]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/ieee1394/eth1394.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-2.6-omap-h63xx.git] / drivers / ieee1394 / eth1394.c
1 /*
2  * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
3  *
4  * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5  *               2000 Bonin Franck <boninf@free.fr>
6  *               2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7  *
8  * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  */
24
25 /*
26  * This driver intends to support RFC 2734, which describes a method for
27  * transporting IPv4 datagrams over IEEE-1394 serial busses.
28  *
29  * TODO:
30  * RFC 2734 related:
31  * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
32  *
33  * Non-RFC 2734 related:
34  * - Handle fragmented skb's coming from the networking layer.
35  * - Move generic GASP reception to core 1394 code
36  * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
37  * - Stability improvements
38  * - Performance enhancements
39  * - Consider garbage collecting old partial datagrams after X amount of time
40  */
41
42 #include <linux/module.h>
43
44 #include <linux/kernel.h>
45 #include <linux/slab.h>
46 #include <linux/errno.h>
47 #include <linux/types.h>
48 #include <linux/delay.h>
49 #include <linux/init.h>
50 #include <linux/workqueue.h>
51
52 #include <linux/netdevice.h>
53 #include <linux/inetdevice.h>
54 #include <linux/if_arp.h>
55 #include <linux/if_ether.h>
56 #include <linux/ip.h>
57 #include <linux/in.h>
58 #include <linux/tcp.h>
59 #include <linux/skbuff.h>
60 #include <linux/bitops.h>
61 #include <linux/ethtool.h>
62 #include <asm/uaccess.h>
63 #include <asm/delay.h>
64 #include <asm/unaligned.h>
65 #include <net/arp.h>
66
67 #include "config_roms.h"
68 #include "csr1212.h"
69 #include "eth1394.h"
70 #include "highlevel.h"
71 #include "ieee1394.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_hotplug.h"
74 #include "ieee1394_transactions.h"
75 #include "ieee1394_types.h"
76 #include "iso.h"
77 #include "nodemgr.h"
78
79 #define ETH1394_PRINT_G(level, fmt, args...) \
80         printk(level "%s: " fmt, driver_name, ## args)
81
82 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
83         printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
84
85 struct fragment_info {
86         struct list_head list;
87         int offset;
88         int len;
89 };
90
91 struct partial_datagram {
92         struct list_head list;
93         u16 dgl;
94         u16 dg_size;
95         u16 ether_type;
96         struct sk_buff *skb;
97         char *pbuf;
98         struct list_head frag_info;
99 };
100
101 struct pdg_list {
102         struct list_head list;  /* partial datagram list per node       */
103         unsigned int sz;        /* partial datagram list size per node  */
104         spinlock_t lock;        /* partial datagram lock                */
105 };
106
107 struct eth1394_host_info {
108         struct hpsb_host *host;
109         struct net_device *dev;
110 };
111
112 struct eth1394_node_ref {
113         struct unit_directory *ud;
114         struct list_head list;
115 };
116
117 struct eth1394_node_info {
118         u16 maxpayload;         /* max payload                  */
119         u8 sspd;                /* max speed                    */
120         u64 fifo;               /* FIFO address                 */
121         struct pdg_list pdg;    /* partial RX datagram lists    */
122         int dgl;                /* outgoing datagram label      */
123 };
124
125 static const char driver_name[] = "eth1394";
126
127 static struct kmem_cache *packet_task_cache;
128
129 static struct hpsb_highlevel eth1394_highlevel;
130
131 /* Use common.lf to determine header len */
132 static const int hdr_type_len[] = {
133         sizeof(struct eth1394_uf_hdr),
134         sizeof(struct eth1394_ff_hdr),
135         sizeof(struct eth1394_sf_hdr),
136         sizeof(struct eth1394_sf_hdr)
137 };
138
139 static const u16 eth1394_speedto_maxpayload[] = {
140 /*     S100, S200, S400, S800, S1600, S3200 */
141         512, 1024, 2048, 4096,  4096,  4096
142 };
143
144 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
145 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
146 MODULE_LICENSE("GPL");
147
148 /*
149  * The max_partial_datagrams parameter is the maximum number of fragmented
150  * datagrams per node that eth1394 will keep in memory.  Providing an upper
151  * bound allows us to limit the amount of memory that partial datagrams
152  * consume in the event that some partial datagrams are never completed.
153  */
154 static int max_partial_datagrams = 25;
155 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
156 MODULE_PARM_DESC(max_partial_datagrams,
157                  "Maximum number of partially received fragmented datagrams "
158                  "(default = 25).");
159
160
161 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
162                             unsigned short type, void *daddr, void *saddr,
163                             unsigned len);
164 static int ether1394_rebuild_header(struct sk_buff *skb);
165 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
166 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
167 static void ether1394_header_cache_update(struct hh_cache *hh,
168                                           struct net_device *dev,
169                                           unsigned char *haddr);
170 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
171 static void ether1394_iso(struct hpsb_iso *iso);
172
173 static struct ethtool_ops ethtool_ops;
174
175 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
176                            quadlet_t *data, u64 addr, size_t len, u16 flags);
177 static void ether1394_add_host(struct hpsb_host *host);
178 static void ether1394_remove_host(struct hpsb_host *host);
179 static void ether1394_host_reset(struct hpsb_host *host);
180
181 /* Function for incoming 1394 packets */
182 static struct hpsb_address_ops addr_ops = {
183         .write =        ether1394_write,
184 };
185
186 /* Ieee1394 highlevel driver functions */
187 static struct hpsb_highlevel eth1394_highlevel = {
188         .name =         driver_name,
189         .add_host =     ether1394_add_host,
190         .remove_host =  ether1394_remove_host,
191         .host_reset =   ether1394_host_reset,
192 };
193
194 static int ether1394_recv_init(struct eth1394_priv *priv)
195 {
196         unsigned int iso_buf_size;
197
198         /* FIXME: rawiso limits us to PAGE_SIZE */
199         iso_buf_size = min((unsigned int)PAGE_SIZE,
200                            2 * (1U << (priv->host->csr.max_rec + 1)));
201
202         priv->iso = hpsb_iso_recv_init(priv->host,
203                                        ETHER1394_GASP_BUFFERS * iso_buf_size,
204                                        ETHER1394_GASP_BUFFERS,
205                                        priv->broadcast_channel,
206                                        HPSB_ISO_DMA_PACKET_PER_BUFFER,
207                                        1, ether1394_iso);
208         if (priv->iso == NULL) {
209                 ETH1394_PRINT_G(KERN_ERR, "Failed to allocate IR context\n");
210                 priv->bc_state = ETHER1394_BC_ERROR;
211                 return -EAGAIN;
212         }
213
214         if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
215                 priv->bc_state = ETHER1394_BC_STOPPED;
216         else
217                 priv->bc_state = ETHER1394_BC_RUNNING;
218         return 0;
219 }
220
221 /* This is called after an "ifup" */
222 static int ether1394_open(struct net_device *dev)
223 {
224         struct eth1394_priv *priv = netdev_priv(dev);
225         int ret;
226
227         if (priv->bc_state == ETHER1394_BC_ERROR) {
228                 ret = ether1394_recv_init(priv);
229                 if (ret)
230                         return ret;
231         }
232         netif_start_queue(dev);
233         return 0;
234 }
235
236 /* This is called after an "ifdown" */
237 static int ether1394_stop(struct net_device *dev)
238 {
