]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/ide/ide-tape.c
ide-tape: remove tape->cache_stage
[linux-2.6-omap-h63xx.git] / drivers / ide / ide-tape.c
1 /*
2  * IDE ATAPI streaming tape driver.
3  *
4  * Copyright (C) 1995-1999  Gadi Oxman <gadio@netvision.net.il>
5  * Copyright (C) 2003-2005  Bartlomiej Zolnierkiewicz
6  *
7  * This driver was constructed as a student project in the software laboratory
8  * of the faculty of electrical engineering in the Technion - Israel's
9  * Institute Of Technology, with the guide of Avner Lottem and Dr. Ilana David.
10  *
11  * It is hereby placed under the terms of the GNU general public license.
12  * (See linux/COPYING).
13  *
14  * For a historical changelog see
15  * Documentation/ide/ChangeLog.ide-tape.1995-2002
16  */
17
18 #define IDETAPE_VERSION "1.20"
19
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/string.h>
23 #include <linux/kernel.h>
24 #include <linux/delay.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/jiffies.h>
29 #include <linux/major.h>
30 #include <linux/errno.h>
31 #include <linux/genhd.h>
32 #include <linux/slab.h>
33 #include <linux/pci.h>
34 #include <linux/ide.h>
35 #include <linux/smp_lock.h>
36 #include <linux/completion.h>
37 #include <linux/bitops.h>
38 #include <linux/mutex.h>
39 #include <scsi/scsi.h>
40
41 #include <asm/byteorder.h>
42 #include <linux/irq.h>
43 #include <linux/uaccess.h>
44 #include <linux/io.h>
45 #include <asm/unaligned.h>
46 #include <linux/mtio.h>
47
48 enum {
49         /* output errors only */
50         DBG_ERR =               (1 << 0),
51         /* output all sense key/asc */
52         DBG_SENSE =             (1 << 1),
53         /* info regarding all chrdev-related procedures */
54         DBG_CHRDEV =            (1 << 2),
55         /* all remaining procedures */
56         DBG_PROCS =             (1 << 3),
57         /* buffer alloc info (pc_stack & rq_stack) */
58         DBG_PCRQ_STACK =        (1 << 4),
59 };
60
61 /* define to see debug info */
62 #define IDETAPE_DEBUG_LOG               0
63
64 #if IDETAPE_DEBUG_LOG
65 #define debug_log(lvl, fmt, args...)                    \
66 {                                                       \
67         if (tape->debug_mask & lvl)                     \
68         printk(KERN_INFO "ide-tape: " fmt, ## args);    \
69 }
70 #else
71 #define debug_log(lvl, fmt, args...) do {} while (0)
72 #endif
73
74 /**************************** Tunable parameters *****************************/
75
76
77 /*
78  * Pipelined mode parameters.
79  *
80  * We try to use the minimum number of stages which is enough to keep the tape
81  * constantly streaming. To accomplish that, we implement a feedback loop around
82  * the maximum number of stages:
83  *
84  * We start from MIN maximum stages (we will not even use MIN stages if we don't
85  * need them), increment it by RATE*(MAX-MIN) whenever we sense that the
86  * pipeline is empty, until we reach the optimum value or until we reach MAX.
87  *
88  * Setting the following parameter to 0 is illegal: the pipelined mode cannot be
89  * disabled (idetape_calculate_speeds() divides by tape->max_stages.)
90  */
91 #define IDETAPE_MIN_PIPELINE_STAGES       1
92 #define IDETAPE_MAX_PIPELINE_STAGES     400
93 #define IDETAPE_INCREASE_STAGES_RATE     20
94
95 /*
96  * After each failed packet command we issue a request sense command and retry
97  * the packet command IDETAPE_MAX_PC_RETRIES times.
98  *
99  * Setting IDETAPE_MAX_PC_RETRIES to 0 will disable retries.
100  */
101 #define IDETAPE_MAX_PC_RETRIES          3
102
103 /*
104  * With each packet command, we allocate a buffer of IDETAPE_PC_BUFFER_SIZE
105  * bytes. This is used for several packet commands (Not for READ/WRITE commands)
106  */
107 #define IDETAPE_PC_BUFFER_SIZE          256
108
109 /*
110  *      In various places in the driver, we need to allocate storage
111  *      for packet commands and requests, which will remain valid while
112  *      we leave the driver to wait for an interrupt or a timeout event.
113  */
114 #define IDETAPE_PC_STACK                (10 + IDETAPE_MAX_PC_RETRIES)
115
116 /*
117  * Some drives (for example, Seagate STT3401A Travan) require a very long
118  * timeout, because they don't return an interrupt or clear their busy bit
119  * until after the command completes (even retension commands).
120  */
121 #define IDETAPE_WAIT_CMD                (900*HZ)
122
123 /*
124  * The following parameter is used to select the point in the internal tape fifo
125  * in which we will start to refill the buffer. Decreasing the following
126  * parameter will improve the system's latency and interactive response, while
127  * using a high value might improve system throughput.
128  */
129 #define IDETAPE_FIFO_THRESHOLD          2
130
131 /*
132  * DSC polling parameters.
133  *
134  * Polling for DSC (a single bit in the status register) is a very important
135  * function in ide-tape. There are two cases in which we poll for DSC:
136  *
137  * 1. Before a read/write packet command, to ensure that we can transfer data
138  * from/to the tape's data buffers, without causing an actual media access.
139  * In case the tape is not ready yet, we take out our request from the device
140  * request queue, so that ide.c could service requests from the other device
141  * on the same interface in the meantime.
142  *
143  * 2. After the successful initialization of a "media access packet command",
144  * which is a command that can take a long time to complete (the interval can
145  * range from several seconds to even an hour). Again, we postpone our request
146  * in the middle to free the bus for the other device. The polling frequency
147  * here should be lower than the read/write frequency since those media access
148  * commands are slow. We start from a "fast" frequency - IDETAPE_DSC_MA_FAST
149  * (1 second), and if we don't receive DSC after IDETAPE_DSC_MA_THRESHOLD
150  * (5 min), we switch it to a lower frequency - IDETAPE_DSC_MA_SLOW (1 min).
151  *
152  * We also set a timeout for the timer, in case something goes wrong. The
153  * timeout should be longer then the maximum execution time of a tape operation.
154  */
155
156 /* DSC timings. */
157 #define IDETAPE_DSC_RW_MIN              5*HZ/100        /* 50 msec */
158 #define IDETAPE_DSC_RW_MAX              40*HZ/100       /* 400 msec */
159 #define IDETAPE_DSC_RW_TIMEOUT          2*60*HZ         /* 2 minutes */
160 #define IDETAPE_DSC_MA_FAST             2*HZ            /* 2 seconds */
161 #define IDETAPE_DSC_MA_THRESHOLD        5*60*HZ         /* 5 minutes */
162 #define IDETAPE_DSC_MA_SLOW             30*HZ           /* 30 seconds */
163 #define IDETAPE_DSC_MA_TIMEOUT          2*60*60*HZ      /* 2 hours */
164
165 /*************************** End of tunable parameters ***********************/
166
167 /* Read/Write error simulation */
168 #define SIMULATE_ERRORS                 0
169
170 /* tape directions */
171 enum {
172         IDETAPE_DIR_NONE  = (1 << 0),
173         IDETAPE_DIR_READ  = (1 << 1),
174         IDETAPE_DIR_WRITE = (1 << 2),
175 };
176
177 struct idetape_bh {
178         u32 b_size;
179         atomic_t b_count;
180         struct idetape_bh *b_reqnext;
181         char *b_data;
182 };
183
184 /* Tape door status */
185 #define DOOR_UNLOCKED                   0
186 #define DOOR_LOCKED                     1
187 #define DOOR_EXPLICITLY_LOCKED          2
188
189 /* Some defines for the SPACE command */
190 #define IDETAPE_SPACE_OVER_FILEMARK     1
191 #define IDETAPE_SPACE_TO_EOD            3
192
193 /* Some defines for the LOAD UNLOAD command */
194 #define IDETAPE_LU_LOAD_MASK            1
195 #define IDETAPE_LU_RETENSION_MASK       2
196 #define IDETAPE_LU_EOT_MASK             4
197
198 /*
199  * Special requests for our block device strategy routine.
200  *
201  * In order to service a character device command, we add special requests to
202  * the tail of our block device request queue and wait for their completion.
203  */
204
205 enum {
206         REQ_IDETAPE_PC1         = (1 << 0), /* packet command (first stage) */
207         REQ_IDETAPE_PC2         = (1 << 1), /* packet command (second stage) */
208         REQ_IDETAPE_READ        = (1 << 2),
209         REQ_IDETAPE_WRITE       = (1 << 3),
210 };
211
212 /* Error codes returned in rq->errors to the higher part of the driver. */
213 #define IDETAPE_ERROR_GENERAL           101
214 #define IDETAPE_ERROR_FILEMARK          102
215 #define IDETAPE_ERROR_EOD               103
216
217 /* Structures related to the SELECT SENSE / MODE SENSE packet commands. */
218 #define IDETAPE_BLOCK_DESCRIPTOR        0
219 #define IDETAPE_CAPABILITIES_PAGE       0x2a
220
221 /* Tape flag bits values. */
222 enum {
223         IDETAPE_FLAG_IGNORE_DSC         = (1 << 0),
224         /* 0 When the tape position is unknown */
225         IDETAPE_FLAG_ADDRESS_VALID      = (1 << 1),
226         /* Device already opened */
227         IDETAPE_FLAG_BUSY                       = (1 << 2),
228         /* Error detected in a pipeline stage */
229         IDETAPE_FLAG_PIPELINE_ERR       = (1 << 3),
230         /* Attempt to auto-detect the current user block size */
231         IDETAPE_FLAG_DETECT_BS          = (1 << 4),
232         /* Currently on a filemark */
233         IDETAPE_FLAG_FILEMARK           = (1 << 5),
234         /* DRQ interrupt device */
235         IDETAPE_FLAG_DRQ_INTERRUPT      = (1 << 6),
236         /* pipeline active */
237         IDETAPE_FLAG_PIPELINE_ACTIVE    = (1 << 7),
238         /* 0 = no tape is loaded, so we don't rewind after ejecting */
239         IDETAPE_FLAG_MEDIUM_PRESENT     = (1 << 8),
240 };
241
242 /* A pipeline stage. */
243 typedef struct idetape_stage_s {
244         struct request rq;                      /* The corresponding request */
245         struct idetape_bh *bh;                  /* The data buffers */
246         struct idetape_stage_s *next;           /* Pointer to the next stage */
247 } idetape_stage_t;
248
249 /*
250  * Most of our global data which we need to save even as we leave the driver due
251  * to an interrupt or a timer event is stored in the struct defined below.
252  */
253 typedef struct ide_tape_obj {
254         ide_drive_t     *drive;
255         ide_driver_t    *driver;
256         struct gendisk  *disk;
257         struct kref     kref;
258
259         /*
260          *      Since a typical character device operation requires more
261          *      than one packet command, we provide here enough memory
262          *      for the maximum of interconnected packet commands.
263          *      The packet commands are stored in the circular array pc_stack.
264          *      pc_stack_index points to the last used entry, and warps around
265          *      to the start when we get to the last array entry.
266          *
267          *      pc points to the current processed packet command.
268          *
269          *      failed_pc points to the last failed packet command, or contains
270          *      NULL if we do not need to retry any packet command. This is
271          *      required since an additional packet command is needed before the
272          *      retry, to get detailed information on what went wrong.
273          */
274         /* Current packet command */
275         struct ide_atapi_pc *pc;
276         /* Last failed packet command */
277         struct ide_atapi_pc *failed_pc;
278         /* Packet command stack */
279         struct ide_atapi_pc pc_stack[IDETAPE_PC_STACK];
280         /* Next free packet command storage space */
281         int pc_stack_index;
282         struct request rq_stack[IDETAPE_PC_STACK];
283         /* We implement a circular array */
284         int rq_stack_index;
285
286         /*
287          * DSC polling variables.
288          *
289          * While polling for DSC we use postponed_rq to postpone the current
290          * request so that ide.c will be able to service pending requests on the
291          * other device. Note that at most we will have only one DSC (usually
292          * data transfer) request in the device request queue. Additional
293          * requests can be queued in our internal pipeline, but they will be
294          * visible to ide.c only one at a time.
295          */
296         struct request *postponed_rq;
297         /* The time in which we started polling for DSC */
298         unsigned long dsc_polling_start;
299         /* Timer used to poll for dsc */
300         struct timer_list dsc_timer;
301         /* Read/Write dsc polling frequency */
302         unsigned long best_dsc_rw_freq;
303         unsigned long dsc_poll_freq;
304         unsigned long dsc_timeout;
305
306         /* Read position information */
307         u8 partition;
308         /* Current block */
309         unsigned int first_frame;
310
311         /* Last error information */
312         u8 sense_key, asc, ascq;
313
314         /* Character device operation */
315         unsigned int minor;
316         /* device name */
317         char name[4];
318         /* Current character device data transfer direction */
319         u8 chrdev_dir;
320
321         /* tape block size, usually 512 or 1024 bytes */
322         unsigned short blk_size;
323         int user_bs_factor;
324
325         /* Copy of the tape's Capabilities and Mechanical Page */
326         u8 caps[20];
327
328         /*
329          * Active data transfer request parameters.
330          *
331          * At most, there is only one ide-tape originated data transfer request
332          * in the device request queue. This allows ide.c to easily service
333          * requests from the other device when we postpone our active request.
334          * In the pipelined operation mode, we use our internal pipeline
335          * structure to hold more data requests. The data buffer size is chosen
336          * based on the tape's recommendation.
337          */
338         /* ptr to the request which is waiting in the device request queue */
339         struct request *active_data_rq;
340         /* Data buffer size chosen based on the tape's recommendation */
341         int stage_size;
342         idetape_stage_t *merge_stage;
343         int merge_stage_size;
344         struct idetape_bh *bh;
345         char *b_data;
346         int b_count;
347
348         /*
349          * Pipeline parameters.
350          *
351          * To accomplish non-pipelined mode, we simply set the following
352          * variables to zero (or NULL, where appropriate).
353          */
354         /* Number of currently used stages */
355         int nr_stages;
356         /* Number of pending stages */
357         int nr_pending_stages;
358         /* We will not allocate more than this number of stages */
359         int max_stages, min_pipeline, max_pipeline;
360         /* The first stage which will be removed from the pipeline */
361         idetape_stage_t *first_stage;
362         /* The currently active stage */
363         idetape_stage_t *active_stage;
364         /* Will be serviced after the currently active request */
365         idetape_stage_t *next_stage;
366         /* New requests will be added to the pipeline here */
367         idetape_stage_t *last_stage;
368         int pages_per_stage;
369         /* Wasted space in each stage */
370         int excess_bh_size;
371
372         /* Status/Action flags: long for set_bit */
373         unsigned long flags;
374         /* protects the ide-tape queue */
375         spinlock_t lock;
376
377         /* Measures average tape speed */
378         unsigned long avg_time;
379         int avg_size;
380         int avg_speed;
381
382         /* the door is currently locked */
383         int door_locked;
384         /* the tape hardware is write protected */
385         char drv_write_prot;
386         /* the tape is write protected (hardware or opened as read-only) */
387         char write_prot;
388
389         /*
390          * Limit the number of times a request can be postponed, to avoid an
391          * infinite postpone deadlock.
392          */
393         int postpone_cnt;
394
395         /*
396          * Measures number of frames:
397          *
398          * 1. written/read to/from the driver pipeline (pipeline_head).
399          * 2. written/read to/from the tape buffers (idetape_bh).
400          * 3. written/read by the tape to/from the media (tape_head).
401          */
402         int pipeline_head;
403         int buffer_head;
404         int tape_head;
405         int last_tape_head;
406
407         /* Speed control at the tape buffers input/output */
408         unsigned long insert_time;
409         int insert_size;
410         int insert_speed;
411         int max_insert_speed;
412         int measure_insert_time;
413
414         /* Speed regulation negative feedback loop */
415         int speed_control;
416         int pipeline_head_speed;
417         int controlled_pipeline_head_speed;
418         int uncontrolled_pipeline_head_speed;
419         int controlled_last_pipeline_head;
420         unsigned long uncontrolled_pipeline_head_time;
421         unsigned long controlled_pipeline_head_time;
422         int controlled_previous_pipeline_head;
423         int uncontrolled_previous_pipeline_head;
424         unsigned long controlled_previous_head_time;
425         unsigned long uncontrolled_previous_head_time;
426         int restart_speed_control_req;
427
428         u32 debug_mask;
429 } idetape_tape_t;
430
431 static DEFINE_MUTEX(idetape_ref_mutex);
432
433 static struct class *idetape_sysfs_class;
434
435 #define to_ide_tape(obj) container_of(obj, struct ide_tape_obj, kref)
436
437 #define ide_tape_g(disk) \
438         container_of((disk)->private_data, struct ide_tape_obj, driver)
439
440 static struct ide_tape_obj *ide_tape_get(struct gendisk *disk)
441 {
442         struct ide_tape_obj *tape = NULL;
443
444         mutex_lock(&idetape_ref_mutex);
445         tape = ide_tape_g(disk);
446         if (tape)
447                 kref_get(&tape->kref);
448         mutex_unlock(&idetape_ref_mutex);
449         return tape;
450 }
451
452 static void ide_tape_release(struct kref *);
453
454 static void ide_tape_put(struct ide_tape_obj *tape)
455 {
456         mutex_lock(&idetape_ref_mutex);
457         kref_put(&tape->kref, ide_tape_release);
458         mutex_unlock(&idetape_ref_mutex);
459 }
460
461 /*
462  * The variables below are used for the character device interface. Additional
463  * state variables are defined in our ide_drive_t structure.
