]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/kvm/kvm_main.c
4512d8c39c849cf4305e2d97a449ceef1a30fac4
[linux-2.6-omap-h63xx.git] / drivers / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <asm/processor.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <asm/msr.h>
27 #include <linux/mm.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <asm/uaccess.h>
31 #include <linux/reboot.h>
32 #include <asm/io.h>
33 #include <linux/debugfs.h>
34 #include <linux/highmem.h>
35 #include <linux/file.h>
36 #include <asm/desc.h>
37
38 #include "x86_emulate.h"
39 #include "segment_descriptor.h"
40
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
43
44 struct kvm_arch_ops *kvm_arch_ops;
45 struct kvm_stat kvm_stat;
46 EXPORT_SYMBOL_GPL(kvm_stat);
47
48 static struct kvm_stats_debugfs_item {
49         const char *name;
50         u32 *data;
51         struct dentry *dentry;
52 } debugfs_entries[] = {
53         { "pf_fixed", &kvm_stat.pf_fixed },
54         { "pf_guest", &kvm_stat.pf_guest },
55         { "tlb_flush", &kvm_stat.tlb_flush },
56         { "invlpg", &kvm_stat.invlpg },
57         { "exits", &kvm_stat.exits },
58         { "io_exits", &kvm_stat.io_exits },
59         { "mmio_exits", &kvm_stat.mmio_exits },
60         { "signal_exits", &kvm_stat.signal_exits },
61         { "irq_window", &kvm_stat.irq_window_exits },
62         { "halt_exits", &kvm_stat.halt_exits },
63         { "request_irq", &kvm_stat.request_irq_exits },
64         { "irq_exits", &kvm_stat.irq_exits },
65         { 0, 0 }
66 };
67
68 static struct dentry *debugfs_dir;
69
70 #define MAX_IO_MSRS 256
71
72 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
73 #define LMSW_GUEST_MASK 0x0eULL
74 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
75 #define CR8_RESEVED_BITS (~0x0fULL)
76 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
77
78 #ifdef CONFIG_X86_64
79 // LDT or TSS descriptor in the GDT. 16 bytes.
80 struct segment_descriptor_64 {
81         struct segment_descriptor s;
82         u32 base_higher;
83         u32 pad_zero;
84 };
85
86 #endif
87
88 unsigned long segment_base(u16 selector)
89 {
90         struct descriptor_table gdt;
91         struct segment_descriptor *d;
92         unsigned long table_base;
93         typedef unsigned long ul;
94         unsigned long v;
95
96         if (selector == 0)
97                 return 0;
98
99         asm ("sgdt %0" : "=m"(gdt));
100         table_base = gdt.base;
101
102         if (selector & 4) {           /* from ldt */
103                 u16 ldt_selector;
104
105                 asm ("sldt %0" : "=g"(ldt_selector));
106                 table_base = segment_base(ldt_selector);
107         }
108         d = (struct segment_descriptor *)(table_base + (selector & ~7));
109         v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
110 #ifdef CONFIG_X86_64
111         if (d->system == 0
112             && (d->type == 2 || d->type == 9 || d->type == 11))
113                 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
114 #endif
115         return v;
116 }
117 EXPORT_SYMBOL_GPL(segment_base);
118
119 static inline int valid_vcpu(int n)
120 {
121         return likely(n >= 0 && n < KVM_MAX_VCPUS);
122 }
123
124 int kvm_read_guest(struct kvm_vcpu *vcpu,
125                              gva_t addr,
126                              unsigned long size,
127                              void *dest)
128 {
129         unsigned char *host_buf = dest;
130         unsigned long req_size = size;
131
132         while (size) {
133                 hpa_t paddr;
134                 unsigned now;
135                 unsigned offset;
136                 hva_t guest_buf;
137
138                 paddr = gva_to_hpa(vcpu, addr);
139
140                 if (is_error_hpa(paddr))
141                         break;
142
143                 guest_buf = (hva_t)kmap_atomic(
144                                         pfn_to_page(paddr >> PAGE_SHIFT),
145                                         KM_USER0);
146                 offset = addr & ~PAGE_MASK;
147                 guest_buf |= offset;
148                 now = min(size, PAGE_SIZE - offset);
149                 memcpy(host_buf, (void*)guest_buf, now);
150                 host_buf += now;
151                 addr += now;
152                 size -= now;
153                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
154         }
155         return req_size - size;
156 }
157 EXPORT_SYMBOL_GPL(kvm_read_guest);
158
159 int kvm_write_guest(struct kvm_vcpu *vcpu,
160                              gva_t addr,
161                              unsigned long size,
162                              void *data)
163 {
164         unsigned char *host_buf = data;
165         unsigned long req_size = size;
166
167         while (size) {
168                 hpa_t paddr;
169                 unsigned now;
170                 unsigned offset;
171                 hva_t guest_buf;
172
173                 paddr = gva_to_hpa(vcpu, addr);
174
175                 if (is_error_hpa(paddr))
176                         break;
177
178                 guest_buf = (hva_t)kmap_atomic(
179                                 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
180                 offset = addr & ~PAGE_MASK;
181                 guest_buf |= offset;
182                 now = min(size, PAGE_SIZE - offset);
183                 memcpy((void*)guest_buf, host_buf, now);
184                 host_buf += now;
185                 addr += now;
186                 size -= now;
187                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
188         }
189         return req_size - size;
190 }
191 EXPORT_SYMBOL_GPL(kvm_write_guest);
192
193 static int vcpu_slot(struct kvm_vcpu *vcpu)
194 {
195         return vcpu - vcpu->kvm->vcpus;
196 }
197
198 /*
199  * Switches to specified vcpu, until a matching vcpu_put()
200  */
201 static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
202 {
203         struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
204
205         mutex_lock(&vcpu->mutex);
206         if (unlikely(!vcpu->vmcs)) {
207                 mutex_unlock(&vcpu->mutex);
208                 return 0;
209         }
210         return kvm_arch_ops->vcpu_load(vcpu);
211 }
212
213 static void vcpu_put(struct kvm_vcpu *vcpu)
214 {
215         kvm_arch_ops->vcpu_put(vcpu);
216         mutex_unlock(&vcpu->mutex);
217 }
218
219 static int kvm_dev_open(struct inode *inode, struct file *filp)
220 {
221         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
222         int i;
223
224         if (!kvm)
225                 return -ENOMEM;
226
227         spin_lock_init(&kvm->lock);
228         INIT_LIST_HEAD(&kvm->active_mmu_pages);
229         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
230                 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
231
232                 mutex_init(&vcpu->mutex);
233                 vcpu->mmu.root_hpa = INVALID_PAGE;
234                 INIT_LIST_HEAD(&vcpu->free_pages);
235         }
236         filp->private_data = kvm;
237         return 0;
238 }
239
240 /*
241  * Free any memory in @free but not in @dont.
