
1862
1863         vcpu->run->exit_reason = KVM_EXIT_IO;
1864         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1865         vcpu->run->io.size = vcpu->pio.size = size;
1866         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1867         vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
1868         vcpu->run->io.port = vcpu->pio.port = port;
1869         vcpu->pio.in = in;
1870         vcpu->pio.string = 1;
1871         vcpu->pio.down = down;
1872         vcpu->pio.guest_page_offset = offset_in_page(address);
1873         vcpu->pio.rep = rep;
1874
1875         if (!count) {
1876                 kvm_arch_ops->skip_emulated_instruction(vcpu);
1877                 return 1;
1878         }
1879
1880         if (!down)
1881                 in_page = PAGE_SIZE - offset_in_page(address);
1882         else
1883                 in_page = offset_in_page(address) + size;
1884         now = min(count, (unsigned long)in_page / size);
1885         if (!now) {
1886                 /*
1887                  * String I/O straddles page boundary.  Pin two guest pages
1888                  * so that we satisfy atomicity constraints.  Do just one
1889                  * transaction to avoid complexity.
1890                  */
1891                 nr_pages = 2;
1892                 now = 1;
1893         }
1894         if (down) {
1895                 /*
1896                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
1897                  */
1898                 pr_unimpl(vcpu, "guest string pio down\n");
1899                 inject_gp(vcpu);
1900                 return 1;
1901         }
1902         vcpu->run->io.count = now;
1903         vcpu->pio.cur_count = now;
1904
1905         for (i = 0; i < nr_pages; ++i) {
1906                 mutex_lock(&vcpu->kvm->lock);
1907                 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1908                 if (page)
1909                         get_page(page);
1910                 vcpu->pio.guest_pages[i] = page;
1911                 mutex_unlock(&vcpu->kvm->lock);
1912                 if (!page) {
1913                         inject_gp(vcpu);
1914                         free_pio_guest_pages(vcpu);
1915                         return 1;
1916                 }
1917         }
1918
1919         pio_dev = vcpu_find_pio_dev(vcpu, port);
1920         if (!vcpu->pio.in) {
1921                 /* string PIO write */
1922                 ret = pio_copy_data(vcpu);
1923                 if (ret >= 0 && pio_dev) {
1924                         pio_string_write(pio_dev, vcpu);
1925                         complete_pio(vcpu);
1926                         if (vcpu->pio.count == 0)
1927                                 ret = 1;
1928                 }
1929         } else if (pio_dev)
1930                 pr_unimpl(vcpu, "no string pio read support yet, "
1931                        "port %x size %d count %ld\n",
1932                         port, size, count);
1933
1934         return ret;
1935 }
1936 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
1937
1938 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1939 {
1940         int r;
1941         sigset_t sigsaved;
1942
1943         vcpu_load(vcpu);
1944
1945         if (vcpu->sigset_active)
1946                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1947
1948         /* re-sync apic's tpr */
1949         set_cr8(vcpu, kvm_run->cr8);
1950
1951         if (vcpu->pio.cur_count) {
1952                 r = complete_pio(vcpu);
1953                 if (r)
1954                         goto out;
1955         }
1956
1957         if (vcpu->mmio_needed) {
1958                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1959                 vcpu->mmio_read_completed = 1;
1960                 vcpu->mmio_needed = 0;
1961                 r = emulate_instruction(vcpu, kvm_run,
1962                                         vcpu->mmio_fault_cr2, 0);
1963                 if (r == EMULATE_DO_MMIO) {
1964                         /*
1965                          * Read-modify-write.  Back to userspace.
1966                          */
1967                         r = 0;
1968                         goto out;
1969                 }
1970         }
1971
1972         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
1973                 kvm_arch_ops->cache_regs(vcpu);
1974                 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
1975                 kvm_arch_ops->decache_regs(vcpu);
1976         }
1977
1978         r = kvm_arch_ops->run(vcpu, kvm_run);
1979
1980 out:
1981         if (vcpu->sigset_active)
1982                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1983
1984         vcpu_put(vcpu);
1985         return r;
1986 }
1987
1988 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
1989                                    struct kvm_regs *regs)
1990 {
1991         vcpu_load(vcpu);
1992
1993         kvm_arch_ops->cache_regs(vcpu);
1994
1995         regs->rax = vcpu->regs[VCPU_REGS_RAX];
1996         regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1997         regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1998         regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1999         regs->rsi = vcpu->regs[VCPU_REGS_RSI];
2000         regs->rdi = vcpu->regs[VCPU_REGS_RDI];
2001         regs->rsp = vcpu->regs[VCPU_REGS_RSP];
2002         regs->rbp = vcpu->regs[VCPU_REGS_RBP];
2003 #ifdef CONFIG_X86_64
2004         regs->r8 = vcpu->regs[VCPU_REGS_R8];
2005         regs->r9 = vcpu->regs[VCPU_REGS_R9];
2006         regs->r10 = vcpu->regs[VCPU_REGS_R10];
2007         regs->r11 = vcpu->regs[VCPU_REGS_R11];
2008         regs->r12 = vcpu->regs[VCPU_REGS_R12];
2009         regs->r13 = vcpu->regs[VCPU_REGS_R13];
2010         regs->r14 = vcpu->regs[VCPU_REGS_R14];
2011         regs->r15 = vcpu->regs[VCPU_REGS_R15];
2012 #endif
2013
2014         regs->rip = vcpu->rip;
2015         regs->rflags = kvm_arch_ops->get_rflags(vcpu);
2016
2017         /*
2018          * Don't leak debug flags in case they were set for guest debugging
2019          */
2020         if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2021                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2022
2023         vcpu_put(vcpu);
2024
2025         return 0;
2026 }
2027
2028 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
2029                                    struct kvm_regs *regs)
2030 {
2031         vcpu_load(vcpu);
2032
2033         vcpu->regs[VCPU_REGS_RAX] = regs->rax;
2034         vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
2035         vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
2036         vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
2037         vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
