]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/kvm/kvm_main.c
KVM: Cleanup mark_page_dirty
[linux-2.6-omap-h63xx.git] / drivers / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
21
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <linux/mm.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <linux/reboot.h>
31 #include <linux/debugfs.h>
32 #include <linux/highmem.h>
33 #include <linux/file.h>
34 #include <linux/sysdev.h>
35 #include <linux/cpu.h>
36 #include <linux/sched.h>
37 #include <linux/cpumask.h>
38 #include <linux/smp.h>
39 #include <linux/anon_inodes.h>
40
41 #include <asm/processor.h>
42 #include <asm/msr.h>
43 #include <asm/io.h>
44 #include <asm/uaccess.h>
45 #include <asm/desc.h>
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 static DEFINE_SPINLOCK(kvm_lock);
51 static LIST_HEAD(vm_list);
52
53 static cpumask_t cpus_hardware_enabled;
54
55 struct kvm_arch_ops *kvm_arch_ops;
56 struct kmem_cache *kvm_vcpu_cache;
57 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
58
59 static __read_mostly struct preempt_ops kvm_preempt_ops;
60
61 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
62
63 static struct kvm_stats_debugfs_item {
64         const char *name;
65         int offset;
66         struct dentry *dentry;
67 } debugfs_entries[] = {
68         { "pf_fixed", STAT_OFFSET(pf_fixed) },
69         { "pf_guest", STAT_OFFSET(pf_guest) },
70         { "tlb_flush", STAT_OFFSET(tlb_flush) },
71         { "invlpg", STAT_OFFSET(invlpg) },
72         { "exits", STAT_OFFSET(exits) },
73         { "io_exits", STAT_OFFSET(io_exits) },
74         { "mmio_exits", STAT_OFFSET(mmio_exits) },
75         { "signal_exits", STAT_OFFSET(signal_exits) },
76         { "irq_window", STAT_OFFSET(irq_window_exits) },
77         { "halt_exits", STAT_OFFSET(halt_exits) },
78         { "request_irq", STAT_OFFSET(request_irq_exits) },
79         { "irq_exits", STAT_OFFSET(irq_exits) },
80         { "light_exits", STAT_OFFSET(light_exits) },
81         { "efer_reload", STAT_OFFSET(efer_reload) },
82         { NULL }
83 };
84
85 static struct dentry *debugfs_dir;
86
87 #define MAX_IO_MSRS 256
88
89 #define CR0_RESERVED_BITS                                               \
90         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
91                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
92                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
93 #define CR4_RESERVED_BITS                                               \
94         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
95                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
96                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
97                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
98
99 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
100 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
101
102 #ifdef CONFIG_X86_64
103 // LDT or TSS descriptor in the GDT. 16 bytes.
104 struct segment_descriptor_64 {
105         struct segment_descriptor s;
106         u32 base_higher;
107         u32 pad_zero;
108 };
109
110 #endif
111
112 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
113                            unsigned long arg);
114
115 unsigned long segment_base(u16 selector)
116 {
117         struct descriptor_table gdt;
118         struct segment_descriptor *d;
119         unsigned long table_base;
120         typedef unsigned long ul;
121         unsigned long v;
122
123         if (selector == 0)
124                 return 0;
125
126         asm ("sgdt %0" : "=m"(gdt));
127         table_base = gdt.base;
128
129         if (selector & 4) {           /* from ldt */
130                 u16 ldt_selector;
131
132                 asm ("sldt %0" : "=g"(ldt_selector));
133                 table_base = segment_base(ldt_selector);
134         }
135         d = (struct segment_descriptor *)(table_base + (selector & ~7));
136         v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
137 #ifdef CONFIG_X86_64
138         if (d->system == 0
139             && (d->type == 2 || d->type == 9 || d->type == 11))
140                 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
141 #endif
142         return v;
143 }
144 EXPORT_SYMBOL_GPL(segment_base);
145
146 static inline int valid_vcpu(int n)
147 {
148         return likely(n >= 0 && n < KVM_MAX_VCPUS);
149 }
150
151 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
152 {
153         if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
154                 return;
155
156         vcpu->guest_fpu_loaded = 1;
157         fx_save(&vcpu->host_fx_image);
158         fx_restore(&vcpu->guest_fx_image);
159 }
160 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
161
162 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
163 {
164         if (!vcpu->guest_fpu_loaded)
165                 return;
166
167         vcpu->guest_fpu_loaded = 0;
168         fx_save(&vcpu->guest_fx_image);
169         fx_restore(&vcpu->host_fx_image);
170 }
171 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
172
173 /*
174  * Switches to specified vcpu, until a matching vcpu_put()
175  */
176 static void vcpu_load(struct kvm_vcpu *vcpu)
177 {
178         int cpu;
179
180         mutex_lock(&vcpu->mutex);
181         cpu = get_cpu();
182         preempt_notifier_register(&vcpu->preempt_notifier);
183         kvm_arch_ops->vcpu_load(vcpu, cpu);
184         put_cpu();
185 }
186
187 static void vcpu_put(struct kvm_vcpu *vcpu)
188 {
189         preempt_disable();
190         kvm_arch_ops->vcpu_put(vcpu);
191         preempt_notifier_unregister(&vcpu->preempt_notifier);
192         preempt_enable();
193         mutex_unlock(&vcpu->mutex);
194 }
195
196 static void ack_flush(void *_completed)
197 {
198         atomic_t *completed = _completed;
199
200         atomic_inc(completed);
201 }
202
203 void kvm_flush_remote_tlbs(struct kvm *kvm)
204 {
205         int i, cpu, needed;
206         cpumask_t cpus;
207         struct kvm_vcpu *vcpu;
208         atomic_t completed;
209
210         atomic_set(&completed, 0);
211         cpus_clear(cpus);
212         needed = 0;
213         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
214                 vcpu = kvm->vcpus[i];
215                 if (!vcpu)
216                         continue;
217                 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
218                         continue;
219                 cpu = vcpu->cpu;
220                 if (cpu != -1 && cpu != raw_smp_processor_id())
221                         if (!cpu_isset(cpu, cpus)) {
222                                 cpu_set(cpu, cpus);
223                                 ++needed;
224                         }
225         }
226
227         /*
228          * We really want smp_call_function_mask() here.  But that's not
229          * available, so ipi all cpus in parallel and wait for them
230          * to complete.
231          */
232         for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
233                 smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
234         while (atomic_read(&completed) != needed) {
235                 cpu_relax();
236                 barrier();
237         }
238 }
239
240 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
241 {
242         struct page *page;
243         int r;
244
245         mutex_init(&vcpu->mutex);
246         vcpu->cpu = -1;
247         vcpu->mmu.root_hpa = INVALID_PAGE;
248         vcpu->kvm = kvm;
249         vcpu->vcpu_id = id;
250
251         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
252         if (!page) {
253                 r = -ENOMEM;
254                 goto fail;
255         }
256         vcpu->run = page_address(page);
257
258         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
259         if (!page) {
260                 r = -ENOMEM;
261                 goto fail_free_run;
262         }
263         vcpu->pio_data = page_address(page);
264
265         r = kvm_mmu_create(vcpu);
266         if (r < 0)
267                 goto fail_free_pio_data;
268
269         return 0;
270
271 fail_free_pio_data:
272         free_page((unsigned long)vcpu->pio_data);
273 fail_free_run:
274         free_page((unsigned long)vcpu->run);
275 fail:
276         return -ENOMEM;
277 }
278 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
279
280 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
281 {
282         kvm_mmu_destroy(vcpu);
283         free_page((unsigned long)vcpu->pio_data);
284         free_page((unsigned long)vcpu->run);
285 }
286 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
287
288 static struct kvm *kvm_create_vm(void)
289 {
290         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
291
292         if (!kvm)
293                 return ERR_PTR(-ENOMEM);
294
295         kvm_io_bus_init(&kvm->pio_bus);
296         mutex_init(&kvm->lock);
297         INIT_LIST_HEAD(&kvm->active_mmu_pages);
298         kvm_io_bus_init(&kvm->mmio_bus);
299         spin_lock(&kvm_lock);
300         list_add(&kvm->vm_list, &vm_list);
301         spin_unlock(&kvm_lock);
302         return kvm;
303 }
304
305 static int kvm_dev_open(struct inode *inode, struct file *filp)
306 {
307         return 0;
308 }
309
310 /*
311  * Free any memory in @free but not in @dont.
312  */
313 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
314                                   struct kvm_memory_slot *dont)
315 {
316         int i;
317
318         if (!dont || free->phys_mem != dont->phys_mem)
319                 if (free->phys_mem) {
320                         for (i = 0; i < free->npages; ++i)
321                                 if (free->phys_mem[i])
322                                         __free_page(free->phys_mem[i]);
323                         vfree(free->phys_mem);
324                 }
325
326         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
327                 vfree(free->dirty_bitmap);
328
329         free->phys_mem = NULL;
330         free->npages = 0;
331         free->dirty_bitmap = NULL;
332 }
333
334 static void kvm_free_physmem(struct kvm *kvm)
335 {
336         int i;
337
338         for (i = 0; i < kvm->nmemslots; ++i)
339                 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
340 }
341
342 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
343 {
344         int i;
345
346         for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
347                 if (vcpu->pio.guest_pages[i]) {
348                         __free_page(vcpu->pio.guest_pages[i]);
349                         vcpu->pio.guest_pages[i] = NULL;
350                 }
351 }
352
353 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
354 {
355         vcpu_load(vcpu);
356         kvm_mmu_unload(vcpu);
357         vcpu_put(vcpu);
358 }
359
360 static void kvm_free_vcpus(struct kvm *kvm)
361 {
362         unsigned int i;
363
364         /*
365          * Unpin any mmu pages first.
366          */
367         for (i = 0; i < KVM_MAX_VCPUS; ++i)
368                 if (kvm->vcpus[i])
369                         kvm_unload_vcpu_mmu(kvm->vcpus[i]);
370         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
371                 if (kvm->vcpus[i]) {
372                         kvm_arch_ops->vcpu_free(kvm->vcpus[i]);
373                         kvm->vcpus[i] = NULL;
374                 }
375         }
376
377 }
378
379 static int kvm_dev_release(struct inode *inode, struct file *filp)
380 {
381         return 0;
382 }
383
384 static void kvm_destroy_vm(struct kvm *kvm)
385 {
386         spin_lock(&kvm_lock);
387         list_del(&kvm->vm_list);
388         spin_unlock(&kvm_lock);
389         kvm_io_bus_destroy(&kvm->pio_bus);
390         kvm_io_bus_destroy(&kvm->mmio_bus);
391         kvm_free_vcpus(kvm);
392         kvm_free_physmem(kvm);
393         kfree(kvm);
394 }
395
396 static int kvm_vm_release(struct inode *inode, struct file *filp)
397 {
398         struct kvm *kvm = filp->private_data;
399
400         kvm_destroy_vm(kvm);
401         return 0;
402 }
403
404 static void inject_gp(struct kvm_vcpu *vcpu)
405 {
406         kvm_arch_ops->inject_gp(vcpu, 0);
407 }
408
409 /*
410  * Load the pae pdptrs.  Return true is they are all valid.