239         /* flush priv->wake */
240         flush_scheduled_work();
241
242         netif_stop_queue(dev);
243         return 0;
244 }
245
246 /* Return statistics to the caller */
247 static struct net_device_stats *ether1394_stats(struct net_device *dev)
248 {
249         return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
250 }
251
252 /* FIXME: What to do if we timeout? I think a host reset is probably in order,
253  * so that's what we do. Should we increment the stat counters too?  */
254 static void ether1394_tx_timeout(struct net_device *dev)
255 {
256         struct hpsb_host *host =
257                         ((struct eth1394_priv *)netdev_priv(dev))->host;
258
259         ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host\n");
260         ether1394_host_reset(host);
261 }
262
263 static inline int ether1394_max_mtu(struct hpsb_host* host)
264 {
265         return (1 << (host->csr.max_rec + 1))
266                         - sizeof(union eth1394_hdr) - ETHER1394_GASP_OVERHEAD;
267 }
268
269 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
270 {
271         int max_mtu;
272
273         if (new_mtu < 68)
274                 return -EINVAL;
275
276         max_mtu = ether1394_max_mtu(
277                         ((struct eth1394_priv *)netdev_priv(dev))->host);
278         if (new_mtu > max_mtu) {
279                 ETH1394_PRINT(KERN_INFO, dev->name,
280                               "Local node constrains MTU to %d\n", max_mtu);
281                 return -ERANGE;
282         }
283
284         dev->mtu = new_mtu;
285         return 0;
286 }
287
288 static void purge_partial_datagram(struct list_head *old)
289 {
290         struct partial_datagram *pd;
291         struct list_head *lh, *n;
292         struct fragment_info *fi;
293
294         pd = list_entry(old, struct partial_datagram, list);
295
296         list_for_each_safe(lh, n, &pd->frag_info) {
297                 fi = list_entry(lh, struct fragment_info, list);
298                 list_del(lh);
299                 kfree(fi);
300         }
301         list_del(old);
302         kfree_skb(pd->skb);
303         kfree(pd);
304 }
305
306 /******************************************
307  * 1394 bus activity functions
308  ******************************************/
309
310 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
311                                                   struct unit_directory *ud)
312 {
313         struct eth1394_node_ref *node;
314
315         list_for_each_entry(node, inl, list)
316                 if (node->ud == ud)
317                         return node;
318
319         return NULL;
320 }
321
322 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
323                                                        u64 guid)
324 {
325         struct eth1394_node_ref *node;
326
327         list_for_each_entry(node, inl, list)
328                 if (node->ud->ne->guid == guid)
329                         return node;
330
331         return NULL;
332 }
333
334 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
335                                                          nodeid_t nodeid)
336 {
337         struct eth1394_node_ref *node;
338
339         list_for_each_entry(node, inl, list)
340                 if (node->ud->ne->nodeid == nodeid)
341                         return node;
342
343         return NULL;
344 }
345
346 static int eth1394_new_node(struct eth1394_host_info *hi,
347                             struct unit_directory *ud)
348 {
349         struct eth1394_priv *priv;
350         struct eth1394_node_ref *new_node;
351         struct eth1394_node_info *node_info;
352
353         new_node = kmalloc(sizeof(*new_node), GFP_KERNEL);
354         if (!new_node)
355                 return -ENOMEM;
356
357         node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
358         if (!node_info) {
359                 kfree(new_node);
360                 return -ENOMEM;
361         }
362
363         spin_lock_init(&node_info->pdg.lock);
364         INIT_LIST_HEAD(&node_info->pdg.list);
365         node_info->pdg.sz = 0;
366         node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
367
368         ud->device.driver_data = node_info;
369         new_node->ud = ud;
370
371         priv = netdev_priv(hi->dev);
372         list_add_tail(&new_node->list, &priv->ip_node_list);
373         return 0;
374 }
375
376 static int eth1394_probe(struct device *dev)
377 {
378         struct unit_directory *ud;
379         struct eth1394_host_info *hi;
380
381         ud = container_of(dev, struct unit_directory, device);
382         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
383         if (!hi)
384                 return -ENOENT;
385
386         return eth1394_new_node(hi, ud);
387 }
388
389 static int eth1394_remove(struct device *dev)
390 {
391         struct unit_directory *ud;
392         struct eth1394_host_info *hi;
393         struct eth1394_priv *priv;
394         struct eth1394_node_ref *old_node;
395         struct eth1394_node_info *node_info;
396         struct list_head *lh, *n;
397         unsigned long flags;
398
399         ud = container_of(dev, struct unit_directory, device);
400         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
401         if (!hi)
402                 return -ENOENT;
403
404         priv = netdev_priv(hi->dev);
405
406         old_node = eth1394_find_node(&priv->ip_node_list, ud);
407         if (!old_node)
408                 return 0;
409
410         list_del(&old_node->list);
411         kfree(old_node);
412
413         node_info = (struct eth1394_node_info*)ud->device.driver_data;
414
415         spin_lock_irqsave(&node_info->pdg.lock, flags);
416         /* The partial datagram list should be empty, but we'll just
417          * make sure anyway... */
418         list_for_each_safe(lh, n, &node_info->pdg.list)
419                 purge_partial_datagram(lh);
420         spin_unlock_irqrestore(&node_info->pdg.lock, flags);
421
422         kfree(node_info);
423         ud->device.driver_data = NULL;
424         return 0;
425 }
426
427 static int eth1394_update(struct unit_directory *ud)
428 {
429         struct eth1394_host_info *hi;
430         struct eth1394_priv *priv;
431         struct eth1394_node_ref *node;
432
433         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
434         if (!hi)
435                 return -ENOENT;
436
437         priv = netdev_priv(hi->dev);
438         node = eth1394_find_node(&priv->ip_node_list, ud);
439         if (node)
440                 return 0;
441
442         return eth1394_new_node(hi, ud);
443 }
444
445 static struct ieee1394_device_id eth1394_id_table[] = {
446         {
447                 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
448                                 IEEE1394_MATCH_VERSION),
449                 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
450                 .version = ETHER1394_GASP_VERSION,
451         },
452         {}
453 };
454
455 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
456
457 static struct hpsb_protocol_driver eth1394_proto_driver = {
458         .name           = driver_name,
459         .id_table       = eth1394_id_table,
460         .update         = eth1394_update,
461         .driver         = {
462                 .probe          = eth1394_probe,
463                 .remove         = eth1394_remove,
464         },
465 };
466
467 static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
468 {
469         unsigned long flags;
470         int i;
471         struct eth1394_priv *priv = netdev_priv(dev);
472         struct hpsb_host *host = priv->host;
473         u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
474         int max_speed = IEEE1394_SPEED_MAX;
475
476         spin_lock_irqsave(&priv->lock, flags);
477
478         memset(priv->ud_list, 0, sizeof(priv->ud_list));
479         priv->bc_maxpayload = 512;
480
481         /* Determine speed limit */
482         /* FIXME: This is broken for nodes with link speed < PHY speed,
483          * and it is suboptimal for S200B...S800B hardware.