2038         vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
2039         vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
2040         vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
2041 #ifdef CONFIG_X86_64
2042         vcpu->regs[VCPU_REGS_R8] = regs->r8;
2043         vcpu->regs[VCPU_REGS_R9] = regs->r9;
2044         vcpu->regs[VCPU_REGS_R10] = regs->r10;
2045         vcpu->regs[VCPU_REGS_R11] = regs->r11;
2046         vcpu->regs[VCPU_REGS_R12] = regs->r12;
2047         vcpu->regs[VCPU_REGS_R13] = regs->r13;
2048         vcpu->regs[VCPU_REGS_R14] = regs->r14;
2049         vcpu->regs[VCPU_REGS_R15] = regs->r15;
2050 #endif
2051
2052         vcpu->rip = regs->rip;
2053         kvm_arch_ops->set_rflags(vcpu, regs->rflags);
2054
2055         kvm_arch_ops->decache_regs(vcpu);
2056
2057         vcpu_put(vcpu);
2058
2059         return 0;
2060 }
2061
2062 static void get_segment(struct kvm_vcpu *vcpu,
2063                         struct kvm_segment *var, int seg)
2064 {
2065         return kvm_arch_ops->get_segment(vcpu, var, seg);
2066 }
2067
2068 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2069                                     struct kvm_sregs *sregs)
2070 {
2071         struct descriptor_table dt;
2072
2073         vcpu_load(vcpu);
2074
2075         get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2076         get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2077         get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2078         get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2079         get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2080         get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2081
2082         get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2083         get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2084
2085         kvm_arch_ops->get_idt(vcpu, &dt);
2086         sregs->idt.limit = dt.limit;
2087         sregs->idt.base = dt.base;
2088         kvm_arch_ops->get_gdt(vcpu, &dt);
2089         sregs->gdt.limit = dt.limit;
2090         sregs->gdt.base = dt.base;
2091
2092         kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2093         sregs->cr0 = vcpu->cr0;
2094         sregs->cr2 = vcpu->cr2;
2095         sregs->cr3 = vcpu->cr3;
2096         sregs->cr4 = vcpu->cr4;
2097         sregs->cr8 = get_cr8(vcpu);
2098         sregs->efer = vcpu->shadow_efer;
2099         sregs->apic_base = kvm_get_apic_base(vcpu);
2100
2101         memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2102                sizeof sregs->interrupt_bitmap);
2103
2104         vcpu_put(vcpu);
2105
2106         return 0;
2107 }
2108
2109 static void set_segment(struct kvm_vcpu *vcpu,
2110                         struct kvm_segment *var, int seg)
2111 {
2112         return kvm_arch_ops->set_segment(vcpu, var, seg);
2113 }
2114
2115 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2116                                     struct kvm_sregs *sregs)
2117 {
2118         int mmu_reset_needed = 0;
2119         int i;
2120         struct descriptor_table dt;
2121
2122         vcpu_load(vcpu);
2123
2124         dt.limit = sregs->idt.limit;
2125         dt.base = sregs->idt.base;
2126         kvm_arch_ops->set_idt(vcpu, &dt);
2127         dt.limit = sregs->gdt.limit;
2128         dt.base = sregs->gdt.base;
2129         kvm_arch_ops->set_gdt(vcpu, &dt);
2130
2131         vcpu->cr2 = sregs->cr2;
2132         mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2133         vcpu->cr3 = sregs->cr3;
2134
2135         set_cr8(vcpu, sregs->cr8);
2136
2137         mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2138 #ifdef CONFIG_X86_64
2139         kvm_arch_ops->set_efer(vcpu, sregs->efer);
2140 #endif
2141         kvm_set_apic_base(vcpu, sregs->apic_base);
2142
2143         kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2144
2145         mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2146         kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
2147
2148         mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2149         kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
2150         if (!is_long_mode(vcpu) && is_pae(vcpu))
2151                 load_pdptrs(vcpu, vcpu->cr3);
2152
2153         if (mmu_reset_needed)
2154                 kvm_mmu_reset_context(vcpu);
2155
2156         memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2157                sizeof vcpu->irq_pending);
2158         vcpu->irq_summary = 0;
2159         for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
2160                 if (vcpu->irq_pending[i])
2161                         __set_bit(i, &vcpu->irq_summary);
2162
2163         set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2164         set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2165         set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2166         set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2167         set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2168         set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2169
2170         set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2171         set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2172
2173         vcpu_put(vcpu);
2174
2175         return 0;
2176 }
2177
2178 /*
2179  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2180  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2181  *
2182  * This list is modified at module load time to reflect the
2183  * capabilities of the host cpu.
2184  */
2185 static u32 msrs_to_save[] = {
2186         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2187         MSR_K6_STAR,
2188 #ifdef CONFIG_X86_64
2189         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2190 #endif
2191         MSR_IA32_TIME_STAMP_COUNTER,
2192 };
2193
2194 static unsigned num_msrs_to_save;
2195
2196 static u32 emulated_msrs[] = {
2197         MSR_IA32_MISC_ENABLE,
2198 };
2199
2200 static __init void kvm_init_msr_list(void)
2201 {
2202         u32 dummy[2];
2203         unsigned i, j;
2204
2205         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2206                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2207                         continue;
2208                 if (j < i)
2209                         msrs_to_save[j] = msrs_to_save[i];
2210                 j++;
2211         }
2212         num_msrs_to_save = j;
2213 }
2214
2215 /*
2216  * Adapt set_msr() to msr_io()'s calling convention
2217  */
2218 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2219 {
2220         return kvm_set_msr(vcpu, index, *data);
2221 }
2222
2223 /*
2224  * Read or write a bunch of msrs. All parameters are kernel addresses.
