]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/kvm/kvm_main.c
fd1bb870545c28adc3fa8c4bb7927046504e67e8
[linux-2.6-omap-h63xx.git] / drivers / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <asm/processor.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <asm/msr.h>
27 #include <linux/mm.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <asm/uaccess.h>
31 #include <linux/reboot.h>
32 #include <asm/io.h>
33 #include <linux/debugfs.h>
34 #include <linux/highmem.h>
35 #include <linux/file.h>
36 #include <asm/desc.h>
37
38 #include "x86_emulate.h"
39 #include "segment_descriptor.h"
40
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
43
44 struct kvm_arch_ops *kvm_arch_ops;
45 struct kvm_stat kvm_stat;
46 EXPORT_SYMBOL_GPL(kvm_stat);
47
48 static struct kvm_stats_debugfs_item {
49         const char *name;
50         u32 *data;
51         struct dentry *dentry;
52 } debugfs_entries[] = {
53         { "pf_fixed", &kvm_stat.pf_fixed },
54         { "pf_guest", &kvm_stat.pf_guest },
55         { "tlb_flush", &kvm_stat.tlb_flush },
56         { "invlpg", &kvm_stat.invlpg },
57         { "exits", &kvm_stat.exits },
58         { "io_exits", &kvm_stat.io_exits },
59         { "mmio_exits", &kvm_stat.mmio_exits },
60         { "signal_exits", &kvm_stat.signal_exits },
61         { "irq_exits", &kvm_stat.irq_exits },
62         { 0, 0 }
63 };
64
65 static struct dentry *debugfs_dir;
66
67 #define MAX_IO_MSRS 256
68
69 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
70 #define LMSW_GUEST_MASK 0x0eULL
71 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
72 #define CR8_RESEVED_BITS (~0x0fULL)
73 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
74
75 #ifdef CONFIG_X86_64
76 // LDT or TSS descriptor in the GDT. 16 bytes.
77 struct segment_descriptor_64 {
78         struct segment_descriptor s;
79         u32 base_higher;
80         u32 pad_zero;
81 };
82
83 #endif
84
85 unsigned long segment_base(u16 selector)
86 {
87         struct descriptor_table gdt;
88         struct segment_descriptor *d;
89         unsigned long table_base;
90         typedef unsigned long ul;
91         unsigned long v;
92
93         if (selector == 0)
94                 return 0;
95
96         asm ("sgdt %0" : "=m"(gdt));
97         table_base = gdt.base;
98
99         if (selector & 4) {           /* from ldt */
100                 u16 ldt_selector;
101
102                 asm ("sldt %0" : "=g"(ldt_selector));
103                 table_base = segment_base(ldt_selector);
104         }
105         d = (struct segment_descriptor *)(table_base + (selector & ~7));
106         v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
107 #ifdef CONFIG_X86_64
108         if (d->system == 0
109             && (d->type == 2 || d->type == 9 || d->type == 11))
110                 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
111 #endif
112         return v;
113 }
114 EXPORT_SYMBOL_GPL(segment_base);
115
116 int kvm_read_guest(struct kvm_vcpu *vcpu,
117                              gva_t addr,
118                              unsigned long size,
119                              void *dest)
120 {
121         unsigned char *host_buf = dest;
122         unsigned long req_size = size;
123
124         while (size) {
125                 hpa_t paddr;
126                 unsigned now;
127                 unsigned offset;
128                 hva_t guest_buf;
129
130                 paddr = gva_to_hpa(vcpu, addr);
131
132                 if (is_error_hpa(paddr))
133                         break;
134
135                 guest_buf = (hva_t)kmap_atomic(
136                                         pfn_to_page(paddr >> PAGE_SHIFT),
137                                         KM_USER0);
138                 offset = addr & ~PAGE_MASK;
139                 guest_buf |= offset;
140                 now = min(size, PAGE_SIZE - offset);
141                 memcpy(host_buf, (void*)guest_buf, now);
142                 host_buf += now;
143                 addr += now;
144                 size -= now;
145                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
146         }
147         return req_size - size;
148 }
149 EXPORT_SYMBOL_GPL(kvm_read_guest);
150
151 int kvm_write_guest(struct kvm_vcpu *vcpu,
152                              gva_t addr,
153                              unsigned long size,
154                              void *data)
155 {
156         unsigned char *host_buf = data;
157         unsigned long req_size = size;
158
159         while (size) {
160                 hpa_t paddr;
161                 unsigned now;
162                 unsigned offset;
163                 hva_t guest_buf;
164
165                 paddr = gva_to_hpa(vcpu, addr);
166
167                 if (is_error_hpa(paddr))
168                         break;
169
170                 guest_buf = (hva_t)kmap_atomic(
171                                 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
172                 offset = addr & ~PAGE_MASK;
173                 guest_buf |= offset;
174                 now = min(size, PAGE_SIZE - offset);
175                 memcpy((void*)guest_buf, host_buf, now);
176                 host_buf += now;
177                 addr += now;
178                 size -= now;
179                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
180         }
181         return req_size - size;
182 }
183 EXPORT_SYMBOL_GPL(kvm_write_guest);
184
185 static int vcpu_slot(struct kvm_vcpu *vcpu)
186 {
187         return vcpu - vcpu->kvm->vcpus;
188 }
189
190 /*
191  * Switches to specified vcpu, until a matching vcpu_put()
192  */
193 static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
194 {
195         struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
196
197         mutex_lock(&vcpu->mutex);
198         if (unlikely(!vcpu->vmcs)) {
199                 mutex_unlock(&vcpu->mutex);
200                 return 0;
201         }
202         return kvm_arch_ops->vcpu_load(vcpu);
203 }
204
205 static void vcpu_put(struct kvm_vcpu *vcpu)
206 {
207         kvm_arch_ops->vcpu_put(vcpu);
208         mutex_unlock(&vcpu->mutex);
209 }
210
211 static int kvm_dev_open(struct inode *inode, struct file *filp)
212 {
213         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
214         int i;
215
216         if (!kvm)
217                 return -ENOMEM;
218
219         spin_lock_init(&kvm->lock);
220         INIT_LIST_HEAD(&kvm->active_mmu_pages);
221         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
222                 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
223
224                 mutex_init(&vcpu->mutex);
225                 vcpu->mmu.root_hpa = INVALID_PAGE;
226                 INIT_LIST_HEAD(&vcpu->free_pages);
227         }
228         filp->private_data = kvm;
229         return 0;
230 }
231
232 /*
233  * Free any memory in @free but not in @dont.