484          * The result of nodemgr's speed probe should be used somehow. */
485         for (i = 0; i < host->node_count; i++) {
486                 /* take care of S100B...S400B PHY ports */
487                 if (host->speed[i] == SELFID_SPEED_UNKNOWN) {
488                         max_speed = IEEE1394_SPEED_100;
489                         break;
490                 }
491                 if (max_speed > host->speed[i])
492                         max_speed = host->speed[i];
493         }
494         priv->bc_sspd = max_speed;
495
496         if (set_mtu) {
497                 /* Use the RFC 2734 default 1500 octets or the maximum payload
498                  * as initial MTU */
499                 dev->mtu = min(1500, ether1394_max_mtu(host));
500
501                 /* Set our hardware address while we're at it */
502                 memcpy(dev->dev_addr, &guid, sizeof(u64));
503                 memset(dev->broadcast, 0xff, sizeof(u64));
504         }
505
506         spin_unlock_irqrestore(&priv->lock, flags);
507 }
508
509 static void ether1394_init_dev(struct net_device *dev)
510 {
511         dev->open               = ether1394_open;
512         dev->stop               = ether1394_stop;
513         dev->hard_start_xmit    = ether1394_tx;
514         dev->get_stats          = ether1394_stats;
515         dev->tx_timeout         = ether1394_tx_timeout;
516         dev->change_mtu         = ether1394_change_mtu;
517
518         dev->hard_header        = ether1394_header;
519         dev->rebuild_header     = ether1394_rebuild_header;
520         dev->hard_header_cache  = ether1394_header_cache;
521         dev->header_cache_update= ether1394_header_cache_update;
522         dev->hard_header_parse  = ether1394_header_parse;
523
524         SET_ETHTOOL_OPS(dev, &ethtool_ops);
525
526         dev->watchdog_timeo     = ETHER1394_TIMEOUT;
527         dev->flags              = IFF_BROADCAST | IFF_MULTICAST;
528         dev->features           = NETIF_F_HIGHDMA;
529         dev->addr_len           = ETH1394_ALEN;
530         dev->hard_header_len    = ETH1394_HLEN;
531         dev->type               = ARPHRD_IEEE1394;
532
533         /* FIXME: This value was copied from ether_setup(). Is it too much? */
534         dev->tx_queue_len       = 1000;
535 }
536
537 /*
538  * Wake the queue up after commonly encountered transmit failure conditions are
539  * hopefully over.  Currently only tlabel exhaustion is accounted for.
540  */
541 static void ether1394_wake_queue(struct work_struct *work)
542 {
543         struct eth1394_priv *priv;
544         struct hpsb_packet *packet;
545
546         priv = container_of(work, struct eth1394_priv, wake);
547         packet = hpsb_alloc_packet(0);
548
549         /* This is really bad, but unjam the queue anyway. */
550         if (!packet)
551                 goto out;
552
553         packet->host = priv->host;
554         packet->node_id = priv->wake_node;
555         /*
556          * A transaction label is all we really want.  If we get one, it almost
557          * always means we can get a lot more because the ieee1394 core recycled
558          * a whole batch of tlabels, at last.
559          */
560         if (hpsb_get_tlabel(packet) == 0)
561                 hpsb_free_tlabel(packet);
562
563         hpsb_free_packet(packet);
564 out:
565         netif_wake_queue(priv->wake_dev);
566 }
567
568 /*
569  * This function is called every time a card is found. It is generally called
570  * when the module is installed. This is where we add all of our ethernet
571  * devices. One for each host.
572  */
573 static void ether1394_add_host(struct hpsb_host *host)
574 {
575         struct eth1394_host_info *hi = NULL;
576         struct net_device *dev = NULL;
577         struct eth1394_priv *priv;
578         u64 fifo_addr;
579
580         if (hpsb_config_rom_ip1394_add(host) != 0) {
581                 ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
582                 return;
583         }
584
585         fifo_addr = hpsb_allocate_and_register_addrspace(
586                         &eth1394_highlevel, host, &addr_ops,
587                         ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
588                         CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
589         if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
590                 ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
591                 hpsb_config_rom_ip1394_remove(host);
592                 return;
593         }
594
595         dev = alloc_netdev(sizeof(*priv), "eth%d", ether1394_init_dev);
596         if (dev == NULL) {
597                 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
598                 goto out;
599         }
600
601         SET_MODULE_OWNER(dev);
602
603         /* This used to be &host->device in Linux 2.6.20 and before. */
604         SET_NETDEV_DEV(dev, host->device.parent);
605
606         priv = netdev_priv(dev);
607         INIT_LIST_HEAD(&priv->ip_node_list);
608         spin_lock_init(&priv->lock);
609         priv->host = host;
610         priv->local_fifo = fifo_addr;
611         INIT_WORK(&priv->wake, ether1394_wake_queue);
612         priv->wake_dev = dev;
613
614         hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
615         if (hi == NULL) {
616                 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
617                 goto out;
618         }
619
620         ether1394_reset_priv(dev, 1);
621
622         if (register_netdev(dev)) {
623                 ETH1394_PRINT_G(KERN_ERR, "Cannot register the driver\n");
624                 goto out;
625         }
626
627         ETH1394_PRINT(KERN_INFO, dev->name, "IPv4 over IEEE 1394 (fw-host%d)\n",
628                       host->id);
629
630         hi->host = host;
631         hi->dev = dev;
632
633         /* Ignore validity in hopes that it will be set in the future.  It'll
634          * be checked when the eth device is opened. */
635         priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
636
637         ether1394_recv_init(priv);
638         return;
639 out:
640         if (dev)
641                 free_netdev(dev);
642         if (hi)
643                 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
644         hpsb_unregister_addrspace(&eth1394_highlevel, host, fifo_addr);
645         hpsb_config_rom_ip1394_remove(host);
646 }
647
648 /* Remove a card from our list */
649 static void ether1394_remove_host(struct hpsb_host *host)
650 {
651         struct eth1394_host_info *hi;
652         struct eth1394_priv *priv;
653
654         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
655         if (!hi)
656                 return;
657         priv = netdev_priv(hi->dev);
658         hpsb_unregister_addrspace(&eth1394_highlevel, host, priv->local_fifo);
659         hpsb_config_rom_ip1394_remove(host);
660         if (priv->iso)
661                 hpsb_iso_shutdown(priv->iso);
662         unregister_netdev(hi->dev);
663         free_netdev(hi->dev);
664 }
665
666 /* A bus reset happened */
667 static void ether1394_host_reset(struct hpsb_host *host)
668 {
669         struct eth1394_host_info *hi;
670         struct eth1394_priv *priv;
671         struct net_device *dev;
672         struct list_head *lh, *n;
673         struct eth1394_node_ref *node;
674         struct eth1394_node_info *node_info;
675         unsigned long flags;
676
677         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
678
679         /* This can happen for hosts that we don't use */
680         if (!hi)
681                 return;
682
683         dev = hi->dev;
684         priv = netdev_priv(dev);
685
686         /* Reset our private host data, but not our MTU */
687         netif_stop_queue(dev);
688         ether1394_reset_priv(dev, 0);
689
690         list_for_each_entry(node, &priv->ip_node_list, list) {
691                 node_info = node->ud->device.driver_data;
692
693                 spin_lock_irqsave(&node_info->pdg.lock, flags);
694
695                 list_for_each_safe(lh, n, &node_info->pdg.list)
696                         purge_partial_datagram(lh);
697
698                 INIT_LIST_HEAD(&(node_info->pdg.list));
699                 node_info->pdg.sz = 0;
700
701                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
702         }
703
704         netif_wake_queue(dev);
705 }
706
707 /******************************************
708  * HW Header net device functions
709  ******************************************/
710 /* These functions have been adapted from net/ethernet/eth.c */
711
712 /* Create a fake MAC header for an arbitrary protocol layer.