2225  *
2226  * @return number of msrs set successfully.
2227  */
2228 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2229                     struct kvm_msr_entry *entries,
2230                     int (*do_msr)(struct kvm_vcpu *vcpu,
2231                                   unsigned index, u64 *data))
2232 {
2233         int i;
2234
2235         vcpu_load(vcpu);
2236
2237         for (i = 0; i < msrs->nmsrs; ++i)
2238                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2239                         break;
2240
2241         vcpu_put(vcpu);
2242
2243         return i;
2244 }
2245
2246 /*
2247  * Read or write a bunch of msrs. Parameters are user addresses.
2248  *
2249  * @return number of msrs set successfully.
2250  */
2251 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2252                   int (*do_msr)(struct kvm_vcpu *vcpu,
2253                                 unsigned index, u64 *data),
2254                   int writeback)
2255 {
2256         struct kvm_msrs msrs;
2257         struct kvm_msr_entry *entries;
2258         int r, n;
2259         unsigned size;
2260
2261         r = -EFAULT;
2262         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2263                 goto out;
2264
2265         r = -E2BIG;
2266         if (msrs.nmsrs >= MAX_IO_MSRS)
2267                 goto out;
2268
2269         r = -ENOMEM;
2270         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2271         entries = vmalloc(size);
2272         if (!entries)
2273                 goto out;
2274
2275         r = -EFAULT;
2276         if (copy_from_user(entries, user_msrs->entries, size))
2277                 goto out_free;
2278
2279         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2280         if (r < 0)
2281                 goto out_free;
2282
2283         r = -EFAULT;
2284         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2285                 goto out_free;
2286
2287         r = n;
2288
2289 out_free:
2290         vfree(entries);
2291 out:
2292         return r;
2293 }
2294
2295 /*
2296  * Translate a guest virtual address to a guest physical address.
2297  */
2298 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2299                                     struct kvm_translation *tr)
2300 {
2301         unsigned long vaddr = tr->linear_address;
2302         gpa_t gpa;
2303
2304         vcpu_load(vcpu);
2305         mutex_lock(&vcpu->kvm->lock);
2306         gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2307         tr->physical_address = gpa;
2308         tr->valid = gpa != UNMAPPED_GVA;
2309         tr->writeable = 1;
2310         tr->usermode = 0;
2311         mutex_unlock(&vcpu->kvm->lock);
2312         vcpu_put(vcpu);
2313
2314         return 0;
2315 }
2316
2317 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2318                                     struct kvm_interrupt *irq)
2319 {
2320         if (irq->irq < 0 || irq->irq >= 256)
2321                 return -EINVAL;
2322         if (irqchip_in_kernel(vcpu->kvm))
2323                 return -ENXIO;
2324         vcpu_load(vcpu);
2325
2326         set_bit(irq->irq, vcpu->irq_pending);
2327         set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2328
2329         vcpu_put(vcpu);
2330
2331         return 0;
2332 }
2333
2334 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2335                                       struct kvm_debug_guest *dbg)
2336 {
2337         int r;
2338
2339         vcpu_load(vcpu);
2340
2341         r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
2342
2343         vcpu_put(vcpu);
2344
2345         return r;
2346 }
2347
2348 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2349                                     unsigned long address,
2350                                     int *type)
2351 {
2352         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2353         unsigned long pgoff;
2354         struct page *page;
2355
2356         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2357         if (pgoff == 0)
2358                 page = virt_to_page(vcpu->run);
2359         else if (pgoff == KVM_PIO_PAGE_OFFSET)
2360                 page = virt_to_page(vcpu->pio_data);
2361         else
2362                 return NOPAGE_SIGBUS;
2363         get_page(page);
2364         if (type != NULL)
2365                 *type = VM_FAULT_MINOR;
2366
2367         return page;
2368 }
2369
2370 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2371         .nopage = kvm_vcpu_nopage,
2372 };
2373
2374 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2375 {
2376         vma->vm_ops = &kvm_vcpu_vm_ops;
2377         return 0;
2378 }
2379
2380 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2381 {
2382         struct kvm_vcpu *vcpu = filp->private_data;
2383
2384         fput(vcpu->kvm->filp);
2385         return 0;
2386 }
2387
2388 static struct file_operations kvm_vcpu_fops = {
2389         .release        = kvm_vcpu_release,
2390         .unlocked_ioctl = kvm_vcpu_ioctl,
2391         .compat_ioctl   = kvm_vcpu_ioctl,
2392         .mmap           = kvm_vcpu_mmap,
2393 };
2394
2395 /*
2396  * Allocates an inode for the vcpu.
2397  */
2398 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2399 {
2400         int fd, r;
2401         struct inode *inode;
2402         struct file *file;
2403
2404         r = anon_inode_getfd(&fd, &inode, &file,
2405                              "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2406         if (r)
2407                 return r;
2408         atomic_inc(&vcpu->kvm->filp->f_count);
2409         return fd;
2410 }
2411
2412 /*
2413  * Creates some virtual cpus.  Good luck creating more than one.