464  */
465 static struct ide_tape_obj *idetape_devs[MAX_HWIFS * MAX_DRIVES];
466
467 #define ide_tape_f(file) ((file)->private_data)
468
469 static struct ide_tape_obj *ide_tape_chrdev_get(unsigned int i)
470 {
471         struct ide_tape_obj *tape = NULL;
472
473         mutex_lock(&idetape_ref_mutex);
474         tape = idetape_devs[i];
475         if (tape)
476                 kref_get(&tape->kref);
477         mutex_unlock(&idetape_ref_mutex);
478         return tape;
479 }
480
481 static void idetape_input_buffers(ide_drive_t *drive, struct ide_atapi_pc *pc,
482                                   unsigned int bcount)
483 {
484         struct idetape_bh *bh = pc->bh;
485         int count;
486
487         while (bcount) {
488                 if (bh == NULL) {
489                         printk(KERN_ERR "ide-tape: bh == NULL in "
490                                 "idetape_input_buffers\n");
491                         ide_atapi_discard_data(drive, bcount);
492                         return;
493                 }
494                 count = min(
495                         (unsigned int)(bh->b_size - atomic_read(&bh->b_count)),
496                         bcount);
497                 HWIF(drive)->atapi_input_bytes(drive, bh->b_data +
498                                         atomic_read(&bh->b_count), count);
499                 bcount -= count;
500                 atomic_add(count, &bh->b_count);
501                 if (atomic_read(&bh->b_count) == bh->b_size) {
502                         bh = bh->b_reqnext;
503                         if (bh)
504                                 atomic_set(&bh->b_count, 0);
505                 }
506         }
507         pc->bh = bh;
508 }
509
510 static void idetape_output_buffers(ide_drive_t *drive, struct ide_atapi_pc *pc,
511                                    unsigned int bcount)
512 {
513         struct idetape_bh *bh = pc->bh;
514         int count;
515
516         while (bcount) {
517                 if (bh == NULL) {
518                         printk(KERN_ERR "ide-tape: bh == NULL in %s\n",
519                                         __func__);
520                         return;
521                 }
522                 count = min((unsigned int)pc->b_count, (unsigned int)bcount);
523                 HWIF(drive)->atapi_output_bytes(drive, pc->b_data, count);
524                 bcount -= count;
525                 pc->b_data += count;
526                 pc->b_count -= count;
527                 if (!pc->b_count) {
528                         bh = bh->b_reqnext;
529                         pc->bh = bh;
530                         if (bh) {
531                                 pc->b_data = bh->b_data;
532                                 pc->b_count = atomic_read(&bh->b_count);
533                         }
534                 }
535         }
536 }
537
538 static void idetape_update_buffers(struct ide_atapi_pc *pc)
539 {
540         struct idetape_bh *bh = pc->bh;
541         int count;
542         unsigned int bcount = pc->xferred;
543
544         if (pc->flags & PC_FLAG_WRITING)
545                 return;
546         while (bcount) {
547                 if (bh == NULL) {
548                         printk(KERN_ERR "ide-tape: bh == NULL in %s\n",
549                                         __func__);
550                         return;
551                 }
552                 count = min((unsigned int)bh->b_size, (unsigned int)bcount);
553                 atomic_set(&bh->b_count, count);
554                 if (atomic_read(&bh->b_count) == bh->b_size)
555                         bh = bh->b_reqnext;
556                 bcount -= count;
557         }
558         pc->bh = bh;
559 }
560
561 /*
562  *      idetape_next_pc_storage returns a pointer to a place in which we can
563  *      safely store a packet command, even though we intend to leave the
564  *      driver. A storage space for a maximum of IDETAPE_PC_STACK packet
565  *      commands is allocated at initialization time.
566  */
567 static struct ide_atapi_pc *idetape_next_pc_storage(ide_drive_t *drive)
568 {
569         idetape_tape_t *tape = drive->driver_data;
570
571         debug_log(DBG_PCRQ_STACK, "pc_stack_index=%d\n", tape->pc_stack_index);
572
573         if (tape->pc_stack_index == IDETAPE_PC_STACK)
574                 tape->pc_stack_index = 0;
575         return (&tape->pc_stack[tape->pc_stack_index++]);
576 }
577
578 /*
579  *      idetape_next_rq_storage is used along with idetape_next_pc_storage.
580  *      Since we queue packet commands in the request queue, we need to
581  *      allocate a request, along with the allocation of a packet command.
582  */
583
584 /**************************************************************
585  *                                                            *
586  *  This should get fixed to use kmalloc(.., GFP_ATOMIC)      *
587  *  followed later on by kfree().   -ml                       *
588  *                                                            *
589  **************************************************************/
590
591 static struct request *idetape_next_rq_storage(ide_drive_t *drive)
592 {
593         idetape_tape_t *tape = drive->driver_data;
594
595         debug_log(DBG_PCRQ_STACK, "rq_stack_index=%d\n", tape->rq_stack_index);
596
597         if (tape->rq_stack_index == IDETAPE_PC_STACK)
598                 tape->rq_stack_index = 0;
599         return (&tape->rq_stack[tape->rq_stack_index++]);
600 }
601
602 static void idetape_init_pc(struct ide_atapi_pc *pc)
603 {
604         memset(pc->c, 0, 12);
605         pc->retries = 0;
606         pc->flags = 0;
607         pc->req_xfer = 0;
608         pc->buf = pc->pc_buf;
609         pc->buf_size = IDETAPE_PC_BUFFER_SIZE;
610         pc->bh = NULL;
611         pc->b_data = NULL;
612 }
613
614 /*
615  * called on each failed packet command retry to analyze the request sense. We
616  * currently do not utilize this information.
617  */
618 static void idetape_analyze_error(ide_drive_t *drive, u8 *sense)
619 {
620         idetape_tape_t *tape = drive->driver_data;
621         struct ide_atapi_pc *pc = tape->failed_pc;
622
623         tape->sense_key = sense[2] & 0xF;
624         tape->asc       = sense[12];
625         tape->ascq      = sense[13];
626
627         debug_log(DBG_ERR, "pc = %x, sense key = %x, asc = %x, ascq = %x\n",
628                  pc->c[0], tape->sense_key, tape->asc, tape->ascq);
629
630         /* Correct pc->xferred by asking the tape.       */
631         if (pc->flags & PC_FLAG_DMA_ERROR) {
632                 pc->xferred = pc->req_xfer -
633                         tape->blk_size *
634                         be32_to_cpu(get_unaligned((u32 *)&sense[3]));
635                 idetape_update_buffers(pc);
636         }
637
638         /*
639          * If error was the result of a zero-length read or write command,
640          * with sense key=5, asc=0x22, ascq=0, let it slide.  Some drives
641          * (i.e. Seagate STT3401A Travan) don't support 0-length read/writes.
642          */
643         if ((pc->c[0] == READ_6 || pc->c[0] == WRITE_6)
644             /* length == 0 */
645             && pc->c[4] == 0 && pc->c[3] == 0 && pc->c[2] == 0) {
646                 if (tape->sense_key == 5) {
647                         /* don't report an error, everything's ok */
648                         pc->error = 0;
649                         /* don't retry read/write */
650                         pc->flags |= PC_FLAG_ABORT;
651                 }
652         }
653         if (pc->c[0] == READ_6 && (sense[2] & 0x80)) {
654                 pc->error = IDETAPE_ERROR_FILEMARK;
655                 pc->flags |= PC_FLAG_ABORT;
656         }
657         if (pc->c[0] == WRITE_6) {
658                 if ((sense[2] & 0x40) || (tape->sense_key == 0xd
659                      && tape->asc == 0x0 && tape->ascq == 0x2)) {
660                         pc->error = IDETAPE_ERROR_EOD;
661                         pc->flags |= PC_FLAG_ABORT;
662                 }
663         }
664         if (pc->c[0] == READ_6 || pc->c[0] == WRITE_6) {
665                 if (tape->sense_key == 8) {
666                         pc->error = IDETAPE_ERROR_EOD;
667                         pc->flags |= PC_FLAG_ABORT;
668                 }
669                 if (!(pc->flags & PC_FLAG_ABORT) &&
670                     pc->xferred)
671                         pc->retries = IDETAPE_MAX_PC_RETRIES + 1;
672         }
673 }
674
675 static void idetape_activate_next_stage(ide_drive_t *drive)
676 {
677         idetape_tape_t *tape = drive->driver_data;
678         idetape_stage_t *stage = tape->next_stage;
679         struct request *rq = &stage->rq;
680
681         debug_log(DBG_PROCS, "Enter %s\n", __func__);
682
683         if (stage == NULL) {
684                 printk(KERN_ERR "ide-tape: bug: Trying to activate a non"
685                                 " existing stage\n");
686                 return;
687         }
688
689         rq->rq_disk = tape->disk;
690         rq->buffer = NULL;
691         rq->special = (void *)stage->bh;
692         tape->active_data_rq = rq;
693         tape->active_stage = stage;
694         tape->next_stage = stage->next;
695 }
696
697 /* Free a stage along with its related buffers completely. */
698 static void __idetape_kfree_stage(idetape_stage_t *stage)
699 {
700         struct idetape_bh *prev_bh, *bh = stage->bh;
701         int size;
702
703         while (bh != NULL) {
704                 if (bh->b_data != NULL) {
705                         size = (int) bh->b_size;
706                         while (size > 0) {
707                                 free_page((unsigned long) bh->b_data);
708                                 size -= PAGE_SIZE;
709                                 bh->b_data += PAGE_SIZE;
710                         }
711                 }
712                 prev_bh = bh;
713                 bh = bh->b_reqnext;
714                 kfree(prev_bh);
715         }
716         kfree(stage);
717 }
718
719 static void idetape_kfree_stage(idetape_tape_t *tape, idetape_stage_t *stage)
720 {
721         __idetape_kfree_stage(stage);
722 }
723
724 /*
725  * Remove tape->first_stage from the pipeline. The caller should avoid race
726  * conditions.
727  */
728 static void idetape_remove_stage_head(ide_drive_t *drive)
729 {
730         idetape_tape_t *tape = drive->driver_data;
731         idetape_stage_t *stage;
732
733         debug_log(DBG_PROCS, "Enter %s\n", __func__);
734
735         if (tape->first_stage == NULL) {
736                 printk(KERN_ERR "ide-tape: bug: tape->first_stage is NULL\n");
737                 return;
738         }
739         if (tape->active_stage == tape->first_stage) {
740                 printk(KERN_ERR "ide-tape: bug: Trying to free our active "
741                                 "pipeline stage\n");
742                 return;
743         }
744         stage = tape->first_stage;
745         tape->first_stage = stage->next;
746         idetape_kfree_stage(tape, stage);
747         tape->nr_stages--;
748         if (tape->first_stage == NULL) {
749                 tape->last_stage = NULL;
750                 if (tape->next_stage != NULL)
751                         printk(KERN_ERR "ide-tape: bug: tape->next_stage !="
752                                         " NULL\n");
753                 if (tape->nr_stages)
754                         printk(KERN_ERR "ide-tape: bug: nr_stages should be 0 "
755                                         "now\n");
756         }
757 }
758
759 /*
760  * This will free all the pipeline stages starting from new_last_stage->next
761  * to the end of the list, and point tape->last_stage to new_last_stage.
762  */
763 static void idetape_abort_pipeline(ide_drive_t *drive,
764                                    idetape_stage_t *new_last_stage)
765 {
766         idetape_tape_t *tape = drive->driver_data;
767         idetape_stage_t *stage = new_last_stage->next;
768         idetape_stage_t *nstage;
769
770         debug_log(DBG_PROCS, "%s: Enter %s\n", tape->name, __func__);
771
772         while (stage) {
773                 nstage = stage->next;
774                 idetape_kfree_stage(tape, stage);
775                 --tape->nr_stages;
776                 --tape->nr_pending_stages;
777                 stage = nstage;
778         }
779         if (new_last_stage)
780                 new_last_stage->next = NULL;
781         tape->last_stage = new_last_stage;
782         tape->next_stage = NULL;
783 }
784
785 /*
786  * Finish servicing a request and insert a pending pipeline request into the
787  * main device queue.
788  */
789 static int idetape_end_request(ide_drive_t *drive, int uptodate, int nr_sects)
790 {
791         struct request *rq = HWGROUP(drive)->rq;
792         idetape_tape_t *tape = drive->driver_data;
793         unsigned long flags;
794         int error;
795         int remove_stage = 0;
796         idetape_stage_t *active_stage;
797
798         debug_log(DBG_PROCS, "Enter %s\n", __func__);
799
800         switch (uptodate) {
801         case 0: error = IDETAPE_ERROR_GENERAL; break;
802         case 1: error = 0; break;
803         default: error = uptodate;
804         }
805         rq->errors = error;
806         if (error)
807                 tape->failed_pc = NULL;
808
809         if (!blk_special_request(rq)) {
810                 ide_end_request(drive, uptodate, nr_sects);
811                 return 0;
812         }
813
814         spin_lock_irqsave(&tape->lock, flags);
815
816         /* The request was a pipelined data transfer request */
817         if (tape->active_data_rq == rq) {
818                 active_stage = tape->active_stage;
819                 tape->active_stage = NULL;
820                 tape->active_data_rq = NULL;
821                 tape->nr_pending_stages--;
822                 if (rq->cmd[0] & REQ_IDETAPE_WRITE) {
823                         remove_stage = 1;
824                         if (error) {
825                                 set_bit(IDETAPE_FLAG_PIPELINE_ERR,
826                                         &tape->flags);
827                                 if (error == IDETAPE_ERROR_EOD)
828                                         idetape_abort_pipeline(drive,
829                                                                 active_stage);
830                         }
831                 } else if (rq->cmd[0] & REQ_IDETAPE_READ) {
832                         if (error == IDETAPE_ERROR_EOD) {
833                                 set_bit(IDETAPE_FLAG_PIPELINE_ERR,
834                                         &tape->flags);
835                                 idetape_abort_pipeline(drive, active_stage);
836                         }
837                 }
838                 if (tape->next_stage != NULL) {
839                         idetape_activate_next_stage(drive);
840
841                         /* Insert the next request into the request queue. */
842                         (void)ide_do_drive_cmd(drive, tape->active_data_rq,
843                                                 ide_end);
844                 } else if (!error) {
845                         /*
846                          * This is a part of the feedback loop which tries to
847                          * find the optimum number of stages. We are starting
848                          * from a minimum maximum number of stages, and if we
849                          * sense that the pipeline is empty, we try to increase
850                          * it, until we reach the user compile time memory
851                          * limit.
852                          */
853                         int i = (tape->max_pipeline - tape->min_pipeline) / 10;
854
855                         tape->max_stages += max(i, 1);
856                         tape->max_stages = max(tape->max_stages,
857                                                 tape->min_pipeline);
858                         tape->max_stages = min(tape->max_stages,
859                                                 tape->max_pipeline);
860                 }
861         }
862         ide_end_drive_cmd(drive, 0, 0);
863
864         if (remove_stage)
865                 idetape_remove_stage_head(drive);
866         if (tape->active_data_rq == NULL)
867                 clear_bit(IDETAPE_FLAG_PIPELINE_ACTIVE, &tape->flags);
868         spin_unlock_irqrestore(&tape->lock, flags);
869         return 0;
870 }
871
872 static ide_startstop_t idetape_request_sense_callback(ide_drive_t *drive)
873 {
874         idetape_tape_t *tape = drive->driver_data;
875
876         debug_log(DBG_PROCS, "Enter %s\n", __func__);
877
878         if (!tape->pc->error) {
879                 idetape_analyze_error(drive, tape->pc->buf);
880                 idetape_end_request(drive, 1, 0);
881         } else {
882                 printk(KERN_ERR "ide-tape: Error in REQUEST SENSE itself - "
883                                 "Aborting request!\n");
884                 idetape_end_request(drive, 0, 0);
885         }
886         return ide_stopped;
887 }
888
889 static void idetape_create_request_sense_cmd(struct ide_atapi_pc *pc)
890 {
891         idetape_init_pc(pc);
892         pc->c[0] = REQUEST_SENSE;
893         pc->c[4] = 20;
894         pc->req_xfer = 20;
895         pc->idetape_callback = &idetape_request_sense_callback;
896 }
897
898 static void idetape_init_rq(struct request *rq, u8 cmd)
899 {
900         memset(rq, 0, sizeof(*rq));
901         rq->cmd_type = REQ_TYPE_SPECIAL;
902         rq->cmd[0] = cmd;
903 }
904
905 /*
906  * Generate a new packet command request in front of the request queue, before
907  * the current request, so that it will be processed immediately, on the next
908  * pass through the driver. The function below is called from the request
909  * handling part of the driver (the "bottom" part). Safe storage for the request
910  * should be allocated with ide_tape_next_{pc,rq}_storage() prior to that.
911  *
912  * Memory for those requests is pre-allocated at initialization time, and is
913  * limited to IDETAPE_PC_STACK requests. We assume that we have enough space for
914  * the maximum possible number of inter-dependent packet commands.
915  *
916  * The higher level of the driver - The ioctl handler and the character device
917  * handling functions should queue request to the lower level part and wait for
918  * their completion using idetape_queue_pc_tail or idetape_queue_rw_tail.
919  */
920 static void idetape_queue_pc_head(ide_drive_t *drive, struct ide_atapi_pc *pc,
921                                   struct request *rq)
922 {
923         struct ide_tape_obj *tape = drive->driver_data;
924
925         idetape_init_rq(rq, REQ_IDETAPE_PC1);
926         rq->buffer = (char *) pc;
927         rq->rq_disk = tape->disk;
928         (void) ide_do_drive_cmd(drive, rq, ide_preempt);
929 }
930
931 /*
932  *      idetape_retry_pc is called when an error was detected during the
933  *      last packet command. We queue a request sense packet command in
934  *      the head of the request list.
935  */
936 static ide_startstop_t idetape_retry_pc (ide_drive_t *drive)
937 {
938         idetape_tape_t *tape = drive->driver_data;
939         struct ide_atapi_pc *pc;
940         struct request *rq;
941
942         (void)ide_read_error(drive);
943         pc = idetape_next_pc_storage(drive);
944         rq = idetape_next_rq_storage(drive);
945         idetape_create_request_sense_cmd(pc);
946         set_bit(IDETAPE_FLAG_IGNORE_DSC, &tape->flags);
947         idetape_queue_pc_head(drive, pc, rq);
948         return ide_stopped;
949 }
950
951 /*
952  * Postpone the current request so that ide.c will be able to service requests
953  * from another device on the same hwgroup while we are polling for DSC.
954  */
955 static void idetape_postpone_request(ide_drive_t *drive)
956 {
957         idetape_tape_t *tape = drive->driver_data;
958
959         debug_log(DBG_PROCS, "Enter %s\n", __func__);
960
961         tape->postponed_rq = HWGROUP(drive)->rq;
962         ide_stall_queue(drive, tape->dsc_poll_freq);
963 }
964
965 typedef void idetape_io_buf(ide_drive_t *, struct ide_atapi_pc *, unsigned int);
966
967 /*
968  * This is the usual interrupt handler which will be called during a packet
969  * command. We will transfer some of the data (as requested by the drive) and
970  * will re-point interrupt handler to us. When data transfer is finished, we
971  * will act according to the algorithm described before
972  * idetape_issue_pc.