242  */
243 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
244                                   struct kvm_memory_slot *dont)
245 {
246         int i;
247
248         if (!dont || free->phys_mem != dont->phys_mem)
249                 if (free->phys_mem) {
250                         for (i = 0; i < free->npages; ++i)
251                                 if (free->phys_mem[i])
252                                         __free_page(free->phys_mem[i]);
253                         vfree(free->phys_mem);
254                 }
255
256         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
257                 vfree(free->dirty_bitmap);
258
259         free->phys_mem = 0;
260         free->npages = 0;
261         free->dirty_bitmap = 0;
262 }
263
264 static void kvm_free_physmem(struct kvm *kvm)
265 {
266         int i;
267
268         for (i = 0; i < kvm->nmemslots; ++i)
269                 kvm_free_physmem_slot(&kvm->memslots[i], 0);
270 }
271
272 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
273 {
274         kvm_arch_ops->vcpu_free(vcpu);
275         kvm_mmu_destroy(vcpu);
276 }
277
278 static void kvm_free_vcpus(struct kvm *kvm)
279 {
280         unsigned int i;
281
282         for (i = 0; i < KVM_MAX_VCPUS; ++i)
283                 kvm_free_vcpu(&kvm->vcpus[i]);
284 }
285
286 static int kvm_dev_release(struct inode *inode, struct file *filp)
287 {
288         struct kvm *kvm = filp->private_data;
289
290         kvm_free_vcpus(kvm);
291         kvm_free_physmem(kvm);
292         kfree(kvm);
293         return 0;
294 }
295
296 static void inject_gp(struct kvm_vcpu *vcpu)
297 {
298         kvm_arch_ops->inject_gp(vcpu, 0);
299 }
300
301 /*
302  * Load the pae pdptrs.  Return true is they are all valid.
303  */
304 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
305 {
306         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
307         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
308         int i;
309         u64 pdpte;
310         u64 *pdpt;
311         int ret;
312         struct kvm_memory_slot *memslot;
313
314         spin_lock(&vcpu->kvm->lock);
315         memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
316         /* FIXME: !memslot - emulate? 0xff? */
317         pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
318
319         ret = 1;
320         for (i = 0; i < 4; ++i) {
321                 pdpte = pdpt[offset + i];
322                 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
323                         ret = 0;
324                         goto out;
325                 }
326         }
327
328         for (i = 0; i < 4; ++i)
329                 vcpu->pdptrs[i] = pdpt[offset + i];
330
331 out:
332         kunmap_atomic(pdpt, KM_USER0);
333         spin_unlock(&vcpu->kvm->lock);
334
335         return ret;
336 }
337
338 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
339 {
340         if (cr0 & CR0_RESEVED_BITS) {
341                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
342                        cr0, vcpu->cr0);
343                 inject_gp(vcpu);
344                 return;
345         }
346
347         if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
348                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
349                 inject_gp(vcpu);
350                 return;
351         }
352
353         if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
354                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
355                        "and a clear PE flag\n");
356                 inject_gp(vcpu);
357                 return;
358         }
359
360         if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
361 #ifdef CONFIG_X86_64
362                 if ((vcpu->shadow_efer & EFER_LME)) {
363                         int cs_db, cs_l;
364
365                         if (!is_pae(vcpu)) {
366                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
367                                        "in long mode while PAE is disabled\n");
368                                 inject_gp(vcpu);
369                                 return;
370                         }
371                         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
372                         if (cs_l) {
373                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
374                                        "in long mode while CS.L == 1\n");
375                                 inject_gp(vcpu);
376                                 return;
377
378                         }
379                 } else
380 #endif
381                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
382                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
383                                "reserved bits\n");
384                         inject_gp(vcpu);
385                         return;
386                 }
387
388         }
389
390         kvm_arch_ops->set_cr0(vcpu, cr0);
391         vcpu->cr0 = cr0;
392
393         spin_lock(&vcpu->kvm->lock);
394         kvm_mmu_reset_context(vcpu);
395         spin_unlock(&vcpu->kvm->lock);
396         return;
397 }
398 EXPORT_SYMBOL_GPL(set_cr0);
399
400 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
401 {
402         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
403         set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
404 }
405 EXPORT_SYMBOL_GPL(lmsw);
406
407 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
408 {
409         if (cr4 & CR4_RESEVED_BITS) {
410                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
411                 inject_gp(vcpu);
412                 return;
413         }
414
415         if (is_long_mode(vcpu)) {
416                 if (!(cr4 & CR4_PAE_MASK)) {
417                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
418                                "in long mode\n");
419                         inject_gp(vcpu);
420                         return;
421                 }
422         } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
423                    && !load_pdptrs(vcpu, vcpu->cr3)) {
424                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
425                 inject_gp(vcpu);
426         }
427
428         if (cr4 & CR4_VMXE_MASK) {
429                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
430                 inject_gp(vcpu);
431                 return;
432         }
433         kvm_arch_ops->set_cr4(vcpu, cr4);
434         spin_lock(&vcpu->kvm->lock);
435         kvm_mmu_reset_context(vcpu);
436         spin_unlock(&vcpu->kvm->lock);
437 }
438 EXPORT_SYMBOL_GPL(set_cr4);
439
440 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
441 {
442         if (is_long_mode(vcpu)) {
443                 if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
444                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
445                         inject_gp(vcpu);
446                         return;
447                 }
448         } else {
449                 if (cr3 & CR3_RESEVED_BITS) {
450                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
451                         inject_gp(vcpu);
452                         return;
453                 }
454                 if (is_paging(vcpu) && is_pae(vcpu) &&
455                     !load_pdptrs(vcpu, cr3)) {
456                         printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
457                                "reserved bits\n");
458                         inject_gp(vcpu);
459                         return;
460                 }
461         }
462
463         vcpu->cr3 = cr3;
464         spin_lock(&vcpu->kvm->lock);
465         vcpu->mmu.new_cr3(vcpu);
466         spin_unlock(&vcpu->kvm->lock);
467 }
468 EXPORT_SYMBOL_GPL(set_cr3);
469
470 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
471 {
472         if ( cr8 & CR8_RESEVED_BITS) {
473                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
474                 inject_gp(vcpu);
475                 return;
476         }
477         vcpu->cr8 = cr8;
478 }
479 EXPORT_SYMBOL_GPL(set_cr8);
480
481 void fx_init(struct kvm_vcpu *vcpu)
482 {
483         struct __attribute__ ((__packed__)) fx_image_s {
484                 u16 control; //fcw
485                 u16 status; //fsw
486                 u16 tag; // ftw
487                 u16 opcode; //fop
488                 u64 ip; // fpu ip
489                 u64 operand;// fpu dp
490                 u32 mxcsr;
491                 u32 mxcsr_mask;
492
493         } *fx_image;
494
495         fx_save(vcpu->host_fx_image);
496         fpu_init();
497         fx_save(vcpu->guest_fx_image);
498         fx_restore(vcpu->host_fx_image);
499
500         fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
501         fx_image->mxcsr = 0x1f80;
502         memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
503                0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
504 }
505 EXPORT_SYMBOL_GPL(fx_init);
506
507 /*
508  * Creates some virtual cpus.  Good luck creating more than one.
509  */
510 static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
511 {
512         int r;
513         struct kvm_vcpu *vcpu;
514
515         r = -EINVAL;
516         if (!valid_vcpu(n))
517                 goto out;
518
519         vcpu = &kvm->vcpus[n];
520
521         mutex_lock(&vcpu->mutex);
522
523         if (vcpu->vmcs) {
524                 mutex_unlock(&vcpu->mutex);
525                 return -EEXIST;
526         }
527
528         vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
529                                            FX_IMAGE_ALIGN);
530         vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
531
532         vcpu->cpu = -1;  /* First load will set up TR */
533         vcpu->kvm = kvm;
534         r = kvm_arch_ops->vcpu_create(vcpu);
535         if (r < 0)
536                 goto out_free_vcpus;
537
538         r = kvm_mmu_create(vcpu);
539         if (r < 0)
540                 goto out_free_vcpus;
541
542         kvm_arch_ops->vcpu_load(vcpu);
543         r = kvm_mmu_setup(vcpu);
544         if (r >= 0)
545                 r = kvm_arch_ops->vcpu_setup(vcpu);
546         vcpu_put(vcpu);
547
548         if (r < 0)
549                 goto out_free_vcpus;
550
551         return 0;
552
553 out_free_vcpus:
554         kvm_free_vcpu(vcpu);
555         mutex_unlock(&vcpu->mutex);
556 out:
557         return r;
558 }
559
560 /*
561  * Allocate some memory and give it an address in the guest physical address
562  * space.