2414  */
2415 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2416 {
2417         int r;
2418         struct kvm_vcpu *vcpu;
2419
2420         if (!valid_vcpu(n))
2421                 return -EINVAL;
2422
2423         vcpu = kvm_arch_ops->vcpu_create(kvm, n);
2424         if (IS_ERR(vcpu))
2425                 return PTR_ERR(vcpu);
2426
2427         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2428
2429         /* We do fxsave: this must be aligned. */
2430         BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
2431
2432         vcpu_load(vcpu);
2433         r = kvm_mmu_setup(vcpu);
2434         vcpu_put(vcpu);
2435         if (r < 0)
2436                 goto free_vcpu;
2437
2438         mutex_lock(&kvm->lock);
2439         if (kvm->vcpus[n]) {
2440                 r = -EEXIST;
2441                 mutex_unlock(&kvm->lock);
2442                 goto mmu_unload;
2443         }
2444         kvm->vcpus[n] = vcpu;
2445         mutex_unlock(&kvm->lock);
2446
2447         /* Now it's all set up, let userspace reach it */
2448         r = create_vcpu_fd(vcpu);
2449         if (r < 0)
2450                 goto unlink;
2451         return r;
2452
2453 unlink:
2454         mutex_lock(&kvm->lock);
2455         kvm->vcpus[n] = NULL;
2456         mutex_unlock(&kvm->lock);
2457
2458 mmu_unload:
2459         vcpu_load(vcpu);
2460         kvm_mmu_unload(vcpu);
2461         vcpu_put(vcpu);
2462
2463 free_vcpu:
2464         kvm_arch_ops->vcpu_free(vcpu);
2465         return r;
2466 }
2467
2468 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2469 {
2470         u64 efer;
2471         int i;
2472         struct kvm_cpuid_entry *e, *entry;
2473
2474         rdmsrl(MSR_EFER, efer);
2475         entry = NULL;
2476         for (i = 0; i < vcpu->cpuid_nent; ++i) {
2477                 e = &vcpu->cpuid_entries[i];
2478                 if (e->function == 0x80000001) {
2479                         entry = e;
2480                         break;
2481                 }
2482         }
2483         if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
2484                 entry->edx &= ~(1 << 20);
2485                 printk(KERN_INFO "kvm: guest NX capability removed\n");
2486         }
2487 }
2488
2489 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2490                                     struct kvm_cpuid *cpuid,
2491                                     struct kvm_cpuid_entry __user *entries)
2492 {
2493         int r;
2494
2495         r = -E2BIG;
2496         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2497                 goto out;
2498         r = -EFAULT;
2499         if (copy_from_user(&vcpu->cpuid_entries, entries,
2500                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2501                 goto out;
2502         vcpu->cpuid_nent = cpuid->nent;
2503         cpuid_fix_nx_cap(vcpu);
2504         return 0;
2505
2506 out:
2507         return r;
2508 }
2509
2510 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2511 {
2512         if (sigset) {
2513                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2514                 vcpu->sigset_active = 1;
2515                 vcpu->sigset = *sigset;
2516         } else
2517                 vcpu->sigset_active = 0;
2518         return 0;
2519 }
2520
2521 /*
2522  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
2523  * we have asm/x86/processor.h
2524  */
2525 struct fxsave {
2526         u16     cwd;
2527         u16     swd;
2528         u16     twd;
2529         u16     fop;
2530         u64     rip;
2531         u64     rdp;
2532         u32     mxcsr;
2533         u32     mxcsr_mask;
2534         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
2535 #ifdef CONFIG_X86_64
2536         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
2537 #else
2538         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
2539 #endif
2540 };
2541
2542 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2543 {
2544         struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2545
2546         vcpu_load(vcpu);
2547
2548         memcpy(fpu->fpr, fxsave->st_space, 128);
2549         fpu->fcw = fxsave->cwd;
2550         fpu->fsw = fxsave->swd;
2551         fpu->ftwx = fxsave->twd;
2552         fpu->last_opcode = fxsave->fop;
2553         fpu->last_ip = fxsave->rip;
2554         fpu->last_dp = fxsave->rdp;
2555         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2556
2557         vcpu_put(vcpu);
2558
2559         return 0;
2560 }
2561
2562 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2563 {
2564         struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2565
2566         vcpu_load(vcpu);
2567
2568         memcpy(fxsave->st_space, fpu->fpr, 128);
2569         fxsave->cwd = fpu->fcw;
2570         fxsave->swd = fpu->fsw;
2571         fxsave->twd = fpu->ftwx;
2572         fxsave->fop = fpu->last_opcode;
2573         fxsave->rip = fpu->last_ip;
2574         fxsave->rdp = fpu->last_dp;
2575         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2576
2577         vcpu_put(vcpu);
2578
2579         return 0;
2580 }
2581
2582 static long kvm_vcpu_ioctl(struct file *filp,
2583                            unsigned int ioctl, unsigned long arg)
2584 {
2585         struct kvm_vcpu *vcpu = filp->private_data;
2586         void __user *argp = (void __user *)arg;
2587         int r = -EINVAL;
2588
2589         switch (ioctl) {
2590         case KVM_RUN:
2591                 r = -EINVAL;
2592                 if (arg)
2593                         goto out;
2594                 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2595                 break;
2596         case KVM_GET_REGS: {
2597                 struct kvm_regs kvm_regs;
2598
2599                 memset(&kvm_regs, 0, sizeof kvm_regs);
2600                 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2601                 if (r)
2602                         goto out;
2603                 r = -EFAULT;
2604                 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2605                         goto out;
2606                 r = 0;
2607                 break;
2608         }
2609         case KVM_SET_REGS: {
2610                 struct kvm_regs kvm_regs;
2611
2612                 r = -EFAULT;
2613                 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2614                         goto out;
2615                 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2616                 if (r)
2617                         goto out;
2618                 r = 0;
2619                 break;
2620         }
2621         case KVM_GET_SREGS: {