973  */
974 static ide_startstop_t idetape_pc_intr(ide_drive_t *drive)
975 {
976         ide_hwif_t *hwif = drive->hwif;
977         idetape_tape_t *tape = drive->driver_data;
978         struct ide_atapi_pc *pc = tape->pc;
979         xfer_func_t *xferfunc;
980         idetape_io_buf *iobuf;
981         unsigned int temp;
982 #if SIMULATE_ERRORS
983         static int error_sim_count;
984 #endif
985         u16 bcount;
986         u8 stat, ireason;
987
988         debug_log(DBG_PROCS, "Enter %s - interrupt handler\n", __func__);
989
990         /* Clear the interrupt */
991         stat = ide_read_status(drive);
992
993         if (pc->flags & PC_FLAG_DMA_IN_PROGRESS) {
994                 if (hwif->dma_ops->dma_end(drive) || (stat & ERR_STAT)) {
995                         /*
996                          * A DMA error is sometimes expected. For example,
997                          * if the tape is crossing a filemark during a
998                          * READ command, it will issue an irq and position
999                          * itself before the filemark, so that only a partial
1000                          * data transfer will occur (which causes the DMA
1001                          * error). In that case, we will later ask the tape
1002                          * how much bytes of the original request were
1003                          * actually transferred (we can't receive that
1004                          * information from the DMA engine on most chipsets).
1005                          */
1006
1007                         /*
1008                          * On the contrary, a DMA error is never expected;
1009                          * it usually indicates a hardware error or abort.
1010                          * If the tape crosses a filemark during a READ
1011                          * command, it will issue an irq and position itself
1012                          * after the filemark (not before). Only a partial
1013                          * data transfer will occur, but no DMA error.
1014                          * (AS, 19 Apr 2001)
1015                          */
1016                         pc->flags |= PC_FLAG_DMA_ERROR;
1017                 } else {
1018                         pc->xferred = pc->req_xfer;
1019                         idetape_update_buffers(pc);
1020                 }
1021                 debug_log(DBG_PROCS, "DMA finished\n");
1022
1023         }
1024
1025         /* No more interrupts */
1026         if ((stat & DRQ_STAT) == 0) {
1027                 debug_log(DBG_SENSE, "Packet command completed, %d bytes"
1028                                 " transferred\n", pc->xferred);
1029
1030                 pc->flags &= ~PC_FLAG_DMA_IN_PROGRESS;
1031                 local_irq_enable();
1032
1033 #if SIMULATE_ERRORS
1034                 if ((pc->c[0] == WRITE_6 || pc->c[0] == READ_6) &&
1035                     (++error_sim_count % 100) == 0) {
1036                         printk(KERN_INFO "ide-tape: %s: simulating error\n",
1037                                 tape->name);
1038                         stat |= ERR_STAT;
1039                 }
1040 #endif
1041                 if ((stat & ERR_STAT) && pc->c[0] == REQUEST_SENSE)
1042                         stat &= ~ERR_STAT;
1043                 if ((stat & ERR_STAT) || (pc->flags & PC_FLAG_DMA_ERROR)) {
1044                         /* Error detected */
1045                         debug_log(DBG_ERR, "%s: I/O error\n", tape->name);
1046
1047                         if (pc->c[0] == REQUEST_SENSE) {
1048                                 printk(KERN_ERR "ide-tape: I/O error in request"
1049                                                 " sense command\n");
1050                                 return ide_do_reset(drive);
1051                         }
1052                         debug_log(DBG_ERR, "[cmd %x]: check condition\n",
1053                                         pc->c[0]);
1054
1055                         /* Retry operation */
1056                         return idetape_retry_pc(drive);
1057                 }
1058                 pc->error = 0;
1059                 if ((pc->flags & PC_FLAG_WAIT_FOR_DSC) &&
1060                     (stat & SEEK_STAT) == 0) {
1061                         /* Media access command */
1062                         tape->dsc_polling_start = jiffies;
1063                         tape->dsc_poll_freq = IDETAPE_DSC_MA_FAST;
1064                         tape->dsc_timeout = jiffies + IDETAPE_DSC_MA_TIMEOUT;
1065                         /* Allow ide.c to handle other requests */
1066                         idetape_postpone_request(drive);
1067                         return ide_stopped;
1068                 }
1069                 if (tape->failed_pc == pc)
1070                         tape->failed_pc = NULL;
1071                 /* Command finished - Call the callback function */
1072                 return pc->idetape_callback(drive);
1073         }
1074
1075         if (pc->flags & PC_FLAG_DMA_IN_PROGRESS) {
1076                 pc->flags &= ~PC_FLAG_DMA_IN_PROGRESS;
1077                 printk(KERN_ERR "ide-tape: The tape wants to issue more "
1078                                 "interrupts in DMA mode\n");
1079                 printk(KERN_ERR "ide-tape: DMA disabled, reverting to PIO\n");
1080                 ide_dma_off(drive);
1081                 return ide_do_reset(drive);
1082         }
1083         /* Get the number of bytes to transfer on this interrupt. */
1084         bcount = (hwif->INB(hwif->io_ports[IDE_BCOUNTH_OFFSET]) << 8) |
1085                   hwif->INB(hwif->io_ports[IDE_BCOUNTL_OFFSET]);
1086
1087         ireason = hwif->INB(hwif->io_ports[IDE_IREASON_OFFSET]);
1088
1089         if (ireason & CD) {
1090                 printk(KERN_ERR "ide-tape: CoD != 0 in %s\n", __func__);
1091                 return ide_do_reset(drive);
1092         }
1093         if (((ireason & IO) == IO) == !!(pc->flags & PC_FLAG_WRITING)) {
1094                 /* Hopefully, we will never get here */
1095                 printk(KERN_ERR "ide-tape: We wanted to %s, ",
1096                                 (ireason & IO) ? "Write" : "Read");
1097                 printk(KERN_ERR "ide-tape: but the tape wants us to %s !\n",
1098                                 (ireason & IO) ? "Read" : "Write");
1099                 return ide_do_reset(drive);
1100         }
1101         if (!(pc->flags & PC_FLAG_WRITING)) {
1102                 /* Reading - Check that we have enough space */
1103                 temp = pc->xferred + bcount;
1104                 if (temp > pc->req_xfer) {
1105                         if (temp > pc->buf_size) {
1106                                 printk(KERN_ERR "ide-tape: The tape wants to "
1107                                         "send us more data than expected "
1108                                         "- discarding data\n");
1109                                 ide_atapi_discard_data(drive, bcount);
1110                                 ide_set_handler(drive, &idetape_pc_intr,
1111                                                 IDETAPE_WAIT_CMD, NULL);
1112                                 return ide_started;
1113                         }
1114                         debug_log(DBG_SENSE, "The tape wants to send us more "
1115                                 "data than expected - allowing transfer\n");
1116                 }
1117                 iobuf = &idetape_input_buffers;
1118                 xferfunc = hwif->atapi_input_bytes;
1119         } else {
1120                 iobuf = &idetape_output_buffers;
1121                 xferfunc = hwif->atapi_output_bytes;
1122         }
1123
1124         if (pc->bh)
1125                 iobuf(drive, pc, bcount);
1126         else
1127                 xferfunc(drive, pc->cur_pos, bcount);
1128
1129         /* Update the current position */
1130         pc->xferred += bcount;
1131         pc->cur_pos += bcount;
1132
1133         debug_log(DBG_SENSE, "[cmd %x] transferred %d bytes on that intr.\n",
1134                         pc->c[0], bcount);
1135
1136         /* And set the interrupt handler again */
1137         ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
1138         return ide_started;
1139 }
1140
1141 /*
1142  * Packet Command Interface
1143  *
1144  * The current Packet Command is available in tape->pc, and will not change
1145  * until we finish handling it. Each packet command is associated with a
1146  * callback function that will be called when the command is finished.
1147  *
1148  * The handling will be done in three stages:
1149  *
1150  * 1. idetape_issue_pc will send the packet command to the drive, and will set
1151  * the interrupt handler to idetape_pc_intr.
1152  *
1153  * 2. On each interrupt, idetape_pc_intr will be called. This step will be
1154  * repeated until the device signals us that no more interrupts will be issued.
1155  *
1156  * 3. ATAPI Tape media access commands have immediate status with a delayed
1157  * process. In case of a successful initiation of a media access packet command,
1158  * the DSC bit will be set when the actual execution of the command is finished.
1159  * Since the tape drive will not issue an interrupt, we have to poll for this
1160  * event. In this case, we define the request as "low priority request" by
1161  * setting rq_status to IDETAPE_RQ_POSTPONED, set a timer to poll for DSC and
1162  * exit the driver.
1163  *
1164  * ide.c will then give higher priority to requests which originate from the
1165  * other device, until will change rq_status to RQ_ACTIVE.
1166  *
1167  * 4. When the packet command is finished, it will be checked for errors.
1168  *
1169  * 5. In case an error was found, we queue a request sense packet command in
1170  * front of the request queue and retry the operation up to
1171  * IDETAPE_MAX_PC_RETRIES times.
1172  *
1173  * 6. In case no error was found, or we decided to give up and not to retry
1174  * again, the callback function will be called and then we will handle the next
1175  * request.
1176  */
1177 static ide_startstop_t idetape_transfer_pc(ide_drive_t *drive)
1178 {
1179         ide_hwif_t *hwif = drive->hwif;
1180         idetape_tape_t *tape = drive->driver_data;
1181         struct ide_atapi_pc *pc = tape->pc;
1182         int retries = 100;
1183         ide_startstop_t startstop;
1184         u8 ireason;
1185
1186         if (ide_wait_stat(&startstop, drive, DRQ_STAT, BUSY_STAT, WAIT_READY)) {
1187                 printk(KERN_ERR "ide-tape: Strange, packet command initiated "
1188                                 "yet DRQ isn't asserted\n");
1189                 return startstop;
1190         }
1191         ireason = hwif->INB(hwif->io_ports[IDE_IREASON_OFFSET]);
1192         while (retries-- && ((ireason & CD) == 0 || (ireason & IO))) {
1193                 printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while issuing "
1194                                 "a packet command, retrying\n");
1195                 udelay(100);
1196                 ireason = hwif->INB(hwif->io_ports[IDE_IREASON_OFFSET]);
1197                 if (retries == 0) {
1198                         printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while "
1199                                         "issuing a packet command, ignoring\n");
1200                         ireason |= CD;
1201                         ireason &= ~IO;
1202                 }
1203         }
1204         if ((ireason & CD) == 0 || (ireason & IO)) {
1205                 printk(KERN_ERR "ide-tape: (IO,CoD) != (0,1) while issuing "
1206                                 "a packet command\n");
1207                 return ide_do_reset(drive);
1208         }
1209         /* Set the interrupt routine */
1210         ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
1211 #ifdef CONFIG_BLK_DEV_IDEDMA
1212         /* Begin DMA, if necessary */
1213         if (pc->flags & PC_FLAG_DMA_IN_PROGRESS)
1214                 hwif->dma_ops->dma_start(drive);
1215 #endif
1216         /* Send the actual packet */
1217         HWIF(drive)->atapi_output_bytes(drive, pc->c, 12);
1218         return ide_started;
1219 }
1220
1221 static ide_startstop_t idetape_issue_pc(ide_drive_t *drive,
1222                 struct ide_atapi_pc *pc)
1223 {
1224         ide_hwif_t *hwif = drive->hwif;
1225         idetape_tape_t *tape = drive->driver_data;
1226         int dma_ok = 0;
1227         u16 bcount;
1228
1229         if (tape->pc->c[0] == REQUEST_SENSE &&
1230             pc->c[0] == REQUEST_SENSE) {
1231                 printk(KERN_ERR "ide-tape: possible ide-tape.c bug - "
1232                         "Two request sense in serial were issued\n");
1233         }
1234
1235         if (tape->failed_pc == NULL && pc->c[0] != REQUEST_SENSE)
1236                 tape->failed_pc = pc;
1237         /* Set the current packet command */
1238         tape->pc = pc;
1239
1240         if (pc->retries > IDETAPE_MAX_PC_RETRIES ||
1241                 (pc->flags & PC_FLAG_ABORT)) {
1242                 /*
1243                  * We will "abort" retrying a packet command in case legitimate
1244                  * error code was received (crossing a filemark, or end of the
1245                  * media, for example).
1246                  */
1247                 if (!(pc->flags & PC_FLAG_ABORT)) {
1248                         if (!(pc->c[0] == TEST_UNIT_READY &&
1249                               tape->sense_key == 2 && tape->asc == 4 &&
1250                              (tape->ascq == 1 || tape->ascq == 8))) {
1251                                 printk(KERN_ERR "ide-tape: %s: I/O error, "
1252                                                 "pc = %2x, key = %2x, "
1253                                                 "asc = %2x, ascq = %2x\n",
1254                                                 tape->name, pc->c[0],
1255                                                 tape->sense_key, tape->asc,
1256                                                 tape->ascq);
1257                         }
1258                         /* Giving up */
1259                         pc->error = IDETAPE_ERROR_GENERAL;
1260                 }
1261                 tape->failed_pc = NULL;
1262                 return pc->idetape_callback(drive);
1263         }
1264         debug_log(DBG_SENSE, "Retry #%d, cmd = %02X\n", pc->retries, pc->c[0]);
1265
1266         pc->retries++;
1267         /* We haven't transferred any data yet */
1268         pc->xferred = 0;
1269         pc->cur_pos = pc->buf;
1270         /* Request to transfer the entire buffer at once */
1271         bcount = pc->req_xfer;
1272
1273         if (pc->flags & PC_FLAG_DMA_ERROR) {
1274                 pc->flags &= ~PC_FLAG_DMA_ERROR;
1275                 printk(KERN_WARNING "ide-tape: DMA disabled, "
1276                                 "reverting to PIO\n");
1277                 ide_dma_off(drive);
1278         }
1279         if ((pc->flags & PC_FLAG_DMA_RECOMMENDED) && drive->using_dma)
1280                 dma_ok = !hwif->dma_ops->dma_setup(drive);
1281
1282         ide_pktcmd_tf_load(drive, IDE_TFLAG_NO_SELECT_MASK |
1283                            IDE_TFLAG_OUT_DEVICE, bcount, dma_ok);
1284
1285         if (dma_ok)
1286                 /* Will begin DMA later */
1287                 pc->flags |= PC_FLAG_DMA_IN_PROGRESS;
1288         if (test_bit(IDETAPE_FLAG_DRQ_INTERRUPT, &tape->flags)) {
1289                 ide_execute_command(drive, WIN_PACKETCMD, &idetape_transfer_pc,
1290                                     IDETAPE_WAIT_CMD, NULL);
1291                 return ide_started;
1292         } else {
1293                 hwif->OUTB(WIN_PACKETCMD, hwif->io_ports[IDE_COMMAND_OFFSET]);
1294                 return idetape_transfer_pc(drive);
1295         }
1296 }
1297
1298 static ide_startstop_t idetape_pc_callback(ide_drive_t *drive)
1299 {
1300         idetape_tape_t *tape = drive->driver_data;
1301
1302         debug_log(DBG_PROCS, "Enter %s\n", __func__);
1303
1304         idetape_end_request(drive, tape->pc->error ? 0 : 1, 0);
1305         return ide_stopped;
1306 }
1307
1308 /* A mode sense command is used to "sense" tape parameters. */
1309 static void idetape_create_mode_sense_cmd(struct ide_atapi_pc *pc, u8 page_code)
1310 {
1311         idetape_init_pc(pc);
1312         pc->c[0] = MODE_SENSE;
1313         if (page_code != IDETAPE_BLOCK_DESCRIPTOR)
1314                 /* DBD = 1 - Don't return block descriptors */
1315                 pc->c[1] = 8;
1316         pc->c[2] = page_code;
1317         /*
1318          * Changed pc->c[3] to 0 (255 will at best return unused info).
1319          *
1320          * For SCSI this byte is defined as subpage instead of high byte
1321          * of length and some IDE drives seem to interpret it this way
1322          * and return an error when 255 is used.