563  *
564  * Discontiguous memory is allowed, mostly for framebuffers.
565  */
566 static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
567                                            struct kvm_memory_region *mem)
568 {
569         int r;
570         gfn_t base_gfn;
571         unsigned long npages;
572         unsigned long i;
573         struct kvm_memory_slot *memslot;
574         struct kvm_memory_slot old, new;
575         int memory_config_version;
576
577         r = -EINVAL;
578         /* General sanity checks */
579         if (mem->memory_size & (PAGE_SIZE - 1))
580                 goto out;
581         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
582                 goto out;
583         if (mem->slot >= KVM_MEMORY_SLOTS)
584                 goto out;
585         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
586                 goto out;
587
588         memslot = &kvm->memslots[mem->slot];
589         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
590         npages = mem->memory_size >> PAGE_SHIFT;
591
592         if (!npages)
593                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
594
595 raced:
596         spin_lock(&kvm->lock);
597
598         memory_config_version = kvm->memory_config_version;
599         new = old = *memslot;
600
601         new.base_gfn = base_gfn;
602         new.npages = npages;
603         new.flags = mem->flags;
604
605         /* Disallow changing a memory slot's size. */
606         r = -EINVAL;
607         if (npages && old.npages && npages != old.npages)
608                 goto out_unlock;
609
610         /* Check for overlaps */
611         r = -EEXIST;
612         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
613                 struct kvm_memory_slot *s = &kvm->memslots[i];
614
615                 if (s == memslot)
616                         continue;
617                 if (!((base_gfn + npages <= s->base_gfn) ||
618                       (base_gfn >= s->base_gfn + s->npages)))
619                         goto out_unlock;
620         }
621         /*
622          * Do memory allocations outside lock.  memory_config_version will
623          * detect any races.
624          */
625         spin_unlock(&kvm->lock);
626
627         /* Deallocate if slot is being removed */
628         if (!npages)
629                 new.phys_mem = 0;
630
631         /* Free page dirty bitmap if unneeded */
632         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
633                 new.dirty_bitmap = 0;
634
635         r = -ENOMEM;
636
637         /* Allocate if a slot is being created */
638         if (npages && !new.phys_mem) {
639                 new.phys_mem = vmalloc(npages * sizeof(struct page *));
640
641                 if (!new.phys_mem)
642                         goto out_free;
643
644                 memset(new.phys_mem, 0, npages * sizeof(struct page *));
645                 for (i = 0; i < npages; ++i) {
646                         new.phys_mem[i] = alloc_page(GFP_HIGHUSER
647                                                      | __GFP_ZERO);
648                         if (!new.phys_mem[i])
649                                 goto out_free;
650                         new.phys_mem[i]->private = 0;
651                 }
652         }
653
654         /* Allocate page dirty bitmap if needed */
655         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
656                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
657
658                 new.dirty_bitmap = vmalloc(dirty_bytes);
659                 if (!new.dirty_bitmap)
660                         goto out_free;
661                 memset(new.dirty_bitmap, 0, dirty_bytes);
662         }
663
664         spin_lock(&kvm->lock);
665
666         if (memory_config_version != kvm->memory_config_version) {
667                 spin_unlock(&kvm->lock);
668                 kvm_free_physmem_slot(&new, &old);
669                 goto raced;
670         }
671
672         r = -EAGAIN;
673         if (kvm->busy)
674                 goto out_unlock;
675
676         if (mem->slot >= kvm->nmemslots)
677                 kvm->nmemslots = mem->slot + 1;
678
679         *memslot = new;
680         ++kvm->memory_config_version;
681
682         spin_unlock(&kvm->lock);
683
684         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
685                 struct kvm_vcpu *vcpu;
686
687                 vcpu = vcpu_load(kvm, i);
688                 if (!vcpu)
689                         continue;
690                 kvm_mmu_reset_context(vcpu);
691                 vcpu_put(vcpu);
692         }
693
694         kvm_free_physmem_slot(&old, &new);
695         return 0;
696
697 out_unlock:
698         spin_unlock(&kvm->lock);
699 out_free:
700         kvm_free_physmem_slot(&new, &old);
701 out:
702         return r;
703 }
704
705 /*
706  * Get (and clear) the dirty memory log for a memory slot.
707  */
708 static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
709                                        struct kvm_dirty_log *log)
710 {
711         struct kvm_memory_slot *memslot;
712         int r, i;
713         int n;
714         unsigned long any = 0;
715
716         spin_lock(&kvm->lock);
717
718         /*
719          * Prevent changes to guest memory configuration even while the lock
720          * is not taken.