2622                 struct kvm_sregs kvm_sregs;
2623
2624                 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2625                 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2626                 if (r)
2627                         goto out;
2628                 r = -EFAULT;
2629                 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2630                         goto out;
2631                 r = 0;
2632                 break;
2633         }
2634         case KVM_SET_SREGS: {
2635                 struct kvm_sregs kvm_sregs;
2636
2637                 r = -EFAULT;
2638                 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2639                         goto out;
2640                 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2641                 if (r)
2642                         goto out;
2643                 r = 0;
2644                 break;
2645         }
2646         case KVM_TRANSLATE: {
2647                 struct kvm_translation tr;
2648
2649                 r = -EFAULT;
2650                 if (copy_from_user(&tr, argp, sizeof tr))
2651                         goto out;
2652                 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2653                 if (r)
2654                         goto out;
2655                 r = -EFAULT;
2656                 if (copy_to_user(argp, &tr, sizeof tr))
2657                         goto out;
2658                 r = 0;
2659                 break;
2660         }
2661         case KVM_INTERRUPT: {
2662                 struct kvm_interrupt irq;
2663
2664                 r = -EFAULT;
2665                 if (copy_from_user(&irq, argp, sizeof irq))
2666                         goto out;
2667                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2668                 if (r)
2669                         goto out;
2670                 r = 0;
2671                 break;
2672         }
2673         case KVM_DEBUG_GUEST: {
2674                 struct kvm_debug_guest dbg;
2675
2676                 r = -EFAULT;
2677                 if (copy_from_user(&dbg, argp, sizeof dbg))
2678                         goto out;
2679                 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2680                 if (r)
2681                         goto out;
2682                 r = 0;
2683                 break;
2684         }
2685         case KVM_GET_MSRS:
2686                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2687                 break;
2688         case KVM_SET_MSRS:
2689                 r = msr_io(vcpu, argp, do_set_msr, 0);
2690                 break;
2691         case KVM_SET_CPUID: {
2692                 struct kvm_cpuid __user *cpuid_arg = argp;
2693                 struct kvm_cpuid cpuid;
2694
2695                 r = -EFAULT;
2696                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2697                         goto out;
2698                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2699                 if (r)
2700                         goto out;
2701                 break;
2702         }
2703         case KVM_SET_SIGNAL_MASK: {
2704                 struct kvm_signal_mask __user *sigmask_arg = argp;
2705                 struct kvm_signal_mask kvm_sigmask;
2706                 sigset_t sigset, *p;
2707
2708                 p = NULL;
2709                 if (argp) {
2710                         r = -EFAULT;
2711                         if (copy_from_user(&kvm_sigmask, argp,
2712                                            sizeof kvm_sigmask))
2713                                 goto out;
2714                         r = -EINVAL;
2715                         if (kvm_sigmask.len != sizeof sigset)
2716                                 goto out;
2717                         r = -EFAULT;
2718                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2719                                            sizeof sigset))
2720                                 goto out;
2721                         p = &sigset;
2722                 }
2723                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2724                 break;
2725         }
2726         case KVM_GET_FPU: {
2727                 struct kvm_fpu fpu;
2728
2729                 memset(&fpu, 0, sizeof fpu);
2730                 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2731                 if (r)
2732                         goto out;
2733                 r = -EFAULT;
2734                 if (copy_to_user(argp, &fpu, sizeof fpu))
2735                         goto out;
2736                 r = 0;
2737                 break;
2738         }
2739         case KVM_SET_FPU: {
2740                 struct kvm_fpu fpu;
2741
2742                 r = -EFAULT;
2743                 if (copy_from_user(&fpu, argp, sizeof fpu))
2744                         goto out;
2745                 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2746                 if (r)
2747                         goto out;
2748                 r = 0;
2749                 break;
2750         }
2751         default:
2752                 ;
2753         }
2754 out:
2755         return r;
2756 }
2757
2758 static long kvm_vm_ioctl(struct file *filp,
2759                            unsigned int ioctl, unsigned long arg)
2760 {
2761         struct kvm *kvm = filp->private_data;
2762         void __user *argp = (void __user *)arg;
2763         int r = -EINVAL;
2764
2765         switch (ioctl) {
2766         case KVM_CREATE_VCPU:
2767                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2768                 if (r < 0)
2769                         goto out;
2770                 break;
2771         case KVM_SET_MEMORY_REGION: {
2772                 struct kvm_memory_region kvm_mem;
2773
2774                 r = -EFAULT;
2775                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2776                         goto out;
2777                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2778                 if (r)
2779                         goto out;
2780                 break;
2781         }
2782         case KVM_GET_DIRTY_LOG: {
2783                 struct kvm_dirty_log log;
2784
2785                 r = -EFAULT;
2786                 if (copy_from_user(&log, argp, sizeof log))
2787                         goto out;
2788                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2789                 if (r)
2790                         goto out;
2791                 break;
2792         }
2793         case KVM_SET_MEMORY_ALIAS: {
2794                 struct kvm_memory_alias alias;
2795
2796                 r = -EFAULT;