713  * saddr=NULL means use device source address
714  * daddr=NULL means leave destination address (eg unresolved arp). */
715 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
716                             unsigned short type, void *daddr, void *saddr,
717                             unsigned len)
718 {
719         struct eth1394hdr *eth =
720                         (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
721
722         eth->h_proto = htons(type);
723
724         if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
725                 memset(eth->h_dest, 0, dev->addr_len);
726                 return dev->hard_header_len;
727         }
728
729         if (daddr) {
730                 memcpy(eth->h_dest, daddr, dev->addr_len);
731                 return dev->hard_header_len;
732         }
733
734         return -dev->hard_header_len;
735 }
736
737 /* Rebuild the faked MAC header. This is called after an ARP
738  * (or in future other address resolution) has completed on this
739  * sk_buff. We now let ARP fill in the other fields.
740  *
741  * This routine CANNOT use cached dst->neigh!
742  * Really, it is used only when dst->neigh is wrong.
743  */
744 static int ether1394_rebuild_header(struct sk_buff *skb)
745 {
746         struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
747
748         if (eth->h_proto == htons(ETH_P_IP))
749                 return arp_find((unsigned char *)&eth->h_dest, skb);
750
751         ETH1394_PRINT(KERN_DEBUG, skb->dev->name,
752                       "unable to resolve type %04x addresses\n",
753                       ntohs(eth->h_proto));
754         return 0;
755 }
756
757 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
758 {
759         struct net_device *dev = skb->dev;
760
761         memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
762         return ETH1394_ALEN;
763 }
764
765 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
766 {
767         unsigned short type = hh->hh_type;
768         struct net_device *dev = neigh->dev;
769         struct eth1394hdr *eth =
770                 (struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);
771
772         if (type == htons(ETH_P_802_3))
773                 return -1;
774
775         eth->h_proto = type;
776         memcpy(eth->h_dest, neigh->ha, dev->addr_len);
777
778         hh->hh_len = ETH1394_HLEN;
779         return 0;
780 }
781
782 /* Called by Address Resolution module to notify changes in address. */
783 static void ether1394_header_cache_update(struct hh_cache *hh,
784                                           struct net_device *dev,
785                                           unsigned char * haddr)
786 {
787         memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
788 }
789
790 /******************************************
791  * Datagram reception code
792  ******************************************/
793
794 /* Copied from net/ethernet/eth.c */
795 static u16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
796 {
797         struct eth1394hdr *eth;
798         unsigned char *rawp;
799
800         skb_reset_mac_header(skb);
801         skb_pull(skb, ETH1394_HLEN);
802         eth = eth1394_hdr(skb);
803
804         if (*eth->h_dest & 1) {
805                 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
806                         skb->pkt_type = PACKET_BROADCAST;
807 #if 0
808                 else
809                         skb->pkt_type = PACKET_MULTICAST;
810 #endif
811         } else {
812                 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
813                         skb->pkt_type = PACKET_OTHERHOST;
814         }
815
816         if (ntohs(eth->h_proto) >= 1536)
817                 return eth->h_proto;
818
819         rawp = skb->data;
820
821         if (*(unsigned short *)rawp == 0xFFFF)
822                 return htons(ETH_P_802_3);
823
824         return htons(ETH_P_802_2);
825 }
826
827 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
828  * We also perform ARP translation here, if need be.  */
829 static u16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
830                                  nodeid_t srcid, nodeid_t destid,
831                                  u16 ether_type)
832 {
833         struct eth1394_priv *priv = netdev_priv(dev);
834         u64 dest_hw;
835         unsigned short ret = 0;
836
837         /* Setup our hw addresses. We use these to build the ethernet header. */
838         if (destid == (LOCAL_BUS | ALL_NODES))
839                 dest_hw = ~0ULL;  /* broadcast */
840         else
841                 dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
842                                       priv->host->csr.guid_lo);
843
844         /* If this is an ARP packet, convert it. First, we want to make
845          * use of some of the fields, since they tell us a little bit
846          * about the sending machine.  */
847         if (ether_type == htons(ETH_P_ARP)) {
848                 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
849                 struct arphdr *arp = (struct arphdr *)skb->data;
850                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
851                 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
852                                            ntohl(arp1394->fifo_lo);
853                 u8 max_rec = min(priv->host->csr.max_rec,
854                                  (u8)(arp1394->max_rec));
855                 int sspd = arp1394->sspd;
856                 u16 maxpayload;
857                 struct eth1394_node_ref *node;
858                 struct eth1394_node_info *node_info;
859                 __be64 guid;
860
861                 /* Sanity check. MacOSX seems to be sending us 131 in this
862                  * field (atleast on my Panther G5). Not sure why. */
863                 if (sspd > 5 || sspd < 0)
864                         sspd = 0;
865
866                 maxpayload = min(eth1394_speedto_maxpayload[sspd],
867                                  (u16)(1 << (max_rec + 1)));
868
869                 guid = get_unaligned(&arp1394->s_uniq_id);
870                 node = eth1394_find_node_guid(&priv->ip_node_list,
871                                               be64_to_cpu(guid));
872                 if (!node)
873                         return 0;
874
875                 node_info =
876                     (struct eth1394_node_info *)node->ud->device.driver_data;
877
878                 /* Update our speed/payload/fifo_offset table */
879                 node_info->maxpayload = maxpayload;
880                 node_info->sspd =       sspd;
881                 node_info->fifo =       fifo_addr;
882
883                 /* Now that we're done with the 1394 specific stuff, we'll
884                  * need to alter some of the data.  Believe it or not, all
885                  * that needs to be done is sender_IP_address needs to be
886                  * moved, the destination hardware address get stuffed
887                  * in and the hardware address length set to 8.