234  */
235 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
236                                   struct kvm_memory_slot *dont)
237 {
238         int i;
239
240         if (!dont || free->phys_mem != dont->phys_mem)
241                 if (free->phys_mem) {
242                         for (i = 0; i < free->npages; ++i)
243                                 __free_page(free->phys_mem[i]);
244                         vfree(free->phys_mem);
245                 }
246
247         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
248                 vfree(free->dirty_bitmap);
249
250         free->phys_mem = 0;
251         free->npages = 0;
252         free->dirty_bitmap = 0;
253 }
254
255 static void kvm_free_physmem(struct kvm *kvm)
256 {
257         int i;
258
259         for (i = 0; i < kvm->nmemslots; ++i)
260                 kvm_free_physmem_slot(&kvm->memslots[i], 0);
261 }
262
263 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
264 {
265         kvm_arch_ops->vcpu_free(vcpu);
266         kvm_mmu_destroy(vcpu);
267 }
268
269 static void kvm_free_vcpus(struct kvm *kvm)
270 {
271         unsigned int i;
272
273         for (i = 0; i < KVM_MAX_VCPUS; ++i)
274                 kvm_free_vcpu(&kvm->vcpus[i]);
275 }
276
277 static int kvm_dev_release(struct inode *inode, struct file *filp)
278 {
279         struct kvm *kvm = filp->private_data;
280
281         kvm_free_vcpus(kvm);
282         kvm_free_physmem(kvm);
283         kfree(kvm);
284         return 0;
285 }
286
287 static void inject_gp(struct kvm_vcpu *vcpu)
288 {
289         kvm_arch_ops->inject_gp(vcpu, 0);
290 }
291
292 static int pdptrs_have_reserved_bits_set(struct kvm_vcpu *vcpu,
293                                          unsigned long cr3)
294 {
295         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
296         unsigned offset = (cr3 & (PAGE_SIZE-1)) >> 5;
297         int i;
298         u64 pdpte;
299         u64 *pdpt;
300         struct kvm_memory_slot *memslot;
301
302         spin_lock(&vcpu->kvm->lock);
303         memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
304         /* FIXME: !memslot - emulate? 0xff? */
305         pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
306
307         for (i = 0; i < 4; ++i) {
308                 pdpte = pdpt[offset + i];
309                 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull))
310                         break;
311         }
312
313         kunmap_atomic(pdpt, KM_USER0);
314         spin_unlock(&vcpu->kvm->lock);
315
316         return i != 4;
317 }
318
319 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
320 {
321         if (cr0 & CR0_RESEVED_BITS) {
322                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
323                        cr0, vcpu->cr0);
324                 inject_gp(vcpu);
325                 return;
326         }
327
328         if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
329                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
330                 inject_gp(vcpu);
331                 return;
332         }
333
334         if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
335                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
336                        "and a clear PE flag\n");
337                 inject_gp(vcpu);
338                 return;
339         }
340
341         if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
342 #ifdef CONFIG_X86_64
343                 if ((vcpu->shadow_efer & EFER_LME)) {
344                         int cs_db, cs_l;
345
346                         if (!is_pae(vcpu)) {
347                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
348                                        "in long mode while PAE is disabled\n");
349                                 inject_gp(vcpu);
350                                 return;
351                         }
352                         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
353                         if (cs_l) {
354                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
355                                        "in long mode while CS.L == 1\n");
356                                 inject_gp(vcpu);
357                                 return;
358
359                         }
360                 } else
361 #endif
362                 if (is_pae(vcpu) &&
363                             pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) {
364                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
365                                "reserved bits\n");
366                         inject_gp(vcpu);
367                         return;
368                 }
369
370         }
371
372         kvm_arch_ops->set_cr0(vcpu, cr0);
373         vcpu->cr0 = cr0;
374
375         spin_lock(&vcpu->kvm->lock);
376         kvm_mmu_reset_context(vcpu);
377         spin_unlock(&vcpu->kvm->lock);
378         return;
379 }
380 EXPORT_SYMBOL_GPL(set_cr0);
381
382 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
383 {
384         set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
385 }
386 EXPORT_SYMBOL_GPL(lmsw);
387
388 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
389 {
390         if (cr4 & CR4_RESEVED_BITS) {
391                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
392                 inject_gp(vcpu);
393                 return;
394         }
395
396         if (kvm_arch_ops->is_long_mode(vcpu)) {
397                 if (!(cr4 & CR4_PAE_MASK)) {
398                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
399                                "in long mode\n");
400                         inject_gp(vcpu);
401                         return;
402                 }
403         } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
404                    && pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) {
405                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
406                 inject_gp(vcpu);
407         }
408
409         if (cr4 & CR4_VMXE_MASK) {
410                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
411                 inject_gp(vcpu);
412                 return;
413         }
414         kvm_arch_ops->set_cr4(vcpu, cr4);
415         spin_lock(&vcpu->kvm->lock);
416         kvm_mmu_reset_context(vcpu);
417         spin_unlock(&vcpu->kvm->lock);
418 }
419 EXPORT_SYMBOL_GPL(set_cr4);
420
421 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
422 {
423         if (kvm_arch_ops->is_long_mode(vcpu)) {
424                 if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
425                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
426                         inject_gp(vcpu);
427                         return;
428                 }
429         } else {
430                 if (cr3 & CR3_RESEVED_BITS) {
431                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
432                         inject_gp(vcpu);
433                         return;
434                 }
435                 if (is_paging(vcpu) && is_pae(vcpu) &&
436                     pdptrs_have_reserved_bits_set(vcpu, cr3)) {
437                         printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
438                                "reserved bits\n");
439                         inject_gp(vcpu);
440                         return;
441                 }
442         }
443
444         vcpu->cr3 = cr3;
445         spin_lock(&vcpu->kvm->lock);
446         vcpu->mmu.new_cr3(vcpu);
447         spin_unlock(&vcpu->kvm->lock);
448 }
449 EXPORT_SYMBOL_GPL(set_cr3);
450
451 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
452 {
453         if ( cr8 & CR8_RESEVED_BITS) {
454                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
455                 inject_gp(vcpu);
456                 return;
457         }
458         vcpu->cr8 = cr8;
459 }
460 EXPORT_SYMBOL_GPL(set_cr8);
461
462 void fx_init(struct kvm_vcpu *vcpu)
463 {
464         struct __attribute__ ((__packed__)) fx_image_s {
465                 u16 control; //fcw
466                 u16 status; //fsw
467                 u16 tag; // ftw
468                 u16 opcode; //fop
469                 u64 ip; // fpu ip
470                 u64 operand;// fpu dp
471                 u32 mxcsr;
472                 u32 mxcsr_mask;
473
474         } *fx_image;
475
476         fx_save(vcpu->host_fx_image);
477         fpu_init();
478         fx_save(vcpu->guest_fx_image);
479         fx_restore(vcpu->host_fx_image);
480
481         fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
482         fx_image->mxcsr = 0x1f80;
483         memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
484                0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
485 }
486 EXPORT_SYMBOL_GPL(fx_init);
487
488 /*
489  * Creates some virtual cpus.  Good luck creating more than one.