411  */
412 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
413 {
414         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
415         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
416         int i;
417         u64 *pdpt;
418         int ret;
419         struct page *page;
420         u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
421
422         mutex_lock(&vcpu->kvm->lock);
423         page = gfn_to_page(vcpu->kvm, pdpt_gfn);
424         if (!page) {
425                 ret = 0;
426                 goto out;
427         }
428
429         pdpt = kmap_atomic(page, KM_USER0);
430         memcpy(pdpte, pdpt+offset, sizeof(pdpte));
431         kunmap_atomic(pdpt, KM_USER0);
432
433         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
434                 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
435                         ret = 0;
436                         goto out;
437                 }
438         }
439         ret = 1;
440
441         memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
442 out:
443         mutex_unlock(&vcpu->kvm->lock);
444
445         return ret;
446 }
447
448 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
449 {
450         if (cr0 & CR0_RESERVED_BITS) {
451                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
452                        cr0, vcpu->cr0);
453                 inject_gp(vcpu);
454                 return;
455         }
456
457         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
458                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
459                 inject_gp(vcpu);
460                 return;
461         }
462
463         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
464                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
465                        "and a clear PE flag\n");
466                 inject_gp(vcpu);
467                 return;
468         }
469
470         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
471 #ifdef CONFIG_X86_64
472                 if ((vcpu->shadow_efer & EFER_LME)) {
473                         int cs_db, cs_l;
474
475                         if (!is_pae(vcpu)) {
476                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
477                                        "in long mode while PAE is disabled\n");
478                                 inject_gp(vcpu);
479                                 return;
480                         }
481                         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
482                         if (cs_l) {
483                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
484                                        "in long mode while CS.L == 1\n");
485                                 inject_gp(vcpu);
486                                 return;
487
488                         }
489                 } else
490 #endif
491                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
492                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
493                                "reserved bits\n");
494                         inject_gp(vcpu);
495                         return;
496                 }
497
498         }
499
500         kvm_arch_ops->set_cr0(vcpu, cr0);
501         vcpu->cr0 = cr0;
502
503         mutex_lock(&vcpu->kvm->lock);
504         kvm_mmu_reset_context(vcpu);
505         mutex_unlock(&vcpu->kvm->lock);
506         return;
507 }
508 EXPORT_SYMBOL_GPL(set_cr0);
509
510 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
511 {
512         set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
513 }
514 EXPORT_SYMBOL_GPL(lmsw);
515
516 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
517 {
518         if (cr4 & CR4_RESERVED_BITS) {
519                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
520                 inject_gp(vcpu);
521                 return;
522         }
523
524         if (is_long_mode(vcpu)) {
525                 if (!(cr4 & X86_CR4_PAE)) {
526                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
527                                "in long mode\n");
528                         inject_gp(vcpu);
529                         return;
530                 }
531         } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
532                    && !load_pdptrs(vcpu, vcpu->cr3)) {
533                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
534                 inject_gp(vcpu);
535                 return;
536         }
537
538         if (cr4 & X86_CR4_VMXE) {
539                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
540                 inject_gp(vcpu);
541                 return;
542         }
543         kvm_arch_ops->set_cr4(vcpu, cr4);
544         mutex_lock(&vcpu->kvm->lock);
545         kvm_mmu_reset_context(vcpu);
546         mutex_unlock(&vcpu->kvm->lock);
547 }
548 EXPORT_SYMBOL_GPL(set_cr4);
549
550 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
551 {
552         if (is_long_mode(vcpu)) {
553                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
554                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
555                         inject_gp(vcpu);
556                         return;
557                 }
558         } else {
559                 if (is_pae(vcpu)) {
560                         if (cr3 & CR3_PAE_RESERVED_BITS) {
561                                 printk(KERN_DEBUG
562                                        "set_cr3: #GP, reserved bits\n");
563                                 inject_gp(vcpu);
564                                 return;
565                         }
566                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
567                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
568                                        "reserved bits\n");
569                                 inject_gp(vcpu);
570                                 return;
571                         }
572                 } else {
573                         if (cr3 & CR3_NONPAE_RESERVED_BITS) {
574                                 printk(KERN_DEBUG
575                                        "set_cr3: #GP, reserved bits\n");
576                                 inject_gp(vcpu);
577                                 return;
578                         }
579                 }
580         }
581
582         mutex_lock(&vcpu->kvm->lock);
583         /*
584          * Does the new cr3 value map to physical memory? (Note, we
585          * catch an invalid cr3 even in real-mode, because it would
586          * cause trouble later on when we turn on paging anyway.)
587          *
588          * A real CPU would silently accept an invalid cr3 and would
589          * attempt to use it - with largely undefined (and often hard
590          * to debug) behavior on the guest side.
591          */
592         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
593                 inject_gp(vcpu);
594         else {
595                 vcpu->cr3 = cr3;
596                 vcpu->mmu.new_cr3(vcpu);
597         }
598         mutex_unlock(&vcpu->kvm->lock);
599 }
600 EXPORT_SYMBOL_GPL(set_cr3);
601
602 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
603 {
604         if (cr8 & CR8_RESERVED_BITS) {
605                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
606                 inject_gp(vcpu);
607                 return;
608         }
609         vcpu->cr8 = cr8;
610 }
611 EXPORT_SYMBOL_GPL(set_cr8);
612
613 void fx_init(struct kvm_vcpu *vcpu)
614 {
615         unsigned after_mxcsr_mask;
616
617         /* Initialize guest FPU by resetting ours and saving into guest's */
618         preempt_disable();
619         fx_save(&vcpu->host_fx_image);
620         fpu_init();
621         fx_save(&vcpu->guest_fx_image);
622         fx_restore(&vcpu->host_fx_image);
623         preempt_enable();
624
625         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
626         vcpu->guest_fx_image.mxcsr = 0x1f80;
627         memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
628                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
629 }
630 EXPORT_SYMBOL_GPL(fx_init);
631
632 /*
633  * Allocate some memory and give it an address in the guest physical address
634  * space.
635  *
636  * Discontiguous memory is allowed, mostly for framebuffers.
637  */
638 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
639                                           struct kvm_memory_region *mem)
640 {
641         int r;
642         gfn_t base_gfn;
643         unsigned long npages;
644         unsigned long i;
645         struct kvm_memory_slot *memslot;
646         struct kvm_memory_slot old, new;
647         int memory_config_version;
648
649         r = -EINVAL;
650         /* General sanity checks */
651         if (mem->memory_size & (PAGE_SIZE - 1))
652                 goto out;
653         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
654                 goto out;
655         if (mem->slot >= KVM_MEMORY_SLOTS)
656                 goto out;
657         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
658                 goto out;
659
660         memslot = &kvm->memslots[mem->slot];
661         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
662         npages = mem->memory_size >> PAGE_SHIFT;
663
664         if (!npages)
665                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
666
667 raced:
668         mutex_lock(&kvm->lock);
669
670         memory_config_version = kvm->memory_config_version;
671         new = old = *memslot;
672
673         new.base_gfn = base_gfn;
674         new.npages = npages;
675         new.flags = mem->flags;
676
677         /* Disallow changing a memory slot's size. */
678         r = -EINVAL;
679         if (npages && old.npages && npages != old.npages)
680                 goto out_unlock;
681
682         /* Check for overlaps */
683         r = -EEXIST;
684         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
685                 struct kvm_memory_slot *s = &kvm->memslots[i];
686
687                 if (s == memslot)
688                         continue;
689                 if (!((base_gfn + npages <= s->base_gfn) ||
690                       (base_gfn >= s->base_gfn + s->npages)))
691                         goto out_unlock;
692         }
693         /*
694          * Do memory allocations outside lock.  memory_config_version will
695          * detect any races.
696          */
697         mutex_unlock(&kvm->lock);
698
699         /* Deallocate if slot is being removed */
700         if (!npages)
701                 new.phys_mem = NULL;
702
703         /* Free page dirty bitmap if unneeded */
704         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
705                 new.dirty_bitmap = NULL;
706
707         r = -ENOMEM;
708
709         /* Allocate if a slot is being created */
710         if (npages && !new.phys_mem) {
711                 new.phys_mem = vmalloc(npages * sizeof(struct page *));
712
713                 if (!new.phys_mem)
714                         goto out_free;
715
716                 memset(new.phys_mem, 0, npages * sizeof(struct page *));
717                 for (i = 0; i < npages; ++i) {
718                         new.phys_mem[i] = alloc_page(GFP_HIGHUSER
719                                                      | __GFP_ZERO);
720                         if (!new.phys_mem[i])
721                                 goto out_free;
722                         set_page_private(new.phys_mem[i],0);
723                 }
724         }
725
726         /* Allocate page dirty bitmap if needed */
727         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
728                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
729
730                 new.dirty_bitmap = vmalloc(dirty_bytes);
731                 if (!new.dirty_bitmap)
732                         goto out_free;
733                 memset(new.dirty_bitmap, 0, dirty_bytes);
734         }
735
736         mutex_lock(&kvm->lock);
737
738         if (memory_config_version != kvm->memory_config_version) {
739                 mutex_unlock(&kvm->lock);
740                 kvm_free_physmem_slot(&new, &old);
741                 goto raced;
742         }
743
744         r = -EAGAIN;
745         if (kvm->busy)
746                 goto out_unlock;
747
748         if (mem->slot >= kvm->nmemslots)
749                 kvm->nmemslots = mem->slot + 1;
750
751         *memslot = new;
752         ++kvm->memory_config_version;
753
754         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
755         kvm_flush_remote_tlbs(kvm);
756
757         mutex_unlock(&kvm->lock);
758
759         kvm_free_physmem_slot(&old, &new);
760         return 0;
761
762 out_unlock:
763         mutex_unlock(&kvm->lock);
764 out_free:
765         kvm_free_physmem_slot(&new, &old);
766 out:
767         return r;
768 }
769
770 /*
771  * Get (and clear) the dirty memory log for a memory slot.
772  */
773 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
774                                       struct kvm_dirty_log *log)
775 {
776         struct kvm_memory_slot *memslot;
777         int r, i;
778         int n;
779         unsigned long any = 0;
780
781         mutex_lock(&kvm->lock);
782
783         /*
784          * Prevent changes to guest memory configuration even while the lock
785          * is not taken.
786          */
787         ++kvm->busy;
788         mutex_unlock(&kvm->lock);
789         r = -EINVAL;
790         if (log->slot >= KVM_MEMORY_SLOTS)
791                 goto out;
792
793         memslot = &kvm->memslots[log->slot];
794         r = -ENOENT;
795         if (!memslot->dirty_bitmap)
796                 goto out;
797
798         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
799
800         for (i = 0; !any && i < n/sizeof(long); ++i)
801                 any = memslot->dirty_bitmap[i];
802
803         r = -EFAULT;
804         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
805                 goto out;
806
807         /* If nothing is dirty, don't bother messing with page tables. */
808         if (any) {
809                 mutex_lock(&kvm->lock);
810                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
811                 kvm_flush_remote_tlbs(kvm);
812                 memset(memslot->dirty_bitmap, 0, n);
813                 mutex_unlock(&kvm->lock);
814         }
815
816         r = 0;
817
818 out:
819         mutex_lock(&kvm->lock);
820         --kvm->busy;
821         mutex_unlock(&kvm->lock);
822         return r;
823 }
824
825 /*
826  * Set a new alias region.  Aliases map a portion of physical memory into
827  * another portion.  This is useful for memory windows, for example the PC
828  * VGA region.