888                  *
889                  * IMPORTANT: The code below overwrites 1394 specific data
890                  * needed above so keep the munging of the data for the
891                  * higher level IP stack last. */
892
893                 arp->ar_hln = 8;
894                 arp_ptr += arp->ar_hln;         /* skip over sender unique id */
895                 *(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
896                 arp_ptr += arp->ar_pln;         /* skip over sender IP addr */
897
898                 if (arp->ar_op == htons(ARPOP_REQUEST))
899                         memset(arp_ptr, 0, sizeof(u64));
900                 else
901                         memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
902         }
903
904         /* Now add the ethernet header. */
905         if (dev->hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
906                              skb->len) >= 0)
907                 ret = ether1394_type_trans(skb, dev);
908
909         return ret;
910 }
911
912 static int fragment_overlap(struct list_head *frag_list, int offset, int len)
913 {
914         struct fragment_info *fi;
915         int end = offset + len;
916
917         list_for_each_entry(fi, frag_list, list)
918                 if (offset < fi->offset + fi->len && end > fi->offset)
919                         return 1;
920
921         return 0;
922 }
923
924 static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
925 {
926         struct partial_datagram *pd;
927
928         list_for_each_entry(pd, pdgl, list)
929                 if (pd->dgl == dgl)
930                         return &pd->list;
931
932         return NULL;
933 }
934
935 /* Assumes that new fragment does not overlap any existing fragments */
936 static int new_fragment(struct list_head *frag_info, int offset, int len)
937 {
938         struct list_head *lh;
939         struct fragment_info *fi, *fi2, *new;
940
941         list_for_each(lh, frag_info) {
942                 fi = list_entry(lh, struct fragment_info, list);
943                 if (fi->offset + fi->len == offset) {
944                         /* The new fragment can be tacked on to the end */
945                         fi->len += len;
946                         /* Did the new fragment plug a hole? */
947                         fi2 = list_entry(lh->next, struct fragment_info, list);
948                         if (fi->offset + fi->len == fi2->offset) {
949                                 /* glue fragments together */
950                                 fi->len += fi2->len;
951                                 list_del(lh->next);
952                                 kfree(fi2);
953                         }
954                         return 0;
955                 } else if (offset + len == fi->offset) {
956                         /* The new fragment can be tacked on to the beginning */
957                         fi->offset = offset;
958                         fi->len += len;
959                         /* Did the new fragment plug a hole? */
960                         fi2 = list_entry(lh->prev, struct fragment_info, list);
961                         if (fi2->offset + fi2->len == fi->offset) {
962                                 /* glue fragments together */
963                                 fi2->len += fi->len;
964                                 list_del(lh);
965                                 kfree(fi);
966                         }
967                         return 0;
968                 } else if (offset > fi->offset + fi->len) {
969                         break;
970                 } else if (offset + len < fi->offset) {
971                         lh = lh->prev;
972                         break;
973                 }
974         }
975
976         new = kmalloc(sizeof(*new), GFP_ATOMIC);
977         if (!new)
978                 return -ENOMEM;
979
980         new->offset = offset;
981         new->len = len;
982
983         list_add(&new->list, lh);
984         return 0;
985 }
986
987 static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
988                                 int dgl, int dg_size, char *frag_buf,
989                                 int frag_off, int frag_len)
990 {
991         struct partial_datagram *new;
992
993         new = kmalloc(sizeof(*new), GFP_ATOMIC);
994         if (!new)
995                 return -ENOMEM;
996
997         INIT_LIST_HEAD(&new->frag_info);
998
999         if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1000                 kfree(new);
1001                 return -ENOMEM;
1002         }
1003
1004         new->dgl = dgl;
1005         new->dg_size = dg_size;
1006
1007         new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1008         if (!new->skb) {
1009                 struct fragment_info *fi = list_entry(new->frag_info.next,
1010                                                       struct fragment_info,
1011                                                       list);
1012                 kfree(fi);
1013                 kfree(new);
1014                 return -ENOMEM;
1015         }
1016
1017         skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1018         new->pbuf = skb_put(new->skb, dg_size);
1019         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1020
1021         list_add(&new->list, pdgl);
1022         return 0;
1023 }
1024
1025 static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1026                                    char *frag_buf, int frag_off, int frag_len)
1027 {
1028         struct partial_datagram *pd =
1029                         list_entry(lh, struct partial_datagram, list);
1030
1031         if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
1032                 return -ENOMEM;
1033
1034         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1035
1036         /* Move list entry to beginnig of list so that oldest partial
1037          * datagrams percolate to the end of the list */
1038         list_move(lh, pdgl);
1039         return 0;
1040 }
1041
1042 static int is_datagram_complete(struct list_head *lh, int dg_size)
1043 {
1044         struct partial_datagram *pd;
1045         struct fragment_info *fi;
1046
1047         pd = list_entry(lh, struct partial_datagram, list);
1048         fi = list_entry(pd->frag_info.next, struct fragment_info, list);
1049
1050         return (fi->len == dg_size);
1051 }
1052
1053 /* Packet reception. We convert the IP1394 encapsulation header to an
1054  * ethernet header, and fill it with some of our other fields. This is
1055  * an incoming packet from the 1394 bus.  */
1056 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1057                                   char *buf, int len)
1058 {
1059         struct sk_buff *skb;
1060         unsigned long flags;
1061         struct eth1394_priv *priv = netdev_priv(dev);
1062         union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1063         u16 ether_type = 0;  /* initialized to clear warning */
1064         int hdr_len;
1065         struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1066         struct eth1394_node_info *node_info;
1067
1068         if (!ud) {
1069                 struct eth1394_node_ref *node;
1070                 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1071                 if (unlikely(!node)) {
1072                         HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1073                                    "lookup failure: " NODE_BUS_FMT,
1074                                    NODE_BUS_ARGS(priv->host, srcid));
1075                         priv->stats.rx_dropped++;
1076                         return -1;
1077                 }
1078                 ud = node->ud;
1079
1080                 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1081         }
1082
1083         node_info = (struct eth1394_node_info *)ud->device.driver_data;
1084
1085         /* First, did we receive a fragmented or unfragmented datagram? */
1086         hdr->words.word1 = ntohs(hdr->words.word1);
1087
1088         hdr_len = hdr_type_len[hdr->common.lf];
1089
1090         if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1091                 /* An unfragmented datagram has been received by the ieee1394
1092                  * bus. Build an skbuff around it so we can pass it to the
1093                  * high level network layer. */
1094
1095                 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1096                 if (unlikely(!skb)) {
1097                         ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
1098                         priv->stats.rx_dropped++;
1099                         return -1;
1100                 }
1101                 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1102                 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
1103                        len - hdr_len);
1104                 ether_type = hdr->uf.ether_type;
1105         } else {
1106                 /* A datagram fragment has been received, now the fun begins. */
1107
1108                 struct list_head *pdgl, *lh;
1109                 struct partial_datagram *pd;
1110                 int fg_off;
1111                 int fg_len = len - hdr_len;
1112                 int dg_size;
1113                 int dgl;
1114                 int retval;
1115                 struct pdg_list *pdg = &(node_info->pdg);
1116
1117                 hdr->words.word3 = ntohs(hdr->words.word3);