2797                 if (copy_from_user(&alias, argp, sizeof alias))
2798                         goto out;
2799                 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
2800                 if (r)
2801                         goto out;
2802                 break;
2803         }
2804         case KVM_CREATE_IRQCHIP:
2805                 r = -ENOMEM;
2806                 kvm->vpic = kvm_create_pic(kvm);
2807                 if (kvm->vpic) {
2808                         r = kvm_ioapic_init(kvm);
2809                         if (r) {
2810                                 kfree(kvm->vpic);
2811                                 kvm->vpic = NULL;
2812                                 goto out;
2813                         }
2814                 }
2815                 else
2816                         goto out;
2817                 break;
2818         case KVM_IRQ_LINE: {
2819                 struct kvm_irq_level irq_event;
2820
2821                 r = -EFAULT;
2822                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2823                         goto out;
2824                 if (irqchip_in_kernel(kvm)) {
2825                         mutex_lock(&kvm->lock);
2826                         if (irq_event.irq < 16)
2827                                 kvm_pic_set_irq(pic_irqchip(kvm),
2828                                         irq_event.irq,
2829                                         irq_event.level);
2830                         kvm_ioapic_set_irq(kvm->vioapic,
2831                                         irq_event.irq,
2832                                         irq_event.level);
2833                         mutex_unlock(&kvm->lock);
2834                         r = 0;
2835                 }
2836                 break;
2837         }
2838         default:
2839                 ;
2840         }
2841 out:
2842         return r;
2843 }
2844
2845 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
2846                                   unsigned long address,
2847                                   int *type)
2848 {
2849         struct kvm *kvm = vma->vm_file->private_data;
2850         unsigned long pgoff;
2851         struct page *page;
2852
2853         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2854         page = gfn_to_page(kvm, pgoff);
2855         if (!page)
2856                 return NOPAGE_SIGBUS;
2857         get_page(page);
2858         if (type != NULL)
2859                 *type = VM_FAULT_MINOR;
2860
2861         return page;
2862 }
2863
2864 static struct vm_operations_struct kvm_vm_vm_ops = {
2865         .nopage = kvm_vm_nopage,
2866 };
2867
2868 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2869 {
2870         vma->vm_ops = &kvm_vm_vm_ops;
2871         return 0;
2872 }
2873
2874 static struct file_operations kvm_vm_fops = {
2875         .release        = kvm_vm_release,
2876         .unlocked_ioctl = kvm_vm_ioctl,
2877         .compat_ioctl   = kvm_vm_ioctl,
2878         .mmap           = kvm_vm_mmap,
2879 };
2880
2881 static int kvm_dev_ioctl_create_vm(void)
2882 {
2883         int fd, r;
2884         struct inode *inode;
2885         struct file *file;
2886         struct kvm *kvm;
2887
2888         kvm = kvm_create_vm();
2889         if (IS_ERR(kvm))
2890                 return PTR_ERR(kvm);
2891         r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
2892         if (r) {
2893                 kvm_destroy_vm(kvm);
2894                 return r;
2895         }
2896
2897         kvm->filp = file;
2898
2899         return fd;
2900 }
2901
2902 static long kvm_dev_ioctl(struct file *filp,
2903                           unsigned int ioctl, unsigned long arg)
2904 {
2905         void __user *argp = (void __user *)arg;
2906         long r = -EINVAL;
2907
2908         switch (ioctl) {
2909         case KVM_GET_API_VERSION:
2910                 r = -EINVAL;
2911                 if (arg)
2912                         goto out;
2913                 r = KVM_API_VERSION;
2914                 break;
2915         case KVM_CREATE_VM:
2916                 r = -EINVAL;
2917                 if (arg)
2918                         goto out;
2919                 r = kvm_dev_ioctl_create_vm();
2920                 break;
2921         case KVM_GET_MSR_INDEX_LIST: {
2922                 struct kvm_msr_list __user *user_msr_list = argp;
2923                 struct kvm_msr_list msr_list;
2924                 unsigned n;
2925
2926                 r = -EFAULT;
2927                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2928                         goto out;
2929                 n = msr_list.nmsrs;
2930                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2931                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2932                         goto out;
2933                 r = -E2BIG;
2934                 if (n < num_msrs_to_save)
2935                         goto out;
2936                 r = -EFAULT;
2937                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2938                                  num_msrs_to_save * sizeof(u32)))
2939                         goto out;
2940                 if (copy_to_user(user_msr_list->indices
2941                                  + num_msrs_to_save * sizeof(u32),
2942                                  &emulated_msrs,
2943                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2944                         goto out;
2945                 r = 0;
2946                 break;
2947         }
2948         case KVM_CHECK_EXTENSION: {
2949                 int ext = (long)argp;
2950
2951                 switch (ext) {
2952                 case KVM_CAP_IRQCHIP:
2953                 case KVM_CAP_HLT:
2954                         r = 1;
2955                         break;
2956                 default:
2957                         r = 0;
2958                         break;
2959                 }
2960                 break;
2961         }
2962         case KVM_GET_VCPU_MMAP_SIZE:
2963                 r = -EINVAL;
2964                 if (arg)
2965                         goto out;
2966                 r = 2 * PAGE_SIZE;
2967                 break;
2968         default:
2969                 ;
2970         }
2971 out:
2972         return r;
2973 }
2974
2975 static struct file_operations kvm_chardev_ops = {
2976         .unlocked_ioctl = kvm_dev_ioctl,
2977         .compat_ioctl   = kvm_dev_ioctl,
2978 };
2979
2980 static struct miscdevice kvm_dev = {
2981         KVM_MINOR,
2982         "kvm",
2983         &kvm_chardev_ops,
2984 };
2985
2986 /*
2987  * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2988  * cached on it.