721          */
722         ++kvm->busy;
723         spin_unlock(&kvm->lock);
724         r = -EINVAL;
725         if (log->slot >= KVM_MEMORY_SLOTS)
726                 goto out;
727
728         memslot = &kvm->memslots[log->slot];
729         r = -ENOENT;
730         if (!memslot->dirty_bitmap)
731                 goto out;
732
733         n = ALIGN(memslot->npages, 8) / 8;
734
735         for (i = 0; !any && i < n; ++i)
736                 any = memslot->dirty_bitmap[i];
737
738         r = -EFAULT;
739         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
740                 goto out;
741
742
743         if (any) {
744                 spin_lock(&kvm->lock);
745                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
746                 spin_unlock(&kvm->lock);
747                 memset(memslot->dirty_bitmap, 0, n);
748                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
749                         struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
750
751                         if (!vcpu)
752                                 continue;
753                         kvm_arch_ops->tlb_flush(vcpu);
754                         vcpu_put(vcpu);
755                 }
756         }
757
758         r = 0;
759
760 out:
761         spin_lock(&kvm->lock);
762         --kvm->busy;
763         spin_unlock(&kvm->lock);
764         return r;
765 }
766
767 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
768 {
769         int i;
770
771         for (i = 0; i < kvm->nmemslots; ++i) {
772                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
773
774                 if (gfn >= memslot->base_gfn
775                     && gfn < memslot->base_gfn + memslot->npages)
776                         return memslot;
777         }
778         return 0;
779 }
780 EXPORT_SYMBOL_GPL(gfn_to_memslot);
781
782 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
783 {
784         int i;
785         struct kvm_memory_slot *memslot = 0;
786         unsigned long rel_gfn;
787
788         for (i = 0; i < kvm->nmemslots; ++i) {
789                 memslot = &kvm->memslots[i];
790
791                 if (gfn >= memslot->base_gfn
792                     && gfn < memslot->base_gfn + memslot->npages) {
793
794                         if (!memslot || !memslot->dirty_bitmap)
795                                 return;
796
797                         rel_gfn = gfn - memslot->base_gfn;
798
799                         /* avoid RMW */
800                         if (!test_bit(rel_gfn, memslot->dirty_bitmap))
801                                 set_bit(rel_gfn, memslot->dirty_bitmap);
802                         return;
803                 }
804         }
805 }
806
807 static int emulator_read_std(unsigned long addr,
808                              unsigned long *val,
809                              unsigned int bytes,
810                              struct x86_emulate_ctxt *ctxt)
811 {
812         struct kvm_vcpu *vcpu = ctxt->vcpu;
813         void *data = val;
814
815         while (bytes) {
816                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
817                 unsigned offset = addr & (PAGE_SIZE-1);
818                 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
819                 unsigned long pfn;
820                 struct kvm_memory_slot *memslot;
821                 void *page;
822
823                 if (gpa == UNMAPPED_GVA)
824                         return X86EMUL_PROPAGATE_FAULT;
825                 pfn = gpa >> PAGE_SHIFT;
826                 memslot = gfn_to_memslot(vcpu->kvm, pfn);
827                 if (!memslot)
828                         return X86EMUL_UNHANDLEABLE;
829                 page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
830
831                 memcpy(data, page + offset, tocopy);
832
833                 kunmap_atomic(page, KM_USER0);
834
835                 bytes -= tocopy;
836                 data += tocopy;
837                 addr += tocopy;
838         }
839
840         return X86EMUL_CONTINUE;
841 }
842
843 static int emulator_write_std(unsigned long addr,
844                               unsigned long val,
845                               unsigned int bytes,
846                               struct x86_emulate_ctxt *ctxt)
847 {
848         printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
849                addr, bytes);
850         return X86EMUL_UNHANDLEABLE;
851 }
852
853 static int emulator_read_emulated(unsigned long addr,
854                                   unsigned long *val,
855                                   unsigned int bytes,
856                                   struct x86_emulate_ctxt *ctxt)
857 {
858         struct kvm_vcpu *vcpu = ctxt->vcpu;
859
860         if (vcpu->mmio_read_completed) {
861                 memcpy(val, vcpu->mmio_data, bytes);
862                 vcpu->mmio_read_completed = 0;
863                 return X86EMUL_CONTINUE;
864         } else if (emulator_read_std(addr, val, bytes, ctxt)
865                    == X86EMUL_CONTINUE)
866                 return X86EMUL_CONTINUE;
867         else {
868                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
869                 if (gpa == UNMAPPED_GVA)
870                         return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
871                 vcpu->mmio_needed = 1;
872                 vcpu->mmio_phys_addr = gpa;
873                 vcpu->mmio_size = bytes;
874                 vcpu->mmio_is_write = 0;
875
876                 return X86EMUL_UNHANDLEABLE;
877         }
878 }
879
880 static int emulator_write_emulated(unsigned long addr,
881                                    unsigned long val,
882                                    unsigned int bytes,
883                                    struct x86_emulate_ctxt *ctxt)
884 {
885         struct kvm_vcpu *vcpu = ctxt->vcpu;
886         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
887
888         if (gpa == UNMAPPED_GVA)
889                 return X86EMUL_PROPAGATE_FAULT;
890
891         vcpu->mmio_needed = 1;
892         vcpu->mmio_phys_addr = gpa;
893         vcpu->mmio_size = bytes;
894         vcpu->mmio_is_write = 1;
895         memcpy(vcpu->mmio_data, &val, bytes);
896
897         return X86EMUL_CONTINUE;
898 }
899
900 static int emulator_cmpxchg_emulated(unsigned long addr,
901                                      unsigned long old,
902                                      unsigned long new,
903                                      unsigned int bytes,
904                                      struct x86_emulate_ctxt *ctxt)
905 {
906         static int reported;
907
908         if (!reported) {
909                 reported = 1;
910                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
911         }
912         return emulator_write_emulated(addr, new, bytes, ctxt);
913 }
914
915 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
916 {
917         return kvm_arch_ops->get_segment_base(vcpu, seg);
918 }
919
920 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
921 {
922         spin_lock(&vcpu->kvm->lock);
923         vcpu->mmu.inval_page(vcpu, address);
924         spin_unlock(&vcpu->kvm->lock);
925         kvm_arch_ops->invlpg(vcpu, address);
926         return X86EMUL_CONTINUE;
927 }
928
929 int emulate_clts(struct kvm_vcpu *vcpu)
930 {
931         unsigned long cr0;
932
933         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
934         cr0 = vcpu->cr0 & ~CR0_TS_MASK;
935         kvm_arch_ops->set_cr0(vcpu, cr0);
936         return X86EMUL_CONTINUE;
937 }
938
939 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
940 {
941         struct kvm_vcpu *vcpu = ctxt->vcpu;
942
943         switch (dr) {
944         case 0 ... 3:
945                 *dest = kvm_arch_ops->get_dr(vcpu, dr);
946                 return X86EMUL_CONTINUE;
947         default:
948                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
949                        __FUNCTION__, dr);
950                 return X86EMUL_UNHANDLEABLE;
951         }
952 }
953
954 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
955 {
956         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
957         int exception;
958
959         kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
960         if (exception) {
961                 /* FIXME: better handling */
962                 return X86EMUL_UNHANDLEABLE;
963         }
964         return X86EMUL_CONTINUE;
965 }
966
967 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
968 {
969         static int reported;
970         u8 opcodes[4];
971         unsigned long rip = ctxt->vcpu->rip;
972         unsigned long rip_linear;
973
974         rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
975
976         if (reported)
977                 return;
978
979         emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
980
981         printk(KERN_ERR "emulation failed but !mmio_needed?"