1323          */
1324         pc->c[3] = 0;
1325         /* We will just discard data in that case */
1326         pc->c[4] = 255;
1327         if (page_code == IDETAPE_BLOCK_DESCRIPTOR)
1328                 pc->req_xfer = 12;
1329         else if (page_code == IDETAPE_CAPABILITIES_PAGE)
1330                 pc->req_xfer = 24;
1331         else
1332                 pc->req_xfer = 50;
1333         pc->idetape_callback = &idetape_pc_callback;
1334 }
1335
1336 static void idetape_calculate_speeds(ide_drive_t *drive)
1337 {
1338         idetape_tape_t *tape = drive->driver_data;
1339
1340         if (time_after(jiffies,
1341                         tape->controlled_pipeline_head_time + 120 * HZ)) {
1342                 tape->controlled_previous_pipeline_head =
1343                         tape->controlled_last_pipeline_head;
1344                 tape->controlled_previous_head_time =
1345                         tape->controlled_pipeline_head_time;
1346                 tape->controlled_last_pipeline_head = tape->pipeline_head;
1347                 tape->controlled_pipeline_head_time = jiffies;
1348         }
1349         if (time_after(jiffies, tape->controlled_pipeline_head_time + 60 * HZ))
1350                 tape->controlled_pipeline_head_speed = (tape->pipeline_head -
1351                                 tape->controlled_last_pipeline_head) * 32 * HZ /
1352                                 (jiffies - tape->controlled_pipeline_head_time);
1353         else if (time_after(jiffies, tape->controlled_previous_head_time))
1354                 tape->controlled_pipeline_head_speed = (tape->pipeline_head -
1355                                 tape->controlled_previous_pipeline_head) * 32 *
1356                         HZ / (jiffies - tape->controlled_previous_head_time);
1357
1358         if (tape->nr_pending_stages < tape->max_stages/*- 1 */) {
1359                 /* -1 for read mode error recovery */
1360                 if (time_after(jiffies, tape->uncontrolled_previous_head_time +
1361                                         10 * HZ)) {
1362                         tape->uncontrolled_pipeline_head_time = jiffies;
1363                         tape->uncontrolled_pipeline_head_speed =
1364                                 (tape->pipeline_head -
1365                                  tape->uncontrolled_previous_pipeline_head) *
1366                                 32 * HZ / (jiffies -
1367                                         tape->uncontrolled_previous_head_time);
1368                 }
1369         } else {
1370                 tape->uncontrolled_previous_head_time = jiffies;
1371                 tape->uncontrolled_previous_pipeline_head = tape->pipeline_head;
1372                 if (time_after(jiffies, tape->uncontrolled_pipeline_head_time +
1373                                         30 * HZ))
1374                         tape->uncontrolled_pipeline_head_time = jiffies;
1375
1376         }
1377         tape->pipeline_head_speed = max(tape->uncontrolled_pipeline_head_speed,
1378                                         tape->controlled_pipeline_head_speed);
1379
1380         if (tape->speed_control == 1) {
1381                 if (tape->nr_pending_stages >= tape->max_stages / 2)
1382                         tape->max_insert_speed = tape->pipeline_head_speed +
1383                                 (1100 - tape->pipeline_head_speed) * 2 *
1384                                 (tape->nr_pending_stages - tape->max_stages / 2)
1385                                 / tape->max_stages;
1386                 else
1387                         tape->max_insert_speed = 500 +
1388                                 (tape->pipeline_head_speed - 500) * 2 *
1389                                 tape->nr_pending_stages / tape->max_stages;
1390
1391                 if (tape->nr_pending_stages >= tape->max_stages * 99 / 100)
1392                         tape->max_insert_speed = 5000;
1393         } else
1394                 tape->max_insert_speed = tape->speed_control;
1395
1396         tape->max_insert_speed = max(tape->max_insert_speed, 500);
1397 }
1398
1399 static ide_startstop_t idetape_media_access_finished(ide_drive_t *drive)
1400 {
1401         idetape_tape_t *tape = drive->driver_data;
1402         struct ide_atapi_pc *pc = tape->pc;
1403         u8 stat;
1404
1405         stat = ide_read_status(drive);
1406
1407         if (stat & SEEK_STAT) {
1408                 if (stat & ERR_STAT) {
1409                         /* Error detected */
1410                         if (pc->c[0] != TEST_UNIT_READY)
1411                                 printk(KERN_ERR "ide-tape: %s: I/O error, ",
1412                                                 tape->name);
1413                         /* Retry operation */
1414                         return idetape_retry_pc(drive);
1415                 }
1416                 pc->error = 0;
1417                 if (tape->failed_pc == pc)
1418                         tape->failed_pc = NULL;
1419         } else {
1420                 pc->error = IDETAPE_ERROR_GENERAL;
1421                 tape->failed_pc = NULL;
1422         }
1423         return pc->idetape_callback(drive);
1424 }
1425
1426 static ide_startstop_t idetape_rw_callback(ide_drive_t *drive)
1427 {
1428         idetape_tape_t *tape = drive->driver_data;
1429         struct request *rq = HWGROUP(drive)->rq;
1430         int blocks = tape->pc->xferred / tape->blk_size;
1431
1432         tape->avg_size += blocks * tape->blk_size;
1433         tape->insert_size += blocks * tape->blk_size;
1434         if (tape->insert_size > 1024 * 1024)
1435                 tape->measure_insert_time = 1;
1436         if (tape->measure_insert_time) {
1437                 tape->measure_insert_time = 0;
1438                 tape->insert_time = jiffies;
1439                 tape->insert_size = 0;
1440         }
1441         if (time_after(jiffies, tape->insert_time))
1442                 tape->insert_speed = tape->insert_size / 1024 * HZ /
1443                                         (jiffies - tape->insert_time);
1444         if (time_after_eq(jiffies, tape->avg_time + HZ)) {
1445                 tape->avg_speed = tape->avg_size * HZ /
1446                                 (jiffies - tape->avg_time) / 1024;
1447                 tape->avg_size = 0;
1448                 tape->avg_time = jiffies;
1449         }
1450         debug_log(DBG_PROCS, "Enter %s\n", __func__);
1451
1452         tape->first_frame += blocks;
1453         rq->current_nr_sectors -= blocks;
1454
1455         if (!tape->pc->error)
1456                 idetape_end_request(drive, 1, 0);
1457         else
1458                 idetape_end_request(drive, tape->pc->error, 0);
1459         return ide_stopped;
1460 }
1461
1462 static void idetape_create_read_cmd(idetape_tape_t *tape,
1463                 struct ide_atapi_pc *pc,
1464                 unsigned int length, struct idetape_bh *bh)
1465 {
1466         idetape_init_pc(pc);
1467         pc->c[0] = READ_6;
1468         put_unaligned(cpu_to_be32(length), (unsigned int *) &pc->c[1]);
1469         pc->c[1] = 1;
1470         pc->idetape_callback = &idetape_rw_callback;
1471         pc->bh = bh;
1472         atomic_set(&bh->b_count, 0);
1473         pc->buf = NULL;
1474         pc->buf_size = length * tape->blk_size;
1475         pc->req_xfer = pc->buf_size;
1476         if (pc->req_xfer == tape->stage_size)
1477                 pc->flags |= PC_FLAG_DMA_RECOMMENDED;
1478 }
1479
1480 static void idetape_create_write_cmd(idetape_tape_t *tape,
1481                 struct ide_atapi_pc *pc,
1482                 unsigned int length, struct idetape_bh *bh)
1483 {
1484         idetape_init_pc(pc);
1485         pc->c[0] = WRITE_6;
1486         put_unaligned(cpu_to_be32(length), (unsigned int *) &pc->c[1]);
1487         pc->c[1] = 1;
1488         pc->idetape_callback = &idetape_rw_callback;
1489         pc->flags |= PC_FLAG_WRITING;
1490         pc->bh = bh;
1491         pc->b_data = bh->b_data;
1492         pc->b_count = atomic_read(&bh->b_count);
1493         pc->buf = NULL;
1494         pc->buf_size = length * tape->blk_size;
1495         pc->req_xfer = pc->buf_size;
1496         if (pc->req_xfer == tape->stage_size)
1497                 pc->flags |= PC_FLAG_DMA_RECOMMENDED;
1498 }
1499
1500 static ide_startstop_t idetape_do_request(ide_drive_t *drive,
1501                                           struct request *rq, sector_t block)
1502 {
1503         idetape_tape_t *tape = drive->driver_data;
1504         struct ide_atapi_pc *pc = NULL;
1505         struct request *postponed_rq = tape->postponed_rq;
1506         u8 stat;
1507
1508         debug_log(DBG_SENSE, "sector: %ld, nr_sectors: %ld,"
1509                         " current_nr_sectors: %d\n",
1510                         rq->sector, rq->nr_sectors, rq->current_nr_sectors);
1511
1512         if (!blk_special_request(rq)) {
1513                 /* We do not support buffer cache originated requests. */
1514                 printk(KERN_NOTICE "ide-tape: %s: Unsupported request in "
1515                         "request queue (%d)\n", drive->name, rq->cmd_type);
1516                 ide_end_request(drive, 0, 0);
1517                 return ide_stopped;
1518         }
1519
1520         /* Retry a failed packet command */
1521         if (tape->failed_pc && tape->pc->c[0] == REQUEST_SENSE)
1522                 return idetape_issue_pc(drive, tape->failed_pc);
1523
1524         if (postponed_rq != NULL)
1525                 if (rq != postponed_rq) {
1526                         printk(KERN_ERR "ide-tape: ide-tape.c bug - "
1527                                         "Two DSC requests were queued\n");
1528                         idetape_end_request(drive, 0, 0);
1529                         return ide_stopped;
1530                 }
1531
1532         tape->postponed_rq = NULL;
1533
1534         /*
1535          * If the tape is still busy, postpone our request and service
1536          * the other device meanwhile.
1537          */
1538         stat = ide_read_status(drive);
1539
1540         if (!drive->dsc_overlap && !(rq->cmd[0] & REQ_IDETAPE_PC2))
1541                 set_bit(IDETAPE_FLAG_IGNORE_DSC, &tape->flags);
1542
1543         if (drive->post_reset == 1) {
1544                 set_bit(IDETAPE_FLAG_IGNORE_DSC, &tape->flags);
1545                 drive->post_reset = 0;
1546         }
1547
1548         if (time_after(jiffies, tape->insert_time))
1549                 tape->insert_speed = tape->insert_size / 1024 * HZ /
1550                                         (jiffies - tape->insert_time);
1551         idetape_calculate_speeds(drive);
1552         if (!test_and_clear_bit(IDETAPE_FLAG_IGNORE_DSC, &tape->flags) &&
1553             (stat & SEEK_STAT) == 0) {
1554                 if (postponed_rq == NULL) {
1555                         tape->dsc_polling_start = jiffies;
1556                         tape->dsc_poll_freq = tape->best_dsc_rw_freq;
1557                         tape->dsc_timeout = jiffies + IDETAPE_DSC_RW_TIMEOUT;
1558                 } else if (time_after(jiffies, tape->dsc_timeout)) {
1559                         printk(KERN_ERR "ide-tape: %s: DSC timeout\n",
1560                                 tape->name);
1561                         if (rq->cmd[0] & REQ_IDETAPE_PC2) {
1562                                 idetape_media_access_finished(drive);
1563                                 return ide_stopped;
1564                         } else {
1565                                 return ide_do_reset(drive);
1566                         }
1567                 } else if (time_after(jiffies,
1568                                         tape->dsc_polling_start +
1569                                         IDETAPE_DSC_MA_THRESHOLD))
1570                         tape->dsc_poll_freq = IDETAPE_DSC_MA_SLOW;
1571                 idetape_postpone_request(drive);
1572                 return ide_stopped;
1573         }
1574         if (rq->cmd[0] & REQ_IDETAPE_READ) {
1575                 tape->buffer_head++;
1576                 tape->postpone_cnt = 0;
1577                 pc = idetape_next_pc_storage(drive);
1578                 idetape_create_read_cmd(tape, pc, rq->current_nr_sectors,
1579                                         (struct idetape_bh *)rq->special);
1580                 goto out;
1581         }
1582         if (rq->cmd[0] & REQ_IDETAPE_WRITE) {
1583                 tape->buffer_head++;
1584                 tape->postpone_cnt = 0;
1585                 pc = idetape_next_pc_storage(drive);
1586                 idetape_create_write_cmd(tape, pc, rq->current_nr_sectors,
1587                                          (struct idetape_bh *)rq->special);
1588                 goto out;
1589         }
1590         if (rq->cmd[0] & REQ_IDETAPE_PC1) {
1591                 pc = (struct ide_atapi_pc *) rq->buffer;
1592                 rq->cmd[0] &= ~(REQ_IDETAPE_PC1);
1593                 rq->cmd[0] |= REQ_IDETAPE_PC2;
1594                 goto out;
1595         }
1596         if (rq->cmd[0] & REQ_IDETAPE_PC2) {
1597                 idetape_media_access_finished(drive);
1598                 return ide_stopped;
1599         }
1600         BUG();
1601 out:
1602         return idetape_issue_pc(drive, pc);
1603 }
1604
1605 /* Pipeline related functions */
1606
1607 /*
1608  * The function below uses __get_free_page to allocate a pipeline stage, along
1609  * with all the necessary small buffers which together make a buffer of size
1610  * tape->stage_size (or a bit more). We attempt to combine sequential pages as
1611  * much as possible.
1612  *
1613  * It returns a pointer to the new allocated stage, or NULL if we can't (or
1614  * don't want to) allocate a stage.
1615  *
1616  * Pipeline stages are optional and are used to increase performance. If we
1617  * can't allocate them, we'll manage without them.
1618  */
1619 static idetape_stage_t *__idetape_kmalloc_stage(idetape_tape_t *tape, int full,
1620                                                 int clear)
1621 {
1622         idetape_stage_t *stage;
1623         struct idetape_bh *prev_bh, *bh;
1624         int pages = tape->pages_per_stage;
1625         char *b_data = NULL;
1626
1627         stage = kmalloc(sizeof(idetape_stage_t), GFP_KERNEL);
1628         if (!stage)
1629                 return NULL;
1630         stage->next = NULL;
1631
1632         stage->bh = kmalloc(sizeof(struct idetape_bh), GFP_KERNEL);
1633         bh = stage->bh;
1634         if (bh == NULL)
1635                 goto abort;
1636         bh->b_reqnext = NULL;
1637         bh->b_data = (char *) __get_free_page(GFP_KERNEL);
1638         if (!bh->b_data)
1639                 goto abort;
1640         if (clear)
1641                 memset(bh->b_data, 0, PAGE_SIZE);
1642         bh->b_size = PAGE_SIZE;
1643         atomic_set(&bh->b_count, full ? bh->b_size : 0);
1644
1645         while (--pages) {
1646                 b_data = (char *) __get_free_page(GFP_KERNEL);
1647                 if (!b_data)
1648                         goto abort;
1649                 if (clear)
1650                         memset(b_data, 0, PAGE_SIZE);
1651                 if (bh->b_data == b_data + PAGE_SIZE) {
1652                         bh->b_size += PAGE_SIZE;
1653                         bh->b_data -= PAGE_SIZE;
1654                         if (full)
1655                                 atomic_add(PAGE_SIZE, &bh->b_count);
1656                         continue;
1657                 }
1658                 if (b_data == bh->b_data + bh->b_size) {
1659                         bh->b_size += PAGE_SIZE;
1660                         if (full)
1661                                 atomic_add(PAGE_SIZE, &bh->b_count);
1662                         continue;
1663                 }
1664                 prev_bh = bh;
1665                 bh = kmalloc(sizeof(struct idetape_bh), GFP_KERNEL);
1666                 if (!bh) {
1667                         free_page((unsigned long) b_data);
1668                         goto abort;
1669                 }
1670                 bh->b_reqnext = NULL;
1671                 bh->b_data = b_data;
1672                 bh->b_size = PAGE_SIZE;
1673                 atomic_set(&bh->b_count, full ? bh->b_size : 0);
1674                 prev_bh->b_reqnext = bh;
1675         }
1676         bh->b_size -= tape->excess_bh_size;
1677         if (full)
1678                 atomic_sub(tape->excess_bh_size, &bh->b_count);
1679         return stage;
1680 abort:
1681         __idetape_kfree_stage(stage);
1682         return NULL;
1683 }
1684
1685 static idetape_stage_t *idetape_kmalloc_stage(idetape_tape_t *tape)
1686 {
1687         debug_log(DBG_PROCS, "Enter %s\n", __func__);
1688
1689         if (tape->nr_stages >= tape->max_stages)
1690                 return NULL;
1691         return __idetape_kmalloc_stage(tape, 0, 0);
1692 }
1693
1694 static int idetape_copy_stage_from_user(idetape_tape_t *tape,
1695                 idetape_stage_t *stage, const char __user *buf, int n)
1696 {
1697         struct idetape_bh *bh = tape->bh;
1698         int count;
1699         int ret = 0;
1700
1701         while (n) {
1702                 if (bh == NULL) {
1703                         printk(KERN_ERR "ide-tape: bh == NULL in %s\n",
1704                                         __func__);
1705                         return 1;
1706                 }
1707                 count = min((unsigned int)
1708                                 (bh->b_size - atomic_read(&bh->b_count)),
1709                                 (unsigned int)n);
1710                 if (copy_from_user(bh->b_data + atomic_read(&bh->b_count), buf,
1711                                 count))
1712                         ret = 1;
1713                 n -= count;
1714                 atomic_add(count, &bh->b_count);
1715                 buf += count;
1716                 if (atomic_read(&bh->b_count) == bh->b_size) {
1717                         bh = bh->b_reqnext;
1718                         if (bh)
1719                                 atomic_set(&bh->b_count, 0);
1720                 }
1721         }
1722         tape->bh = bh;
1723         return ret;
1724 }
1725
1726 static int idetape_copy_stage_to_user(idetape_tape_t *tape, char __user *buf,
1727                 idetape_stage_t *stage, int n)
1728 {
1729         struct idetape_bh *bh = tape->bh;
1730         int count;
1731         int ret = 0;
1732
1733         while (n) {
1734                 if (bh == NULL) {
1735                         printk(KERN_ERR "ide-tape: bh == NULL in %s\n",
1736                                         __func__);
1737                         return 1;
1738                 }
1739                 count = min(tape->b_count, n);
1740                 if  (copy_to_user(buf, tape->b_data, count))
1741                         ret = 1;
1742                 n -= count;
1743                 tape->b_data += count;
1744                 tape->b_count -= count;
1745                 buf += count;
1746                 if (!tape->b_count) {
1747                         bh = bh->b_reqnext;
1748                         tape->bh = bh;
1749                         if (bh) {
1750                                 tape->b_data = bh->b_data;
1751                                 tape->b_count = atomic_read(&bh->b_count);
1752                         }
1753                 }
1754         }
1755         return ret;
1756 }
1757
1758 static void idetape_init_merge_stage(idetape_tape_t *tape)
1759 {
1760         struct idetape_bh *bh = tape->merge_stage->bh;
1761
1762         tape->bh = bh;
1763         if (tape->chrdev_dir == IDETAPE_DIR_WRITE)
1764                 atomic_set(&bh->b_count, 0);
1765         else {
1766                 tape->b_data = bh->b_data;
1767                 tape->b_count = atomic_read(&bh->b_count);
1768         }
1769 }
1770
1771 static void idetape_switch_buffers(idetape_tape_t *tape, idetape_stage_t *stage)
1772 {
1773         struct idetape_bh *tmp;
1774
1775         tmp = stage->bh;
1776         stage->bh = tape->merge_stage->bh;
1777         tape->merge_stage->bh = tmp;
1778         idetape_init_merge_stage(tape);
1779 }
1780
1781 /* Add a new stage at the end of the pipeline. */
1782 static void idetape_add_stage_tail(ide_drive_t *drive, idetape_stage_t *stage)
1783 {
1784         idetape_tape_t *tape = drive->driver_data;
1785         unsigned long flags;
1786
1787         debug_log(DBG_PROCS, "Enter %s\n", __func__);
1788
1789         spin_lock_irqsave(&tape->lock, flags);
1790         stage->next = NULL;
1791         if (tape->last_stage != NULL)
1792                 tape->last_stage->next = stage;
1793         else
1794                 tape->first_stage = stage;
1795                 tape->next_stage  = stage;
1796         tape->last_stage = stage;
1797         if (tape->next_stage == NULL)
1798                 tape->next_stage = tape->last_stage;
1799         tape->nr_stages++;
1800         tape->nr_pending_stages++;
1801         spin_unlock_irqrestore(&tape->lock, flags);
1802 }
1803
1804 /* Install a completion in a pending request and sleep until it is serviced. The
1805  * caller should ensure that the request will not be serviced before we install
1806  * the completion (usually by disabling interrupts).