490  */
491 static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
492 {
493         int r;
494         struct kvm_vcpu *vcpu;
495
496         r = -EINVAL;
497         if (n < 0 || n >= KVM_MAX_VCPUS)
498                 goto out;
499
500         vcpu = &kvm->vcpus[n];
501
502         mutex_lock(&vcpu->mutex);
503
504         if (vcpu->vmcs) {
505                 mutex_unlock(&vcpu->mutex);
506                 return -EEXIST;
507         }
508
509         vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
510                                            FX_IMAGE_ALIGN);
511         vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
512
513         vcpu->cpu = -1;  /* First load will set up TR */
514         vcpu->kvm = kvm;
515         r = kvm_arch_ops->vcpu_create(vcpu);
516         if (r < 0)
517                 goto out_free_vcpus;
518
519         kvm_arch_ops->vcpu_load(vcpu);
520
521         r = kvm_arch_ops->vcpu_setup(vcpu);
522         if (r >= 0)
523                 r = kvm_mmu_init(vcpu);
524
525         vcpu_put(vcpu);
526
527         if (r < 0)
528                 goto out_free_vcpus;
529
530         return 0;
531
532 out_free_vcpus:
533         kvm_free_vcpu(vcpu);
534         mutex_unlock(&vcpu->mutex);
535 out:
536         return r;
537 }
538
539 /*
540  * Allocate some memory and give it an address in the guest physical address
541  * space.
542  *
543  * Discontiguous memory is allowed, mostly for framebuffers.
544  */
545 static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
546                                            struct kvm_memory_region *mem)
547 {
548         int r;
549         gfn_t base_gfn;
550         unsigned long npages;
551         unsigned long i;
552         struct kvm_memory_slot *memslot;
553         struct kvm_memory_slot old, new;
554         int memory_config_version;
555
556         r = -EINVAL;
557         /* General sanity checks */
558         if (mem->memory_size & (PAGE_SIZE - 1))
559                 goto out;
560         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
561                 goto out;
562         if (mem->slot >= KVM_MEMORY_SLOTS)
563                 goto out;
564         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
565                 goto out;
566
567         memslot = &kvm->memslots[mem->slot];
568         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
569         npages = mem->memory_size >> PAGE_SHIFT;
570
571         if (!npages)
572                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
573
574 raced:
575         spin_lock(&kvm->lock);
576
577         memory_config_version = kvm->memory_config_version;
578         new = old = *memslot;
579
580         new.base_gfn = base_gfn;
581         new.npages = npages;
582         new.flags = mem->flags;
583
584         /* Disallow changing a memory slot's size. */
585         r = -EINVAL;
586         if (npages && old.npages && npages != old.npages)
587                 goto out_unlock;
588
589         /* Check for overlaps */
590         r = -EEXIST;
591         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
592                 struct kvm_memory_slot *s = &kvm->memslots[i];
593
594                 if (s == memslot)
595                         continue;
596                 if (!((base_gfn + npages <= s->base_gfn) ||
597                       (base_gfn >= s->base_gfn + s->npages)))
598                         goto out_unlock;
599         }
600         /*
601          * Do memory allocations outside lock.  memory_config_version will
602          * detect any races.
603          */
604         spin_unlock(&kvm->lock);
605
606         /* Deallocate if slot is being removed */
607         if (!npages)
608                 new.phys_mem = 0;
609
610         /* Free page dirty bitmap if unneeded */
611         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
612                 new.dirty_bitmap = 0;
613
614         r = -ENOMEM;
615
616         /* Allocate if a slot is being created */
617         if (npages && !new.phys_mem) {
618                 new.phys_mem = vmalloc(npages * sizeof(struct page *));
619
620                 if (!new.phys_mem)
621                         goto out_free;
622
623                 memset(new.phys_mem, 0, npages * sizeof(struct page *));
624                 for (i = 0; i < npages; ++i) {
625                         new.phys_mem[i] = alloc_page(GFP_HIGHUSER
626                                                      | __GFP_ZERO);
627                         if (!new.phys_mem[i])
628                                 goto out_free;
629                 }
630         }
631
632         /* Allocate page dirty bitmap if needed */
633         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
634                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
635
636                 new.dirty_bitmap = vmalloc(dirty_bytes);
637                 if (!new.dirty_bitmap)
638                         goto out_free;
639                 memset(new.dirty_bitmap, 0, dirty_bytes);
640         }
641
642         spin_lock(&kvm->lock);
643
644         if (memory_config_version != kvm->memory_config_version) {
645                 spin_unlock(&kvm->lock);
646                 kvm_free_physmem_slot(&new, &old);
647                 goto raced;
648         }
649
650         r = -EAGAIN;
651         if (kvm->busy)
652                 goto out_unlock;
653
654         if (mem->slot >= kvm->nmemslots)
655                 kvm->nmemslots = mem->slot + 1;
656
657         *memslot = new;
658         ++kvm->memory_config_version;
659
660         spin_unlock(&kvm->lock);
661
662         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
663                 struct kvm_vcpu *vcpu;
664
665                 vcpu = vcpu_load(kvm, i);
666                 if (!vcpu)
667                         continue;
668                 kvm_mmu_reset_context(vcpu);
669                 vcpu_put(vcpu);
670         }
671
672         kvm_free_physmem_slot(&old, &new);
673         return 0;
674
675 out_unlock:
676         spin_unlock(&kvm->lock);
677 out_free:
678         kvm_free_physmem_slot(&new, &old);
679 out:
680         return r;
681 }
682
683 /*
684  * Get (and clear) the dirty memory log for a memory slot.
685  */
686 static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
687                                        struct kvm_dirty_log *log)
688 {
689         struct kvm_memory_slot *memslot;
690         int r, i;
691         int n;
692         unsigned long any = 0;
693
694         spin_lock(&kvm->lock);
695
696         /*
697          * Prevent changes to guest memory configuration even while the lock
698          * is not taken.