829  */
830 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
831                                          struct kvm_memory_alias *alias)
832 {
833         int r, n;
834         struct kvm_mem_alias *p;
835
836         r = -EINVAL;
837         /* General sanity checks */
838         if (alias->memory_size & (PAGE_SIZE - 1))
839                 goto out;
840         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
841                 goto out;
842         if (alias->slot >= KVM_ALIAS_SLOTS)
843                 goto out;
844         if (alias->guest_phys_addr + alias->memory_size
845             < alias->guest_phys_addr)
846                 goto out;
847         if (alias->target_phys_addr + alias->memory_size
848             < alias->target_phys_addr)
849                 goto out;
850
851         mutex_lock(&kvm->lock);
852
853         p = &kvm->aliases[alias->slot];
854         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
855         p->npages = alias->memory_size >> PAGE_SHIFT;
856         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
857
858         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
859                 if (kvm->aliases[n - 1].npages)
860                         break;
861         kvm->naliases = n;
862
863         kvm_mmu_zap_all(kvm);
864
865         mutex_unlock(&kvm->lock);
866
867         return 0;
868
869 out:
870         return r;
871 }
872
873 static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
874 {
875         int i;
876         struct kvm_mem_alias *alias;
877
878         for (i = 0; i < kvm->naliases; ++i) {
879                 alias = &kvm->aliases[i];
880                 if (gfn >= alias->base_gfn
881                     && gfn < alias->base_gfn + alias->npages)
882                         return alias->target_gfn + gfn - alias->base_gfn;
883         }
884         return gfn;
885 }
886
887 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
888 {
889         int i;
890
891         for (i = 0; i < kvm->nmemslots; ++i) {
892                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
893
894                 if (gfn >= memslot->base_gfn
895                     && gfn < memslot->base_gfn + memslot->npages)
896                         return memslot;
897         }
898         return NULL;
899 }
900
901 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
902 {
903         gfn = unalias_gfn(kvm, gfn);
904         return __gfn_to_memslot(kvm, gfn);
905 }
906
907 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
908 {
909         struct kvm_memory_slot *slot;
910
911         gfn = unalias_gfn(kvm, gfn);
912         slot = __gfn_to_memslot(kvm, gfn);
913         if (!slot)
914                 return NULL;
915         return slot->phys_mem[gfn - slot->base_gfn];
916 }
917 EXPORT_SYMBOL_GPL(gfn_to_page);
918
919 /* WARNING: Does not work on aliased pages. */
920 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
921 {
922         struct kvm_memory_slot *memslot;
923
924         memslot = __gfn_to_memslot(kvm, gfn);
925         if (memslot && memslot->dirty_bitmap) {
926                 unsigned long rel_gfn = gfn - memslot->base_gfn;
927
928                 /* avoid RMW */
929                 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
930                         set_bit(rel_gfn, memslot->dirty_bitmap);
931         }
932 }
933
934 int emulator_read_std(unsigned long addr,
935                              void *val,
936                              unsigned int bytes,
937                              struct kvm_vcpu *vcpu)
938 {
939         void *data = val;
940
941         while (bytes) {
942                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
943                 unsigned offset = addr & (PAGE_SIZE-1);
944                 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
945                 unsigned long pfn;
946                 struct page *page;
947                 void *page_virt;
948
949                 if (gpa == UNMAPPED_GVA)
950                         return X86EMUL_PROPAGATE_FAULT;
951                 pfn = gpa >> PAGE_SHIFT;
952                 page = gfn_to_page(vcpu->kvm, pfn);
953                 if (!page)
954                         return X86EMUL_UNHANDLEABLE;
955                 page_virt = kmap_atomic(page, KM_USER0);
956
957                 memcpy(data, page_virt + offset, tocopy);
958
959                 kunmap_atomic(page_virt, KM_USER0);
960
961                 bytes -= tocopy;
962                 data += tocopy;
963                 addr += tocopy;
964         }
965
966         return X86EMUL_CONTINUE;
967 }
968 EXPORT_SYMBOL_GPL(emulator_read_std);
969
970 static int emulator_write_std(unsigned long addr,
971                               const void *val,
972                               unsigned int bytes,
973                               struct kvm_vcpu *vcpu)
974 {
975         printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
976                addr, bytes);
977         return X86EMUL_UNHANDLEABLE;
978 }
979
980 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
981                                                 gpa_t addr)
982 {
983         /*
984          * Note that its important to have this wrapper function because
985          * in the very near future we will be checking for MMIOs against
986          * the LAPIC as well as the general MMIO bus
987          */
988         return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
989 }
990
991 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
992                                                gpa_t addr)
993 {
994         return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
995 }
996
997 static int emulator_read_emulated(unsigned long addr,
998                                   void *val,
999                                   unsigned int bytes,
1000                                   struct kvm_vcpu *vcpu)
1001 {
1002         struct kvm_io_device *mmio_dev;
1003         gpa_t                 gpa;
1004
1005         if (vcpu->mmio_read_completed) {
1006                 memcpy(val, vcpu->mmio_data, bytes);
1007                 vcpu->mmio_read_completed = 0;
1008                 return X86EMUL_CONTINUE;
1009         } else if (emulator_read_std(addr, val, bytes, vcpu)
1010                    == X86EMUL_CONTINUE)
1011                 return X86EMUL_CONTINUE;
1012
1013         gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1014         if (gpa == UNMAPPED_GVA)
1015                 return X86EMUL_PROPAGATE_FAULT;
1016
1017         /*
1018          * Is this MMIO handled locally?
1019          */
1020         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1021         if (mmio_dev) {
1022                 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1023                 return X86EMUL_CONTINUE;
1024         }
1025
1026         vcpu->mmio_needed = 1;
1027         vcpu->mmio_phys_addr = gpa;
1028         vcpu->mmio_size = bytes;
1029         vcpu->mmio_is_write = 0;
1030
1031         return X86EMUL_UNHANDLEABLE;
1032 }
1033
1034 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1035                                const void *val, int bytes)
1036 {
1037         struct page *page;
1038         void *virt;
1039
1040         if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
1041                 return 0;
1042         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1043         if (!page)
1044                 return 0;
1045         mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
1046         virt = kmap_atomic(page, KM_USER0);
1047         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1048         memcpy(virt + offset_in_page(gpa), val, bytes);
1049         kunmap_atomic(virt, KM_USER0);
1050         return 1;
1051 }
1052
1053 static int emulator_write_emulated_onepage(unsigned long addr,
1054                                            const void *val,
1055                                            unsigned int bytes,
1056                                            struct kvm_vcpu *vcpu)
1057 {
1058         struct kvm_io_device *mmio_dev;
1059         gpa_t                 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1060
1061         if (gpa == UNMAPPED_GVA) {
1062                 kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
1063                 return X86EMUL_PROPAGATE_FAULT;
1064         }
1065
1066         if (emulator_write_phys(vcpu, gpa, val, bytes))
1067                 return X86EMUL_CONTINUE;
1068
1069         /*
1070          * Is this MMIO handled locally?
1071          */
1072         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1073         if (mmio_dev) {
1074                 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1075                 return X86EMUL_CONTINUE;
1076         }
1077
1078         vcpu->mmio_needed = 1;
1079         vcpu->mmio_phys_addr = gpa;
1080         vcpu->mmio_size = bytes;
1081         vcpu->mmio_is_write = 1;
1082         memcpy(vcpu->mmio_data, val, bytes);
1083
1084         return X86EMUL_CONTINUE;
1085 }
1086
1087 int emulator_write_emulated(unsigned long addr,
1088                                    const void *val,
1089                                    unsigned int bytes,
1090                                    struct kvm_vcpu *vcpu)
1091 {
1092         /* Crossing a page boundary? */
1093         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1094                 int rc, now;
1095
1096                 now = -addr & ~PAGE_MASK;
1097                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1098                 if (rc != X86EMUL_CONTINUE)
1099                         return rc;
1100                 addr += now;
1101                 val += now;
1102                 bytes -= now;
1103         }
1104         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1105 }
1106 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1107
1108 static int emulator_cmpxchg_emulated(unsigned long addr,
1109                                      const void *old,
1110                                      const void *new,
1111                                      unsigned int bytes,
1112                                      struct kvm_vcpu *vcpu)
1113 {
1114         static int reported;
1115
1116         if (!reported) {
1117                 reported = 1;
1118                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1119         }
1120         return emulator_write_emulated(addr, new, bytes, vcpu);
1121 }
1122
1123 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1124 {
1125         return kvm_arch_ops->get_segment_base(vcpu, seg);
1126 }
1127
1128 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1129 {
1130         return X86EMUL_CONTINUE;
1131 }
1132
1133 int emulate_clts(struct kvm_vcpu *vcpu)
1134 {
1135         unsigned long cr0;
1136
1137         cr0 = vcpu->cr0 & ~X86_CR0_TS;
1138         kvm_arch_ops->set_cr0(vcpu, cr0);
1139         return X86EMUL_CONTINUE;
1140 }
1141
1142 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1143 {
1144         struct kvm_vcpu *vcpu = ctxt->vcpu;
1145
1146         switch (dr) {
1147         case 0 ... 3:
1148                 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1149                 return X86EMUL_CONTINUE;
1150         default:
1151                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1152                        __FUNCTION__, dr);
1153                 return X86EMUL_UNHANDLEABLE;
1154         }
1155 }
1156
1157 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1158 {
1159         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1160         int exception;
1161
1162         kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1163         if (exception) {
1164                 /* FIXME: better handling */
1165                 return X86EMUL_UNHANDLEABLE;
1166         }
1167         return X86EMUL_CONTINUE;
1168 }
1169
1170 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1171 {
1172         static int reported;
1173         u8 opcodes[4];
1174         unsigned long rip = ctxt->vcpu->rip;
1175         unsigned long rip_linear;
1176
1177         rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1178
1179         if (reported)
1180                 return;
1181
1182         emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt->vcpu);
1183
1184         printk(KERN_ERR "emulation failed but !mmio_needed?"