1807  */
1808 static void idetape_wait_for_request(ide_drive_t *drive, struct request *rq)
1809 {
1810         DECLARE_COMPLETION_ONSTACK(wait);
1811         idetape_tape_t *tape = drive->driver_data;
1812
1813         if (rq == NULL || !blk_special_request(rq)) {
1814                 printk(KERN_ERR "ide-tape: bug: Trying to sleep on non-valid"
1815                                  " request\n");
1816                 return;
1817         }
1818         rq->end_io_data = &wait;
1819         rq->end_io = blk_end_sync_rq;
1820         spin_unlock_irq(&tape->lock);
1821         wait_for_completion(&wait);
1822         /* The stage and its struct request have been deallocated */
1823         spin_lock_irq(&tape->lock);
1824 }
1825
1826 static ide_startstop_t idetape_read_position_callback(ide_drive_t *drive)
1827 {
1828         idetape_tape_t *tape = drive->driver_data;
1829         u8 *readpos = tape->pc->buf;
1830
1831         debug_log(DBG_PROCS, "Enter %s\n", __func__);
1832
1833         if (!tape->pc->error) {
1834                 debug_log(DBG_SENSE, "BOP - %s\n",
1835                                 (readpos[0] & 0x80) ? "Yes" : "No");
1836                 debug_log(DBG_SENSE, "EOP - %s\n",
1837                                 (readpos[0] & 0x40) ? "Yes" : "No");
1838
1839                 if (readpos[0] & 0x4) {
1840                         printk(KERN_INFO "ide-tape: Block location is unknown"
1841                                          "to the tape\n");
1842                         clear_bit(IDETAPE_FLAG_ADDRESS_VALID, &tape->flags);
1843                         idetape_end_request(drive, 0, 0);
1844                 } else {
1845                         debug_log(DBG_SENSE, "Block Location - %u\n",
1846                                         be32_to_cpu(*(u32 *)&readpos[4]));
1847
1848                         tape->partition = readpos[1];
1849                         tape->first_frame =
1850                                 be32_to_cpu(*(u32 *)&readpos[4]);
1851                         set_bit(IDETAPE_FLAG_ADDRESS_VALID, &tape->flags);
1852                         idetape_end_request(drive, 1, 0);
1853                 }
1854         } else {
1855                 idetape_end_request(drive, 0, 0);
1856         }
1857         return ide_stopped;
1858 }
1859
1860 /*
1861  * Write a filemark if write_filemark=1. Flush the device buffers without
1862  * writing a filemark otherwise.
1863  */
1864 static void idetape_create_write_filemark_cmd(ide_drive_t *drive,
1865                 struct ide_atapi_pc *pc, int write_filemark)
1866 {
1867         idetape_init_pc(pc);
1868         pc->c[0] = WRITE_FILEMARKS;
1869         pc->c[4] = write_filemark;
1870         pc->flags |= PC_FLAG_WAIT_FOR_DSC;
1871         pc->idetape_callback = &idetape_pc_callback;
1872 }
1873
1874 static void idetape_create_test_unit_ready_cmd(struct ide_atapi_pc *pc)
1875 {
1876         idetape_init_pc(pc);
1877         pc->c[0] = TEST_UNIT_READY;
1878         pc->idetape_callback = &idetape_pc_callback;
1879 }
1880
1881 /*
1882  * We add a special packet command request to the tail of the request queue, and
1883  * wait for it to be serviced. This is not to be called from within the request
1884  * handling part of the driver! We allocate here data on the stack and it is
1885  * valid until the request is finished. This is not the case for the bottom part
1886  * of the driver, where we are always leaving the functions to wait for an
1887  * interrupt or a timer event.
1888  *
1889  * From the bottom part of the driver, we should allocate safe memory using
1890  * idetape_next_pc_storage() and ide_tape_next_rq_storage(), and add the request
1891  * to the request list without waiting for it to be serviced! In that case, we
1892  * usually use idetape_queue_pc_head().
1893  */
1894 static int __idetape_queue_pc_tail(ide_drive_t *drive, struct ide_atapi_pc *pc)
1895 {
1896         struct ide_tape_obj *tape = drive->driver_data;
1897         struct request rq;
1898
1899         idetape_init_rq(&rq, REQ_IDETAPE_PC1);
1900         rq.buffer = (char *) pc;
1901         rq.rq_disk = tape->disk;
1902         return ide_do_drive_cmd(drive, &rq, ide_wait);
1903 }
1904
1905 static void idetape_create_load_unload_cmd(ide_drive_t *drive,
1906                 struct ide_atapi_pc *pc, int cmd)
1907 {
1908         idetape_init_pc(pc);
1909         pc->c[0] = START_STOP;
1910         pc->c[4] = cmd;
1911         pc->flags |= PC_FLAG_WAIT_FOR_DSC;
1912         pc->idetape_callback = &idetape_pc_callback;
1913 }
1914
1915 static int idetape_wait_ready(ide_drive_t *drive, unsigned long timeout)
1916 {
1917         idetape_tape_t *tape = drive->driver_data;
1918         struct ide_atapi_pc pc;
1919         int load_attempted = 0;
1920
1921         /* Wait for the tape to become ready */
1922         set_bit(IDETAPE_FLAG_MEDIUM_PRESENT, &tape->flags);
1923         timeout += jiffies;
1924         while (time_before(jiffies, timeout)) {
1925                 idetape_create_test_unit_ready_cmd(&pc);
1926                 if (!__idetape_queue_pc_tail(drive, &pc))
1927                         return 0;
1928                 if ((tape->sense_key == 2 && tape->asc == 4 && tape->ascq == 2)
1929                     || (tape->asc == 0x3A)) {
1930                         /* no media */
1931                         if (load_attempted)
1932                                 return -ENOMEDIUM;
1933                         idetape_create_load_unload_cmd(drive, &pc,
1934                                                         IDETAPE_LU_LOAD_MASK);
1935                         __idetape_queue_pc_tail(drive, &pc);
1936                         load_attempted = 1;
1937                 /* not about to be ready */
1938                 } else if (!(tape->sense_key == 2 && tape->asc == 4 &&
1939                              (tape->ascq == 1 || tape->ascq == 8)))
1940                         return -EIO;
1941                 msleep(100);
1942         }
1943         return -EIO;
1944 }
1945
1946 static int idetape_queue_pc_tail(ide_drive_t *drive, struct ide_atapi_pc *pc)
1947 {
1948         return __idetape_queue_pc_tail(drive, pc);
1949 }
1950
1951 static int idetape_flush_tape_buffers(ide_drive_t *drive)
1952 {
1953         struct ide_atapi_pc pc;
1954         int rc;
1955
1956         idetape_create_write_filemark_cmd(drive, &pc, 0);
1957         rc = idetape_queue_pc_tail(drive, &pc);
1958         if (rc)
1959                 return rc;
1960         idetape_wait_ready(drive, 60 * 5 * HZ);
1961         return 0;
1962 }
1963
1964 static void idetape_create_read_position_cmd(struct ide_atapi_pc *pc)
1965 {
1966         idetape_init_pc(pc);
1967         pc->c[0] = READ_POSITION;
1968         pc->req_xfer = 20;
1969         pc->idetape_callback = &idetape_read_position_callback;
1970 }
1971
1972 static int idetape_read_position(ide_drive_t *drive)
1973 {
1974         idetape_tape_t *tape = drive->driver_data;
1975         struct ide_atapi_pc pc;
1976         int position;
1977
1978         debug_log(DBG_PROCS, "Enter %s\n", __func__);
1979
1980         idetape_create_read_position_cmd(&pc);
1981         if (idetape_queue_pc_tail(drive, &pc))
1982                 return -1;
1983         position = tape->first_frame;
1984         return position;
1985 }
1986
1987 static void idetape_create_locate_cmd(ide_drive_t *drive,
1988                 struct ide_atapi_pc *pc,
1989                 unsigned int block, u8 partition, int skip)
1990 {
1991         idetape_init_pc(pc);
1992         pc->c[0] = POSITION_TO_ELEMENT;
1993         pc->c[1] = 2;
1994         put_unaligned(cpu_to_be32(block), (unsigned int *) &pc->c[3]);
1995         pc->c[8] = partition;
1996         pc->flags |= PC_FLAG_WAIT_FOR_DSC;
1997         pc->idetape_callback = &idetape_pc_callback;
1998 }
1999
2000 static int idetape_create_prevent_cmd(ide_drive_t *drive,
2001                 struct ide_atapi_pc *pc, int prevent)
2002 {
2003         idetape_tape_t *tape = drive->driver_data;
2004
2005         /* device supports locking according to capabilities page */
2006         if (!(tape->caps[6] & 0x01))
2007                 return 0;
2008
2009         idetape_init_pc(pc);
2010         pc->c[0] = ALLOW_MEDIUM_REMOVAL;
2011         pc->c[4] = prevent;
2012         pc->idetape_callback = &idetape_pc_callback;
2013         return 1;
2014 }
2015
2016 static int __idetape_discard_read_pipeline(ide_drive_t *drive)
2017 {
2018         idetape_tape_t *tape = drive->driver_data;
2019         unsigned long flags;
2020         int cnt;
2021
2022         if (tape->chrdev_dir != IDETAPE_DIR_READ)
2023                 return 0;
2024
2025         /* Remove merge stage. */
2026         cnt = tape->merge_stage_size / tape->blk_size;
2027         if (test_and_clear_bit(IDETAPE_FLAG_FILEMARK, &tape->flags))
2028                 ++cnt;          /* Filemarks count as 1 sector */
2029         tape->merge_stage_size = 0;
2030         if (tape->merge_stage != NULL) {
2031                 __idetape_kfree_stage(tape->merge_stage);
2032                 tape->merge_stage = NULL;
2033         }
2034
2035         /* Clear pipeline flags. */
2036         clear_bit(IDETAPE_FLAG_PIPELINE_ERR, &tape->flags);
2037         tape->chrdev_dir = IDETAPE_DIR_NONE;
2038
2039         /* Remove pipeline stages. */
2040         if (tape->first_stage == NULL)
2041                 return 0;
2042
2043         spin_lock_irqsave(&tape->lock, flags);
2044         tape->next_stage = NULL;
2045         if (test_bit(IDETAPE_FLAG_PIPELINE_ACTIVE, &tape->flags))
2046                 idetape_wait_for_request(drive, tape->active_data_rq);
2047         spin_unlock_irqrestore(&tape->lock, flags);
2048
2049         while (tape->first_stage != NULL) {
2050                 struct request *rq_ptr = &tape->first_stage->rq;
2051
2052                 cnt += rq_ptr->nr_sectors - rq_ptr->current_nr_sectors;
2053                 if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK)
2054                         ++cnt;
2055                 idetape_remove_stage_head(drive);
2056         }
2057         tape->nr_pending_stages = 0;
2058         tape->max_stages = tape->min_pipeline;
2059         return cnt;
2060 }
2061
2062 /*
2063  * Position the tape to the requested block using the LOCATE packet command.
2064  * A READ POSITION command is then issued to check where we are positioned. Like
2065  * all higher level operations, we queue the commands at the tail of the request
2066  * queue and wait for their completion.
2067  */
2068 static int idetape_position_tape(ide_drive_t *drive, unsigned int block,
2069                 u8 partition, int skip)
2070 {
2071         idetape_tape_t *tape = drive->driver_data;
2072         int retval;
2073         struct ide_atapi_pc pc;
2074
2075         if (tape->chrdev_dir == IDETAPE_DIR_READ)
2076                 __idetape_discard_read_pipeline(drive);
2077         idetape_wait_ready(drive, 60 * 5 * HZ);
2078         idetape_create_locate_cmd(drive, &pc, block, partition, skip);
2079         retval = idetape_queue_pc_tail(drive, &pc);
2080         if (retval)
2081                 return (retval);
2082
2083         idetape_create_read_position_cmd(&pc);
2084         return (idetape_queue_pc_tail(drive, &pc));
2085 }
2086
2087 static void idetape_discard_read_pipeline(ide_drive_t *drive,
2088                                           int restore_position)
2089 {
2090         idetape_tape_t *tape = drive->driver_data;
2091         int cnt;
2092         int seek, position;
2093
2094         cnt = __idetape_discard_read_pipeline(drive);
2095         if (restore_position) {
2096                 position = idetape_read_position(drive);
2097                 seek = position > cnt ? position - cnt : 0;
2098                 if (idetape_position_tape(drive, seek, 0, 0)) {
2099                         printk(KERN_INFO "ide-tape: %s: position_tape failed in"
2100                                          " discard_pipeline()\n", tape->name);
2101                         return;
2102                 }
2103         }
2104 }
2105
2106 /*
2107  * Generate a read/write request for the block device interface and wait for it
2108  * to be serviced.
2109  */
2110 static int idetape_queue_rw_tail(ide_drive_t *drive, int cmd, int blocks,
2111                                  struct idetape_bh *bh)
2112 {
2113         idetape_tape_t *tape = drive->driver_data;
2114         struct request rq;
2115
2116         debug_log(DBG_SENSE, "%s: cmd=%d\n", __func__, cmd);
2117
2118         if (test_bit(IDETAPE_FLAG_PIPELINE_ACTIVE, &tape->flags)) {
2119                 printk(KERN_ERR "ide-tape: bug: the pipeline is active in %s\n",
2120                                 __func__);
2121                 return (0);
2122         }
2123
2124         idetape_init_rq(&rq, cmd);
2125         rq.rq_disk = tape->disk;
2126         rq.special = (void *)bh;
2127         rq.sector = tape->first_frame;
2128         rq.nr_sectors           = blocks;
2129         rq.current_nr_sectors   = blocks;
2130         (void) ide_do_drive_cmd(drive, &rq, ide_wait);
2131
2132         if ((cmd & (REQ_IDETAPE_READ | REQ_IDETAPE_WRITE)) == 0)
2133                 return 0;
2134
2135         if (tape->merge_stage)
2136                 idetape_init_merge_stage(tape);
2137         if (rq.errors == IDETAPE_ERROR_GENERAL)
2138                 return -EIO;
2139         return (tape->blk_size * (blocks-rq.current_nr_sectors));
2140 }
2141
2142 /* start servicing the pipeline stages, starting from tape->next_stage. */
2143 static void idetape_plug_pipeline(ide_drive_t *drive)
2144 {
2145         idetape_tape_t *tape = drive->driver_data;
2146
2147         if (tape->next_stage == NULL)
2148                 return;
2149         if (!test_and_set_bit(IDETAPE_FLAG_PIPELINE_ACTIVE, &tape->flags)) {
2150                 idetape_activate_next_stage(drive);
2151                 (void) ide_do_drive_cmd(drive, tape->active_data_rq, ide_end);
2152         }
2153 }
2154
2155 static void idetape_create_inquiry_cmd(struct ide_atapi_pc *pc)
2156 {
2157         idetape_init_pc(pc);
2158         pc->c[0] = INQUIRY;
2159         pc->c[4] = 254;
2160         pc->req_xfer = 254;
2161         pc->idetape_callback = &idetape_pc_callback;
2162 }
2163
2164 static void idetape_create_rewind_cmd(ide_drive_t *drive,
2165                 struct ide_atapi_pc *pc)
2166 {
2167         idetape_init_pc(pc);
2168         pc->c[0] = REZERO_UNIT;
2169         pc->flags |= PC_FLAG_WAIT_FOR_DSC;
2170         pc->idetape_callback = &idetape_pc_callback;
2171 }
2172
2173 static void idetape_create_erase_cmd(struct ide_atapi_pc *pc)
2174 {
2175         idetape_init_pc(pc);
2176         pc->c[0] = ERASE;
2177         pc->c[1] = 1;
2178         pc->flags |= PC_FLAG_WAIT_FOR_DSC;
2179         pc->idetape_callback = &idetape_pc_callback;
2180 }
2181
2182 static void idetape_create_space_cmd(struct ide_atapi_pc *pc, int count, u8 cmd)
2183 {
2184         idetape_init_pc(pc);
2185         pc->c[0] = SPACE;
2186         put_unaligned(cpu_to_be32(count), (unsigned int *) &pc->c[1]);
2187         pc->c[1] = cmd;
2188         pc->flags |= PC_FLAG_WAIT_FOR_DSC;
2189         pc->idetape_callback = &idetape_pc_callback;
2190 }
2191
2192 static void idetape_wait_first_stage(ide_drive_t *drive)
2193 {
2194         idetape_tape_t *tape = drive->driver_data;
2195         unsigned long flags;
2196
2197         if (tape->first_stage == NULL)
2198                 return;
2199         spin_lock_irqsave(&tape->lock, flags);
2200         if (tape->active_stage == tape->first_stage)
2201                 idetape_wait_for_request(drive, tape->active_data_rq);
2202         spin_unlock_irqrestore(&tape->lock, flags);
2203 }
2204
2205 /*
2206  * Try to add a character device originated write request to our pipeline. In
2207  * case we don't succeed, we revert to non-pipelined operation mode for this
2208  * request. In order to accomplish that, we
2209  *
2210  * 1. Try to allocate a new pipeline stage.
2211  * 2. If we can't, wait for more and more requests to be serviced and try again
2212  * each time.
2213  * 3. If we still can't allocate a stage, fallback to non-pipelined operation
2214  * mode for this request.
2215  */
2216 static int idetape_add_chrdev_write_request(ide_drive_t *drive, int blocks)
2217 {
2218         idetape_tape_t *tape = drive->driver_data;
2219         idetape_stage_t *new_stage;
2220         unsigned long flags;
2221         struct request *rq;
2222
2223         debug_log(DBG_CHRDEV, "Enter %s\n", __func__);
2224
2225         /* Attempt to allocate a new stage. Beware possible race conditions. */
2226         while ((new_stage = idetape_kmalloc_stage(tape)) == NULL) {
2227                 spin_lock_irqsave(&tape->lock, flags);
2228                 if (test_bit(IDETAPE_FLAG_PIPELINE_ACTIVE, &tape->flags)) {
2229                         idetape_wait_for_request(drive, tape->active_data_rq);
2230                         spin_unlock_irqrestore(&tape->lock, flags);
2231                 } else {
2232                         spin_unlock_irqrestore(&tape->lock, flags);
2233                         idetape_plug_pipeline(drive);
2234                         if (test_bit(IDETAPE_FLAG_PIPELINE_ACTIVE,
2235                                         &tape->flags))
2236                                 continue;
2237                         /*
2238                          * The machine is short on memory. Fallback to non-
2239                          * pipelined operation mode for this request.
2240                          */
2241                         return idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE,
2242                                                 blocks, tape->merge_stage->bh);
2243                 }
2244         }
2245         rq = &new_stage->rq;
2246         idetape_init_rq(rq, REQ_IDETAPE_WRITE);
2247         /* Doesn't actually matter - We always assume sequential access */
2248         rq->sector = tape->first_frame;
2249         rq->current_nr_sectors = blocks;
2250         rq->nr_sectors = blocks;
2251
2252         idetape_switch_buffers(tape, new_stage);
2253         idetape_add_stage_tail(drive, new_stage);
2254         tape->pipeline_head++;
2255         idetape_calculate_speeds(drive);
2256
2257         /*
2258          * Estimate whether the tape has stopped writing by checking if our
2259          * write pipeline is currently empty. If we are not writing anymore,
2260          * wait for the pipeline to be almost completely full (90%) before
2261          * starting to service requests, so that we will be able to keep up with
2262          * the higher speeds of the tape.