699          */
700         ++kvm->busy;
701         spin_unlock(&kvm->lock);
702         r = -EINVAL;
703         if (log->slot >= KVM_MEMORY_SLOTS)
704                 goto out;
705
706         memslot = &kvm->memslots[log->slot];
707         r = -ENOENT;
708         if (!memslot->dirty_bitmap)
709                 goto out;
710
711         n = ALIGN(memslot->npages, 8) / 8;
712
713         for (i = 0; !any && i < n; ++i)
714                 any = memslot->dirty_bitmap[i];
715
716         r = -EFAULT;
717         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
718                 goto out;
719
720
721         if (any) {
722                 spin_lock(&kvm->lock);
723                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
724                 spin_unlock(&kvm->lock);
725                 memset(memslot->dirty_bitmap, 0, n);
726                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
727                         struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
728
729                         if (!vcpu)
730                                 continue;
731                         kvm_arch_ops->tlb_flush(vcpu);
732                         vcpu_put(vcpu);
733                 }
734         }
735
736         r = 0;
737
738 out:
739         spin_lock(&kvm->lock);
740         --kvm->busy;
741         spin_unlock(&kvm->lock);
742         return r;
743 }
744
745 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
746 {
747         int i;
748
749         for (i = 0; i < kvm->nmemslots; ++i) {
750                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
751
752                 if (gfn >= memslot->base_gfn
753                     && gfn < memslot->base_gfn + memslot->npages)
754                         return memslot;
755         }
756         return 0;
757 }
758 EXPORT_SYMBOL_GPL(gfn_to_memslot);
759
760 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
761 {
762         int i;
763         struct kvm_memory_slot *memslot = 0;
764         unsigned long rel_gfn;
765
766         for (i = 0; i < kvm->nmemslots; ++i) {
767                 memslot = &kvm->memslots[i];
768
769                 if (gfn >= memslot->base_gfn
770                     && gfn < memslot->base_gfn + memslot->npages) {
771
772                         if (!memslot || !memslot->dirty_bitmap)
773                                 return;
774
775                         rel_gfn = gfn - memslot->base_gfn;
776
777                         /* avoid RMW */
778                         if (!test_bit(rel_gfn, memslot->dirty_bitmap))
779                                 set_bit(rel_gfn, memslot->dirty_bitmap);
780                         return;
781                 }
782         }
783 }
784
785 static int emulator_read_std(unsigned long addr,
786                              unsigned long *val,
787                              unsigned int bytes,
788                              struct x86_emulate_ctxt *ctxt)
789 {
790         struct kvm_vcpu *vcpu = ctxt->vcpu;
791         void *data = val;
792
793         while (bytes) {
794                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
795                 unsigned offset = addr & (PAGE_SIZE-1);
796                 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
797                 unsigned long pfn;
798                 struct kvm_memory_slot *memslot;
799                 void *page;
800
801                 if (gpa == UNMAPPED_GVA)
802                         return X86EMUL_PROPAGATE_FAULT;
803                 pfn = gpa >> PAGE_SHIFT;
804                 memslot = gfn_to_memslot(vcpu->kvm, pfn);
805                 if (!memslot)
806                         return X86EMUL_UNHANDLEABLE;
807                 page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
808
809                 memcpy(data, page + offset, tocopy);
810
811                 kunmap_atomic(page, KM_USER0);
812
813                 bytes -= tocopy;
814                 data += tocopy;
815                 addr += tocopy;
816         }
817
818         return X86EMUL_CONTINUE;
819 }
820
821 static int emulator_write_std(unsigned long addr,
822                               unsigned long val,
823                               unsigned int bytes,
824                               struct x86_emulate_ctxt *ctxt)
825 {
826         printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
827                addr, bytes);
828         return X86EMUL_UNHANDLEABLE;
829 }
830
831 static int emulator_read_emulated(unsigned long addr,
832                                   unsigned long *val,
833                                   unsigned int bytes,
834                                   struct x86_emulate_ctxt *ctxt)
835 {
836         struct kvm_vcpu *vcpu = ctxt->vcpu;
837
838         if (vcpu->mmio_read_completed) {
839                 memcpy(val, vcpu->mmio_data, bytes);
840                 vcpu->mmio_read_completed = 0;
841                 return X86EMUL_CONTINUE;
842         } else if (emulator_read_std(addr, val, bytes, ctxt)
843                    == X86EMUL_CONTINUE)
844                 return X86EMUL_CONTINUE;
845         else {
846                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
847                 if (gpa == UNMAPPED_GVA)
848                         return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
849                 vcpu->mmio_needed = 1;
850                 vcpu->mmio_phys_addr = gpa;
851                 vcpu->mmio_size = bytes;
852                 vcpu->mmio_is_write = 0;
853
854                 return X86EMUL_UNHANDLEABLE;
855         }
856 }
857
858 static int emulator_write_emulated(unsigned long addr,
859                                    unsigned long val,
860                                    unsigned int bytes,
861                                    struct x86_emulate_ctxt *ctxt)
862 {
863         struct kvm_vcpu *vcpu = ctxt->vcpu;
864         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
865
866         if (gpa == UNMAPPED_GVA)
867                 return X86EMUL_PROPAGATE_FAULT;
868
869         vcpu->mmio_needed = 1;
870         vcpu->mmio_phys_addr = gpa;
871         vcpu->mmio_size = bytes;
872         vcpu->mmio_is_write = 1;
873         memcpy(vcpu->mmio_data, &val, bytes);
874
875         return X86EMUL_CONTINUE;
876 }
877
878 static int emulator_cmpxchg_emulated(unsigned long addr,
879                                      unsigned long old,
880                                      unsigned long new,
881                                      unsigned int bytes,
882                                      struct x86_emulate_ctxt *ctxt)
883 {
884         static int reported;
885
886         if (!reported) {
887                 reported = 1;
888                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
889         }
890         return emulator_write_emulated(addr, new, bytes, ctxt);
891 }
892
893 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
894 {
895         return kvm_arch_ops->get_segment_base(vcpu, seg);
896 }
897
898 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
899 {
900         spin_lock(&vcpu->kvm->lock);
901         vcpu->mmu.inval_page(vcpu, address);
902         spin_unlock(&vcpu->kvm->lock);
903         kvm_arch_ops->invlpg(vcpu, address);
904         return X86EMUL_CONTINUE;
905 }
906
907 int emulate_clts(struct kvm_vcpu *vcpu)
908 {
909         unsigned long cr0 = vcpu->cr0;
910
911         cr0 &= ~CR0_TS_MASK;
912         kvm_arch_ops->set_cr0(vcpu, cr0);
913         return X86EMUL_CONTINUE;
914 }
915
916 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
917 {
918         struct kvm_vcpu *vcpu = ctxt->vcpu;
919
920         switch (dr) {
921         case 0 ... 3:
922                 *dest = kvm_arch_ops->get_dr(vcpu, dr);
923                 return X86EMUL_CONTINUE;
924         default:
925                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
926                        __FUNCTION__, dr);
927                 return X86EMUL_UNHANDLEABLE;
928         }
929 }
930
931 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
932 {
933         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
934         int exception;
935
936         kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
937         if (exception) {
938                 /* FIXME: better handling */
939                 return X86EMUL_UNHANDLEABLE;
940         }
941         return X86EMUL_CONTINUE;
942 }
943
944 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
945 {
946         static int reported;
947         u8 opcodes[4];
948         unsigned long rip = ctxt->vcpu->rip;
949         unsigned long rip_linear;
950
951         rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
952
953         if (reported)
954                 return;
955
956         emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
957
958         printk(KERN_ERR "emulation failed but !mmio_needed?"