1185                " rip %lx %02x %02x %02x %02x\n",
1186                rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1187         reported = 1;
1188 }
1189
1190 struct x86_emulate_ops emulate_ops = {
1191         .read_std            = emulator_read_std,
1192         .write_std           = emulator_write_std,
1193         .read_emulated       = emulator_read_emulated,
1194         .write_emulated      = emulator_write_emulated,
1195         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
1196 };
1197
1198 int emulate_instruction(struct kvm_vcpu *vcpu,
1199                         struct kvm_run *run,
1200                         unsigned long cr2,
1201                         u16 error_code)
1202 {
1203         struct x86_emulate_ctxt emulate_ctxt;
1204         int r;
1205         int cs_db, cs_l;
1206
1207         vcpu->mmio_fault_cr2 = cr2;
1208         kvm_arch_ops->cache_regs(vcpu);
1209
1210         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1211
1212         emulate_ctxt.vcpu = vcpu;
1213         emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1214         emulate_ctxt.cr2 = cr2;
1215         emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1216                 ? X86EMUL_MODE_REAL : cs_l
1217                 ? X86EMUL_MODE_PROT64 : cs_db
1218                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1219
1220         if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1221                 emulate_ctxt.cs_base = 0;
1222                 emulate_ctxt.ds_base = 0;
1223                 emulate_ctxt.es_base = 0;
1224                 emulate_ctxt.ss_base = 0;
1225         } else {
1226                 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1227                 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1228                 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1229                 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1230         }
1231
1232         emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1233         emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1234
1235         vcpu->mmio_is_write = 0;
1236         r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1237
1238         if ((r || vcpu->mmio_is_write) && run) {
1239                 run->exit_reason = KVM_EXIT_MMIO;
1240                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1241                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1242                 run->mmio.len = vcpu->mmio_size;
1243                 run->mmio.is_write = vcpu->mmio_is_write;
1244         }
1245
1246         if (r) {
1247                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1248                         return EMULATE_DONE;
1249                 if (!vcpu->mmio_needed) {
1250                         report_emulation_failure(&emulate_ctxt);
1251                         return EMULATE_FAIL;
1252                 }
1253                 return EMULATE_DO_MMIO;
1254         }
1255
1256         kvm_arch_ops->decache_regs(vcpu);
1257         kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1258
1259         if (vcpu->mmio_is_write) {
1260                 vcpu->mmio_needed = 0;
1261                 return EMULATE_DO_MMIO;
1262         }
1263
1264         return EMULATE_DONE;
1265 }
1266 EXPORT_SYMBOL_GPL(emulate_instruction);
1267
1268 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1269 {
1270         if (vcpu->irq_summary)
1271                 return 1;
1272
1273         vcpu->run->exit_reason = KVM_EXIT_HLT;
1274         ++vcpu->stat.halt_exits;
1275         return 0;
1276 }
1277 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1278
1279 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1280 {
1281         unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1282
1283         kvm_arch_ops->cache_regs(vcpu);
1284         ret = -KVM_EINVAL;
1285 #ifdef CONFIG_X86_64
1286         if (is_long_mode(vcpu)) {
1287                 nr = vcpu->regs[VCPU_REGS_RAX];
1288                 a0 = vcpu->regs[VCPU_REGS_RDI];
1289                 a1 = vcpu->regs[VCPU_REGS_RSI];
1290                 a2 = vcpu->regs[VCPU_REGS_RDX];
1291                 a3 = vcpu->regs[VCPU_REGS_RCX];
1292                 a4 = vcpu->regs[VCPU_REGS_R8];
1293                 a5 = vcpu->regs[VCPU_REGS_R9];
1294         } else
1295 #endif
1296         {
1297                 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1298                 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1299                 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1300                 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1301                 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1302                 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1303                 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1304         }
1305         switch (nr) {
1306         default:
1307                 run->hypercall.nr = nr;
1308                 run->hypercall.args[0] = a0;
1309                 run->hypercall.args[1] = a1;
1310                 run->hypercall.args[2] = a2;
1311                 run->hypercall.args[3] = a3;
1312                 run->hypercall.args[4] = a4;
1313                 run->hypercall.args[5] = a5;
1314                 run->hypercall.ret = ret;
1315                 run->hypercall.longmode = is_long_mode(vcpu);
1316                 kvm_arch_ops->decache_regs(vcpu);
1317                 return 0;
1318         }
1319         vcpu->regs[VCPU_REGS_RAX] = ret;
1320         kvm_arch_ops->decache_regs(vcpu);
1321         return 1;
1322 }
1323 EXPORT_SYMBOL_GPL(kvm_hypercall);
1324
1325 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1326 {
1327         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1328 }
1329
1330 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1331 {
1332         struct descriptor_table dt = { limit, base };
1333
1334         kvm_arch_ops->set_gdt(vcpu, &dt);
1335 }
1336
1337 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1338 {
1339         struct descriptor_table dt = { limit, base };
1340
1341         kvm_arch_ops->set_idt(vcpu, &dt);
1342 }
1343
1344 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1345                    unsigned long *rflags)
1346 {
1347         lmsw(vcpu, msw);
1348         *rflags = kvm_arch_ops->get_rflags(vcpu);
1349 }
1350
1351 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1352 {
1353         kvm_arch_ops->decache_cr4_guest_bits(vcpu);
1354         switch (cr) {
1355         case 0:
1356                 return vcpu->cr0;
1357         case 2:
1358                 return vcpu->cr2;
1359         case 3:
1360                 return vcpu->cr3;
1361         case 4:
1362                 return vcpu->cr4;
1363         default:
1364                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1365                 return 0;
1366         }
1367 }
1368
1369 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1370                      unsigned long *rflags)
1371 {
1372         switch (cr) {
1373         case 0:
1374                 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1375                 *rflags = kvm_arch_ops->get_rflags(vcpu);
1376                 break;
1377         case 2:
1378                 vcpu->cr2 = val;
1379                 break;
1380         case 3:
1381                 set_cr3(vcpu, val);
1382                 break;
1383         case 4:
1384                 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1385                 break;
1386         default:
1387                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1388         }
1389 }
1390
1391 /*
1392  * Register the para guest with the host:
1393  */
1394 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1395 {
1396         struct kvm_vcpu_para_state *para_state;
1397         hpa_t para_state_hpa, hypercall_hpa;
1398         struct page *para_state_page;
1399         unsigned char *hypercall;
1400         gpa_t hypercall_gpa;
1401
1402         printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1403         printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1404
1405         /*
1406          * Needs to be page aligned:
1407          */
1408         if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1409                 goto err_gp;
1410
1411         para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1412         printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1413         if (is_error_hpa(para_state_hpa))
1414                 goto err_gp;
1415
1416         mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1417         para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1418         para_state = kmap(para_state_page);
1419
1420         printk(KERN_DEBUG "....  guest version: %d\n", para_state->guest_version);
1421         printk(KERN_DEBUG "....           size: %d\n", para_state->size);
1422
1423         para_state->host_version = KVM_PARA_API_VERSION;
1424         /*
1425          * We cannot support guests that try to register themselves
1426          * with a newer API version than the host supports:
1427          */
1428         if (para_state->guest_version > KVM_PARA_API_VERSION) {
1429                 para_state->ret = -KVM_EINVAL;
1430                 goto err_kunmap_skip;
1431         }
1432
1433         hypercall_gpa = para_state->hypercall_gpa;
1434         hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1435         printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1436         if (is_error_hpa(hypercall_hpa)) {
1437                 para_state->ret = -KVM_EINVAL;
1438                 goto err_kunmap_skip;
1439         }
1440
1441         printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1442         vcpu->para_state_page = para_state_page;
1443         vcpu->para_state_gpa = para_state_gpa;
1444         vcpu->hypercall_gpa = hypercall_gpa;
1445
1446         mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1447         hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1448                                 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1449         kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1450         kunmap_atomic(hypercall, KM_USER1);
1451
1452         para_state->ret = 0;
1453 err_kunmap_skip:
1454         kunmap(para_state_page);
1455         return 0;
1456 err_gp:
1457         return 1;
1458 }
1459
1460 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1461 {
1462         u64 data;
1463
1464         switch (msr) {
1465         case 0xc0010010: /* SYSCFG */
1466         case 0xc0010015: /* HWCR */
1467         case MSR_IA32_PLATFORM_ID:
1468         case MSR_IA32_P5_MC_ADDR:
1469         case MSR_IA32_P5_MC_TYPE:
1470         case MSR_IA32_MC0_CTL:
1471         case MSR_IA32_MCG_STATUS:
1472         case MSR_IA32_MCG_CAP:
1473         case MSR_IA32_MC0_MISC:
1474         case MSR_IA32_MC0_MISC+4:
1475         case MSR_IA32_MC0_MISC+8:
1476         case MSR_IA32_MC0_MISC+12:
1477         case MSR_IA32_MC0_MISC+16:
1478         case MSR_IA32_UCODE_REV:
1479         case MSR_IA32_PERF_STATUS:
1480         case MSR_IA32_EBL_CR_POWERON:
1481                 /* MTRR registers */
1482         case 0xfe:
1483         case 0x200 ... 0x2ff:
1484                 data = 0;
1485                 break;
1486         case 0xcd: /* fsb frequency */
1487                 data = 3;
1488                 break;
1489         case MSR_IA32_APICBASE:
1490                 data = vcpu->apic_base;
1491                 break;
1492         case MSR_IA32_MISC_ENABLE:
1493                 data = vcpu->ia32_misc_enable_msr;
1494                 break;
1495 #ifdef CONFIG_X86_64
1496         case MSR_EFER:
1497                 data = vcpu->shadow_efer;
1498                 break;
1499 #endif
1500         default:
1501                 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1502                 return 1;
1503         }
1504         *pdata = data;
1505         return 0;
1506 }
1507 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1508
1509 /*
1510  * Reads an msr value (of 'msr_index') into 'pdata'.
1511  * Returns 0 on success, non-0 otherwise.
1512  * Assumes vcpu_load() was already called.
1513  */
1514 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1515 {
1516         return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1517 }
1518
1519 #ifdef CONFIG_X86_64
1520
1521 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1522 {
1523         if (efer & EFER_RESERVED_BITS) {
1524                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1525                        efer);
1526                 inject_gp(vcpu);
1527                 return;
1528         }
1529
1530         if (is_paging(vcpu)
1531             && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1532                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1533                 inject_gp(vcpu);
1534                 return;
1535         }
1536
1537         kvm_arch_ops->set_efer(vcpu, efer);
1538
1539         efer &= ~EFER_LMA;
1540         efer |= vcpu->shadow_efer & EFER_LMA;
1541
1542         vcpu->shadow_efer = efer;
1543 }
1544
1545 #endif
1546
1547 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1548 {
1549         switch (msr) {
1550 #ifdef CONFIG_X86_64
1551         case MSR_EFER:
1552                 set_efer(vcpu, data);
1553                 break;
1554 #endif
1555         case MSR_IA32_MC0_STATUS:
1556                 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1557                        __FUNCTION__, data);
1558                 break;
1559         case MSR_IA32_MCG_STATUS:
1560                 printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1561                         __FUNCTION__, data);
1562                 break;
1563         case MSR_IA32_UCODE_REV:
1564         case MSR_IA32_UCODE_WRITE:
1565         case 0x200 ... 0x2ff: /* MTRRs */
1566                 break;
1567         case MSR_IA32_APICBASE:
1568                 vcpu->apic_base = data;
1569                 break;
1570         case MSR_IA32_MISC_ENABLE:
1571                 vcpu->ia32_misc_enable_msr = data;
1572                 break;
1573         /*
1574          * This is the 'probe whether the host is KVM' logic:
1575          */
1576         case MSR_KVM_API_MAGIC:
1577                 return vcpu_register_para(vcpu, data);
1578
1579         default:
1580                 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1581                 return 1;
1582         }
1583         return 0;
1584 }
1585 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1586
1587 /*
1588  * Writes msr value into into the appropriate "register".
1589  * Returns 0 on success, non-0 otherwise.
1590  * Assumes vcpu_load() was already called.
1591  */
1592 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1593 {
1594         return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1595 }
1596
1597 void kvm_resched(struct kvm_vcpu *vcpu)
1598 {
1599         if (!need_resched())
1600                 return;
1601         cond_resched();
1602 }
1603 EXPORT_SYMBOL_GPL(kvm_resched);
1604
1605 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1606 {
1607         int i;
1608         u32 function;
1609         struct kvm_cpuid_entry *e, *best;
1610
1611         kvm_arch_ops->cache_regs(vcpu);
1612         function = vcpu->regs[VCPU_REGS_RAX];
1613         vcpu->regs[VCPU_REGS_RAX] = 0;
1614         vcpu->regs[VCPU_REGS_RBX] = 0;
1615         vcpu->regs[VCPU_REGS_RCX] = 0;
1616         vcpu->regs[VCPU_REGS_RDX] = 0;
1617         best = NULL;
1618         for (i = 0; i < vcpu->cpuid_nent; ++i) {
1619                 e = &vcpu->cpuid_entries[i];
1620                 if (e->function == function) {
1621                         best = e;
1622                         break;
1623                 }
1624                 /*
1625                  * Both basic or both extended?