2263          */
2264         if (!test_bit(IDETAPE_FLAG_PIPELINE_ACTIVE, &tape->flags)) {
2265                 if (tape->nr_stages >= tape->max_stages * 9 / 10 ||
2266                         tape->nr_stages >= tape->max_stages -
2267                         tape->uncontrolled_pipeline_head_speed * 3 * 1024 /
2268                         tape->blk_size) {
2269                         tape->measure_insert_time = 1;
2270                         tape->insert_time = jiffies;
2271                         tape->insert_size = 0;
2272                         tape->insert_speed = 0;
2273                         idetape_plug_pipeline(drive);
2274                 }
2275         }
2276         if (test_and_clear_bit(IDETAPE_FLAG_PIPELINE_ERR, &tape->flags))
2277                 /* Return a deferred error */
2278                 return -EIO;
2279         return blocks;
2280 }
2281
2282 /*
2283  * Wait until all pending pipeline requests are serviced. Typically called on
2284  * device close.
2285  */
2286 static void idetape_wait_for_pipeline(ide_drive_t *drive)
2287 {
2288         idetape_tape_t *tape = drive->driver_data;
2289         unsigned long flags;
2290
2291         while (tape->next_stage || test_bit(IDETAPE_FLAG_PIPELINE_ACTIVE,
2292                                                 &tape->flags)) {
2293                 idetape_plug_pipeline(drive);
2294                 spin_lock_irqsave(&tape->lock, flags);
2295                 if (test_bit(IDETAPE_FLAG_PIPELINE_ACTIVE, &tape->flags))
2296                         idetape_wait_for_request(drive, tape->active_data_rq);
2297                 spin_unlock_irqrestore(&tape->lock, flags);
2298         }
2299 }
2300
2301 static void idetape_empty_write_pipeline(ide_drive_t *drive)
2302 {
2303         idetape_tape_t *tape = drive->driver_data;
2304         int blocks, min;
2305         struct idetape_bh *bh;
2306
2307         if (tape->chrdev_dir != IDETAPE_DIR_WRITE) {
2308                 printk(KERN_ERR "ide-tape: bug: Trying to empty write pipeline,"
2309                                 " but we are not writing.\n");
2310                 return;
2311         }
2312         if (tape->merge_stage_size > tape->stage_size) {
2313                 printk(KERN_ERR "ide-tape: bug: merge_buffer too big\n");
2314                 tape->merge_stage_size = tape->stage_size;
2315         }
2316         if (tape->merge_stage_size) {
2317                 blocks = tape->merge_stage_size / tape->blk_size;
2318                 if (tape->merge_stage_size % tape->blk_size) {
2319                         unsigned int i;
2320
2321                         blocks++;
2322                         i = tape->blk_size - tape->merge_stage_size %
2323                                 tape->blk_size;
2324                         bh = tape->bh->b_reqnext;
2325                         while (bh) {
2326                                 atomic_set(&bh->b_count, 0);
2327                                 bh = bh->b_reqnext;
2328                         }
2329                         bh = tape->bh;
2330                         while (i) {
2331                                 if (bh == NULL) {
2332                                         printk(KERN_INFO "ide-tape: bug,"
2333                                                          " bh NULL\n");
2334                                         break;
2335                                 }
2336                                 min = min(i, (unsigned int)(bh->b_size -
2337                                                 atomic_read(&bh->b_count)));
2338                                 memset(bh->b_data + atomic_read(&bh->b_count),
2339                                                 0, min);
2340                                 atomic_add(min, &bh->b_count);
2341                                 i -= min;
2342                                 bh = bh->b_reqnext;
2343                         }
2344                 }
2345                 (void) idetape_add_chrdev_write_request(drive, blocks);
2346                 tape->merge_stage_size = 0;
2347         }
2348         idetape_wait_for_pipeline(drive);
2349         if (tape->merge_stage != NULL) {
2350                 __idetape_kfree_stage(tape->merge_stage);
2351                 tape->merge_stage = NULL;
2352         }
2353         clear_bit(IDETAPE_FLAG_PIPELINE_ERR, &tape->flags);
2354         tape->chrdev_dir = IDETAPE_DIR_NONE;
2355
2356         /*
2357          * On the next backup, perform the feedback loop again. (I don't want to
2358          * keep sense information between backups, as some systems are
2359          * constantly on, and the system load can be totally different on the
2360          * next backup).
2361          */
2362         tape->max_stages = tape->min_pipeline;
2363         if (tape->first_stage != NULL ||
2364             tape->next_stage != NULL ||
2365             tape->last_stage != NULL ||
2366             tape->nr_stages != 0) {
2367                 printk(KERN_ERR "ide-tape: ide-tape pipeline bug, "
2368                         "first_stage %p, next_stage %p, "
2369                         "last_stage %p, nr_stages %d\n",
2370                         tape->first_stage, tape->next_stage,
2371                         tape->last_stage, tape->nr_stages);
2372         }
2373 }
2374
2375 static void idetape_restart_speed_control(ide_drive_t *drive)
2376 {
2377         idetape_tape_t *tape = drive->driver_data;
2378
2379         tape->restart_speed_control_req = 0;
2380         tape->pipeline_head = 0;
2381         tape->controlled_last_pipeline_head = 0;
2382         tape->controlled_previous_pipeline_head = 0;
2383         tape->uncontrolled_previous_pipeline_head = 0;
2384         tape->controlled_pipeline_head_speed = 5000;
2385         tape->pipeline_head_speed = 5000;
2386         tape->uncontrolled_pipeline_head_speed = 0;
2387         tape->controlled_pipeline_head_time =
2388                 tape->uncontrolled_pipeline_head_time = jiffies;
2389         tape->controlled_previous_head_time =
2390                 tape->uncontrolled_previous_head_time = jiffies;
2391 }
2392
2393 static int idetape_init_read(ide_drive_t *drive, int max_stages)
2394 {
2395         idetape_tape_t *tape = drive->driver_data;
2396         idetape_stage_t *new_stage;
2397         struct request rq;
2398         int bytes_read;
2399         u16 blocks = *(u16 *)&tape->caps[12];
2400
2401         /* Initialize read operation */
2402         if (tape->chrdev_dir != IDETAPE_DIR_READ) {
2403                 if (tape->chrdev_dir == IDETAPE_DIR_WRITE) {
2404                         idetape_empty_write_pipeline(drive);
2405                         idetape_flush_tape_buffers(drive);
2406                 }
2407                 if (tape->merge_stage || tape->merge_stage_size) {
2408                         printk(KERN_ERR "ide-tape: merge_stage_size should be"
2409                                          " 0 now\n");
2410                         tape->merge_stage_size = 0;
2411                 }
2412                 tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0);
2413                 if (!tape->merge_stage)
2414                         return -ENOMEM;
2415                 tape->chrdev_dir = IDETAPE_DIR_READ;
2416
2417                 /*
2418                  * Issue a read 0 command to ensure that DSC handshake is
2419                  * switched from completion mode to buffer available mode.
2420                  * No point in issuing this if DSC overlap isn't supported, some
2421                  * drives (Seagate STT3401A) will return an error.
2422                  */
2423                 if (drive->dsc_overlap) {
2424                         bytes_read = idetape_queue_rw_tail(drive,
2425                                                         REQ_IDETAPE_READ, 0,
2426                                                         tape->merge_stage->bh);
2427                         if (bytes_read < 0) {
2428                                 __idetape_kfree_stage(tape->merge_stage);
2429                                 tape->merge_stage = NULL;
2430                                 tape->chrdev_dir = IDETAPE_DIR_NONE;
2431                                 return bytes_read;
2432                         }
2433                 }
2434         }
2435         if (tape->restart_speed_control_req)
2436                 idetape_restart_speed_control(drive);
2437         idetape_init_rq(&rq, REQ_IDETAPE_READ);
2438         rq.sector = tape->first_frame;
2439         rq.nr_sectors = blocks;
2440         rq.current_nr_sectors = blocks;
2441         if (!test_bit(IDETAPE_FLAG_PIPELINE_ERR, &tape->flags) &&
2442             tape->nr_stages < max_stages) {
2443                 new_stage = idetape_kmalloc_stage(tape);
2444                 while (new_stage != NULL) {
2445                         new_stage->rq = rq;
2446                         idetape_add_stage_tail(drive, new_stage);
2447                         if (tape->nr_stages >= max_stages)
2448                                 break;
2449                         new_stage = idetape_kmalloc_stage(tape);
2450                 }
2451         }
2452         if (!test_bit(IDETAPE_FLAG_PIPELINE_ACTIVE, &tape->flags)) {
2453                 if (tape->nr_pending_stages >= 3 * max_stages / 4) {
2454                         tape->measure_insert_time = 1;
2455                         tape->insert_time = jiffies;
2456                         tape->insert_size = 0;
2457                         tape->insert_speed = 0;
2458                         idetape_plug_pipeline(drive);
2459                 }
2460         }
2461         return 0;
2462 }
2463
2464 /*
2465  * Called from idetape_chrdev_read() to service a character device read request
2466  * and add read-ahead requests to our pipeline.
2467  */
2468 static int idetape_add_chrdev_read_request(ide_drive_t *drive, int blocks)
2469 {
2470         idetape_tape_t *tape = drive->driver_data;
2471         unsigned long flags;
2472         struct request *rq_ptr;
2473         int bytes_read;
2474
2475         debug_log(DBG_PROCS, "Enter %s, %d blocks\n", __func__, blocks);
2476
2477         /* If we are at a filemark, return a read length of 0 */
2478         if (test_bit(IDETAPE_FLAG_FILEMARK, &tape->flags))
2479                 return 0;
2480
2481         /* Wait for the next block to reach the head of the pipeline. */
2482         idetape_init_read(drive, tape->max_stages);
2483         if (tape->first_stage == NULL) {
2484                 if (test_bit(IDETAPE_FLAG_PIPELINE_ERR, &tape->flags))
2485                         return 0;
2486                 return idetape_queue_rw_tail(drive, REQ_IDETAPE_READ, blocks,
2487                                         tape->merge_stage->bh);
2488         }
2489         idetape_wait_first_stage(drive);
2490         rq_ptr = &tape->first_stage->rq;
2491         bytes_read = tape->blk_size * (rq_ptr->nr_sectors -
2492                                         rq_ptr->current_nr_sectors);
2493         rq_ptr->nr_sectors = 0;
2494         rq_ptr->current_nr_sectors = 0;
2495
2496         if (rq_ptr->errors == IDETAPE_ERROR_EOD)
2497                 return 0;
2498         else {
2499                 idetape_switch_buffers(tape, tape->first_stage);
2500                 if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK)
2501                         set_bit(IDETAPE_FLAG_FILEMARK, &tape->flags);
2502                 spin_lock_irqsave(&tape->lock, flags);
2503                 idetape_remove_stage_head(drive);
2504                 spin_unlock_irqrestore(&tape->lock, flags);
2505                 tape->pipeline_head++;
2506                 idetape_calculate_speeds(drive);
2507         }
2508         if (bytes_read > blocks * tape->blk_size) {
2509                 printk(KERN_ERR "ide-tape: bug: trying to return more bytes"
2510                                 " than requested\n");
2511                 bytes_read = blocks * tape->blk_size;
2512         }
2513         return (bytes_read);
2514 }
2515
2516 static void idetape_pad_zeros(ide_drive_t *drive, int bcount)
2517 {
2518         idetape_tape_t *tape = drive->driver_data;
2519         struct idetape_bh *bh;
2520         int blocks;
2521
2522         while (bcount) {
2523                 unsigned int count;
2524
2525                 bh = tape->merge_stage->bh;
2526                 count = min(tape->stage_size, bcount);
2527                 bcount -= count;
2528                 blocks = count / tape->blk_size;
2529                 while (count) {
2530                         atomic_set(&bh->b_count,
2531                                    min(count, (unsigned int)bh->b_size));
2532                         memset(bh->b_data, 0, atomic_read(&bh->b_count));
2533                         count -= atomic_read(&bh->b_count);
2534                         bh = bh->b_reqnext;
2535                 }
2536                 idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, blocks,
2537                                       tape->merge_stage->bh);
2538         }
2539 }
2540
2541 static int idetape_pipeline_size(ide_drive_t *drive)
2542 {
2543         idetape_tape_t *tape = drive->driver_data;
2544         idetape_stage_t *stage;
2545         struct request *rq;
2546         int size = 0;
2547
2548         idetape_wait_for_pipeline(drive);
2549         stage = tape->first_stage;
2550         while (stage != NULL) {
2551                 rq = &stage->rq;
2552                 size += tape->blk_size * (rq->nr_sectors -
2553                                 rq->current_nr_sectors);
2554                 if (rq->errors == IDETAPE_ERROR_FILEMARK)
2555                         size += tape->blk_size;
2556                 stage = stage->next;
2557         }
2558         size += tape->merge_stage_size;
2559         return size;
2560 }
2561
2562 /*
2563  * Rewinds the tape to the Beginning Of the current Partition (BOP). We
2564  * currently support only one partition.
2565  */
2566 static int idetape_rewind_tape(ide_drive_t *drive)
2567 {
2568         int retval;
2569         struct ide_atapi_pc pc;
2570         idetape_tape_t *tape;
2571         tape = drive->driver_data;
2572
2573         debug_log(DBG_SENSE, "Enter %s\n", __func__);
2574
2575         idetape_create_rewind_cmd(drive, &pc);
2576         retval = idetape_queue_pc_tail(drive, &pc);
2577         if (retval)
2578                 return retval;
2579
2580         idetape_create_read_position_cmd(&pc);
2581         retval = idetape_queue_pc_tail(drive, &pc);
2582         if (retval)
2583                 return retval;
2584         return 0;
2585 }
2586
2587 /* mtio.h compatible commands should be issued to the chrdev interface. */
2588 static int idetape_blkdev_ioctl(ide_drive_t *drive, unsigned int cmd,
2589                                 unsigned long arg)
2590 {
2591         idetape_tape_t *tape = drive->driver_data;
2592         void __user *argp = (void __user *)arg;
2593
2594         struct idetape_config {
2595                 int dsc_rw_frequency;
2596                 int dsc_media_access_frequency;
2597                 int nr_stages;
2598         } config;
2599
2600         debug_log(DBG_PROCS, "Enter %s\n", __func__);
2601
2602         switch (cmd) {
2603         case 0x0340:
2604                 if (copy_from_user(&config, argp, sizeof(config)))
2605                         return -EFAULT;
2606                 tape->best_dsc_rw_freq = config.dsc_rw_frequency;
2607                 tape->max_stages = config.nr_stages;
2608                 break;
2609         case 0x0350:
2610                 config.dsc_rw_frequency = (int) tape->best_dsc_rw_freq;
2611                 config.nr_stages = tape->max_stages;
2612                 if (copy_to_user(argp, &config, sizeof(config)))
2613                         return -EFAULT;
2614                 break;
2615         default:
2616                 return -EIO;
2617         }
2618         return 0;
2619 }
2620
2621 /*
2622  * The function below is now a bit more complicated than just passing the
2623  * command to the tape since we may have crossed some filemarks during our
2624  * pipelined read-ahead mode. As a minor side effect, the pipeline enables us to
2625  * support MTFSFM when the filemark is in our internal pipeline even if the tape
2626  * doesn't support spacing over filemarks in the reverse direction.
2627  */
2628 static int idetape_space_over_filemarks(ide_drive_t *drive, short mt_op,
2629                                         int mt_count)
2630 {
2631         idetape_tape_t *tape = drive->driver_data;
2632         struct ide_atapi_pc pc;
2633         unsigned long flags;
2634         int retval, count = 0;
2635         int sprev = !!(tape->caps[4] & 0x20);
2636
2637         if (mt_count == 0)
2638                 return 0;
2639         if (MTBSF == mt_op || MTBSFM == mt_op) {
2640                 if (!sprev)
2641                         return -EIO;
2642                 mt_count = -mt_count;
2643         }
2644
2645         if (tape->chrdev_dir == IDETAPE_DIR_READ) {
2646                 /* its a read-ahead buffer, scan it for crossed filemarks. */
2647                 tape->merge_stage_size = 0;
2648                 if (test_and_clear_bit(IDETAPE_FLAG_FILEMARK, &tape->flags))
2649                         ++count;
2650                 while (tape->first_stage != NULL) {
2651                         if (count == mt_count) {
2652                                 if (mt_op == MTFSFM)
2653                                         set_bit(IDETAPE_FLAG_FILEMARK,
2654                                                 &tape->flags);
2655                                 return 0;
2656                         }
2657                         spin_lock_irqsave(&tape->lock, flags);
2658                         if (tape->first_stage == tape->active_stage) {
2659                                 /*
2660                                  * We have reached the active stage in the read
2661                                  * pipeline. There is no point in allowing the
2662                                  * drive to continue reading any farther, so we
2663                                  * stop the pipeline.
2664                                  *
2665                                  * This section should be moved to a separate
2666                                  * subroutine because similar operations are
2667                                  * done in __idetape_discard_read_pipeline(),
2668                                  * for example.
2669                                  */
2670                                 tape->next_stage = NULL;
2671                                 spin_unlock_irqrestore(&tape->lock, flags);
2672                                 idetape_wait_first_stage(drive);
2673                                 tape->next_stage = tape->first_stage->next;
2674                         } else
2675                                 spin_unlock_irqrestore(&tape->lock, flags);
2676                         if (tape->first_stage->rq.errors ==
2677                                         IDETAPE_ERROR_FILEMARK)
2678                                 ++count;
2679                         idetape_remove_stage_head(drive);
2680                 }
2681                 idetape_discard_read_pipeline(drive, 0);
2682         }
2683
2684         /*
2685          * The filemark was not found in our internal pipeline; now we can issue
2686          * the space command.