982                " rip %lx %02x %02x %02x %02x\n",
983                rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
984         reported = 1;
985 }
986
987 struct x86_emulate_ops emulate_ops = {
988         .read_std            = emulator_read_std,
989         .write_std           = emulator_write_std,
990         .read_emulated       = emulator_read_emulated,
991         .write_emulated      = emulator_write_emulated,
992         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
993 };
994
995 int emulate_instruction(struct kvm_vcpu *vcpu,
996                         struct kvm_run *run,
997                         unsigned long cr2,
998                         u16 error_code)
999 {
1000         struct x86_emulate_ctxt emulate_ctxt;
1001         int r;
1002         int cs_db, cs_l;
1003
1004         kvm_arch_ops->cache_regs(vcpu);
1005
1006         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1007
1008         emulate_ctxt.vcpu = vcpu;
1009         emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1010         emulate_ctxt.cr2 = cr2;
1011         emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1012                 ? X86EMUL_MODE_REAL : cs_l
1013                 ? X86EMUL_MODE_PROT64 : cs_db
1014                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1015
1016         if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1017                 emulate_ctxt.cs_base = 0;
1018                 emulate_ctxt.ds_base = 0;
1019                 emulate_ctxt.es_base = 0;
1020                 emulate_ctxt.ss_base = 0;
1021         } else {
1022                 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1023                 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1024                 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1025                 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1026         }
1027
1028         emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1029         emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1030
1031         vcpu->mmio_is_write = 0;
1032         r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1033
1034         if ((r || vcpu->mmio_is_write) && run) {
1035                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1036                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1037                 run->mmio.len = vcpu->mmio_size;
1038                 run->mmio.is_write = vcpu->mmio_is_write;
1039         }
1040
1041         if (r) {
1042                 if (!vcpu->mmio_needed) {
1043                         report_emulation_failure(&emulate_ctxt);
1044                         return EMULATE_FAIL;
1045                 }
1046                 return EMULATE_DO_MMIO;
1047         }
1048
1049         kvm_arch_ops->decache_regs(vcpu);
1050         kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1051
1052         if (vcpu->mmio_is_write)
1053                 return EMULATE_DO_MMIO;
1054
1055         return EMULATE_DONE;
1056 }
1057 EXPORT_SYMBOL_GPL(emulate_instruction);
1058
1059 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1060 {
1061         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1062 }
1063
1064 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1065 {
1066         struct descriptor_table dt = { limit, base };
1067
1068         kvm_arch_ops->set_gdt(vcpu, &dt);
1069 }
1070
1071 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1072 {
1073         struct descriptor_table dt = { limit, base };
1074
1075         kvm_arch_ops->set_idt(vcpu, &dt);
1076 }
1077
1078 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1079                    unsigned long *rflags)
1080 {
1081         lmsw(vcpu, msw);
1082         *rflags = kvm_arch_ops->get_rflags(vcpu);
1083 }
1084
1085 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1086 {
1087         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1088         switch (cr) {
1089         case 0:
1090                 return vcpu->cr0;
1091         case 2:
1092                 return vcpu->cr2;
1093         case 3:
1094                 return vcpu->cr3;
1095         case 4:
1096                 return vcpu->cr4;
1097         default:
1098                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1099                 return 0;
1100         }
1101 }
1102
1103 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1104                      unsigned long *rflags)
1105 {
1106         switch (cr) {
1107         case 0:
1108                 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1109                 *rflags = kvm_arch_ops->get_rflags(vcpu);
1110                 break;
1111         case 2:
1112                 vcpu->cr2 = val;
1113                 break;
1114         case 3:
1115                 set_cr3(vcpu, val);
1116                 break;
1117         case 4:
1118                 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1119                 break;
1120         default:
1121                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1122         }
1123 }
1124
1125 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1126 {
1127         u64 data;
1128
1129         switch (msr) {
1130         case 0xc0010010: /* SYSCFG */
1131         case 0xc0010015: /* HWCR */
1132         case MSR_IA32_PLATFORM_ID:
1133         case MSR_IA32_P5_MC_ADDR:
1134         case MSR_IA32_P5_MC_TYPE:
1135         case MSR_IA32_MC0_CTL:
1136         case MSR_IA32_MCG_STATUS:
1137         case MSR_IA32_MCG_CAP:
1138         case MSR_IA32_MC0_MISC:
1139         case MSR_IA32_MC0_MISC+4:
1140         case MSR_IA32_MC0_MISC+8:
1141         case MSR_IA32_MC0_MISC+12:
1142         case MSR_IA32_MC0_MISC+16:
1143         case MSR_IA32_UCODE_REV:
1144         case MSR_IA32_PERF_STATUS:
1145                 /* MTRR registers */
1146         case 0xfe:
1147         case 0x200 ... 0x2ff:
1148                 data = 0;
1149                 break;
1150         case 0xcd: /* fsb frequency */
1151                 data = 3;
1152                 break;
1153         case MSR_IA32_APICBASE:
1154                 data = vcpu->apic_base;
1155                 break;
1156 #ifdef CONFIG_X86_64
1157         case MSR_EFER:
1158                 data = vcpu->shadow_efer;
1159                 break;
1160 #endif
1161         default:
1162                 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1163                 return 1;
1164         }
1165         *pdata = data;
1166         return 0;
1167 }
1168 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1169
1170 /*
1171  * Reads an msr value (of 'msr_index') into 'pdata'.
1172  * Returns 0 on success, non-0 otherwise.
1173  * Assumes vcpu_load() was already called.
1174  */
1175 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1176 {
1177         return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1178 }
1179
1180 #ifdef CONFIG_X86_64
1181
1182 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1183 {
1184         if (efer & EFER_RESERVED_BITS) {
1185                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1186                        efer);
1187                 inject_gp(vcpu);
1188                 return;
1189         }
1190
1191         if (is_paging(vcpu)
1192             && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1193                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1194                 inject_gp(vcpu);
1195                 return;
1196         }
1197
1198         kvm_arch_ops->set_efer(vcpu, efer);
1199
1200         efer &= ~EFER_LMA;
1201         efer |= vcpu->shadow_efer & EFER_LMA;
1202
1203         vcpu->shadow_efer = efer;
1204 }
1205
1206 #endif
1207
1208 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1209 {
1210         switch (msr) {
1211 #ifdef CONFIG_X86_64
1212         case MSR_EFER:
1213                 set_efer(vcpu, data);
1214                 break;
1215 #endif
1216         case MSR_IA32_MC0_STATUS:
1217                 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1218                        __FUNCTION__, data);
1219                 break;
1220         case MSR_IA32_UCODE_REV:
1221         case MSR_IA32_UCODE_WRITE:
1222         case 0x200 ... 0x2ff: /* MTRRs */
1223                 break;
1224         case MSR_IA32_APICBASE:
1225                 vcpu->apic_base = data;
1226                 break;
1227         default:
1228                 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1229                 return 1;
1230         }
1231         return 0;
1232 }
1233 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1234
1235 /*
1236  * Writes msr value into into the appropriate "register".
1237  * Returns 0 on success, non-0 otherwise.
1238  * Assumes vcpu_load() was already called.