2989  */
2990 static void decache_vcpus_on_cpu(int cpu)
2991 {
2992         struct kvm *vm;
2993         struct kvm_vcpu *vcpu;
2994         int i;
2995
2996         spin_lock(&kvm_lock);
2997         list_for_each_entry(vm, &vm_list, vm_list)
2998                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2999                         vcpu = vm->vcpus[i];
3000                         if (!vcpu)
3001                                 continue;
3002                         /*
3003                          * If the vcpu is locked, then it is running on some
3004                          * other cpu and therefore it is not cached on the
3005                          * cpu in question.
3006                          *
3007                          * If it's not locked, check the last cpu it executed
3008                          * on.
3009                          */
3010                         if (mutex_trylock(&vcpu->mutex)) {
3011                                 if (vcpu->cpu == cpu) {
3012                                         kvm_arch_ops->vcpu_decache(vcpu);
3013                                         vcpu->cpu = -1;
3014                                 }
3015                                 mutex_unlock(&vcpu->mutex);
3016                         }
3017                 }
3018         spin_unlock(&kvm_lock);
3019 }
3020
3021 static void hardware_enable(void *junk)
3022 {
3023         int cpu = raw_smp_processor_id();
3024
3025         if (cpu_isset(cpu, cpus_hardware_enabled))
3026                 return;
3027         cpu_set(cpu, cpus_hardware_enabled);
3028         kvm_arch_ops->hardware_enable(NULL);
3029 }
3030
3031 static void hardware_disable(void *junk)
3032 {
3033         int cpu = raw_smp_processor_id();
3034
3035         if (!cpu_isset(cpu, cpus_hardware_enabled))
3036                 return;
3037         cpu_clear(cpu, cpus_hardware_enabled);
3038         decache_vcpus_on_cpu(cpu);
3039         kvm_arch_ops->hardware_disable(NULL);
3040 }
3041
3042 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3043                            void *v)
3044 {
3045         int cpu = (long)v;
3046
3047         switch (val) {
3048         case CPU_DYING:
3049         case CPU_DYING_FROZEN:
3050                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3051                        cpu);
3052                 hardware_disable(NULL);
3053                 break;
3054         case CPU_UP_CANCELED:
3055         case CPU_UP_CANCELED_FROZEN:
3056                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3057                        cpu);
3058                 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
3059                 break;
3060         case CPU_ONLINE:
3061         case CPU_ONLINE_FROZEN:
3062                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
3063                        cpu);
3064                 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
3065                 break;
3066         }
3067         return NOTIFY_OK;
3068 }
3069
3070 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3071                        void *v)
3072 {
3073         if (val == SYS_RESTART) {
3074                 /*
3075                  * Some (well, at least mine) BIOSes hang on reboot if
3076                  * in vmx root mode.
3077                  */
3078                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
3079                 on_each_cpu(hardware_disable, NULL, 0, 1);
3080         }
3081         return NOTIFY_OK;
3082 }
3083
3084 static struct notifier_block kvm_reboot_notifier = {
3085         .notifier_call = kvm_reboot,
3086         .priority = 0,
3087 };
3088
3089 void kvm_io_bus_init(struct kvm_io_bus *bus)
3090 {
3091         memset(bus, 0, sizeof(*bus));
3092 }
3093
3094 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3095 {
3096         int i;
3097
3098         for (i = 0; i < bus->dev_count; i++) {
3099                 struct kvm_io_device *pos = bus->devs[i];
3100
3101                 kvm_iodevice_destructor(pos);
3102         }
3103 }
3104
3105 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
3106 {
3107         int i;
3108
3109         for (i = 0; i < bus->dev_count; i++) {
3110                 struct kvm_io_device *pos = bus->devs[i];
3111
3112                 if (pos->in_range(pos, addr))
3113                         return pos;
3114         }
3115
3116         return NULL;
3117 }
3118
3119 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3120 {
3121         BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3122
3123         bus->devs[bus->dev_count++] = dev;
3124 }
3125
3126 static struct notifier_block kvm_cpu_notifier = {
3127         .notifier_call = kvm_cpu_hotplug,
3128         .priority = 20, /* must be > scheduler priority */
3129 };
3130
3131 static u64 stat_get(void *_offset)
3132 {
3133         unsigned offset = (long)_offset;
3134         u64 total = 0;
3135         struct kvm *kvm;
3136         struct kvm_vcpu *vcpu;
3137         int i;
3138
3139         spin_lock(&kvm_lock);
3140         list_for_each_entry(kvm, &vm_list, vm_list)
3141                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3142                         vcpu = kvm->vcpus[i];
3143                         if (vcpu)
3144                                 total += *(u32 *)((void *)vcpu + offset);
3145                 }
3146         spin_unlock(&kvm_lock);
3147         return total;
3148 }
3149
3150 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
3151
3152 static __init void kvm_init_debug(void)
3153 {
3154         struct kvm_stats_debugfs_item *p;
3155
3156         debugfs_dir = debugfs_create_dir("kvm", NULL);
3157         for (p = debugfs_entries; p->name; ++p)
3158                 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3159                                                 (void *)(long)p->offset,
3160                                                 &stat_fops);