1626                  */
1627                 if (((e->function ^ function) & 0x80000000) == 0)
1628                         if (!best || e->function > best->function)
1629                                 best = e;
1630         }
1631         if (best) {
1632                 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1633                 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1634                 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1635                 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1636         }
1637         kvm_arch_ops->decache_regs(vcpu);
1638         kvm_arch_ops->skip_emulated_instruction(vcpu);
1639 }
1640 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1641
1642 static int pio_copy_data(struct kvm_vcpu *vcpu)
1643 {
1644         void *p = vcpu->pio_data;
1645         void *q;
1646         unsigned bytes;
1647         int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1648
1649         q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1650                  PAGE_KERNEL);
1651         if (!q) {
1652                 free_pio_guest_pages(vcpu);
1653                 return -ENOMEM;
1654         }
1655         q += vcpu->pio.guest_page_offset;
1656         bytes = vcpu->pio.size * vcpu->pio.cur_count;
1657         if (vcpu->pio.in)
1658                 memcpy(q, p, bytes);
1659         else
1660                 memcpy(p, q, bytes);
1661         q -= vcpu->pio.guest_page_offset;
1662         vunmap(q);
1663         free_pio_guest_pages(vcpu);
1664         return 0;
1665 }
1666
1667 static int complete_pio(struct kvm_vcpu *vcpu)
1668 {
1669         struct kvm_pio_request *io = &vcpu->pio;
1670         long delta;
1671         int r;
1672
1673         kvm_arch_ops->cache_regs(vcpu);
1674
1675         if (!io->string) {
1676                 if (io->in)
1677                         memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1678                                io->size);
1679         } else {
1680                 if (io->in) {
1681                         r = pio_copy_data(vcpu);
1682                         if (r) {
1683                                 kvm_arch_ops->cache_regs(vcpu);
1684                                 return r;
1685                         }
1686                 }
1687
1688                 delta = 1;
1689                 if (io->rep) {
1690                         delta *= io->cur_count;
1691                         /*
1692                          * The size of the register should really depend on
1693                          * current address size.
1694                          */
1695                         vcpu->regs[VCPU_REGS_RCX] -= delta;
1696                 }
1697                 if (io->down)
1698                         delta = -delta;
1699                 delta *= io->size;
1700                 if (io->in)
1701                         vcpu->regs[VCPU_REGS_RDI] += delta;
1702                 else
1703                         vcpu->regs[VCPU_REGS_RSI] += delta;
1704         }
1705
1706         kvm_arch_ops->decache_regs(vcpu);
1707
1708         io->count -= io->cur_count;
1709         io->cur_count = 0;
1710
1711         if (!io->count)
1712                 kvm_arch_ops->skip_emulated_instruction(vcpu);
1713         return 0;
1714 }
1715
1716 static void kernel_pio(struct kvm_io_device *pio_dev,
1717                        struct kvm_vcpu *vcpu,
1718                        void *pd)
1719 {
1720         /* TODO: String I/O for in kernel device */
1721
1722         if (vcpu->pio.in)
1723                 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1724                                   vcpu->pio.size,
1725                                   pd);
1726         else
1727                 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1728                                    vcpu->pio.size,
1729                                    pd);
1730 }
1731
1732 static void pio_string_write(struct kvm_io_device *pio_dev,
1733                              struct kvm_vcpu *vcpu)
1734 {
1735         struct kvm_pio_request *io = &vcpu->pio;
1736         void *pd = vcpu->pio_data;
1737         int i;
1738
1739         for (i = 0; i < io->cur_count; i++) {
1740                 kvm_iodevice_write(pio_dev, io->port,
1741                                    io->size,
1742                                    pd);
1743                 pd += io->size;
1744         }
1745 }
1746
1747 int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1748                   int size, unsigned long count, int string, int down,
1749                   gva_t address, int rep, unsigned port)
1750 {
1751         unsigned now, in_page;
1752         int i, ret = 0;
1753         int nr_pages = 1;
1754         struct page *page;
1755         struct kvm_io_device *pio_dev;
1756
1757         vcpu->run->exit_reason = KVM_EXIT_IO;
1758         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1759         vcpu->run->io.size = size;
1760         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1761         vcpu->run->io.count = count;
1762         vcpu->run->io.port = port;
1763         vcpu->pio.count = count;
1764         vcpu->pio.cur_count = count;
1765         vcpu->pio.size = size;
1766         vcpu->pio.in = in;
1767         vcpu->pio.port = port;
1768         vcpu->pio.string = string;
1769         vcpu->pio.down = down;
1770         vcpu->pio.guest_page_offset = offset_in_page(address);
1771         vcpu->pio.rep = rep;
1772
1773         pio_dev = vcpu_find_pio_dev(vcpu, port);
1774         if (!string) {
1775                 kvm_arch_ops->cache_regs(vcpu);
1776                 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1777                 kvm_arch_ops->decache_regs(vcpu);
1778                 if (pio_dev) {
1779                         kernel_pio(pio_dev, vcpu, vcpu->pio_data);
1780                         complete_pio(vcpu);
1781                         return 1;
1782                 }
1783                 return 0;
1784         }
1785
1786         if (!count) {
1787                 kvm_arch_ops->skip_emulated_instruction(vcpu);
1788                 return 1;
1789         }
1790
1791         now = min(count, PAGE_SIZE / size);
1792
1793         if (!down)
1794                 in_page = PAGE_SIZE - offset_in_page(address);
1795         else
1796                 in_page = offset_in_page(address) + size;
1797         now = min(count, (unsigned long)in_page / size);
1798         if (!now) {
1799                 /*
1800                  * String I/O straddles page boundary.  Pin two guest pages
1801                  * so that we satisfy atomicity constraints.  Do just one
1802                  * transaction to avoid complexity.
1803                  */
1804                 nr_pages = 2;
1805                 now = 1;
1806         }
1807         if (down) {
1808                 /*
1809                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
1810                  */
1811                 printk(KERN_ERR "kvm: guest string pio down\n");
1812                 inject_gp(vcpu);
1813                 return 1;
1814         }
1815         vcpu->run->io.count = now;
1816         vcpu->pio.cur_count = now;
1817
1818         for (i = 0; i < nr_pages; ++i) {
1819                 mutex_lock(&vcpu->kvm->lock);
1820                 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1821                 if (page)
1822                         get_page(page);
1823                 vcpu->pio.guest_pages[i] = page;
1824                 mutex_unlock(&vcpu->kvm->lock);
1825                 if (!page) {
1826                         inject_gp(vcpu);
1827                         free_pio_guest_pages(vcpu);
1828                         return 1;
1829                 }
1830         }
1831
1832         if (!vcpu->pio.in) {
1833                 /* string PIO write */
1834                 ret = pio_copy_data(vcpu);
1835                 if (ret >= 0 && pio_dev) {
1836                         pio_string_write(pio_dev, vcpu);
1837                         complete_pio(vcpu);
1838                         if (vcpu->pio.count == 0)
1839                                 ret = 1;
1840                 }
1841         } else if (pio_dev)
1842                 printk(KERN_ERR "no string pio read support yet, "
1843                        "port %x size %d count %ld\n",
1844                         port, size, count);
1845
1846         return ret;
1847 }
1848 EXPORT_SYMBOL_GPL(kvm_setup_pio);
1849
1850 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1851 {
1852         int r;
1853         sigset_t sigsaved;
1854
1855         vcpu_load(vcpu);
1856
1857         if (vcpu->sigset_active)
1858                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1859
1860         /* re-sync apic's tpr */
1861         vcpu->cr8 = kvm_run->cr8;
1862
1863         if (vcpu->pio.cur_count) {
1864                 r = complete_pio(vcpu);
1865                 if (r)
1866                         goto out;
1867         }
1868
1869         if (vcpu->mmio_needed) {
1870                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1871                 vcpu->mmio_read_completed = 1;
1872                 vcpu->mmio_needed = 0;
1873                 r = emulate_instruction(vcpu, kvm_run,
1874                                         vcpu->mmio_fault_cr2, 0);
1875                 if (r == EMULATE_DO_MMIO) {
1876                         /*
1877                          * Read-modify-write.  Back to userspace.
1878                          */
1879                         r = 0;
1880                         goto out;
1881                 }
1882         }
1883
1884         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
1885                 kvm_arch_ops->cache_regs(vcpu);
1886                 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
1887                 kvm_arch_ops->decache_regs(vcpu);
1888         }
1889
1890         r = kvm_arch_ops->run(vcpu, kvm_run);
1891
1892 out:
1893         if (vcpu->sigset_active)
1894                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1895
1896         vcpu_put(vcpu);
1897         return r;
1898 }
1899
1900 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
1901                                    struct kvm_regs *regs)
1902 {
1903         vcpu_load(vcpu);
1904
1905         kvm_arch_ops->cache_regs(vcpu);
1906
1907         regs->rax = vcpu->regs[VCPU_REGS_RAX];
1908         regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1909         regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1910         regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1911         regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1912         regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1913         regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1914         regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1915 #ifdef CONFIG_X86_64
1916         regs->r8 = vcpu->regs[VCPU_REGS_R8];
1917         regs->r9 = vcpu->regs[VCPU_REGS_R9];
1918         regs->r10 = vcpu->regs[VCPU_REGS_R10];
1919         regs->r11 = vcpu->regs[VCPU_REGS_R11];
1920         regs->r12 = vcpu->regs[VCPU_REGS_R12];
1921         regs->r13 = vcpu->regs[VCPU_REGS_R13];
1922         regs->r14 = vcpu->regs[VCPU_REGS_R14];
1923         regs->r15 = vcpu->regs[VCPU_REGS_R15];
1924 #endif
1925
1926         regs->rip = vcpu->rip;
1927         regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1928
1929         /*
1930          * Don't leak debug flags in case they were set for guest debugging
1931          */
1932         if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1933                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1934
1935         vcpu_put(vcpu);
1936
1937         return 0;
1938 }
1939
1940 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
1941                                    struct kvm_regs *regs)
1942 {
1943         vcpu_load(vcpu);
1944
1945         vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1946         vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1947         vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1948         vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1949         vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1950         vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1951         vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1952         vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1953 #ifdef CONFIG_X86_64
1954         vcpu->regs[VCPU_REGS_R8] = regs->r8;
1955         vcpu->regs[VCPU_REGS_R9] = regs->r9;
1956         vcpu->regs[VCPU_REGS_R10] = regs->r10;
1957         vcpu->regs[VCPU_REGS_R11] = regs->r11;
1958         vcpu->regs[VCPU_REGS_R12] = regs->r12;
1959         vcpu->regs[VCPU_REGS_R13] = regs->r13;
1960         vcpu->regs[VCPU_REGS_R14] = regs->r14;
1961         vcpu->regs[VCPU_REGS_R15] = regs->r15;
1962 #endif
1963
1964         vcpu->rip = regs->rip;
1965         kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1966
1967         kvm_arch_ops->decache_regs(vcpu);
1968
1969         vcpu_put(vcpu);
1970
1971         return 0;
1972 }
1973
1974 static void get_segment(struct kvm_vcpu *vcpu,
1975                         struct kvm_segment *var, int seg)
1976 {
1977         return kvm_arch_ops->get_segment(vcpu, var, seg);
1978 }
1979
1980 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1981                                     struct kvm_sregs *sregs)
1982 {
1983         struct descriptor_table dt;
1984
1985         vcpu_load(vcpu);
1986
1987         get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1988         get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1989         get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1990         get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1991         get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1992         get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1993
1994         get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1995         get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1996
1997         kvm_arch_ops->get_idt(vcpu, &dt);
1998         sregs->idt.limit = dt.limit;
1999         sregs->idt.base = dt.base;
2000         kvm_arch_ops->get_gdt(vcpu, &dt);
2001         sregs->gdt.limit = dt.limit;
2002         sregs->gdt.base = dt.base;
2003
2004         kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2005         sregs->cr0 = vcpu->cr0;
2006         sregs->cr2 = vcpu->cr2;
2007         sregs->cr3 = vcpu->cr3;
2008         sregs->cr4 = vcpu->cr4;
2009         sregs->cr8 = vcpu->cr8;
2010         sregs->efer = vcpu->shadow_efer;
2011         sregs->apic_base = vcpu->apic_base;
2012
2013         memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2014                sizeof sregs->interrupt_bitmap);
2015
2016         vcpu_put(vcpu);
2017
2018         return 0;
2019 }
2020
2021 static void set_segment(struct kvm_vcpu *vcpu,
2022                         struct kvm_segment *var, int seg)
2023 {
2024         return kvm_arch_ops->set_segment(vcpu, var, seg);
2025 }
2026
2027 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2028                                     struct kvm_sregs *sregs)
2029 {
2030         int mmu_reset_needed = 0;
2031         int i;
2032         struct descriptor_table dt;
2033
2034         vcpu_load(vcpu);
2035
2036         dt.limit = sregs->idt.limit;
2037         dt.base = sregs->idt.base;
2038         kvm_arch_ops->set_idt(vcpu, &dt);
2039         dt.limit = sregs->gdt.limit;
2040         dt.base = sregs->gdt.base;
2041         kvm_arch_ops->set_gdt(vcpu, &dt);
2042
2043         vcpu->cr2 = sregs->cr2;
2044         mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2045         vcpu->cr3 = sregs->cr3;
2046
2047         vcpu->cr8 = sregs->cr8;
2048
2049         mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2050 #ifdef CONFIG_X86_64
2051         kvm_arch_ops->set_efer(vcpu, sregs->efer);
2052 #endif
2053         vcpu->apic_base = sregs->apic_base;
2054
2055         kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2056
2057         mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2058         kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
2059
2060         mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2061         kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
2062         if (!is_long_mode(vcpu) && is_pae(vcpu))
2063                 load_pdptrs(vcpu, vcpu->cr3);
2064
2065         if (mmu_reset_needed)
2066                 kvm_mmu_reset_context(vcpu);
2067
2068         memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2069                sizeof vcpu->irq_pending);
2070         vcpu->irq_summary = 0;
2071         for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
2072                 if (vcpu->irq_pending[i])
2073                         __set_bit(i, &vcpu->irq_summary);
2074
2075         set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2076         set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2077         set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2078         set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2079         set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2080         set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2081
2082         set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2083         set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2084
2085         vcpu_put(vcpu);
2086
2087         return 0;
2088 }
2089
2090 /*
2091  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2092  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2093  *
2094  * This list is modified at module load time to reflect the
2095  * capabilities of the host cpu.