1239  */
1240 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1241 {
1242         return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1243 }
1244
1245 void kvm_resched(struct kvm_vcpu *vcpu)
1246 {
1247         vcpu_put(vcpu);
1248         cond_resched();
1249         /* Cannot fail -  no vcpu unplug yet. */
1250         vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
1251 }
1252 EXPORT_SYMBOL_GPL(kvm_resched);
1253
1254 void load_msrs(struct vmx_msr_entry *e, int n)
1255 {
1256         int i;
1257
1258         for (i = 0; i < n; ++i)
1259                 wrmsrl(e[i].index, e[i].data);
1260 }
1261 EXPORT_SYMBOL_GPL(load_msrs);
1262
1263 void save_msrs(struct vmx_msr_entry *e, int n)
1264 {
1265         int i;
1266
1267         for (i = 0; i < n; ++i)
1268                 rdmsrl(e[i].index, e[i].data);
1269 }
1270 EXPORT_SYMBOL_GPL(save_msrs);
1271
1272 static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
1273 {
1274         struct kvm_vcpu *vcpu;
1275         int r;
1276
1277         if (!valid_vcpu(kvm_run->vcpu))
1278                 return -EINVAL;
1279
1280         vcpu = vcpu_load(kvm, kvm_run->vcpu);
1281         if (!vcpu)
1282                 return -ENOENT;
1283
1284         if (kvm_run->emulated) {
1285                 kvm_arch_ops->skip_emulated_instruction(vcpu);
1286                 kvm_run->emulated = 0;
1287         }
1288
1289         if (kvm_run->mmio_completed) {
1290                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1291                 vcpu->mmio_read_completed = 1;
1292         }
1293
1294         vcpu->mmio_needed = 0;
1295
1296         r = kvm_arch_ops->run(vcpu, kvm_run);
1297
1298         vcpu_put(vcpu);
1299         return r;
1300 }
1301
1302 static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
1303 {
1304         struct kvm_vcpu *vcpu;
1305
1306         if (!valid_vcpu(regs->vcpu))
1307                 return -EINVAL;
1308
1309         vcpu = vcpu_load(kvm, regs->vcpu);
1310         if (!vcpu)
1311                 return -ENOENT;
1312
1313         kvm_arch_ops->cache_regs(vcpu);
1314
1315         regs->rax = vcpu->regs[VCPU_REGS_RAX];
1316         regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1317         regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1318         regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1319         regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1320         regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1321         regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1322         regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1323 #ifdef CONFIG_X86_64
1324         regs->r8 = vcpu->regs[VCPU_REGS_R8];
1325         regs->r9 = vcpu->regs[VCPU_REGS_R9];
1326         regs->r10 = vcpu->regs[VCPU_REGS_R10];
1327         regs->r11 = vcpu->regs[VCPU_REGS_R11];
1328         regs->r12 = vcpu->regs[VCPU_REGS_R12];
1329         regs->r13 = vcpu->regs[VCPU_REGS_R13];
1330         regs->r14 = vcpu->regs[VCPU_REGS_R14];
1331         regs->r15 = vcpu->regs[VCPU_REGS_R15];
1332 #endif
1333
1334         regs->rip = vcpu->rip;
1335         regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1336
1337         /*
1338          * Don't leak debug flags in case they were set for guest debugging
1339          */
1340         if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1341                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1342
1343         vcpu_put(vcpu);
1344
1345         return 0;
1346 }
1347
1348 static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
1349 {
1350         struct kvm_vcpu *vcpu;
1351
1352         if (!valid_vcpu(regs->vcpu))
1353                 return -EINVAL;
1354
1355         vcpu = vcpu_load(kvm, regs->vcpu);
1356         if (!vcpu)
1357                 return -ENOENT;
1358
1359         vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1360         vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1361         vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1362         vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1363         vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1364         vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1365         vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1366         vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1367 #ifdef CONFIG_X86_64
1368         vcpu->regs[VCPU_REGS_R8] = regs->r8;
1369         vcpu->regs[VCPU_REGS_R9] = regs->r9;
1370         vcpu->regs[VCPU_REGS_R10] = regs->r10;
1371         vcpu->regs[VCPU_REGS_R11] = regs->r11;
1372         vcpu->regs[VCPU_REGS_R12] = regs->r12;
1373         vcpu->regs[VCPU_REGS_R13] = regs->r13;
1374         vcpu->regs[VCPU_REGS_R14] = regs->r14;
1375         vcpu->regs[VCPU_REGS_R15] = regs->r15;
1376 #endif
1377
1378         vcpu->rip = regs->rip;
1379         kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1380
1381         kvm_arch_ops->decache_regs(vcpu);
1382
1383         vcpu_put(vcpu);
1384
1385         return 0;
1386 }
1387
1388 static void get_segment(struct kvm_vcpu *vcpu,
1389                         struct kvm_segment *var, int seg)
1390 {
1391         return kvm_arch_ops->get_segment(vcpu, var, seg);
1392 }
1393
1394 static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1395 {
1396         struct kvm_vcpu *vcpu;
1397         struct descriptor_table dt;
1398
1399         if (!valid_vcpu(sregs->vcpu))
1400                 return -EINVAL;
1401         vcpu = vcpu_load(kvm, sregs->vcpu);
1402         if (!vcpu)
1403                 return -ENOENT;
1404
1405         get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1406         get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1407         get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1408         get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1409         get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1410         get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1411
1412         get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1413         get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1414
1415         kvm_arch_ops->get_idt(vcpu, &dt);
1416         sregs->idt.limit = dt.limit;
1417         sregs->idt.base = dt.base;
1418         kvm_arch_ops->get_gdt(vcpu, &dt);
1419         sregs->gdt.limit = dt.limit;
1420         sregs->gdt.base = dt.base;
1421
1422         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1423         sregs->cr0 = vcpu->cr0;
1424         sregs->cr2 = vcpu->cr2;
1425         sregs->cr3 = vcpu->cr3;
1426         sregs->cr4 = vcpu->cr4;
1427         sregs->cr8 = vcpu->cr8;
1428         sregs->efer = vcpu->shadow_efer;
1429         sregs->apic_base = vcpu->apic_base;
1430
1431         memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1432                sizeof sregs->interrupt_bitmap);
1433
1434         vcpu_put(vcpu);
1435
1436         return 0;
1437 }
1438
1439 static void set_segment(struct kvm_vcpu *vcpu,
1440                         struct kvm_segment *var, int seg)
1441 {
1442         return kvm_arch_ops->set_segment(vcpu, var, seg);
1443 }
1444
1445 static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1446 {
1447         struct kvm_vcpu *vcpu;
1448         int mmu_reset_needed = 0;
1449         int i;
1450         struct descriptor_table dt;
1451
1452         if (!valid_vcpu(sregs->vcpu))
1453                 return -EINVAL;
1454         vcpu = vcpu_load(kvm, sregs->vcpu);
1455         if (!vcpu)
1456                 return -ENOENT;
1457
1458         set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1459         set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1460         set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1461         set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1462         set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1463         set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1464
1465         set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1466         set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1467
1468         dt.limit = sregs->idt.limit;
1469         dt.base = sregs->idt.base;
1470         kvm_arch_ops->set_idt(vcpu, &dt);
1471         dt.limit = sregs->gdt.limit;
1472         dt.base = sregs->gdt.base;
1473         kvm_arch_ops->set_gdt(vcpu, &dt);
1474
1475         vcpu->cr2 = sregs->cr2;
1476         mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
1477         vcpu->cr3 = sregs->cr3;
1478
1479         vcpu->cr8 = sregs->cr8;
1480
1481         mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
1482 #ifdef CONFIG_X86_64
1483         kvm_arch_ops->set_efer(vcpu, sregs->efer);
1484 #endif
1485         vcpu->apic_base = sregs->apic_base;
1486
1487         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1488
1489         mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
1490         kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
1491
1492         mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
1493         kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
1494
1495         if (mmu_reset_needed)
1496                 kvm_mmu_reset_context(vcpu);
1497
1498         memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
1499                sizeof vcpu->irq_pending);
1500         vcpu->irq_summary = 0;
1501         for (i = 0; i < NR_IRQ_WORDS; ++i)
1502                 if (vcpu->irq_pending[i])
1503                         __set_bit(i, &vcpu->irq_summary);
1504
1505         vcpu_put(vcpu);
1506
1507         return 0;
1508 }
1509
1510 /*
1511  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1512  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1513  *
1514  * This list is modified at module load time to reflect the
1515  * capabilities of the host cpu.
1516  */
1517 static u32 msrs_to_save[] = {
1518         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1519         MSR_K6_STAR,
1520 #ifdef CONFIG_X86_64
1521         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1522 #endif
1523         MSR_IA32_TIME_STAMP_COUNTER,
1524 };
1525
1526 static unsigned num_msrs_to_save;
1527
1528 static __init void kvm_init_msr_list(void)
1529 {
1530         u32 dummy[2];
1531         unsigned i, j;
1532
1533         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1534                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1535                         continue;
1536                 if (j < i)
1537                         msrs_to_save[j] = msrs_to_save[i];
1538                 j++;
1539         }
1540         num_msrs_to_save = j;
1541 }
1542
1543 /*
1544  * Adapt set_msr() to msr_io()'s calling convention
1545  */
1546 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1547 {
1548         return set_msr(vcpu, index, *data);
1549 }
1550
1551 /*
1552  * Read or write a bunch of msrs. All parameters are kernel addresses.
1553  *
1554  * @return number of msrs set successfully.