2687          */
2688         switch (mt_op) {
2689         case MTFSF:
2690         case MTBSF:
2691                 idetape_create_space_cmd(&pc, mt_count - count,
2692                                          IDETAPE_SPACE_OVER_FILEMARK);
2693                 return idetape_queue_pc_tail(drive, &pc);
2694         case MTFSFM:
2695         case MTBSFM:
2696                 if (!sprev)
2697                         return -EIO;
2698                 retval = idetape_space_over_filemarks(drive, MTFSF,
2699                                                       mt_count - count);
2700                 if (retval)
2701                         return retval;
2702                 count = (MTBSFM == mt_op ? 1 : -1);
2703                 return idetape_space_over_filemarks(drive, MTFSF, count);
2704         default:
2705                 printk(KERN_ERR "ide-tape: MTIO operation %d not supported\n",
2706                                 mt_op);
2707                 return -EIO;
2708         }
2709 }
2710
2711 /*
2712  * Our character device read / write functions.
2713  *
2714  * The tape is optimized to maximize throughput when it is transferring an
2715  * integral number of the "continuous transfer limit", which is a parameter of
2716  * the specific tape (26kB on my particular tape, 32kB for Onstream).
2717  *
2718  * As of version 1.3 of the driver, the character device provides an abstract
2719  * continuous view of the media - any mix of block sizes (even 1 byte) on the
2720  * same backup/restore procedure is supported. The driver will internally
2721  * convert the requests to the recommended transfer unit, so that an unmatch
2722  * between the user's block size to the recommended size will only result in a
2723  * (slightly) increased driver overhead, but will no longer hit performance.
2724  * This is not applicable to Onstream.
2725  */
2726 static ssize_t idetape_chrdev_read(struct file *file, char __user *buf,
2727                                    size_t count, loff_t *ppos)
2728 {
2729         struct ide_tape_obj *tape = ide_tape_f(file);
2730         ide_drive_t *drive = tape->drive;
2731         ssize_t bytes_read, temp, actually_read = 0, rc;
2732         ssize_t ret = 0;
2733         u16 ctl = *(u16 *)&tape->caps[12];
2734
2735         debug_log(DBG_CHRDEV, "Enter %s, count %Zd\n", __func__, count);
2736
2737         if (tape->chrdev_dir != IDETAPE_DIR_READ) {
2738                 if (test_bit(IDETAPE_FLAG_DETECT_BS, &tape->flags))
2739                         if (count > tape->blk_size &&
2740                             (count % tape->blk_size) == 0)
2741                                 tape->user_bs_factor = count / tape->blk_size;
2742         }
2743         rc = idetape_init_read(drive, tape->max_stages);
2744         if (rc < 0)
2745                 return rc;
2746         if (count == 0)
2747                 return (0);
2748         if (tape->merge_stage_size) {
2749                 actually_read = min((unsigned int)(tape->merge_stage_size),
2750                                     (unsigned int)count);
2751                 if (idetape_copy_stage_to_user(tape, buf, tape->merge_stage,
2752                                                actually_read))
2753                         ret = -EFAULT;
2754                 buf += actually_read;
2755                 tape->merge_stage_size -= actually_read;
2756                 count -= actually_read;
2757         }
2758         while (count >= tape->stage_size) {
2759                 bytes_read = idetape_add_chrdev_read_request(drive, ctl);
2760                 if (bytes_read <= 0)
2761                         goto finish;
2762                 if (idetape_copy_stage_to_user(tape, buf, tape->merge_stage,
2763                                                bytes_read))
2764                         ret = -EFAULT;
2765                 buf += bytes_read;
2766                 count -= bytes_read;
2767                 actually_read += bytes_read;
2768         }
2769         if (count) {
2770                 bytes_read = idetape_add_chrdev_read_request(drive, ctl);
2771                 if (bytes_read <= 0)
2772                         goto finish;
2773                 temp = min((unsigned long)count, (unsigned long)bytes_read);
2774                 if (idetape_copy_stage_to_user(tape, buf, tape->merge_stage,
2775                                                temp))
2776                         ret = -EFAULT;
2777                 actually_read += temp;
2778                 tape->merge_stage_size = bytes_read-temp;
2779         }
2780 finish:
2781         if (!actually_read && test_bit(IDETAPE_FLAG_FILEMARK, &tape->flags)) {
2782                 debug_log(DBG_SENSE, "%s: spacing over filemark\n", tape->name);
2783
2784                 idetape_space_over_filemarks(drive, MTFSF, 1);
2785                 return 0;
2786         }
2787
2788         return ret ? ret : actually_read;
2789 }
2790
2791 static ssize_t idetape_chrdev_write(struct file *file, const char __user *buf,
2792                                      size_t count, loff_t *ppos)
2793 {
2794         struct ide_tape_obj *tape = ide_tape_f(file);
2795         ide_drive_t *drive = tape->drive;
2796         ssize_t actually_written = 0;
2797         ssize_t ret = 0;
2798         u16 ctl = *(u16 *)&tape->caps[12];
2799
2800         /* The drive is write protected. */
2801         if (tape->write_prot)
2802                 return -EACCES;
2803
2804         debug_log(DBG_CHRDEV, "Enter %s, count %Zd\n", __func__, count);
2805
2806         /* Initialize write operation */
2807         if (tape->chrdev_dir != IDETAPE_DIR_WRITE) {
2808                 if (tape->chrdev_dir == IDETAPE_DIR_READ)
2809                         idetape_discard_read_pipeline(drive, 1);
2810                 if (tape->merge_stage || tape->merge_stage_size) {
2811                         printk(KERN_ERR "ide-tape: merge_stage_size "
2812                                 "should be 0 now\n");
2813                         tape->merge_stage_size = 0;
2814                 }
2815                 tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0);
2816                 if (!tape->merge_stage)
2817                         return -ENOMEM;
2818                 tape->chrdev_dir = IDETAPE_DIR_WRITE;
2819                 idetape_init_merge_stage(tape);
2820
2821                 /*
2822                  * Issue a write 0 command to ensure that DSC handshake is
2823                  * switched from completion mode to buffer available mode. No
2824                  * point in issuing this if DSC overlap isn't supported, some
2825                  * drives (Seagate STT3401A) will return an error.
2826                  */
2827                 if (drive->dsc_overlap) {
2828                         ssize_t retval = idetape_queue_rw_tail(drive,
2829                                                         REQ_IDETAPE_WRITE, 0,
2830                                                         tape->merge_stage->bh);
2831                         if (retval < 0) {
2832                                 __idetape_kfree_stage(tape->merge_stage);
2833                                 tape->merge_stage = NULL;
2834                                 tape->chrdev_dir = IDETAPE_DIR_NONE;
2835                                 return retval;
2836                         }
2837                 }
2838         }
2839         if (count == 0)
2840                 return (0);
2841         if (tape->restart_speed_control_req)
2842                 idetape_restart_speed_control(drive);
2843         if (tape->merge_stage_size) {
2844                 if (tape->merge_stage_size >= tape->stage_size) {
2845                         printk(KERN_ERR "ide-tape: bug: merge buf too big\n");
2846                         tape->merge_stage_size = 0;
2847                 }
2848                 actually_written = min((unsigned int)
2849                                 (tape->stage_size - tape->merge_stage_size),
2850                                 (unsigned int)count);
2851                 if (idetape_copy_stage_from_user(tape, tape->merge_stage, buf,
2852                                                  actually_written))
2853                                 ret = -EFAULT;
2854                 buf += actually_written;
2855                 tape->merge_stage_size += actually_written;
2856                 count -= actually_written;
2857
2858                 if (tape->merge_stage_size == tape->stage_size) {
2859                         ssize_t retval;
2860                         tape->merge_stage_size = 0;
2861                         retval = idetape_add_chrdev_write_request(drive, ctl);
2862                         if (retval <= 0)
2863                                 return (retval);
2864                 }
2865         }
2866         while (count >= tape->stage_size) {
2867                 ssize_t retval;
2868                 if (idetape_copy_stage_from_user(tape, tape->merge_stage, buf,
2869                                                  tape->stage_size))
2870                         ret = -EFAULT;
2871                 buf += tape->stage_size;
2872                 count -= tape->stage_size;
2873                 retval = idetape_add_chrdev_write_request(drive, ctl);
2874                 actually_written += tape->stage_size;
2875                 if (retval <= 0)
2876                         return (retval);
2877         }
2878         if (count) {
2879                 actually_written += count;
2880                 if (idetape_copy_stage_from_user(tape, tape->merge_stage, buf,
2881                                                  count))
2882                         ret = -EFAULT;
2883                 tape->merge_stage_size += count;
2884         }
2885         return ret ? ret : actually_written;
2886 }
2887
2888 static int idetape_write_filemark(ide_drive_t *drive)
2889 {
2890         struct ide_atapi_pc pc;
2891
2892         /* Write a filemark */
2893         idetape_create_write_filemark_cmd(drive, &pc, 1);
2894         if (idetape_queue_pc_tail(drive, &pc)) {
2895                 printk(KERN_ERR "ide-tape: Couldn't write a filemark\n");
2896                 return -EIO;
2897         }
2898         return 0;
2899 }
2900
2901 /*
2902  * Called from idetape_chrdev_ioctl when the general mtio MTIOCTOP ioctl is
2903  * requested.
2904  *
2905  * Note: MTBSF and MTBSFM are not supported when the tape doesn't support
2906  * spacing over filemarks in the reverse direction. In this case, MTFSFM is also
2907  * usually not supported (it is supported in the rare case in which we crossed
2908  * the filemark during our read-ahead pipelined operation mode).
2909  *
2910  * The following commands are currently not supported:
2911  *
2912  * MTFSS, MTBSS, MTWSM, MTSETDENSITY, MTSETDRVBUFFER, MT_ST_BOOLEANS,
2913  * MT_ST_WRITE_THRESHOLD.
2914  */
2915 static int idetape_mtioctop(ide_drive_t *drive, short mt_op, int mt_count)
2916 {
2917         idetape_tape_t *tape = drive->driver_data;
2918         struct ide_atapi_pc pc;
2919         int i, retval;
2920
2921         debug_log(DBG_ERR, "Handling MTIOCTOP ioctl: mt_op=%d, mt_count=%d\n",
2922                         mt_op, mt_count);
2923
2924         /* Commands which need our pipelined read-ahead stages. */
2925         switch (mt_op) {
2926         case MTFSF:
2927         case MTFSFM:
2928         case MTBSF:
2929         case MTBSFM:
2930                 if (!mt_count)
2931                         return 0;
2932                 return idetape_space_over_filemarks(drive, mt_op, mt_count);
2933         default:
2934                 break;
2935         }
2936
2937         switch (mt_op) {
2938         case MTWEOF:
2939                 if (tape->write_prot)
2940                         return -EACCES;
2941                 idetape_discard_read_pipeline(drive, 1);
2942                 for (i = 0; i < mt_count; i++) {
2943                         retval = idetape_write_filemark(drive);
2944                         if (retval)
2945                                 return retval;
2946                 }
2947                 return 0;
2948         case MTREW:
2949                 idetape_discard_read_pipeline(drive, 0);
2950                 if (idetape_rewind_tape(drive))
2951                         return -EIO;
2952                 return 0;
2953         case MTLOAD:
2954                 idetape_discard_read_pipeline(drive, 0);
2955                 idetape_create_load_unload_cmd(drive, &pc,
2956                                                IDETAPE_LU_LOAD_MASK);
2957                 return idetape_queue_pc_tail(drive, &pc);
2958         case MTUNLOAD:
2959         case MTOFFL:
2960                 /*
2961                  * If door is locked, attempt to unlock before
2962                  * attempting to eject.
2963                  */
2964                 if (tape->door_locked) {
2965                         if (idetape_create_prevent_cmd(drive, &pc, 0))
2966                                 if (!idetape_queue_pc_tail(drive, &pc))
2967                                         tape->door_locked = DOOR_UNLOCKED;
2968                 }
2969                 idetape_discard_read_pipeline(drive, 0);
2970                 idetape_create_load_unload_cmd(drive, &pc,
2971                                               !IDETAPE_LU_LOAD_MASK);
2972                 retval = idetape_queue_pc_tail(drive, &pc);
2973                 if (!retval)
2974                         clear_bit(IDETAPE_FLAG_MEDIUM_PRESENT, &tape->flags);
2975                 return retval;
2976         case MTNOP:
2977                 idetape_discard_read_pipeline(drive, 0);
2978                 return idetape_flush_tape_buffers(drive);
2979         case MTRETEN:
2980                 idetape_discard_read_pipeline(drive, 0);
2981                 idetape_create_load_unload_cmd(drive, &pc,
2982                         IDETAPE_LU_RETENSION_MASK | IDETAPE_LU_LOAD_MASK);
2983                 return idetape_queue_pc_tail(drive, &pc);
2984         case MTEOM:
2985                 idetape_create_space_cmd(&pc, 0, IDETAPE_SPACE_TO_EOD);
2986                 return idetape_queue_pc_tail(drive, &pc);
2987         case MTERASE:
2988                 (void)idetape_rewind_tape(drive);
2989                 idetape_create_erase_cmd(&pc);
2990                 return idetape_queue_pc_tail(drive, &pc);
2991         case MTSETBLK:
2992                 if (mt_count) {
2993                         if (mt_count < tape->blk_size ||
2994                             mt_count % tape->blk_size)
2995                                 return -EIO;
2996                         tape->user_bs_factor = mt_count / tape->blk_size;
2997                         clear_bit(IDETAPE_FLAG_DETECT_BS, &tape->flags);
2998                 } else
2999                         set_bit(IDETAPE_FLAG_DETECT_BS, &tape->flags);
3000                 return 0;
3001         case MTSEEK:
3002                 idetape_discard_read_pipeline(drive, 0);
3003                 return idetape_position_tape(drive,
3004                         mt_count * tape->user_bs_factor, tape->partition, 0);
3005         case MTSETPART:
3006                 idetape_discard_read_pipeline(drive, 0);
3007                 return idetape_position_tape(drive, 0, mt_count, 0);
3008         case MTFSR:
3009         case MTBSR:
3010         case MTLOCK:
3011                 if (!idetape_create_prevent_cmd(drive, &pc, 1))
3012                         return 0;
3013                 retval = idetape_queue_pc_tail(drive, &pc);
3014                 if (retval)
3015                         return retval;
3016                 tape->door_locked = DOOR_EXPLICITLY_LOCKED;
3017                 return 0;
3018         case MTUNLOCK:
3019                 if (!idetape_create_prevent_cmd(drive, &pc, 0))
3020                         return 0;
3021                 retval = idetape_queue_pc_tail(drive, &pc);
3022                 if (retval)
3023                         return retval;
3024                 tape->door_locked = DOOR_UNLOCKED;
3025                 return 0;
3026         default:
3027                 printk(KERN_ERR "ide-tape: MTIO operation %d not supported\n",
3028                                 mt_op);
3029                 return -EIO;
3030         }
3031 }
3032
3033 /*
3034  * Our character device ioctls. General mtio.h magnetic io commands are
3035  * supported here, and not in the corresponding block interface. Our own
3036  * ide-tape ioctls are supported on both interfaces.
3037  */
3038 static int idetape_chrdev_ioctl(struct inode *inode, struct file *file,
3039                                 unsigned int cmd, unsigned long arg)
3040 {
3041         struct ide_tape_obj *tape = ide_tape_f(file);
3042         ide_drive_t *drive = tape->drive;
3043         struct mtop mtop;
3044         struct mtget mtget;
3045         struct mtpos mtpos;
3046         int block_offset = 0, position = tape->first_frame;
3047         void __user *argp = (void __user *)arg;
3048
3049         debug_log(DBG_CHRDEV, "Enter %s, cmd=%u\n", __func__, cmd);
3050
3051         tape->restart_speed_control_req = 1;
3052         if (tape->chrdev_dir == IDETAPE_DIR_WRITE) {
3053                 idetape_empty_write_pipeline(drive);
3054                 idetape_flush_tape_buffers(drive);
3055         }
3056         if (cmd == MTIOCGET || cmd == MTIOCPOS) {
3057                 block_offset = idetape_pipeline_size(drive) /
3058                         (tape->blk_size * tape->user_bs_factor);
3059                 position = idetape_read_position(drive);
3060                 if (position < 0)
3061                         return -EIO;
3062         }
3063         switch (cmd) {
3064         case MTIOCTOP:
3065                 if (copy_from_user(&mtop, argp, sizeof(struct mtop)))
3066                         return -EFAULT;
3067                 return idetape_mtioctop(drive, mtop.mt_op, mtop.mt_count);
3068         case MTIOCGET:
3069                 memset(&mtget, 0, sizeof(struct mtget));
3070                 mtget.mt_type = MT_ISSCSI2;
3071                 mtget.mt_blkno = position / tape->user_bs_factor - block_offset;
3072                 mtget.mt_dsreg =
3073                         ((tape->blk_size * tape->user_bs_factor)
3074                          << MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK;
3075
3076                 if (tape->drv_write_prot)
3077                         mtget.mt_gstat |= GMT_WR_PROT(0xffffffff);
3078
3079                 if (copy_to_user(argp, &mtget, sizeof(struct mtget)))
3080                         return -EFAULT;
3081                 return 0;
3082         case MTIOCPOS:
3083                 mtpos.mt_blkno = position / tape->user_bs_factor - block_offset;
3084                 if (copy_to_user(argp, &mtpos, sizeof(struct mtpos)))
3085                         return -EFAULT;
3086                 return 0;
3087         default:
3088                 if (tape->chrdev_dir == IDETAPE_DIR_READ)
3089                         idetape_discard_read_pipeline(drive, 1);
3090                 return idetape_blkdev_ioctl(drive, cmd, arg);
3091         }
3092 }
3093
3094 /*
3095  * Do a mode sense page 0 with block descriptor and if it succeeds set the tape
3096  * block size with the reported value.
3097  */
3098 static void ide_tape_get_bsize_from_bdesc(ide_drive_t *drive)
3099 {
3100         idetape_tape_t *tape = drive->driver_data;
3101         struct ide_atapi_pc pc;
3102
3103         idetape_create_mode_sense_cmd(&pc, IDETAPE_BLOCK_DESCRIPTOR);
3104         if (idetape_queue_pc_tail(drive, &pc)) {
3105                 printk(KERN_ERR "ide-tape: Can't get block descriptor\n");
3106                 if (tape->blk_size == 0) {
3107                         printk(KERN_WARNING "ide-tape: Cannot deal with zero "
3108                                             "block size, assuming 32k\n");
3109                         tape->blk_size = 32768;
3110                 }
3111                 return;
3112         }
3113         tape->blk_size = (pc.buf[4 + 5] << 16) +
3114                                 (pc.buf[4 + 6] << 8)  +
3115                                  pc.buf[4 + 7];
3116         tape->drv_write_prot = (pc.buf[2] & 0x80) >> 7;
3117 }
3118
3119 static int idetape_chrdev_open(struct inode *inode, struct file *filp)
3120 {
3121         unsigned int minor = iminor(inode), i = minor & ~0xc0;
3122         ide_drive_t *drive;
3123         idetape_tape_t *tape;
3124         struct ide_atapi_pc pc;
3125         int retval;
3126
3127         if (i >= MAX_HWIFS * MAX_DRIVES)
3128                 return -ENXIO;
3129
3130         tape = ide_tape_chrdev_get(i);
3131         if (!tape)
3132                 return -ENXIO;
3133
3134         debug_log(DBG_CHRDEV, "Enter %s\n", __func__);
3135
3136         /*
3137          * We really want to do nonseekable_open(inode, filp); here, but some
3138          * versions of tar incorrectly call lseek on tapes and bail out if that
3139          * fails.  So we disallow pread() and pwrite(), but permit lseeks.