959                " rip %lx %02x %02x %02x %02x\n",
960                rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
961         reported = 1;
962 }
963
964 struct x86_emulate_ops emulate_ops = {
965         .read_std            = emulator_read_std,
966         .write_std           = emulator_write_std,
967         .read_emulated       = emulator_read_emulated,
968         .write_emulated      = emulator_write_emulated,
969         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
970 };
971
972 int emulate_instruction(struct kvm_vcpu *vcpu,
973                         struct kvm_run *run,
974                         unsigned long cr2,
975                         u16 error_code)
976 {
977         struct x86_emulate_ctxt emulate_ctxt;
978         int r;
979         int cs_db, cs_l;
980
981         kvm_arch_ops->cache_regs(vcpu);
982
983         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
984
985         emulate_ctxt.vcpu = vcpu;
986         emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
987         emulate_ctxt.cr2 = cr2;
988         emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
989                 ? X86EMUL_MODE_REAL : cs_l
990                 ? X86EMUL_MODE_PROT64 : cs_db
991                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
992
993         if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
994                 emulate_ctxt.cs_base = 0;
995                 emulate_ctxt.ds_base = 0;
996                 emulate_ctxt.es_base = 0;
997                 emulate_ctxt.ss_base = 0;
998         } else {
999                 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1000                 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1001                 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1002                 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1003         }
1004
1005         emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1006         emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1007
1008         vcpu->mmio_is_write = 0;
1009         r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1010
1011         if ((r || vcpu->mmio_is_write) && run) {
1012                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1013                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1014                 run->mmio.len = vcpu->mmio_size;
1015                 run->mmio.is_write = vcpu->mmio_is_write;
1016         }
1017
1018         if (r) {
1019                 if (!vcpu->mmio_needed) {
1020                         report_emulation_failure(&emulate_ctxt);
1021                         return EMULATE_FAIL;
1022                 }
1023                 return EMULATE_DO_MMIO;
1024         }
1025
1026         kvm_arch_ops->decache_regs(vcpu);
1027         kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1028
1029         if (vcpu->mmio_is_write)
1030                 return EMULATE_DO_MMIO;
1031
1032         return EMULATE_DONE;
1033 }
1034 EXPORT_SYMBOL_GPL(emulate_instruction);
1035
1036 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1037 {
1038         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1039 }
1040
1041 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1042 {
1043         struct descriptor_table dt = { limit, base };
1044
1045         kvm_arch_ops->set_gdt(vcpu, &dt);
1046 }
1047
1048 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1049 {
1050         struct descriptor_table dt = { limit, base };
1051
1052         kvm_arch_ops->set_idt(vcpu, &dt);
1053 }
1054
1055 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1056                    unsigned long *rflags)
1057 {
1058         lmsw(vcpu, msw);
1059         *rflags = kvm_arch_ops->get_rflags(vcpu);
1060 }
1061
1062 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1063 {
1064         switch (cr) {
1065         case 0:
1066                 return vcpu->cr0;
1067         case 2:
1068                 return vcpu->cr2;
1069         case 3:
1070                 return vcpu->cr3;
1071         case 4:
1072                 return vcpu->cr4;
1073         default:
1074                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1075                 return 0;
1076         }
1077 }
1078
1079 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1080                      unsigned long *rflags)
1081 {
1082         switch (cr) {
1083         case 0:
1084                 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1085                 *rflags = kvm_arch_ops->get_rflags(vcpu);
1086                 break;
1087         case 2:
1088                 vcpu->cr2 = val;
1089                 break;
1090         case 3:
1091                 set_cr3(vcpu, val);
1092                 break;
1093         case 4:
1094                 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1095                 break;
1096         default:
1097                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1098         }
1099 }
1100
1101 /*
1102  * Reads an msr value (of 'msr_index') into 'pdata'.
1103  * Returns 0 on success, non-0 otherwise.
1104  * Assumes vcpu_load() was already called.
1105  */
1106 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1107 {
1108         return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1109 }
1110
1111 #ifdef CONFIG_X86_64
1112
1113 void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1114 {
1115         if (efer & EFER_RESERVED_BITS) {
1116                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1117                        efer);
1118                 inject_gp(vcpu);
1119                 return;
1120         }
1121
1122         if (is_paging(vcpu)
1123             && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1124                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1125                 inject_gp(vcpu);
1126                 return;
1127         }
1128
1129         kvm_arch_ops->set_efer(vcpu, efer);
1130
1131         efer &= ~EFER_LMA;
1132         efer |= vcpu->shadow_efer & EFER_LMA;
1133
1134         vcpu->shadow_efer = efer;
1135 }
1136 EXPORT_SYMBOL_GPL(set_efer);
1137
1138 #endif
1139
1140 /*
1141  * Writes msr value into into the appropriate "register".
1142  * Returns 0 on success, non-0 otherwise.
1143  * Assumes vcpu_load() was already called.
1144  */
1145 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1146 {
1147         return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1148 }
1149
1150 void kvm_resched(struct kvm_vcpu *vcpu)
1151 {
1152         vcpu_put(vcpu);
1153         cond_resched();
1154         /* Cannot fail -  no vcpu unplug yet. */
1155         vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
1156 }
1157 EXPORT_SYMBOL_GPL(kvm_resched);
1158
1159 void load_msrs(struct vmx_msr_entry *e, int n)
1160 {
1161         int i;
1162
1163         for (i = 0; i < n; ++i)
1164                 wrmsrl(e[i].index, e[i].data);
1165 }
1166 EXPORT_SYMBOL_GPL(load_msrs);
1167
1168 void save_msrs(struct vmx_msr_entry *e, int n)
1169 {
1170         int i;
1171
1172         for (i = 0; i < n; ++i)
1173                 rdmsrl(e[i].index, e[i].data);
1174 }
1175 EXPORT_SYMBOL_GPL(save_msrs);
1176
1177 static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
1178 {
1179         struct kvm_vcpu *vcpu;
1180         int r;
1181
1182         if (kvm_run->vcpu < 0 || kvm_run->vcpu >= KVM_MAX_VCPUS)
1183                 return -EINVAL;
1184
1185         vcpu = vcpu_load(kvm, kvm_run->vcpu);
1186         if (!vcpu)
1187                 return -ENOENT;
1188
1189         if (kvm_run->emulated) {
1190                 kvm_arch_ops->skip_emulated_instruction(vcpu);
1191                 kvm_run->emulated = 0;
1192         }
1193
1194         if (kvm_run->mmio_completed) {
1195                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1196                 vcpu->mmio_read_completed = 1;
1197         }
1198
1199         vcpu->mmio_needed = 0;
1200
1201         r = kvm_arch_ops->run(vcpu, kvm_run);
1202
1203         vcpu_put(vcpu);
1204         return r;
1205 }
1206
1207 static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
1208 {
1209         struct kvm_vcpu *vcpu;
1210
1211         if (regs->vcpu < 0 || regs->vcpu >= KVM_MAX_VCPUS)
1212                 return -EINVAL;
1213
1214         vcpu = vcpu_load(kvm, regs->vcpu);
1215         if (!vcpu)
1216                 return -ENOENT;
1217
1218         kvm_arch_ops->cache_regs(vcpu);
1219
1220         regs->rax = vcpu->regs[VCPU_REGS_RAX];