1555  */
1556 static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
1557                     struct kvm_msr_entry *entries,
1558                     int (*do_msr)(struct kvm_vcpu *vcpu,
1559                                   unsigned index, u64 *data))
1560 {
1561         struct kvm_vcpu *vcpu;
1562         int i;
1563
1564         if (!valid_vcpu(msrs->vcpu))
1565                 return -EINVAL;
1566
1567         vcpu = vcpu_load(kvm, msrs->vcpu);
1568         if (!vcpu)
1569                 return -ENOENT;
1570
1571         for (i = 0; i < msrs->nmsrs; ++i)
1572                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1573                         break;
1574
1575         vcpu_put(vcpu);
1576
1577         return i;
1578 }
1579
1580 /*
1581  * Read or write a bunch of msrs. Parameters are user addresses.
1582  *
1583  * @return number of msrs set successfully.
1584  */
1585 static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
1586                   int (*do_msr)(struct kvm_vcpu *vcpu,
1587                                 unsigned index, u64 *data),
1588                   int writeback)
1589 {
1590         struct kvm_msrs msrs;
1591         struct kvm_msr_entry *entries;
1592         int r, n;
1593         unsigned size;
1594
1595         r = -EFAULT;
1596         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1597                 goto out;
1598
1599         r = -E2BIG;
1600         if (msrs.nmsrs >= MAX_IO_MSRS)
1601                 goto out;
1602
1603         r = -ENOMEM;
1604         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1605         entries = vmalloc(size);
1606         if (!entries)
1607                 goto out;
1608
1609         r = -EFAULT;
1610         if (copy_from_user(entries, user_msrs->entries, size))
1611                 goto out_free;
1612
1613         r = n = __msr_io(kvm, &msrs, entries, do_msr);
1614         if (r < 0)
1615                 goto out_free;
1616
1617         r = -EFAULT;
1618         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1619                 goto out_free;
1620
1621         r = n;
1622
1623 out_free:
1624         vfree(entries);
1625 out:
1626         return r;
1627 }
1628
1629 /*
1630  * Translate a guest virtual address to a guest physical address.
1631  */
1632 static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
1633 {
1634         unsigned long vaddr = tr->linear_address;
1635         struct kvm_vcpu *vcpu;
1636         gpa_t gpa;
1637
1638         vcpu = vcpu_load(kvm, tr->vcpu);
1639         if (!vcpu)
1640                 return -ENOENT;
1641         spin_lock(&kvm->lock);
1642         gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
1643         tr->physical_address = gpa;
1644         tr->valid = gpa != UNMAPPED_GVA;
1645         tr->writeable = 1;
1646         tr->usermode = 0;
1647         spin_unlock(&kvm->lock);
1648         vcpu_put(vcpu);
1649
1650         return 0;
1651 }
1652
1653 static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
1654 {
1655         struct kvm_vcpu *vcpu;
1656
1657         if (!valid_vcpu(irq->vcpu))
1658                 return -EINVAL;
1659         if (irq->irq < 0 || irq->irq >= 256)
1660                 return -EINVAL;
1661         vcpu = vcpu_load(kvm, irq->vcpu);
1662         if (!vcpu)
1663                 return -ENOENT;
1664
1665         set_bit(irq->irq, vcpu->irq_pending);
1666         set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
1667
1668         vcpu_put(vcpu);
1669
1670         return 0;
1671 }
1672
1673 static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
1674                                      struct kvm_debug_guest *dbg)
1675 {
1676         struct kvm_vcpu *vcpu;
1677         int r;
1678
1679         if (!valid_vcpu(dbg->vcpu))
1680                 return -EINVAL;
1681         vcpu = vcpu_load(kvm, dbg->vcpu);
1682         if (!vcpu)
1683                 return -ENOENT;
1684
1685         r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
1686
1687         vcpu_put(vcpu);
1688
1689         return r;
1690 }
1691
1692 static long kvm_dev_ioctl(struct file *filp,
1693                           unsigned int ioctl, unsigned long arg)
1694 {
1695         struct kvm *kvm = filp->private_data;
1696         int r = -EINVAL;
1697
1698         switch (ioctl) {
1699         case KVM_GET_API_VERSION:
1700                 r = KVM_API_VERSION;
1701                 break;
1702         case KVM_CREATE_VCPU: {
1703                 r = kvm_dev_ioctl_create_vcpu(kvm, arg);
1704                 if (r)
1705                         goto out;
1706                 break;
1707         }
1708         case KVM_RUN: {
1709                 struct kvm_run kvm_run;
1710
1711                 r = -EFAULT;
1712                 if (copy_from_user(&kvm_run, (void *)arg, sizeof kvm_run))
1713                         goto out;
1714                 r = kvm_dev_ioctl_run(kvm, &kvm_run);
1715                 if (r < 0 &&  r != -EINTR)
1716                         goto out;
1717                 if (copy_to_user((void *)arg, &kvm_run, sizeof kvm_run)) {
1718                         r = -EFAULT;
1719                         goto out;
1720                 }
1721                 break;
1722         }
1723         case KVM_GET_REGS: {
1724                 struct kvm_regs kvm_regs;
1725
1726                 r = -EFAULT;
1727                 if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
1728                         goto out;
1729                 r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
1730                 if (r)
1731                         goto out;
1732                 r = -EFAULT;
1733                 if (copy_to_user((void *)arg, &kvm_regs, sizeof kvm_regs))
1734                         goto out;
1735                 r = 0;
1736                 break;
1737         }
1738         case KVM_SET_REGS: {
1739                 struct kvm_regs kvm_regs;
1740
1741                 r = -EFAULT;
1742                 if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
1743                         goto out;
1744                 r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
1745                 if (r)
1746                         goto out;
1747                 r = 0;
1748                 break;
1749         }
1750         case KVM_GET_SREGS: {
1751                 struct kvm_sregs kvm_sregs;
1752
1753                 r = -EFAULT;
1754                 if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
1755                         goto out;
1756                 r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
1757                 if (r)
1758                         goto out;
1759                 r = -EFAULT;
1760                 if (copy_to_user((void *)arg, &kvm_sregs, sizeof kvm_sregs))
1761                         goto out;
1762                 r = 0;
1763                 break;
1764         }
1765         case KVM_SET_SREGS: {
1766                 struct kvm_sregs kvm_sregs;
1767
1768                 r = -EFAULT;
1769                 if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
1770                         goto out;
1771                 r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
1772                 if (r)
1773                         goto out;
1774                 r = 0;
1775                 break;
1776         }
1777         case KVM_TRANSLATE: {
1778                 struct kvm_translation tr;
1779
1780                 r = -EFAULT;
1781                 if (copy_from_user(&tr, (void *)arg, sizeof tr))
1782                         goto out;
1783                 r = kvm_dev_ioctl_translate(kvm, &tr);
1784                 if (r)
1785                         goto out;
1786                 r = -EFAULT;
1787                 if (copy_to_user((void *)arg, &tr, sizeof tr))
1788                         goto out;
1789                 r = 0;
1790                 break;
1791         }
1792         case KVM_INTERRUPT: {
1793                 struct kvm_interrupt irq;
1794
1795                 r = -EFAULT;
1796                 if (copy_from_user(&irq, (void *)arg, sizeof irq))
1797                         goto out;