1118                 /* The 4th header word is reserved so no need to do ntohs() */
1119
1120                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1121                         ether_type = hdr->ff.ether_type;
1122                         dgl = hdr->ff.dgl;
1123                         dg_size = hdr->ff.dg_size + 1;
1124                         fg_off = 0;
1125                 } else {
1126                         hdr->words.word2 = ntohs(hdr->words.word2);
1127                         dgl = hdr->sf.dgl;
1128                         dg_size = hdr->sf.dg_size + 1;
1129                         fg_off = hdr->sf.fg_off;
1130                 }
1131                 spin_lock_irqsave(&pdg->lock, flags);
1132
1133                 pdgl = &(pdg->list);
1134                 lh = find_partial_datagram(pdgl, dgl);
1135
1136                 if (lh == NULL) {
1137                         while (pdg->sz >= max_partial_datagrams) {
1138                                 /* remove the oldest */
1139                                 purge_partial_datagram(pdgl->prev);
1140                                 pdg->sz--;
1141                         }
1142
1143                         retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1144                                                       buf + hdr_len, fg_off,
1145                                                       fg_len);
1146                         if (retval < 0) {
1147                                 spin_unlock_irqrestore(&pdg->lock, flags);
1148                                 goto bad_proto;
1149                         }
1150                         pdg->sz++;
1151                         lh = find_partial_datagram(pdgl, dgl);
1152                 } else {
1153                         struct partial_datagram *pd;
1154
1155                         pd = list_entry(lh, struct partial_datagram, list);
1156
1157                         if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1158                                 /* Overlapping fragments, obliterate old
1159                                  * datagram and start new one. */
1160                                 purge_partial_datagram(lh);
1161                                 retval = new_partial_datagram(dev, pdgl, dgl,
1162                                                               dg_size,
1163                                                               buf + hdr_len,
1164                                                               fg_off, fg_len);
1165                                 if (retval < 0) {
1166                                         pdg->sz--;
1167                                         spin_unlock_irqrestore(&pdg->lock, flags);
1168                                         goto bad_proto;
1169                                 }
1170                         } else {
1171                                 retval = update_partial_datagram(pdgl, lh,
1172                                                                  buf + hdr_len,
1173                                                                  fg_off, fg_len);
1174                                 if (retval < 0) {
1175                                         /* Couldn't save off fragment anyway
1176                                          * so might as well obliterate the
1177                                          * datagram now. */
1178                                         purge_partial_datagram(lh);
1179                                         pdg->sz--;
1180                                         spin_unlock_irqrestore(&pdg->lock, flags);
1181                                         goto bad_proto;
1182                                 }
1183                         } /* fragment overlap */
1184                 } /* new datagram or add to existing one */
1185
1186                 pd = list_entry(lh, struct partial_datagram, list);
1187
1188                 if (hdr->common.lf == ETH1394_HDR_LF_FF)
1189                         pd->ether_type = ether_type;
1190
1191                 if (is_datagram_complete(lh, dg_size)) {
1192                         ether_type = pd->ether_type;
1193                         pdg->sz--;
1194                         skb = skb_get(pd->skb);
1195                         purge_partial_datagram(lh);
1196                         spin_unlock_irqrestore(&pdg->lock, flags);
1197                 } else {
1198                         /* Datagram is not complete, we're done for the
1199                          * moment. */
1200                         spin_unlock_irqrestore(&pdg->lock, flags);
1201                         return 0;
1202                 }
1203         } /* unframgented datagram or fragmented one */
1204
1205         /* Write metadata, and then pass to the receive level */
1206         skb->dev = dev;
1207         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
1208
1209         /* Parse the encapsulation header. This actually does the job of
1210          * converting to an ethernet frame header, aswell as arp
1211          * conversion if needed. ARP conversion is easier in this
1212          * direction, since we are using ethernet as our backend.  */
1213         skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1214                                               ether_type);
1215
1216         spin_lock_irqsave(&priv->lock, flags);
1217
1218         if (!skb->protocol) {
1219                 priv->stats.rx_errors++;
1220                 priv->stats.rx_dropped++;
1221                 dev_kfree_skb_any(skb);
1222                 goto bad_proto;
1223         }
1224
1225         if (netif_rx(skb) == NET_RX_DROP) {
1226                 priv->stats.rx_errors++;
1227                 priv->stats.rx_dropped++;
1228                 goto bad_proto;
1229         }
1230
1231         /* Statistics */
1232         priv->stats.rx_packets++;
1233         priv->stats.rx_bytes += skb->len;
1234
1235 bad_proto:
1236         if (netif_queue_stopped(dev))
1237                 netif_wake_queue(dev);
1238         spin_unlock_irqrestore(&priv->lock, flags);
1239
1240         dev->last_rx = jiffies;
1241
1242         return 0;
1243 }
1244
1245 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1246                            quadlet_t *data, u64 addr, size_t len, u16 flags)
1247 {
1248         struct eth1394_host_info *hi;
1249
1250         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1251         if (unlikely(!hi)) {
1252                 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1253                                 host->id);
1254                 return RCODE_ADDRESS_ERROR;
1255         }
1256
1257         if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1258                 return RCODE_ADDRESS_ERROR;
1259         else
1260                 return RCODE_COMPLETE;
1261 }
1262
1263 static void ether1394_iso(struct hpsb_iso *iso)
1264 {
1265         quadlet_t *data;
1266         char *buf;
1267         struct eth1394_host_info *hi;
1268         struct net_device *dev;
1269         struct eth1394_priv *priv;
1270         unsigned int len;
1271         u32 specifier_id;
1272         u16 source_id;
1273         int i;
1274         int nready;
1275
1276         hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1277         if (unlikely(!hi)) {
1278                 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1279                                 iso->host->id);
1280                 return;
1281         }
1282
1283         dev = hi->dev;
1284
1285         nready = hpsb_iso_n_ready(iso);
1286         for (i = 0; i < nready; i++) {
1287                 struct hpsb_iso_packet_info *info =
1288                         &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1289                 data = (quadlet_t *)(iso->data_buf.kvirt + info->offset);
1290
1291                 /* skip over GASP header */
1292                 buf = (char *)data + 8;
1293                 len = info->len - 8;
1294
1295                 specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
1296                                (be32_to_cpu(data[1]) & 0xff000000) >> 24;
1297                 source_id = be32_to_cpu(data[0]) >> 16;
1298
1299                 priv = netdev_priv(dev);
1300
1301                 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
1302                     || specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1303                         /* This packet is not for us */
1304                         continue;
1305                 }
1306                 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1307                                        buf, len);
1308         }
1309
1310         hpsb_iso_recv_release_packets(iso, i);
1311
1312         dev->last_rx = jiffies;
1313 }
1314
1315 /******************************************
1316  * Datagram transmission code
1317  ******************************************/
1318
1319 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1320  * arphdr) is the same format as the ip1394 header, so they overlap.  The rest
1321  * needs to be munged a bit.  The remainder of the arphdr is formatted based
1322  * on hwaddr len and ipaddr len.  We know what they'll be, so it's easy to
1323  * judge.
1324  *
1325  * Now that the EUI is used for the hardware address all we need to do to make
1326  * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1327  * speed, and unicast FIFO address information between the sender_unique_id
1328  * and the IP addresses.