1221         regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1222         regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1223         regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1224         regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1225         regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1226         regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1227         regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1228 #ifdef CONFIG_X86_64
1229         regs->r8 = vcpu->regs[VCPU_REGS_R8];
1230         regs->r9 = vcpu->regs[VCPU_REGS_R9];
1231         regs->r10 = vcpu->regs[VCPU_REGS_R10];
1232         regs->r11 = vcpu->regs[VCPU_REGS_R11];
1233         regs->r12 = vcpu->regs[VCPU_REGS_R12];
1234         regs->r13 = vcpu->regs[VCPU_REGS_R13];
1235         regs->r14 = vcpu->regs[VCPU_REGS_R14];
1236         regs->r15 = vcpu->regs[VCPU_REGS_R15];
1237 #endif
1238
1239         regs->rip = vcpu->rip;
1240         regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1241
1242         /*
1243          * Don't leak debug flags in case they were set for guest debugging
1244          */
1245         if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1246                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1247
1248         vcpu_put(vcpu);
1249
1250         return 0;
1251 }
1252
1253 static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
1254 {
1255         struct kvm_vcpu *vcpu;
1256
1257         if (regs->vcpu < 0 || regs->vcpu >= KVM_MAX_VCPUS)
1258                 return -EINVAL;
1259
1260         vcpu = vcpu_load(kvm, regs->vcpu);
1261         if (!vcpu)
1262                 return -ENOENT;
1263
1264         vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1265         vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1266         vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1267         vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1268         vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1269         vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1270         vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1271         vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1272 #ifdef CONFIG_X86_64
1273         vcpu->regs[VCPU_REGS_R8] = regs->r8;
1274         vcpu->regs[VCPU_REGS_R9] = regs->r9;
1275         vcpu->regs[VCPU_REGS_R10] = regs->r10;
1276         vcpu->regs[VCPU_REGS_R11] = regs->r11;
1277         vcpu->regs[VCPU_REGS_R12] = regs->r12;
1278         vcpu->regs[VCPU_REGS_R13] = regs->r13;
1279         vcpu->regs[VCPU_REGS_R14] = regs->r14;
1280         vcpu->regs[VCPU_REGS_R15] = regs->r15;
1281 #endif
1282
1283         vcpu->rip = regs->rip;
1284         kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1285
1286         kvm_arch_ops->decache_regs(vcpu);
1287
1288         vcpu_put(vcpu);
1289
1290         return 0;
1291 }
1292
1293 static void get_segment(struct kvm_vcpu *vcpu,
1294                         struct kvm_segment *var, int seg)
1295 {
1296         return kvm_arch_ops->get_segment(vcpu, var, seg);
1297 }
1298
1299 static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1300 {
1301         struct kvm_vcpu *vcpu;
1302         struct descriptor_table dt;
1303
1304         if (sregs->vcpu < 0 || sregs->vcpu >= KVM_MAX_VCPUS)
1305                 return -EINVAL;
1306         vcpu = vcpu_load(kvm, sregs->vcpu);
1307         if (!vcpu)
1308                 return -ENOENT;
1309
1310         get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1311         get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1312         get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1313         get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1314         get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1315         get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1316
1317         get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1318         get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1319
1320         kvm_arch_ops->get_idt(vcpu, &dt);
1321         sregs->idt.limit = dt.limit;
1322         sregs->idt.base = dt.base;
1323         kvm_arch_ops->get_gdt(vcpu, &dt);
1324         sregs->gdt.limit = dt.limit;
1325         sregs->gdt.base = dt.base;
1326
1327         sregs->cr0 = vcpu->cr0;
1328         sregs->cr2 = vcpu->cr2;
1329         sregs->cr3 = vcpu->cr3;
1330         sregs->cr4 = vcpu->cr4;
1331         sregs->cr8 = vcpu->cr8;
1332         sregs->efer = vcpu->shadow_efer;
1333         sregs->apic_base = vcpu->apic_base;
1334
1335         memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1336                sizeof sregs->interrupt_bitmap);
1337
1338         vcpu_put(vcpu);
1339
1340         return 0;
1341 }
1342
1343 static void set_segment(struct kvm_vcpu *vcpu,
1344                         struct kvm_segment *var, int seg)
1345 {
1346         return kvm_arch_ops->set_segment(vcpu, var, seg);
1347 }
1348
1349 static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1350 {
1351         struct kvm_vcpu *vcpu;
1352         int mmu_reset_needed = 0;
1353         int i;
1354         struct descriptor_table dt;
1355
1356         if (sregs->vcpu < 0 || sregs->vcpu >= KVM_MAX_VCPUS)
1357                 return -EINVAL;
1358         vcpu = vcpu_load(kvm, sregs->vcpu);
1359         if (!vcpu)
1360                 return -ENOENT;
1361
1362         set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1363         set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1364         set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1365         set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1366         set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1367         set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1368
1369         set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1370         set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1371
1372         dt.limit = sregs->idt.limit;
1373         dt.base = sregs->idt.base;
1374         kvm_arch_ops->set_idt(vcpu, &dt);
1375         dt.limit = sregs->gdt.limit;
1376         dt.base = sregs->gdt.base;
1377         kvm_arch_ops->set_gdt(vcpu, &dt);
1378
1379         vcpu->cr2 = sregs->cr2;
1380         mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
1381         vcpu->cr3 = sregs->cr3;
1382
1383         vcpu->cr8 = sregs->cr8;
1384
1385         mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
1386 #ifdef CONFIG_X86_64
1387         kvm_arch_ops->set_efer(vcpu, sregs->efer);
1388 #endif
1389         vcpu->apic_base = sregs->apic_base;
1390
1391         mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
1392         kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
1393
1394         mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
1395         kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
1396
1397         if (mmu_reset_needed)
1398                 kvm_mmu_reset_context(vcpu);
1399
1400         memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
1401                sizeof vcpu->irq_pending);
1402         vcpu->irq_summary = 0;
1403         for (i = 0; i < NR_IRQ_WORDS; ++i)
1404                 if (vcpu->irq_pending[i])
1405                         __set_bit(i, &vcpu->irq_summary);
1406
1407         vcpu_put(vcpu);
1408
1409         return 0;
1410 }
1411
1412 /*
1413  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1414  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1415  */
1416 static u32 msrs_to_save[] = {
1417         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1418         MSR_K6_STAR,
1419 #ifdef CONFIG_X86_64
1420         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1421 #endif
1422         MSR_IA32_TIME_STAMP_COUNTER,
1423 };
1424
1425
1426 /*
1427  * Adapt set_msr() to msr_io()'s calling convention
1428  */
1429 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1430 {
1431         return set_msr(vcpu, index, *data);
1432 }
1433
1434 /*
1435  * Read or write a bunch of msrs. All parameters are kernel addresses.
1436  *
1437  * @return number of msrs set successfully.
1438  */
1439 static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
1440                     struct kvm_msr_entry *entries,
1441                     int (*do_msr)(struct kvm_vcpu *vcpu,
1442                                   unsigned index, u64 *data))
1443 {
1444         struct kvm_vcpu *vcpu;
1445         int i;
1446
1447         if (msrs->vcpu < 0 || msrs->vcpu >= KVM_MAX_VCPUS)
1448                 return -EINVAL;
1449
1450         vcpu = vcpu_load(kvm, msrs->vcpu);
1451         if (!vcpu)
1452                 return -ENOENT;
1453
1454         for (i = 0; i < msrs->nmsrs; ++i)
1455                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1456                         break;
1457
1458         vcpu_put(vcpu);
1459
1460         return i;
1461 }
1462
1463 /*
1464  * Read or write a bunch of msrs. Parameters are user addresses.