2096  */
2097 static u32 msrs_to_save[] = {
2098         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2099         MSR_K6_STAR,
2100 #ifdef CONFIG_X86_64
2101         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2102 #endif
2103         MSR_IA32_TIME_STAMP_COUNTER,
2104 };
2105
2106 static unsigned num_msrs_to_save;
2107
2108 static u32 emulated_msrs[] = {
2109         MSR_IA32_MISC_ENABLE,
2110 };
2111
2112 static __init void kvm_init_msr_list(void)
2113 {
2114         u32 dummy[2];
2115         unsigned i, j;
2116
2117         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2118                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2119                         continue;
2120                 if (j < i)
2121                         msrs_to_save[j] = msrs_to_save[i];
2122                 j++;
2123         }
2124         num_msrs_to_save = j;
2125 }
2126
2127 /*
2128  * Adapt set_msr() to msr_io()'s calling convention
2129  */
2130 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2131 {
2132         return kvm_set_msr(vcpu, index, *data);
2133 }
2134
2135 /*
2136  * Read or write a bunch of msrs. All parameters are kernel addresses.
2137  *
2138  * @return number of msrs set successfully.
2139  */
2140 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2141                     struct kvm_msr_entry *entries,
2142                     int (*do_msr)(struct kvm_vcpu *vcpu,
2143                                   unsigned index, u64 *data))
2144 {
2145         int i;
2146
2147         vcpu_load(vcpu);
2148
2149         for (i = 0; i < msrs->nmsrs; ++i)
2150                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2151                         break;
2152
2153         vcpu_put(vcpu);
2154
2155         return i;
2156 }
2157
2158 /*
2159  * Read or write a bunch of msrs. Parameters are user addresses.
2160  *
2161  * @return number of msrs set successfully.
2162  */
2163 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2164                   int (*do_msr)(struct kvm_vcpu *vcpu,
2165                                 unsigned index, u64 *data),
2166                   int writeback)
2167 {
2168         struct kvm_msrs msrs;
2169         struct kvm_msr_entry *entries;
2170         int r, n;
2171         unsigned size;
2172
2173         r = -EFAULT;
2174         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2175                 goto out;
2176
2177         r = -E2BIG;
2178         if (msrs.nmsrs >= MAX_IO_MSRS)
2179                 goto out;
2180
2181         r = -ENOMEM;
2182         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2183         entries = vmalloc(size);
2184         if (!entries)
2185                 goto out;
2186
2187         r = -EFAULT;
2188         if (copy_from_user(entries, user_msrs->entries, size))
2189                 goto out_free;
2190
2191         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2192         if (r < 0)
2193                 goto out_free;
2194
2195         r = -EFAULT;
2196         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2197                 goto out_free;
2198
2199         r = n;
2200
2201 out_free:
2202         vfree(entries);
2203 out:
2204         return r;
2205 }
2206
2207 /*
2208  * Translate a guest virtual address to a guest physical address.
2209  */
2210 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2211                                     struct kvm_translation *tr)
2212 {
2213         unsigned long vaddr = tr->linear_address;
2214         gpa_t gpa;
2215
2216         vcpu_load(vcpu);
2217         mutex_lock(&vcpu->kvm->lock);
2218         gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2219         tr->physical_address = gpa;
2220         tr->valid = gpa != UNMAPPED_GVA;
2221         tr->writeable = 1;
2222         tr->usermode = 0;
2223         mutex_unlock(&vcpu->kvm->lock);
2224         vcpu_put(vcpu);
2225
2226         return 0;
2227 }
2228
2229 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2230                                     struct kvm_interrupt *irq)
2231 {
2232         if (irq->irq < 0 || irq->irq >= 256)
2233                 return -EINVAL;
2234         vcpu_load(vcpu);
2235
2236         set_bit(irq->irq, vcpu->irq_pending);
2237         set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2238
2239         vcpu_put(vcpu);
2240
2241         return 0;
2242 }
2243
2244 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2245                                       struct kvm_debug_guest *dbg)
2246 {
2247         int r;
2248
2249         vcpu_load(vcpu);
2250
2251         r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
2252
2253         vcpu_put(vcpu);
2254
2255         return r;
2256 }
2257
2258 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2259                                     unsigned long address,
2260                                     int *type)
2261 {
2262         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2263         unsigned long pgoff;
2264         struct page *page;
2265
2266         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2267         if (pgoff == 0)
2268                 page = virt_to_page(vcpu->run);
2269         else if (pgoff == KVM_PIO_PAGE_OFFSET)
2270                 page = virt_to_page(vcpu->pio_data);
2271         else
2272                 return NOPAGE_SIGBUS;
2273         get_page(page);
2274         if (type != NULL)
2275                 *type = VM_FAULT_MINOR;
2276
2277         return page;
2278 }
2279
2280 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2281         .nopage = kvm_vcpu_nopage,
2282 };
2283
2284 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2285 {
2286         vma->vm_ops = &kvm_vcpu_vm_ops;
2287         return 0;
2288 }
2289
2290 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2291 {
2292         struct kvm_vcpu *vcpu = filp->private_data;
2293
2294         fput(vcpu->kvm->filp);
2295         return 0;
2296 }
2297
2298 static struct file_operations kvm_vcpu_fops = {
2299         .release        = kvm_vcpu_release,
2300         .unlocked_ioctl = kvm_vcpu_ioctl,
2301         .compat_ioctl   = kvm_vcpu_ioctl,
2302         .mmap           = kvm_vcpu_mmap,
2303 };
2304
2305 /*
2306  * Allocates an inode for the vcpu.
2307  */
2308 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2309 {
2310         int fd, r;
2311         struct inode *inode;
2312         struct file *file;
2313
2314         r = anon_inode_getfd(&fd, &inode, &file,
2315                              "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2316         if (r)
2317                 return r;
2318         atomic_inc(&vcpu->kvm->filp->f_count);
2319         return fd;
2320 }
2321
2322 /*
2323  * Creates some virtual cpus.  Good luck creating more than one.