1798                 r = kvm_dev_ioctl_interrupt(kvm, &irq);
1799                 if (r)
1800                         goto out;
1801                 r = 0;
1802                 break;
1803         }
1804         case KVM_DEBUG_GUEST: {
1805                 struct kvm_debug_guest dbg;
1806
1807                 r = -EFAULT;
1808                 if (copy_from_user(&dbg, (void *)arg, sizeof dbg))
1809                         goto out;
1810                 r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
1811                 if (r)
1812                         goto out;
1813                 r = 0;
1814                 break;
1815         }
1816         case KVM_SET_MEMORY_REGION: {
1817                 struct kvm_memory_region kvm_mem;
1818
1819                 r = -EFAULT;
1820                 if (copy_from_user(&kvm_mem, (void *)arg, sizeof kvm_mem))
1821                         goto out;
1822                 r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
1823                 if (r)
1824                         goto out;
1825                 break;
1826         }
1827         case KVM_GET_DIRTY_LOG: {
1828                 struct kvm_dirty_log log;
1829
1830                 r = -EFAULT;
1831                 if (copy_from_user(&log, (void *)arg, sizeof log))
1832                         goto out;
1833                 r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
1834                 if (r)
1835                         goto out;
1836                 break;
1837         }
1838         case KVM_GET_MSRS:
1839                 r = msr_io(kvm, (void __user *)arg, get_msr, 1);
1840                 break;
1841         case KVM_SET_MSRS:
1842                 r = msr_io(kvm, (void __user *)arg, do_set_msr, 0);
1843                 break;
1844         case KVM_GET_MSR_INDEX_LIST: {
1845                 struct kvm_msr_list __user *user_msr_list = (void __user *)arg;
1846                 struct kvm_msr_list msr_list;
1847                 unsigned n;
1848
1849                 r = -EFAULT;
1850                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1851                         goto out;
1852                 n = msr_list.nmsrs;
1853                 msr_list.nmsrs = num_msrs_to_save;
1854                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1855                         goto out;
1856                 r = -E2BIG;
1857                 if (n < num_msrs_to_save)
1858                         goto out;
1859                 r = -EFAULT;
1860                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1861                                  num_msrs_to_save * sizeof(u32)))
1862                         goto out;
1863                 r = 0;
1864         }
1865         default:
1866                 ;
1867         }
1868 out:
1869         return r;
1870 }
1871
1872 static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
1873                                    unsigned long address,
1874                                    int *type)
1875 {
1876         struct kvm *kvm = vma->vm_file->private_data;
1877         unsigned long pgoff;
1878         struct kvm_memory_slot *slot;
1879         struct page *page;
1880
1881         *type = VM_FAULT_MINOR;
1882         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1883         slot = gfn_to_memslot(kvm, pgoff);
1884         if (!slot)
1885                 return NOPAGE_SIGBUS;
1886         page = gfn_to_page(slot, pgoff);
1887         if (!page)
1888                 return NOPAGE_SIGBUS;
1889         get_page(page);
1890         return page;
1891 }
1892
1893 static struct vm_operations_struct kvm_dev_vm_ops = {
1894         .nopage = kvm_dev_nopage,
1895 };
1896
1897 static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
1898 {
1899         vma->vm_ops = &kvm_dev_vm_ops;
1900         return 0;
1901 }
1902
1903 static struct file_operations kvm_chardev_ops = {
1904         .open           = kvm_dev_open,
1905         .release        = kvm_dev_release,
1906         .unlocked_ioctl = kvm_dev_ioctl,
1907         .compat_ioctl   = kvm_dev_ioctl,
1908         .mmap           = kvm_dev_mmap,
1909 };
1910
1911 static struct miscdevice kvm_dev = {
1912         MISC_DYNAMIC_MINOR,
1913         "kvm",
1914         &kvm_chardev_ops,
1915 };
1916
1917 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1918                        void *v)
1919 {
1920         if (val == SYS_RESTART) {
1921                 /*
1922                  * Some (well, at least mine) BIOSes hang on reboot if
1923                  * in vmx root mode.
1924                  */
1925                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1926                 on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
1927         }
1928         return NOTIFY_OK;
1929 }
1930
1931 static struct notifier_block kvm_reboot_notifier = {
1932         .notifier_call = kvm_reboot,
1933         .priority = 0,
1934 };
1935
1936 static __init void kvm_init_debug(void)
1937 {
1938         struct kvm_stats_debugfs_item *p;
1939
1940         debugfs_dir = debugfs_create_dir("kvm", 0);
1941         for (p = debugfs_entries; p->name; ++p)
1942                 p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
1943                                                p->data);
1944 }
1945
1946 static void kvm_exit_debug(void)
1947 {
1948         struct kvm_stats_debugfs_item *p;
1949
1950         for (p = debugfs_entries; p->name; ++p)
1951                 debugfs_remove(p->dentry);
1952         debugfs_remove(debugfs_dir);
1953 }
1954
1955 hpa_t bad_page_address;
1956
1957 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
1958 {
1959         int r;
1960
1961         if (kvm_arch_ops) {
1962                 printk(KERN_ERR "kvm: already loaded the other module\n");
1963                 return -EEXIST;
1964         }
1965
1966         if (!ops->cpu_has_kvm_support()) {
1967                 printk(KERN_ERR "kvm: no hardware support\n");
1968                 return -EOPNOTSUPP;
1969         }
1970         if (ops->disabled_by_bios()) {
1971                 printk(KERN_ERR "kvm: disabled by bios\n");
1972                 return -EOPNOTSUPP;
1973         }
1974
1975         kvm_arch_ops = ops;
1976
1977         r = kvm_arch_ops->hardware_setup();
1978         if (r < 0)
1979             return r;
1980
1981         on_each_cpu(kvm_arch_ops->hardware_enable, 0, 0, 1);
1982         register_reboot_notifier(&kvm_reboot_notifier);
1983
1984         kvm_chardev_ops.owner = module;
1985
1986         r = misc_register(&kvm_dev);
1987         if (r) {
1988                 printk (KERN_ERR "kvm: misc device register failed\n");
1989                 goto out_free;
1990         }
1991
1992         return r;
1993
1994 out_free:
1995         unregister_reboot_notifier(&kvm_reboot_notifier);
1996         on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
1997         kvm_arch_ops->hardware_unsetup();
1998         return r;
1999 }
2000
2001 void kvm_exit_arch(void)
2002 {
2003         misc_deregister(&kvm_dev);
2004
2005         unregister_reboot_notifier(&kvm_reboot_notifier);
2006         on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
2007         kvm_arch_ops->hardware_unsetup();
2008         kvm_arch_ops = NULL;
2009 }
2010
2011 static __init int kvm_init(void)
2012 {
2013         static struct page *bad_page;
2014         int r = 0;
2015
2016         kvm_init_debug();
2017
2018         kvm_init_msr_list();
2019
2020         if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
2021                 r = -ENOMEM;
2022                 goto out;
2023         }
2024
2025         bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
2026         memset(__va(bad_page_address), 0, PAGE_SIZE);
2027
2028         return r;
2029
2030 out:
2031         kvm_exit_debug();
2032         return r;
2033 }
2034
2035 static __exit void kvm_exit(void)
2036 {
2037         kvm_exit_debug();
2038         __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
2039 }
2040
2041 module_init(kvm_init)
2042 module_exit(kvm_exit)
2043
2044 EXPORT_SYMBOL_GPL(kvm_init_arch);
2045 EXPORT_SYMBOL_GPL(kvm_exit_arch);