1465  *
1466  * @return number of msrs set successfully.
1467  */
1468 static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
1469                   int (*do_msr)(struct kvm_vcpu *vcpu,
1470                                 unsigned index, u64 *data),
1471                   int writeback)
1472 {
1473         struct kvm_msrs msrs;
1474         struct kvm_msr_entry *entries;
1475         int r, n;
1476         unsigned size;
1477
1478         r = -EFAULT;
1479         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1480                 goto out;
1481
1482         r = -E2BIG;
1483         if (msrs.nmsrs >= MAX_IO_MSRS)
1484                 goto out;
1485
1486         r = -ENOMEM;
1487         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1488         entries = vmalloc(size);
1489         if (!entries)
1490                 goto out;
1491
1492         r = -EFAULT;
1493         if (copy_from_user(entries, user_msrs->entries, size))
1494                 goto out_free;
1495
1496         r = n = __msr_io(kvm, &msrs, entries, do_msr);
1497         if (r < 0)
1498                 goto out_free;
1499
1500         r = -EFAULT;
1501         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1502                 goto out_free;
1503
1504         r = n;
1505
1506 out_free:
1507         vfree(entries);
1508 out:
1509         return r;
1510 }
1511
1512 /*
1513  * Translate a guest virtual address to a guest physical address.
1514  */
1515 static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
1516 {
1517         unsigned long vaddr = tr->linear_address;
1518         struct kvm_vcpu *vcpu;
1519         gpa_t gpa;
1520
1521         vcpu = vcpu_load(kvm, tr->vcpu);
1522         if (!vcpu)
1523                 return -ENOENT;
1524         spin_lock(&kvm->lock);
1525         gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
1526         tr->physical_address = gpa;
1527         tr->valid = gpa != UNMAPPED_GVA;
1528         tr->writeable = 1;
1529         tr->usermode = 0;
1530         spin_unlock(&kvm->lock);
1531         vcpu_put(vcpu);
1532
1533         return 0;
1534 }
1535
1536 static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
1537 {
1538         struct kvm_vcpu *vcpu;
1539
1540         if (irq->vcpu < 0 || irq->vcpu >= KVM_MAX_VCPUS)
1541                 return -EINVAL;
1542         if (irq->irq < 0 || irq->irq >= 256)
1543                 return -EINVAL;
1544         vcpu = vcpu_load(kvm, irq->vcpu);
1545         if (!vcpu)
1546                 return -ENOENT;
1547
1548         set_bit(irq->irq, vcpu->irq_pending);
1549         set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
1550
1551         vcpu_put(vcpu);
1552
1553         return 0;
1554 }
1555
1556 static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
1557                                      struct kvm_debug_guest *dbg)
1558 {
1559         struct kvm_vcpu *vcpu;
1560         int r;
1561
1562         if (dbg->vcpu < 0 || dbg->vcpu >= KVM_MAX_VCPUS)
1563                 return -EINVAL;
1564         vcpu = vcpu_load(kvm, dbg->vcpu);
1565         if (!vcpu)
1566                 return -ENOENT;
1567
1568         r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
1569
1570         vcpu_put(vcpu);
1571
1572         return r;
1573 }
1574
1575 static long kvm_dev_ioctl(struct file *filp,
1576                           unsigned int ioctl, unsigned long arg)
1577 {
1578         struct kvm *kvm = filp->private_data;
1579         int r = -EINVAL;
1580
1581         switch (ioctl) {
1582         case KVM_CREATE_VCPU: {
1583                 r = kvm_dev_ioctl_create_vcpu(kvm, arg);
1584                 if (r)
1585                         goto out;
1586                 break;
1587         }
1588         case KVM_RUN: {
1589                 struct kvm_run kvm_run;
1590
1591                 r = -EFAULT;
1592                 if (copy_from_user(&kvm_run, (void *)arg, sizeof kvm_run))
1593                         goto out;
1594                 r = kvm_dev_ioctl_run(kvm, &kvm_run);
1595                 if (r < 0)
1596                         goto out;
1597                 r = -EFAULT;
1598                 if (copy_to_user((void *)arg, &kvm_run, sizeof kvm_run))
1599                         goto out;
1600                 r = 0;
1601                 break;
1602         }
1603         case KVM_GET_REGS: {
1604                 struct kvm_regs kvm_regs;
1605
1606                 r = -EFAULT;
1607                 if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
1608                         goto out;
1609                 r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
1610                 if (r)
1611                         goto out;
1612                 r = -EFAULT;
1613                 if (copy_to_user((void *)arg, &kvm_regs, sizeof kvm_regs))
1614                         goto out;
1615                 r = 0;
1616                 break;
1617         }
1618         case KVM_SET_REGS: {
1619                 struct kvm_regs kvm_regs;
1620
1621                 r = -EFAULT;
1622                 if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
1623                         goto out;
1624                 r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
1625                 if (r)
1626                         goto out;
1627                 r = 0;
1628                 break;
1629         }
1630         case KVM_GET_SREGS: {
1631                 struct kvm_sregs kvm_sregs;
1632
1633                 r = -EFAULT;
1634                 if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
1635                         goto out;
1636                 r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
1637                 if (r)
1638                         goto out;
1639                 r = -EFAULT;
1640                 if (copy_to_user((void *)arg, &kvm_sregs, sizeof kvm_sregs))
1641                         goto out;
1642                 r = 0;
1643                 break;
1644         }
1645         case KVM_SET_SREGS: {
1646                 struct kvm_sregs kvm_sregs;
1647
1648                 r = -EFAULT;
1649                 if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
1650                         goto out;
1651                 r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
1652                 if (r)
1653                         goto out;
1654                 r = 0;
1655                 break;
1656         }
1657         case KVM_TRANSLATE: {
1658                 struct kvm_translation tr;
1659
1660                 r = -EFAULT;
1661                 if (copy_from_user(&tr, (void *)arg, sizeof tr))
1662                         goto out;
1663                 r = kvm_dev_ioctl_translate(kvm, &tr);
1664                 if (r)
1665                         goto out;
1666                 r = -EFAULT;
1667                 if (copy_to_user((void *)arg, &tr, sizeof tr))
1668                         goto out;
1669                 r = 0;
1670                 break;
1671         }
1672         case KVM_INTERRUPT: {
1673                 struct kvm_interrupt irq;
1674
1675                 r = -EFAULT;
1676                 if (copy_from_user(&irq, (void *)arg, sizeof irq))
1677                         goto out;
1678                 r = kvm_dev_ioctl_interrupt(kvm, &irq);
1679                 if (r)
1680                         goto out;
1681                 r = 0;
1682                 break;
1683         }
1684         case KVM_DEBUG_GUEST: {
1685                 struct kvm_debug_guest dbg;
1686
1687                 r = -EFAULT;