2324  */
2325 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2326 {
2327         int r;
2328         struct kvm_vcpu *vcpu;
2329
2330         if (!valid_vcpu(n))
2331                 return -EINVAL;
2332
2333         vcpu = kvm_arch_ops->vcpu_create(kvm, n);
2334         if (IS_ERR(vcpu))
2335                 return PTR_ERR(vcpu);
2336
2337         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2338
2339         /* We do fxsave: this must be aligned. */
2340         BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
2341
2342         vcpu_load(vcpu);
2343         r = kvm_mmu_setup(vcpu);
2344         vcpu_put(vcpu);
2345         if (r < 0)
2346                 goto free_vcpu;
2347
2348         mutex_lock(&kvm->lock);
2349         if (kvm->vcpus[n]) {
2350                 r = -EEXIST;
2351                 mutex_unlock(&kvm->lock);
2352                 goto mmu_unload;
2353         }
2354         kvm->vcpus[n] = vcpu;
2355         mutex_unlock(&kvm->lock);
2356
2357         /* Now it's all set up, let userspace reach it */
2358         r = create_vcpu_fd(vcpu);
2359         if (r < 0)
2360                 goto unlink;
2361         return r;
2362
2363 unlink:
2364         mutex_lock(&kvm->lock);
2365         kvm->vcpus[n] = NULL;
2366         mutex_unlock(&kvm->lock);
2367
2368 mmu_unload:
2369         vcpu_load(vcpu);
2370         kvm_mmu_unload(vcpu);
2371         vcpu_put(vcpu);
2372
2373 free_vcpu:
2374         kvm_arch_ops->vcpu_free(vcpu);
2375         return r;
2376 }
2377
2378 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2379 {
2380         u64 efer;
2381         int i;
2382         struct kvm_cpuid_entry *e, *entry;
2383
2384         rdmsrl(MSR_EFER, efer);
2385         entry = NULL;
2386         for (i = 0; i < vcpu->cpuid_nent; ++i) {
2387                 e = &vcpu->cpuid_entries[i];
2388                 if (e->function == 0x80000001) {
2389                         entry = e;
2390                         break;
2391                 }
2392         }
2393         if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
2394                 entry->edx &= ~(1 << 20);
2395                 printk(KERN_INFO "kvm: guest NX capability removed\n");
2396         }
2397 }
2398
2399 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2400                                     struct kvm_cpuid *cpuid,
2401                                     struct kvm_cpuid_entry __user *entries)
2402 {
2403         int r;
2404
2405         r = -E2BIG;
2406         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2407                 goto out;
2408         r = -EFAULT;
2409         if (copy_from_user(&vcpu->cpuid_entries, entries,
2410                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2411                 goto out;
2412         vcpu->cpuid_nent = cpuid->nent;
2413         cpuid_fix_nx_cap(vcpu);
2414         return 0;
2415
2416 out:
2417         return r;
2418 }
2419
2420 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2421 {
2422         if (sigset) {
2423                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2424                 vcpu->sigset_active = 1;
2425                 vcpu->sigset = *sigset;
2426         } else
2427                 vcpu->sigset_active = 0;
2428         return 0;
2429 }
2430
2431 /*
2432  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
2433  * we have asm/x86/processor.h
2434  */
2435 struct fxsave {
2436         u16     cwd;
2437         u16     swd;
2438         u16     twd;
2439         u16     fop;
2440         u64     rip;
2441         u64     rdp;
2442         u32     mxcsr;
2443         u32     mxcsr_mask;
2444         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
2445 #ifdef CONFIG_X86_64
2446         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
2447 #else
2448         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
2449 #endif
2450 };
2451
2452 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2453 {
2454         struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2455
2456         vcpu_load(vcpu);
2457
2458         memcpy(fpu->fpr, fxsave->st_space, 128);
2459         fpu->fcw = fxsave->cwd;
2460         fpu->fsw = fxsave->swd;
2461         fpu->ftwx = fxsave->twd;
2462         fpu->last_opcode = fxsave->fop;
2463         fpu->last_ip = fxsave->rip;
2464         fpu->last_dp = fxsave->rdp;
2465         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2466
2467         vcpu_put(vcpu);
2468
2469         return 0;
2470 }
2471
2472 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2473 {
2474         struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2475
2476         vcpu_load(vcpu);
2477
2478         memcpy(fxsave->st_space, fpu->fpr, 128);
2479         fxsave->cwd = fpu->fcw;
2480         fxsave->swd = fpu->fsw;
2481         fxsave->twd = fpu->ftwx;
2482         fxsave->fop = fpu->last_opcode;
2483         fxsave->rip = fpu->last_ip;
2484         fxsave->rdp = fpu->last_dp;
2485         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2486
2487         vcpu_put(vcpu);
2488
2489         return 0;
2490 }
2491
2492 static long kvm_vcpu_ioctl(struct file *filp,
2493                            unsigned int ioctl, unsigned long arg)
2494 {
2495         struct kvm_vcpu *vcpu = filp->private_data;
2496         void __user *argp = (void __user *)arg;
2497         int r = -EINVAL;
2498
2499         switch (ioctl) {
2500         case KVM_RUN:
2501                 r = -EINVAL;
2502                 if (arg)
2503                         goto out;
2504                 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2505                 break;
2506         case KVM_GET_REGS: {
2507                 struct kvm_regs kvm_regs;
2508
2509                 memset(&kvm_regs, 0, sizeof kvm_regs);
2510                 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2511                 if (r)
2512                         goto out;
2513                 r = -EFAULT;
2514                 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2515                         goto out;
2516                 r = 0;
2517                 break;
2518         }
2519         case KVM_SET_REGS: {
2520                 struct kvm_regs kvm_regs;
2521
2522                 r = -EFAULT;
2523                 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2524                         goto out;
2525                 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2526                 if (r)
2527                         goto out;
2528                 r = 0;
2529                 break;
2530         }
2531         case KVM_GET_SREGS: {
2532                 struct kvm_sregs kvm_sregs;
2533
2534                 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2535                 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2536                 if (r)
2537                         goto out;
2538                 r = -EFAULT;
2539                 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2540                         goto out;
2541                 r = 0;
2542                 break;
2543         }
2544         case KVM_SET_SREGS: {
2545                 struct kvm_sregs kvm_sregs;
2546
2547                 r = -EFAULT;
2548                 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2549                         goto out;
2550                 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2551                 if (r)
2552                         goto out;
2553                 r = 0;
2554                 break;
2555         }
2556         case KVM_TRANSLATE: {
2557                 struct kvm_translation tr;
2558
2559                 r = -EFAULT;
2560                 if (copy_from_user(&tr, argp, sizeof tr))
2561                         goto out;
2562                 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2563                 if (r)
2564                         goto out;
2565                 r = -EFAULT;
2566                 if (copy_to_user(argp, &tr, sizeof tr))
2567                         goto out;
2568                 r = 0;
2569                 break;
2570         }
2571         case KVM_INTERRUPT: {
2572                 struct kvm_interrupt irq;
2573
2574                 r = -EFAULT;
2575                 if (copy_from_user(&irq, argp, sizeof irq))
2576                         goto out;
2577                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2578                 if (r)
2579                         goto out;
2580                 r = 0;
2581                 break;
2582         }
2583         case KVM_DEBUG_GUEST: {
2584                 struct kvm_debug_guest dbg;
2585
2586                 r = -EFAULT;
2587                 if (copy_from_user(&dbg, argp, sizeof dbg))
2588                         goto out;
2589                 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2590                 if (r)
2591                         goto out;
2592                 r = 0;
2593                 break;
2594         }
2595         case KVM_GET_MSRS:
2596                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2597                 break;
2598         case KVM_SET_MSRS:
2599                 r = msr_io(vcpu, argp, do_set_msr, 0);
2600                 break;
2601         case KVM_SET_CPUID: {
2602                 struct kvm_cpuid __user *cpuid_arg = argp;
2603                 struct kvm_cpuid cpuid;
2604
2605                 r = -EFAULT;
2606                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2607                         goto out;
2608                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2609                 if (r)
2610                         goto out;
2611                 break;
2612         }
2613         case KVM_SET_SIGNAL_MASK: {
2614                 struct kvm_signal_mask __user *sigmask_arg = argp;
2615                 struct kvm_signal_mask kvm_sigmask;
2616                 sigset_t sigset, *p;
2617
2618                 p = NULL;
2619                 if (argp) {
2620                         r = -EFAULT;
2621                         if (copy_from_user(&kvm_sigmask, argp,
2622                                            sizeof kvm_sigmask))
2623                                 goto out;
2624                         r = -EINVAL;
2625                         if (kvm_sigmask.len != sizeof sigset)
2626                                 goto out;
2627                         r = -EFAULT;
2628                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2629                                            sizeof sigset))
2630                                 goto out;
2631                         p = &sigset;
2632                 }
2633                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2634                 break;
2635         }
2636         case KVM_GET_FPU: {
2637                 struct kvm_fpu fpu;
2638
2639                 memset(&fpu, 0, sizeof fpu);
2640                 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2641                 if (r)
2642                         goto out;
2643                 r = -EFAULT;
2644                 if (copy_to_user(argp, &fpu, sizeof fpu))
2645                         goto out;
2646                 r = 0;
2647                 break;
2648         }
2649         case KVM_SET_FPU: {
2650                 struct kvm_fpu fpu;
2651
2652                 r = -EFAULT;
2653                 if (copy_from_user(&fpu, argp, sizeof fpu))
2654                         goto out;
2655                 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2656                 if (r)
2657                         goto out;
2658                 r = 0;
2659                 break;
2660         }
2661         default:
2662                 ;
2663         }
2664 out:
2665         return r;
2666 }
2667
2668 static long kvm_vm_ioctl(struct file *filp,
2669                            unsigned int ioctl, unsigned long arg)
2670 {
2671         struct kvm *kvm = filp->private_data;
2672         void __user *argp = (void __user *)arg;
2673         int r = -EINVAL;
2674
2675         switch (ioctl) {
2676         case KVM_CREATE_VCPU:
2677                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2678                 if (r < 0)
2679                         goto out;
2680                 break;
2681         case KVM_SET_MEMORY_REGION: {
2682                 struct kvm_memory_region kvm_mem;
2683
2684                 r = -EFAULT;
2685                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2686                         goto out;
2687                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2688                 if (r)
2689                         goto out;
2690                 break;
2691         }
2692         case KVM_GET_DIRTY_LOG: {
2693                 struct kvm_dirty_log log;
2694
2695                 r = -EFAULT;
2696                 if (copy_from_user(&log, argp, sizeof log))
2697                         goto out;
2698                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2699                 if (r)
2700                         goto out;
2701                 break;
2702         }
2703         case KVM_SET_MEMORY_ALIAS: {
2704                 struct kvm_memory_alias alias;
2705
2706                 r = -EFAULT;
2707                 if (copy_from_user(&alias, argp, sizeof alias))
2708                         goto out;
2709                 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
2710                 if (r)
2711                         goto out;
2712                 break;
2713         }
2714         default:
2715                 ;
2716         }
2717 out:
2718         return r;
2719 }
2720
2721 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
2722                                   unsigned long address,
2723                                   int *type)
2724 {
2725         struct kvm *kvm = vma->vm_file->private_data;
2726         unsigned long pgoff;
2727         struct page *page;
2728
2729         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2730         page = gfn_to_page(kvm, pgoff);
2731         if (!page)
2732                 return NOPAGE_SIGBUS;
2733         get_page(page);
2734         if (type != NULL)
2735                 *type = VM_FAULT_MINOR;
2736
2737         return page;
2738 }
2739
2740 static struct vm_operations_struct kvm_vm_vm_ops = {
2741         .nopage = kvm_vm_nopage,
2742 };
2743
2744 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2745 {
2746         vma->vm_ops = &kvm_vm_vm_ops;
2747         return 0;
2748 }
2749
2750 static struct file_operations kvm_vm_fops = {
2751         .release        = kvm_vm_release,
2752         .unlocked_ioctl = kvm_vm_ioctl,
2753         .compat_ioctl   = kvm_vm_ioctl,
2754         .mmap           = kvm_vm_mmap,
2755 };
2756
2757 static int kvm_dev_ioctl_create_vm(void)
2758 {
2759         int fd, r;
2760         struct inode *inode;
2761         struct file *file;
2762         struct kvm *kvm;
2763
2764         kvm = kvm_create_vm();
2765         if (IS_ERR(kvm))
2766                 return PTR_ERR(kvm);
2767         r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
2768         if (r) {
2769                 kvm_destroy_vm(kvm);
2770                 return r;
2771         }
2772
2773         kvm->filp = file;
2774
2775         return fd;
2776 }
2777
2778 static long kvm_dev_ioctl(struct file *filp,
2779                           unsigned int ioctl, unsigned long arg)
2780 {
2781         void __user *argp = (void __user *)arg;
2782         long r = -EINVAL;
2783
2784         switch (ioctl) {
2785         case KVM_GET_API_VERSION:
2786                 r = -EINVAL;
2787                 if (arg)
2788                         goto out;
2789                 r = KVM_API_VERSION;
2790                 break;
2791         case KVM_CREATE_VM:
2792                 r = -EINVAL;
2793                 if (arg)
2794                         goto out;
2795                 r = kvm_dev_ioctl_create_vm();
2796                 break;
2797         case KVM_GET_MSR_INDEX_LIST: {
2798                 struct kvm_msr_list __user *user_msr_list = argp;
2799                 struct kvm_msr_list msr_list;
2800                 unsigned n;
2801
2802                 r = -EFAULT;
2803                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2804                         goto out;
2805                 n = msr_list.nmsrs;
2806                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2807                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2808                         goto out;
2809                 r = -E2BIG;
2810                 if (n < num_msrs_to_save)
2811                         goto out;
2812                 r = -EFAULT;
2813                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2814                                  num_msrs_to_save * sizeof(u32)))
2815                         goto out;
2816                 if (copy_to_user(user_msr_list->indices
2817                                  + num_msrs_to_save * sizeof(u32),
2818                                  &emulated_msrs,
2819                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2820                         goto out;
2821                 r = 0;
2822                 break;
2823         }
2824         case KVM_CHECK_EXTENSION:
2825                 /*
2826                  * No extensions defined at present.
2827                  */
2828                 r = 0;
2829                 break;
2830         case KVM_GET_VCPU_MMAP_SIZE:
2831                 r = -EINVAL;
2832                 if (arg)
2833                         goto out;
2834                 r = 2 * PAGE_SIZE;
2835                 break;
2836         default:
2837                 ;
2838         }
2839 out:
2840         return r;
2841 }
2842
2843 static struct file_operations kvm_chardev_ops = {
2844         .open           = kvm_dev_open,
2845         .release        = kvm_dev_release,
2846         .unlocked_ioctl = kvm_dev_ioctl,
2847         .compat_ioctl   = kvm_dev_ioctl,
2848 };
2849
2850 static struct miscdevice kvm_dev = {
2851         KVM_MINOR,
2852         "kvm",
2853         &kvm_chardev_ops,
2854 };
2855
2856 /*
2857  * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2858  * cached on it.