1329  */
1330 static void ether1394_arp_to_1394arp(struct sk_buff *skb,
1331                                      struct net_device *dev)
1332 {
1333         struct eth1394_priv *priv = netdev_priv(dev);
1334         struct arphdr *arp = (struct arphdr *)skb->data;
1335         unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1336         struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1337
1338         arp1394->hw_addr_len    = 16;
1339         arp1394->sip            = *(u32*)(arp_ptr + ETH1394_ALEN);
1340         arp1394->max_rec        = priv->host->csr.max_rec;
1341         arp1394->sspd           = priv->host->csr.lnk_spd;
1342         arp1394->fifo_hi        = htons(priv->local_fifo >> 32);
1343         arp1394->fifo_lo        = htonl(priv->local_fifo & ~0x0);
1344 }
1345
1346 /* We need to encapsulate the standard header with our own. We use the
1347  * ethernet header's proto for our own. */
1348 static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1349                                                __be16 proto,
1350                                                union eth1394_hdr *hdr,
1351                                                u16 dg_size, u16 dgl)
1352 {
1353         unsigned int adj_max_payload =
1354                                 max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1355
1356         /* Does it all fit in one packet? */
1357         if (dg_size <= adj_max_payload) {
1358                 hdr->uf.lf = ETH1394_HDR_LF_UF;
1359                 hdr->uf.ether_type = proto;
1360         } else {
1361                 hdr->ff.lf = ETH1394_HDR_LF_FF;
1362                 hdr->ff.ether_type = proto;
1363                 hdr->ff.dg_size = dg_size - 1;
1364                 hdr->ff.dgl = dgl;
1365                 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1366         }
1367         return (dg_size + adj_max_payload - 1) / adj_max_payload;
1368 }
1369
1370 static unsigned int ether1394_encapsulate(struct sk_buff *skb,
1371                                           unsigned int max_payload,
1372                                           union eth1394_hdr *hdr)
1373 {
1374         union eth1394_hdr *bufhdr;
1375         int ftype = hdr->common.lf;
1376         int hdrsz = hdr_type_len[ftype];
1377         unsigned int adj_max_payload = max_payload - hdrsz;
1378
1379         switch (ftype) {
1380         case ETH1394_HDR_LF_UF:
1381                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1382                 bufhdr->words.word1 = htons(hdr->words.word1);
1383                 bufhdr->words.word2 = hdr->words.word2;
1384                 break;
1385
1386         case ETH1394_HDR_LF_FF:
1387                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1388                 bufhdr->words.word1 = htons(hdr->words.word1);
1389                 bufhdr->words.word2 = hdr->words.word2;
1390                 bufhdr->words.word3 = htons(hdr->words.word3);
1391                 bufhdr->words.word4 = 0;
1392
1393                 /* Set frag type here for future interior fragments */
1394                 hdr->common.lf = ETH1394_HDR_LF_IF;
1395                 hdr->sf.fg_off = 0;
1396                 break;
1397
1398         default:
1399                 hdr->sf.fg_off += adj_max_payload;
1400                 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1401                 if (max_payload >= skb->len)
1402                         hdr->common.lf = ETH1394_HDR_LF_LF;
1403                 bufhdr->words.word1 = htons(hdr->words.word1);
1404                 bufhdr->words.word2 = htons(hdr->words.word2);
1405                 bufhdr->words.word3 = htons(hdr->words.word3);
1406                 bufhdr->words.word4 = 0;
1407         }
1408         return min(max_payload, skb->len);
1409 }
1410
1411 static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1412 {
1413         struct hpsb_packet *p;
1414
1415         p = hpsb_alloc_packet(0);
1416         if (p) {
1417                 p->host = host;
1418                 p->generation = get_hpsb_generation(host);
1419                 p->type = hpsb_async;
1420         }
1421         return p;
1422 }
1423
1424 static int ether1394_prep_write_packet(struct hpsb_packet *p,
1425                                        struct hpsb_host *host, nodeid_t node,
1426                                        u64 addr, void *data, int tx_len)
1427 {
1428         p->node_id = node;
1429
1430         if (hpsb_get_tlabel(p))
1431                 return -EAGAIN;
1432
1433         p->tcode = TCODE_WRITEB;
1434         p->header_size = 16;
1435         p->expect_response = 1;
1436         p->header[0] =
1437                 p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
1438         p->header[1] = host->node_id << 16 | addr >> 32;
1439         p->header[2] = addr & 0xffffffff;
1440         p->header[3] = tx_len << 16;
1441         p->data_size = (tx_len + 3) & ~3;
1442         p->data = data;
1443
1444         return 0;
1445 }
1446
1447 static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1448                                        struct eth1394_priv *priv,
1449                                        struct sk_buff *skb, int length)
1450 {
1451         p->header_size = 4;
1452         p->tcode = TCODE_STREAM_DATA;
1453
1454         p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
1455                        TCODE_STREAM_DATA << 4;
1456         p->data_size = length;
1457         p->data = (quadlet_t *)skb->data - 2;
1458         p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
1459                                  ETHER1394_GASP_SPECIFIER_ID_HI);
1460         p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
1461                                  ETHER1394_GASP_VERSION);
1462
1463         p->speed_code = priv->bc_sspd;
1464
1465         /* prevent hpsb_send_packet() from overriding our speed code */
1466         p->node_id = LOCAL_BUS | ALL_NODES;
1467 }
1468
1469 static void ether1394_free_packet(struct hpsb_packet *packet)
1470 {
1471         if (packet->tcode != TCODE_STREAM_DATA)
1472                 hpsb_free_tlabel(packet);
1473         hpsb_free_packet(packet);
1474 }
1475
1476 static void ether1394_complete_cb(void *__ptask);
1477
1478 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1479 {
1480         struct eth1394_priv *priv = ptask->priv;
1481         struct hpsb_packet *packet = NULL;
1482
1483         packet = ether1394_alloc_common_packet(priv->host);
1484         if (!packet)
1485                 return -ENOMEM;
1486
1487         if (ptask->tx_type == ETH1394_GASP) {
1488                 int length = tx_len + 2 * sizeof(quadlet_t);
1489
1490                 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1491         } else if (ether1394_prep_write_packet(packet, priv->host,
1492                                                ptask->dest_node,
1493                                                ptask->addr, ptask->skb->data,
1494                                                tx_len)) {
1495                 hpsb_free_packet(packet);
1496                 return -EAGAIN;
1497         }
1498
1499         ptask->packet = packet;
1500         hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1501                                       ptask);
1502
1503         if (hpsb_send_packet(packet) < 0) {
1504                 ether1394_free_packet(packet);
1505                 return -EIO;
1506         }
1507
1508         return 0;
1509 }
1510
1511 /* Task function to be run when a datagram transmission is completed */
1512 static void ether1394_dg_complete(struct packet_task *ptask, int fail)
1513 {
1514         struct sk_buff *skb = ptask->skb;
1515         struct eth1394_priv *priv = netdev_priv(skb->dev);
1516         unsigned long flags;
1517
1518         /* Statistics */
1519         spin_lock_irqsave(&priv->lock, flags);
1520         if (fail) {
1521                 priv->stats.tx_dropped++;
1522                 priv->stats.tx_errors++;
1523         } else {
1524                 priv->stats.tx_bytes += skb->len;
1525                 priv->stats.tx_packets++;
1526         }
1527         spin_unlock_irqrestore(&priv->lock, flags);
1528
1529         dev_kfree_skb_any(skb);
1530         kmem_cache_free(packet_task_cache, ptask);
1531 }
1532
1533 /* Callback for when a packet has been sent and the status of that packet is
1534  * known */
1535 static void ether1394_complete_cb(void *__ptask)
1536 {
1537         struct packet_task *ptask = (struct packet_task *)__ptask;
1538         struct hpsb_packet *packet = ptask->packet;
1539         int fail = 0;
1540
1541         if (packet->tcode != TCODE_STREAM_DATA)
1542                 fail = hpsb_packet_success(packet);
1543
1544         ether1394_free_packet(packet);
1545
1546         ptask->outstanding_pkts--;
1547         if (ptask->outstanding_pkts > 0 && !fail) {
1548                 int tx_len, err;
1549
1550                 /* Add the encapsulation header to the fragment */
1551                 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1552                                                &ptask->hdr);
1553                 err = ether1394_send_packet(ptask, tx_len);
1554                 if (err) {
1555                         if (err == -EAGAIN)
1556                                 ETH1394_PRINT_G(KERN_ERR, "Out of tlabels\n");
1557
1558                         ether1394_dg_complete(ptask, 1);
1559                 }
1560         } else {
1561                 ether1394_dg_complete(ptask, fail);
1562         }
1563 }
1564
1565 /* Transmit a packet (called by kernel) */
1566 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev)
1567 {
1568         struct eth1394hdr hdr_buf;
1569         struct eth1394_priv *priv = netdev_priv(dev);
1570         __be16 proto;
1571         unsigned long flags;
1572         nodeid_t dest_node;
1573         eth1394_tx_type tx_type;
1574         unsigned int tx_len;
1575         unsigned int max_payload;
1576         u16 dg_size;
1577         u16 dgl;
1578         struct packet_task *ptask;
1579         struct eth1394_node_ref *node;
1580         struct eth1394_node_info *node_info = NULL;
1581
1582         ptask = kmem_cache_alloc(packet_task_cache, GFP_ATOMIC);
1583         if (ptask == NULL)
1584                 goto fail;
1585
1586         /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1587          * it does not set our validity bit. We need to compensate for
1588          * that somewhere else, but not in eth1394. */
1589 #if 0
1590         if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000)
1591                 goto fail;
1592 #endif
1593
1594         skb = skb_share_check(skb, GFP_ATOMIC);
1595         if (!skb)
1596                 goto fail;
1597
1598         /* Get rid of the fake eth1394 header, but first make a copy.