1688                 if (copy_from_user(&dbg, (void *)arg, sizeof dbg))
1689                         goto out;
1690                 r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
1691                 if (r)
1692                         goto out;
1693                 r = 0;
1694                 break;
1695         }
1696         case KVM_SET_MEMORY_REGION: {
1697                 struct kvm_memory_region kvm_mem;
1698
1699                 r = -EFAULT;
1700                 if (copy_from_user(&kvm_mem, (void *)arg, sizeof kvm_mem))
1701                         goto out;
1702                 r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
1703                 if (r)
1704                         goto out;
1705                 break;
1706         }
1707         case KVM_GET_DIRTY_LOG: {
1708                 struct kvm_dirty_log log;
1709
1710                 r = -EFAULT;
1711                 if (copy_from_user(&log, (void *)arg, sizeof log))
1712                         goto out;
1713                 r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
1714                 if (r)
1715                         goto out;
1716                 break;
1717         }
1718         case KVM_GET_MSRS:
1719                 r = msr_io(kvm, (void __user *)arg, get_msr, 1);
1720                 break;
1721         case KVM_SET_MSRS:
1722                 r = msr_io(kvm, (void __user *)arg, do_set_msr, 0);
1723                 break;
1724         case KVM_GET_MSR_INDEX_LIST: {
1725                 struct kvm_msr_list __user *user_msr_list = (void __user *)arg;
1726                 struct kvm_msr_list msr_list;
1727                 unsigned n;
1728
1729                 r = -EFAULT;
1730                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1731                         goto out;
1732                 n = msr_list.nmsrs;
1733                 msr_list.nmsrs = ARRAY_SIZE(msrs_to_save);
1734                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1735                         goto out;
1736                 r = -E2BIG;
1737                 if (n < ARRAY_SIZE(msrs_to_save))
1738                         goto out;
1739                 r = -EFAULT;
1740                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1741                                  sizeof msrs_to_save))
1742                         goto out;
1743                 r = 0;
1744         }
1745         default:
1746                 ;
1747         }
1748 out:
1749         return r;
1750 }
1751
1752 static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
1753                                    unsigned long address,
1754                                    int *type)
1755 {
1756         struct kvm *kvm = vma->vm_file->private_data;
1757         unsigned long pgoff;
1758         struct kvm_memory_slot *slot;
1759         struct page *page;
1760
1761         *type = VM_FAULT_MINOR;
1762         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1763         slot = gfn_to_memslot(kvm, pgoff);
1764         if (!slot)
1765                 return NOPAGE_SIGBUS;
1766         page = gfn_to_page(slot, pgoff);
1767         if (!page)
1768                 return NOPAGE_SIGBUS;
1769         get_page(page);
1770         return page;
1771 }
1772
1773 static struct vm_operations_struct kvm_dev_vm_ops = {
1774         .nopage = kvm_dev_nopage,
1775 };
1776
1777 static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
1778 {
1779         vma->vm_ops = &kvm_dev_vm_ops;
1780         return 0;
1781 }
1782
1783 static struct file_operations kvm_chardev_ops = {
1784         .open           = kvm_dev_open,
1785         .release        = kvm_dev_release,
1786         .unlocked_ioctl = kvm_dev_ioctl,
1787         .compat_ioctl   = kvm_dev_ioctl,
1788         .mmap           = kvm_dev_mmap,
1789 };
1790
1791 static struct miscdevice kvm_dev = {
1792         MISC_DYNAMIC_MINOR,
1793         "kvm",
1794         &kvm_chardev_ops,
1795 };
1796
1797 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1798                        void *v)
1799 {
1800         if (val == SYS_RESTART) {
1801                 /*
1802                  * Some (well, at least mine) BIOSes hang on reboot if
1803                  * in vmx root mode.
1804                  */
1805                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1806                 on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
1807         }
1808         return NOTIFY_OK;
1809 }
1810
1811 static struct notifier_block kvm_reboot_notifier = {
1812         .notifier_call = kvm_reboot,
1813         .priority = 0,
1814 };
1815
1816 static __init void kvm_init_debug(void)
1817 {
1818         struct kvm_stats_debugfs_item *p;
1819
1820         debugfs_dir = debugfs_create_dir("kvm", 0);
1821         for (p = debugfs_entries; p->name; ++p)
1822                 p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
1823                                                p->data);
1824 }
1825
1826 static void kvm_exit_debug(void)
1827 {
1828         struct kvm_stats_debugfs_item *p;
1829
1830         for (p = debugfs_entries; p->name; ++p)
1831                 debugfs_remove(p->dentry);
1832         debugfs_remove(debugfs_dir);
1833 }
1834
1835 hpa_t bad_page_address;
1836
1837 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
1838 {
1839         int r;
1840
1841         kvm_arch_ops = ops;
1842
1843         if (!kvm_arch_ops->cpu_has_kvm_support()) {
1844                 printk(KERN_ERR "kvm: no hardware support\n");
1845                 return -EOPNOTSUPP;
1846         }
1847         if (kvm_arch_ops->disabled_by_bios()) {
1848                 printk(KERN_ERR "kvm: disabled by bios\n");
1849                 return -EOPNOTSUPP;
1850         }
1851
1852         r = kvm_arch_ops->hardware_setup();
1853         if (r < 0)
1854             return r;
1855
1856         on_each_cpu(kvm_arch_ops->hardware_enable, 0, 0, 1);
1857         register_reboot_notifier(&kvm_reboot_notifier);
1858
1859         kvm_chardev_ops.owner = module;
1860
1861         r = misc_register(&kvm_dev);
1862         if (r) {
1863                 printk (KERN_ERR "kvm: misc device register failed\n");
1864                 goto out_free;
1865         }
1866
1867         return r;
1868
1869 out_free:
1870         unregister_reboot_notifier(&kvm_reboot_notifier);
1871         on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
1872         kvm_arch_ops->hardware_unsetup();
1873         return r;
1874 }
1875
1876 void kvm_exit_arch(void)
1877 {
1878         misc_deregister(&kvm_dev);
1879
1880         unregister_reboot_notifier(&kvm_reboot_notifier);
1881         on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
1882         kvm_arch_ops->hardware_unsetup();
1883 }
1884
1885 static __init int kvm_init(void)
1886 {
1887         static struct page *bad_page;
1888         int r = 0;
1889
1890         kvm_init_debug();
1891
1892         if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
1893                 r = -ENOMEM;
1894                 goto out;
1895         }
1896
1897         bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
1898         memset(__va(bad_page_address), 0, PAGE_SIZE);
1899
1900         return r;
1901
1902 out:
1903         kvm_exit_debug();
1904         return r;
1905 }
1906
1907 static __exit void kvm_exit(void)
1908 {
1909         kvm_exit_debug();
1910         __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
1911 }
1912
1913 module_init(kvm_init)
1914 module_exit(kvm_exit)
1915
1916 EXPORT_SYMBOL_GPL(kvm_init_arch);
1917 EXPORT_SYMBOL_GPL(kvm_exit_arch);