3161 }
3162
3163 static void kvm_exit_debug(void)
3164 {
3165         struct kvm_stats_debugfs_item *p;
3166
3167         for (p = debugfs_entries; p->name; ++p)
3168                 debugfs_remove(p->dentry);
3169         debugfs_remove(debugfs_dir);
3170 }
3171
3172 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3173 {
3174         hardware_disable(NULL);
3175         return 0;
3176 }
3177
3178 static int kvm_resume(struct sys_device *dev)
3179 {
3180         hardware_enable(NULL);
3181         return 0;
3182 }
3183
3184 static struct sysdev_class kvm_sysdev_class = {
3185         set_kset_name("kvm"),
3186         .suspend = kvm_suspend,
3187         .resume = kvm_resume,
3188 };
3189
3190 static struct sys_device kvm_sysdev = {
3191         .id = 0,
3192         .cls = &kvm_sysdev_class,
3193 };
3194
3195 hpa_t bad_page_address;
3196
3197 static inline
3198 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3199 {
3200         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3201 }
3202
3203 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3204 {
3205         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3206
3207         kvm_arch_ops->vcpu_load(vcpu, cpu);
3208 }
3209
3210 static void kvm_sched_out(struct preempt_notifier *pn,
3211                           struct task_struct *next)
3212 {
3213         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3214
3215         kvm_arch_ops->vcpu_put(vcpu);
3216 }
3217
3218 int kvm_init_arch(struct kvm_arch_ops *ops, unsigned int vcpu_size,
3219                   struct module *module)
3220 {
3221         int r;
3222         int cpu;
3223
3224         if (kvm_arch_ops) {
3225                 printk(KERN_ERR "kvm: already loaded the other module\n");
3226                 return -EEXIST;
3227         }
3228
3229         if (!ops->cpu_has_kvm_support()) {
3230                 printk(KERN_ERR "kvm: no hardware support\n");
3231                 return -EOPNOTSUPP;
3232         }
3233         if (ops->disabled_by_bios()) {
3234                 printk(KERN_ERR "kvm: disabled by bios\n");
3235                 return -EOPNOTSUPP;
3236         }
3237
3238         kvm_arch_ops = ops;
3239
3240         r = kvm_arch_ops->hardware_setup();
3241         if (r < 0)
3242                 goto out;
3243
3244         for_each_online_cpu(cpu) {
3245                 smp_call_function_single(cpu,
3246                                 kvm_arch_ops->check_processor_compatibility,
3247                                 &r, 0, 1);
3248                 if (r < 0)
3249                         goto out_free_0;
3250         }
3251
3252         on_each_cpu(hardware_enable, NULL, 0, 1);
3253         r = register_cpu_notifier(&kvm_cpu_notifier);
3254         if (r)
3255                 goto out_free_1;
3256         register_reboot_notifier(&kvm_reboot_notifier);
3257
3258         r = sysdev_class_register(&kvm_sysdev_class);
3259         if (r)
3260                 goto out_free_2;
3261
3262         r = sysdev_register(&kvm_sysdev);
3263         if (r)
3264                 goto out_free_3;
3265
3266         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3267         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
3268                                            __alignof__(struct kvm_vcpu), 0, 0);
3269         if (!kvm_vcpu_cache) {
3270                 r = -ENOMEM;
3271                 goto out_free_4;
3272         }
3273
3274         kvm_chardev_ops.owner = module;
3275
3276         r = misc_register(&kvm_dev);
3277         if (r) {
3278                 printk (KERN_ERR "kvm: misc device register failed\n");
3279                 goto out_free;
3280         }
3281
3282         kvm_preempt_ops.sched_in = kvm_sched_in;
3283         kvm_preempt_ops.sched_out = kvm_sched_out;
3284
3285         return r;
3286
3287 out_free:
3288         kmem_cache_destroy(kvm_vcpu_cache);
3289 out_free_4:
3290         sysdev_unregister(&kvm_sysdev);
3291 out_free_3:
3292         sysdev_class_unregister(&kvm_sysdev_class);
3293 out_free_2:
3294         unregister_reboot_notifier(&kvm_reboot_notifier);
3295         unregister_cpu_notifier(&kvm_cpu_notifier);
3296 out_free_1:
3297         on_each_cpu(hardware_disable, NULL, 0, 1);
3298 out_free_0:
3299         kvm_arch_ops->hardware_unsetup();
3300 out:
3301         kvm_arch_ops = NULL;
3302         return r;
3303 }
3304
3305 void kvm_exit_arch(void)
3306 {
3307         misc_deregister(&kvm_dev);
3308         kmem_cache_destroy(kvm_vcpu_cache);
3309         sysdev_unregister(&kvm_sysdev);
3310         sysdev_class_unregister(&kvm_sysdev_class);
3311         unregister_reboot_notifier(&kvm_reboot_notifier);
3312         unregister_cpu_notifier(&kvm_cpu_notifier);
3313         on_each_cpu(hardware_disable, NULL, 0, 1);
3314         kvm_arch_ops->hardware_unsetup();
3315         kvm_arch_ops = NULL;
3316 }
3317
3318 static __init int kvm_init(void)
3319 {
3320         static struct page *bad_page;
3321         int r;
3322
3323         r = kvm_mmu_module_init();
3324         if (r)
3325                 goto out4;
3326
3327         kvm_init_debug();
3328
3329         kvm_init_msr_list();
3330
3331         if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3332                 r = -ENOMEM;
3333                 goto out;
3334         }
3335
3336         bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3337         memset(__va(bad_page_address), 0, PAGE_SIZE);
3338
3339         return 0;
3340
3341 out:
3342         kvm_exit_debug();
3343         kvm_mmu_module_exit();
3344 out4:
3345         return r;
3346 }
3347
3348 static __exit void kvm_exit(void)
3349 {
3350         kvm_exit_debug();
3351         __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3352         kvm_mmu_module_exit();
3353 }
3354
3355 module_init(kvm_init)
3356 module_exit(kvm_exit)
3357
3358 EXPORT_SYMBOL_GPL(kvm_init_arch);
3359 EXPORT_SYMBOL_GPL(kvm_exit_arch);