1599          * We might need to rebuild the header on tx failure. */
1600         memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1601         skb_pull(skb, ETH1394_HLEN);
1602
1603         proto = hdr_buf.h_proto;
1604         dg_size = skb->len;
1605
1606         /* Set the transmission type for the packet.  ARP packets and IP
1607          * broadcast packets are sent via GASP. */
1608         if (memcmp(hdr_buf.h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1609             proto == htons(ETH_P_ARP) ||
1610             (proto == htons(ETH_P_IP) &&
1611              IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1612                 tx_type = ETH1394_GASP;
1613                 dest_node = LOCAL_BUS | ALL_NODES;
1614                 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1615                 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1616                 dgl = priv->bc_dgl;
1617                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1618                         priv->bc_dgl++;
1619         } else {
1620                 __be64 guid = get_unaligned((u64 *)hdr_buf.h_dest);
1621
1622                 node = eth1394_find_node_guid(&priv->ip_node_list,
1623                                               be64_to_cpu(guid));
1624                 if (!node)
1625                         goto fail;
1626
1627                 node_info =
1628                     (struct eth1394_node_info *)node->ud->device.driver_data;
1629                 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE)
1630                         goto fail;
1631
1632                 dest_node = node->ud->ne->nodeid;
1633                 max_payload = node_info->maxpayload;
1634                 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1635
1636                 dgl = node_info->dgl;
1637                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1638                         node_info->dgl++;
1639                 tx_type = ETH1394_WRREQ;
1640         }
1641
1642         /* If this is an ARP packet, convert it */
1643         if (proto == htons(ETH_P_ARP))
1644                 ether1394_arp_to_1394arp(skb, dev);
1645
1646         ptask->hdr.words.word1 = 0;
1647         ptask->hdr.words.word2 = 0;
1648         ptask->hdr.words.word3 = 0;
1649         ptask->hdr.words.word4 = 0;
1650         ptask->skb = skb;
1651         ptask->priv = priv;
1652         ptask->tx_type = tx_type;
1653
1654         if (tx_type != ETH1394_GASP) {
1655                 u64 addr;
1656
1657                 spin_lock_irqsave(&priv->lock, flags);
1658                 addr = node_info->fifo;
1659                 spin_unlock_irqrestore(&priv->lock, flags);
1660
1661                 ptask->addr = addr;
1662                 ptask->dest_node = dest_node;
1663         }
1664
1665         ptask->tx_type = tx_type;
1666         ptask->max_payload = max_payload;
1667         ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
1668                                         proto, &ptask->hdr, dg_size, dgl);
1669
1670         /* Add the encapsulation header to the fragment */
1671         tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1672         dev->trans_start = jiffies;
1673         if (ether1394_send_packet(ptask, tx_len)) {
1674                 if (dest_node == (LOCAL_BUS | ALL_NODES))
1675                         goto fail;
1676
1677                 /* At this point we want to restore the packet.  When we return
1678                  * here with NETDEV_TX_BUSY we will get another entrance in this
1679                  * routine with the same skb and we need it to look the same.
1680                  * So we pull 4 more bytes, then build the header again. */
1681                 skb_pull(skb, 4);
1682                 ether1394_header(skb, dev, ntohs(hdr_buf.h_proto),
1683                                  hdr_buf.h_dest, NULL, 0);
1684
1685                 /* Most failures of ether1394_send_packet are recoverable. */
1686                 netif_stop_queue(dev);
1687                 priv->wake_node = dest_node;
1688                 schedule_work(&priv->wake);
1689                 kmem_cache_free(packet_task_cache, ptask);
1690                 return NETDEV_TX_BUSY;
1691         }
1692
1693         return NETDEV_TX_OK;
1694 fail:
1695         if (ptask)
1696                 kmem_cache_free(packet_task_cache, ptask);
1697
1698         if (skb != NULL)
1699                 dev_kfree_skb(skb);
1700
1701         spin_lock_irqsave(&priv->lock, flags);
1702         priv->stats.tx_dropped++;
1703         priv->stats.tx_errors++;
1704         spin_unlock_irqrestore(&priv->lock, flags);
1705
1706         /*
1707          * FIXME: According to a patch from 2003-02-26, "returning non-zero
1708          * causes serious problems" here, allegedly.  Before that patch,
1709          * -ERRNO was returned which is not appropriate under Linux 2.6.
1710          * Perhaps more needs to be done?  Stop the queue in serious
1711          * conditions and restart it elsewhere?
1712          */
1713         /* return NETDEV_TX_BUSY; */
1714         return NETDEV_TX_OK;
1715 }
1716
1717 static void ether1394_get_drvinfo(struct net_device *dev,
1718                                   struct ethtool_drvinfo *info)
1719 {
1720         strcpy(info->driver, driver_name);
1721         strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */
1722 }
1723
1724 static struct ethtool_ops ethtool_ops = {
1725         .get_drvinfo = ether1394_get_drvinfo
1726 };
1727
1728 static int __init ether1394_init_module(void)
1729 {
1730         int err;
1731
1732         packet_task_cache = kmem_cache_create("packet_task",
1733                                               sizeof(struct packet_task),
1734                                               0, 0, NULL, NULL);
1735         if (!packet_task_cache)
1736                 return -ENOMEM;
1737
1738         hpsb_register_highlevel(&eth1394_highlevel);
1739         err = hpsb_register_protocol(&eth1394_proto_driver);
1740         if (err) {
1741                 hpsb_unregister_highlevel(&eth1394_highlevel);
1742                 kmem_cache_destroy(packet_task_cache);
1743         }
1744         return err;
1745 }
1746
1747 static void __exit ether1394_exit_module(void)
1748 {
1749         hpsb_unregister_protocol(&eth1394_proto_driver);
1750         hpsb_unregister_highlevel(&eth1394_highlevel);
1751         kmem_cache_destroy(packet_task_cache);
1752 }
1753
1754 module_init(ether1394_init_module);
1755 module_exit(ether1394_exit_module);