2859  */
2860 static void decache_vcpus_on_cpu(int cpu)
2861 {
2862         struct kvm *vm;
2863         struct kvm_vcpu *vcpu;
2864         int i;
2865
2866         spin_lock(&kvm_lock);
2867         list_for_each_entry(vm, &vm_list, vm_list)
2868                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2869                         vcpu = vm->vcpus[i];
2870                         if (!vcpu)
2871                                 continue;
2872                         /*
2873                          * If the vcpu is locked, then it is running on some
2874                          * other cpu and therefore it is not cached on the
2875                          * cpu in question.
2876                          *
2877                          * If it's not locked, check the last cpu it executed
2878                          * on.
2879                          */
2880                         if (mutex_trylock(&vcpu->mutex)) {
2881                                 if (vcpu->cpu == cpu) {
2882                                         kvm_arch_ops->vcpu_decache(vcpu);
2883                                         vcpu->cpu = -1;
2884                                 }
2885                                 mutex_unlock(&vcpu->mutex);
2886                         }
2887                 }
2888         spin_unlock(&kvm_lock);
2889 }
2890
2891 static void hardware_enable(void *junk)
2892 {
2893         int cpu = raw_smp_processor_id();
2894
2895         if (cpu_isset(cpu, cpus_hardware_enabled))
2896                 return;
2897         cpu_set(cpu, cpus_hardware_enabled);
2898         kvm_arch_ops->hardware_enable(NULL);
2899 }
2900
2901 static void hardware_disable(void *junk)
2902 {
2903         int cpu = raw_smp_processor_id();
2904
2905         if (!cpu_isset(cpu, cpus_hardware_enabled))
2906                 return;
2907         cpu_clear(cpu, cpus_hardware_enabled);
2908         decache_vcpus_on_cpu(cpu);
2909         kvm_arch_ops->hardware_disable(NULL);
2910 }
2911
2912 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2913                            void *v)
2914 {
2915         int cpu = (long)v;
2916
2917         switch (val) {
2918         case CPU_DYING:
2919         case CPU_DYING_FROZEN:
2920                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2921                        cpu);
2922                 hardware_disable(NULL);
2923                 break;
2924         case CPU_UP_CANCELED:
2925         case CPU_UP_CANCELED_FROZEN:
2926                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2927                        cpu);
2928                 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
2929                 break;
2930         case CPU_ONLINE:
2931         case CPU_ONLINE_FROZEN:
2932                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2933                        cpu);
2934                 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
2935                 break;
2936         }
2937         return NOTIFY_OK;
2938 }
2939
2940 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2941                        void *v)
2942 {
2943         if (val == SYS_RESTART) {
2944                 /*
2945                  * Some (well, at least mine) BIOSes hang on reboot if
2946                  * in vmx root mode.
2947                  */
2948                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2949                 on_each_cpu(hardware_disable, NULL, 0, 1);
2950         }
2951         return NOTIFY_OK;
2952 }
2953
2954 static struct notifier_block kvm_reboot_notifier = {
2955         .notifier_call = kvm_reboot,
2956         .priority = 0,
2957 };
2958
2959 void kvm_io_bus_init(struct kvm_io_bus *bus)
2960 {
2961         memset(bus, 0, sizeof(*bus));
2962 }
2963
2964 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2965 {
2966         int i;
2967
2968         for (i = 0; i < bus->dev_count; i++) {
2969                 struct kvm_io_device *pos = bus->devs[i];
2970
2971                 kvm_iodevice_destructor(pos);
2972         }
2973 }
2974
2975 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
2976 {
2977         int i;
2978
2979         for (i = 0; i < bus->dev_count; i++) {
2980                 struct kvm_io_device *pos = bus->devs[i];
2981
2982                 if (pos->in_range(pos, addr))
2983                         return pos;
2984         }
2985
2986         return NULL;
2987 }
2988
2989 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2990 {
2991         BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2992
2993         bus->devs[bus->dev_count++] = dev;
2994 }
2995
2996 static struct notifier_block kvm_cpu_notifier = {
2997         .notifier_call = kvm_cpu_hotplug,
2998         .priority = 20, /* must be > scheduler priority */
2999 };
3000
3001 static u64 stat_get(void *_offset)
3002 {
3003         unsigned offset = (long)_offset;
3004         u64 total = 0;
3005         struct kvm *kvm;
3006         struct kvm_vcpu *vcpu;
3007         int i;
3008
3009         spin_lock(&kvm_lock);
3010         list_for_each_entry(kvm, &vm_list, vm_list)
3011                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3012                         vcpu = kvm->vcpus[i];
3013                         if (vcpu)
3014                                 total += *(u32 *)((void *)vcpu + offset);
3015                 }
3016         spin_unlock(&kvm_lock);
3017         return total;
3018 }
3019
3020 static void stat_set(void *offset, u64 val)
3021 {
3022 }
3023
3024 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
3025
3026 static __init void kvm_init_debug(void)
3027 {
3028         struct kvm_stats_debugfs_item *p;
3029
3030         debugfs_dir = debugfs_create_dir("kvm", NULL);
3031         for (p = debugfs_entries; p->name; ++p)
3032                 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3033                                                 (void *)(long)p->offset,
3034                                                 &stat_fops);
3035 }
3036
3037 static void kvm_exit_debug(void)
3038 {
3039         struct kvm_stats_debugfs_item *p;
3040
3041         for (p = debugfs_entries; p->name; ++p)
3042                 debugfs_remove(p->dentry);
3043         debugfs_remove(debugfs_dir);
3044 }
3045
3046 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3047 {
3048         hardware_disable(NULL);
3049         return 0;
3050 }
3051
3052 static int kvm_resume(struct sys_device *dev)
3053 {
3054         hardware_enable(NULL);
3055         return 0;
3056 }
3057
3058 static struct sysdev_class kvm_sysdev_class = {
3059         set_kset_name("kvm"),
3060         .suspend = kvm_suspend,
3061         .resume = kvm_resume,
3062 };
3063
3064 static struct sys_device kvm_sysdev = {
3065         .id = 0,
3066         .cls = &kvm_sysdev_class,
3067 };
3068
3069 hpa_t bad_page_address;
3070
3071 static inline
3072 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3073 {
3074         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3075 }
3076
3077 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3078 {
3079         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3080
3081         kvm_arch_ops->vcpu_load(vcpu, cpu);
3082 }
3083
3084 static void kvm_sched_out(struct preempt_notifier *pn,
3085                           struct task_struct *next)
3086 {
3087         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3088
3089         kvm_arch_ops->vcpu_put(vcpu);
3090 }
3091
3092 int kvm_init_arch(struct kvm_arch_ops *ops, unsigned int vcpu_size,
3093                   struct module *module)
3094 {
3095         int r;
3096         int cpu;
3097
3098         if (kvm_arch_ops) {
3099                 printk(KERN_ERR "kvm: already loaded the other module\n");
3100                 return -EEXIST;
3101         }
3102
3103         if (!ops->cpu_has_kvm_support()) {
3104                 printk(KERN_ERR "kvm: no hardware support\n");
3105                 return -EOPNOTSUPP;
3106         }
3107         if (ops->disabled_by_bios()) {
3108                 printk(KERN_ERR "kvm: disabled by bios\n");
3109                 return -EOPNOTSUPP;
3110         }
3111
3112         kvm_arch_ops = ops;
3113
3114         r = kvm_arch_ops->hardware_setup();
3115         if (r < 0)
3116                 goto out;
3117
3118         for_each_online_cpu(cpu) {
3119                 smp_call_function_single(cpu,
3120                                 kvm_arch_ops->check_processor_compatibility,
3121                                 &r, 0, 1);
3122                 if (r < 0)
3123                         goto out_free_0;
3124         }
3125
3126         on_each_cpu(hardware_enable, NULL, 0, 1);
3127         r = register_cpu_notifier(&kvm_cpu_notifier);
3128         if (r)
3129                 goto out_free_1;
3130         register_reboot_notifier(&kvm_reboot_notifier);
3131
3132         r = sysdev_class_register(&kvm_sysdev_class);
3133         if (r)
3134                 goto out_free_2;
3135
3136         r = sysdev_register(&kvm_sysdev);
3137         if (r)
3138                 goto out_free_3;
3139
3140         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3141         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
3142                                            __alignof__(struct kvm_vcpu), 0, 0);
3143         if (!kvm_vcpu_cache) {
3144                 r = -ENOMEM;
3145                 goto out_free_4;
3146         }
3147
3148         kvm_chardev_ops.owner = module;
3149
3150         r = misc_register(&kvm_dev);
3151         if (r) {
3152                 printk (KERN_ERR "kvm: misc device register failed\n");
3153                 goto out_free;
3154         }
3155
3156         kvm_preempt_ops.sched_in = kvm_sched_in;
3157         kvm_preempt_ops.sched_out = kvm_sched_out;
3158
3159         return r;
3160
3161 out_free:
3162         kmem_cache_destroy(kvm_vcpu_cache);
3163 out_free_4:
3164         sysdev_unregister(&kvm_sysdev);
3165 out_free_3:
3166         sysdev_class_unregister(&kvm_sysdev_class);
3167 out_free_2:
3168         unregister_reboot_notifier(&kvm_reboot_notifier);
3169         unregister_cpu_notifier(&kvm_cpu_notifier);
3170 out_free_1:
3171         on_each_cpu(hardware_disable, NULL, 0, 1);
3172 out_free_0:
3173         kvm_arch_ops->hardware_unsetup();
3174 out:
3175         kvm_arch_ops = NULL;
3176         return r;
3177 }
3178
3179 void kvm_exit_arch(void)
3180 {
3181         misc_deregister(&kvm_dev);
3182         kmem_cache_destroy(kvm_vcpu_cache);
3183         sysdev_unregister(&kvm_sysdev);
3184         sysdev_class_unregister(&kvm_sysdev_class);
3185         unregister_reboot_notifier(&kvm_reboot_notifier);
3186         unregister_cpu_notifier(&kvm_cpu_notifier);
3187         on_each_cpu(hardware_disable, NULL, 0, 1);
3188         kvm_arch_ops->hardware_unsetup();
3189         kvm_arch_ops = NULL;
3190 }
3191
3192 static __init int kvm_init(void)
3193 {
3194         static struct page *bad_page;
3195         int r;
3196
3197         r = kvm_mmu_module_init();
3198         if (r)
3199                 goto out4;
3200
3201         kvm_init_debug();
3202
3203         kvm_init_msr_list();
3204
3205         if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3206                 r = -ENOMEM;
3207                 goto out;
3208         }
3209
3210         bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3211         memset(__va(bad_page_address), 0, PAGE_SIZE);
3212
3213         return 0;
3214
3215 out:
3216         kvm_exit_debug();
3217         kvm_mmu_module_exit();
3218 out4:
3219         return r;
3220 }
3221
3222 static __exit void kvm_exit(void)
3223 {
3224         kvm_exit_debug();
3225         __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3226         kvm_mmu_module_exit();
3227 }
3228
3229 module_init(kvm_init)
3230 module_exit(kvm_exit)
3231
3232 EXPORT_SYMBOL_GPL(kvm_init_arch);
3233 EXPORT_SYMBOL_GPL(kvm_exit_arch);