3140          */
3141         filp->f_mode &= ~(FMODE_PREAD | FMODE_PWRITE);
3142
3143         drive = tape->drive;
3144
3145         filp->private_data = tape;
3146
3147         if (test_and_set_bit(IDETAPE_FLAG_BUSY, &tape->flags)) {
3148                 retval = -EBUSY;
3149                 goto out_put_tape;
3150         }
3151
3152         retval = idetape_wait_ready(drive, 60 * HZ);
3153         if (retval) {
3154                 clear_bit(IDETAPE_FLAG_BUSY, &tape->flags);
3155                 printk(KERN_ERR "ide-tape: %s: drive not ready\n", tape->name);
3156                 goto out_put_tape;
3157         }
3158
3159         idetape_read_position(drive);
3160         if (!test_bit(IDETAPE_FLAG_ADDRESS_VALID, &tape->flags))
3161                 (void)idetape_rewind_tape(drive);
3162
3163         if (tape->chrdev_dir != IDETAPE_DIR_READ)
3164                 clear_bit(IDETAPE_FLAG_PIPELINE_ERR, &tape->flags);
3165
3166         /* Read block size and write protect status from drive. */
3167         ide_tape_get_bsize_from_bdesc(drive);
3168
3169         /* Set write protect flag if device is opened as read-only. */
3170         if ((filp->f_flags & O_ACCMODE) == O_RDONLY)
3171                 tape->write_prot = 1;
3172         else
3173                 tape->write_prot = tape->drv_write_prot;
3174
3175         /* Make sure drive isn't write protected if user wants to write. */
3176         if (tape->write_prot) {
3177                 if ((filp->f_flags & O_ACCMODE) == O_WRONLY ||
3178                     (filp->f_flags & O_ACCMODE) == O_RDWR) {
3179                         clear_bit(IDETAPE_FLAG_BUSY, &tape->flags);
3180                         retval = -EROFS;
3181                         goto out_put_tape;
3182                 }
3183         }
3184
3185         /* Lock the tape drive door so user can't eject. */
3186         if (tape->chrdev_dir == IDETAPE_DIR_NONE) {
3187                 if (idetape_create_prevent_cmd(drive, &pc, 1)) {
3188                         if (!idetape_queue_pc_tail(drive, &pc)) {
3189                                 if (tape->door_locked != DOOR_EXPLICITLY_LOCKED)
3190                                         tape->door_locked = DOOR_LOCKED;
3191                         }
3192                 }
3193         }
3194         idetape_restart_speed_control(drive);
3195         tape->restart_speed_control_req = 0;
3196         return 0;
3197
3198 out_put_tape:
3199         ide_tape_put(tape);
3200         return retval;
3201 }
3202
3203 static void idetape_write_release(ide_drive_t *drive, unsigned int minor)
3204 {
3205         idetape_tape_t *tape = drive->driver_data;
3206
3207         idetape_empty_write_pipeline(drive);
3208         tape->merge_stage = __idetape_kmalloc_stage(tape, 1, 0);
3209         if (tape->merge_stage != NULL) {
3210                 idetape_pad_zeros(drive, tape->blk_size *
3211                                 (tape->user_bs_factor - 1));
3212                 __idetape_kfree_stage(tape->merge_stage);
3213                 tape->merge_stage = NULL;
3214         }
3215         idetape_write_filemark(drive);
3216         idetape_flush_tape_buffers(drive);
3217         idetape_flush_tape_buffers(drive);
3218 }
3219
3220 static int idetape_chrdev_release(struct inode *inode, struct file *filp)
3221 {
3222         struct ide_tape_obj *tape = ide_tape_f(filp);
3223         ide_drive_t *drive = tape->drive;
3224         struct ide_atapi_pc pc;
3225         unsigned int minor = iminor(inode);
3226
3227         lock_kernel();
3228         tape = drive->driver_data;
3229
3230         debug_log(DBG_CHRDEV, "Enter %s\n", __func__);
3231
3232         if (tape->chrdev_dir == IDETAPE_DIR_WRITE)
3233                 idetape_write_release(drive, minor);
3234         if (tape->chrdev_dir == IDETAPE_DIR_READ) {
3235                 if (minor < 128)
3236                         idetape_discard_read_pipeline(drive, 1);
3237                 else
3238                         idetape_wait_for_pipeline(drive);
3239         }
3240
3241         if (minor < 128 && test_bit(IDETAPE_FLAG_MEDIUM_PRESENT, &tape->flags))
3242                 (void) idetape_rewind_tape(drive);
3243         if (tape->chrdev_dir == IDETAPE_DIR_NONE) {
3244                 if (tape->door_locked == DOOR_LOCKED) {
3245                         if (idetape_create_prevent_cmd(drive, &pc, 0)) {
3246                                 if (!idetape_queue_pc_tail(drive, &pc))
3247                                         tape->door_locked = DOOR_UNLOCKED;
3248                         }
3249                 }
3250         }
3251         clear_bit(IDETAPE_FLAG_BUSY, &tape->flags);
3252         ide_tape_put(tape);
3253         unlock_kernel();
3254         return 0;
3255 }
3256
3257 /*
3258  * check the contents of the ATAPI IDENTIFY command results. We return:
3259  *
3260  * 1 - If the tape can be supported by us, based on the information we have so
3261  * far.
3262  *
3263  * 0 - If this tape driver is not currently supported by us.
3264  */
3265 static int idetape_identify_device(ide_drive_t *drive)
3266 {
3267         u8 gcw[2], protocol, device_type, removable, packet_size;
3268
3269         if (drive->id_read == 0)
3270                 return 1;
3271
3272         *((unsigned short *) &gcw) = drive->id->config;
3273
3274         protocol        =   (gcw[1] & 0xC0) >> 6;
3275         device_type     =    gcw[1] & 0x1F;
3276         removable       = !!(gcw[0] & 0x80);
3277         packet_size     =    gcw[0] & 0x3;
3278
3279         /* Check that we can support this device */
3280         if (protocol != 2)
3281                 printk(KERN_ERR "ide-tape: Protocol (0x%02x) is not ATAPI\n",
3282                                 protocol);
3283         else if (device_type != 1)
3284                 printk(KERN_ERR "ide-tape: Device type (0x%02x) is not set "
3285                                 "to tape\n", device_type);
3286         else if (!removable)
3287                 printk(KERN_ERR "ide-tape: The removable flag is not set\n");
3288         else if (packet_size != 0) {
3289                 printk(KERN_ERR "ide-tape: Packet size (0x%02x) is not 12"
3290                                 " bytes\n", packet_size);
3291         } else
3292                 return 1;
3293         return 0;
3294 }
3295
3296 static void idetape_get_inquiry_results(ide_drive_t *drive)
3297 {
3298         idetape_tape_t *tape = drive->driver_data;
3299         struct ide_atapi_pc pc;
3300         char fw_rev[6], vendor_id[10], product_id[18];
3301
3302         idetape_create_inquiry_cmd(&pc);
3303         if (idetape_queue_pc_tail(drive, &pc)) {
3304                 printk(KERN_ERR "ide-tape: %s: can't get INQUIRY results\n",
3305                                 tape->name);
3306                 return;
3307         }
3308         memcpy(vendor_id, &pc.buf[8], 8);
3309         memcpy(product_id, &pc.buf[16], 16);
3310         memcpy(fw_rev, &pc.buf[32], 4);
3311
3312         ide_fixstring(vendor_id, 10, 0);
3313         ide_fixstring(product_id, 18, 0);
3314         ide_fixstring(fw_rev, 6, 0);
3315
3316         printk(KERN_INFO "ide-tape: %s <-> %s: %s %s rev %s\n",
3317                         drive->name, tape->name, vendor_id, product_id, fw_rev);
3318 }
3319
3320 /*
3321  * Ask the tape about its various parameters. In particular, we will adjust our
3322  * data transfer buffer size to the recommended value as returned by the tape.
3323  */
3324 static void idetape_get_mode_sense_results(ide_drive_t *drive)
3325 {
3326         idetape_tape_t *tape = drive->driver_data;
3327         struct ide_atapi_pc pc;
3328         u8 *caps;
3329         u8 speed, max_speed;
3330
3331         idetape_create_mode_sense_cmd(&pc, IDETAPE_CAPABILITIES_PAGE);
3332         if (idetape_queue_pc_tail(drive, &pc)) {
3333                 printk(KERN_ERR "ide-tape: Can't get tape parameters - assuming"
3334                                 " some default values\n");
3335                 tape->blk_size = 512;
3336                 put_unaligned(52,   (u16 *)&tape->caps[12]);
3337                 put_unaligned(540,  (u16 *)&tape->caps[14]);
3338                 put_unaligned(6*52, (u16 *)&tape->caps[16]);
3339                 return;
3340         }
3341         caps = pc.buf + 4 + pc.buf[3];
3342
3343         /* convert to host order and save for later use */
3344         speed = be16_to_cpu(*(u16 *)&caps[14]);
3345         max_speed = be16_to_cpu(*(u16 *)&caps[8]);
3346
3347         put_unaligned(max_speed, (u16 *)&caps[8]);
3348         put_unaligned(be16_to_cpu(*(u16 *)&caps[12]), (u16 *)&caps[12]);
3349         put_unaligned(speed, (u16 *)&caps[14]);
3350         put_unaligned(be16_to_cpu(*(u16 *)&caps[16]), (u16 *)&caps[16]);
3351
3352         if (!speed) {
3353                 printk(KERN_INFO "ide-tape: %s: invalid tape speed "
3354                                 "(assuming 650KB/sec)\n", drive->name);
3355                 put_unaligned(650, (u16 *)&caps[14]);
3356         }
3357         if (!max_speed) {
3358                 printk(KERN_INFO "ide-tape: %s: invalid max_speed "
3359                                 "(assuming 650KB/sec)\n", drive->name);
3360                 put_unaligned(650, (u16 *)&caps[8]);
3361         }
3362
3363         memcpy(&tape->caps, caps, 20);
3364         if (caps[7] & 0x02)
3365                 tape->blk_size = 512;
3366         else if (caps[7] & 0x04)
3367                 tape->blk_size = 1024;
3368 }
3369
3370 #ifdef CONFIG_IDE_PROC_FS
3371 static void idetape_add_settings(ide_drive_t *drive)
3372 {
3373         idetape_tape_t *tape = drive->driver_data;
3374
3375         ide_add_setting(drive, "buffer", SETTING_READ, TYPE_SHORT, 0, 0xffff,
3376                         1, 2, (u16 *)&tape->caps[16], NULL);
3377         ide_add_setting(drive, "pipeline_min", SETTING_RW, TYPE_INT, 1, 0xffff,
3378                         tape->stage_size / 1024, 1, &tape->min_pipeline, NULL);
3379         ide_add_setting(drive, "pipeline", SETTING_RW, TYPE_INT, 1, 0xffff,
3380                         tape->stage_size / 1024, 1, &tape->max_stages, NULL);
3381         ide_add_setting(drive, "pipeline_max", SETTING_RW, TYPE_INT, 1, 0xffff,
3382                         tape->stage_size / 1024, 1, &tape->max_pipeline, NULL);
3383         ide_add_setting(drive, "pipeline_used", SETTING_READ, TYPE_INT, 0,
3384                         0xffff, tape->stage_size / 1024, 1, &tape->nr_stages,
3385                         NULL);
3386         ide_add_setting(drive, "pipeline_pending", SETTING_READ, TYPE_INT, 0,
3387                         0xffff, tape->stage_size / 1024, 1,
3388                         &tape->nr_pending_stages, NULL);
3389         ide_add_setting(drive, "speed", SETTING_READ, TYPE_SHORT, 0, 0xffff,
3390                         1, 1, (u16 *)&tape->caps[14], NULL);
3391         ide_add_setting(drive, "stage", SETTING_READ, TYPE_INT, 0, 0xffff, 1,
3392                         1024, &tape->stage_size, NULL);
3393         ide_add_setting(drive, "tdsc", SETTING_RW, TYPE_INT, IDETAPE_DSC_RW_MIN,
3394                         IDETAPE_DSC_RW_MAX, 1000, HZ, &tape->best_dsc_rw_freq,
3395                         NULL);
3396         ide_add_setting(drive, "dsc_overlap", SETTING_RW, TYPE_BYTE, 0, 1, 1,
3397                         1, &drive->dsc_overlap, NULL);
3398         ide_add_setting(drive, "pipeline_head_speed_c", SETTING_READ, TYPE_INT,
3399                         0, 0xffff, 1, 1, &tape->controlled_pipeline_head_speed,
3400                         NULL);
3401         ide_add_setting(drive, "pipeline_head_speed_u", SETTING_READ, TYPE_INT,
3402                         0, 0xffff, 1, 1,
3403                         &tape->uncontrolled_pipeline_head_speed, NULL);
3404         ide_add_setting(drive, "avg_speed", SETTING_READ, TYPE_INT, 0, 0xffff,
3405                         1, 1, &tape->avg_speed, NULL);
3406         ide_add_setting(drive, "debug_mask", SETTING_RW, TYPE_INT, 0, 0xffff, 1,
3407                         1, &tape->debug_mask, NULL);
3408 }
3409 #else
3410 static inline void idetape_add_settings(ide_drive_t *drive) { ; }
3411 #endif
3412
3413 /*
3414  * The function below is called to:
3415  *
3416  * 1. Initialize our various state variables.
3417  * 2. Ask the tape for its capabilities.
3418  * 3. Allocate a buffer which will be used for data transfer. The buffer size
3419  * is chosen based on the recommendation which we received in step 2.
3420  *
3421  * Note that at this point ide.c already assigned us an irq, so that we can
3422  * queue requests here and wait for their completion.
3423  */
3424 static void idetape_setup(ide_drive_t *drive, idetape_tape_t *tape, int minor)
3425 {
3426         unsigned long t1, tmid, tn, t;
3427         int speed;
3428         int stage_size;
3429         u8 gcw[2];
3430         struct sysinfo si;
3431         u16 *ctl = (u16 *)&tape->caps[12];
3432
3433         spin_lock_init(&tape->lock);
3434         drive->dsc_overlap = 1;
3435         if (drive->hwif->host_flags & IDE_HFLAG_NO_DSC) {
3436                 printk(KERN_INFO "ide-tape: %s: disabling DSC overlap\n",
3437                                  tape->name);
3438                 drive->dsc_overlap = 0;
3439         }
3440         /* Seagate Travan drives do not support DSC overlap. */
3441         if (strstr(drive->id->model, "Seagate STT3401"))
3442                 drive->dsc_overlap = 0;
3443         tape->minor = minor;
3444         tape->name[0] = 'h';
3445         tape->name[1] = 't';
3446         tape->name[2] = '0' + minor;
3447         tape->chrdev_dir = IDETAPE_DIR_NONE;
3448         tape->pc = tape->pc_stack;
3449         tape->max_insert_speed = 10000;
3450         tape->speed_control = 1;
3451         *((unsigned short *) &gcw) = drive->id->config;
3452
3453         /* Command packet DRQ type */
3454         if (((gcw[0] & 0x60) >> 5) == 1)
3455                 set_bit(IDETAPE_FLAG_DRQ_INTERRUPT, &tape->flags);
3456
3457         tape->min_pipeline = 10;
3458         tape->max_pipeline = 10;
3459         tape->max_stages   = 10;
3460
3461         idetape_get_inquiry_results(drive);
3462         idetape_get_mode_sense_results(drive);
3463         ide_tape_get_bsize_from_bdesc(drive);
3464         tape->user_bs_factor = 1;
3465         tape->stage_size = *ctl * tape->blk_size;
3466         while (tape->stage_size > 0xffff) {
3467                 printk(KERN_NOTICE "ide-tape: decreasing stage size\n");
3468                 *ctl /= 2;
3469                 tape->stage_size = *ctl * tape->blk_size;
3470         }
3471         stage_size = tape->stage_size;
3472         tape->pages_per_stage = stage_size / PAGE_SIZE;
3473         if (stage_size % PAGE_SIZE) {
3474                 tape->pages_per_stage++;
3475                 tape->excess_bh_size = PAGE_SIZE - stage_size % PAGE_SIZE;
3476         }
3477
3478         /* Select the "best" DSC read/write polling freq and pipeline size. */
3479         speed = max(*(u16 *)&tape->caps[14], *(u16 *)&tape->caps[8]);
3480
3481         tape->max_stages = speed * 1000 * 10 / tape->stage_size;
3482
3483         /* Limit memory use for pipeline to 10% of physical memory */
3484         si_meminfo(&si);
3485         if (tape->max_stages * tape->stage_size >
3486                         si.totalram * si.mem_unit / 10)
3487                 tape->max_stages =
3488                         si.totalram * si.mem_unit / (10 * tape->stage_size);
3489
3490         tape->max_stages   = min(tape->max_stages, IDETAPE_MAX_PIPELINE_STAGES);
3491         tape->min_pipeline = min(tape->max_stages, IDETAPE_MIN_PIPELINE_STAGES);
3492         tape->max_pipeline =
3493                 min(tape->max_stages * 2, IDETAPE_MAX_PIPELINE_STAGES);
3494         if (tape->max_stages == 0) {
3495                 tape->max_stages   = 1;
3496                 tape->min_pipeline = 1;
3497                 tape->max_pipeline = 1;
3498         }
3499
3500         t1 = (tape->stage_size * HZ) / (speed * 1000);
3501         tmid = (*(u16 *)&tape->caps[16] * 32 * HZ) / (speed * 125);
3502         tn = (IDETAPE_FIFO_THRESHOLD * tape->stage_size * HZ) / (speed * 1000);
3503
3504         if (tape->max_stages)
3505                 t = tn;
3506         else
3507                 t = t1;
3508
3509         /*
3510          * Ensure that the number we got makes sense; limit it within
3511          * IDETAPE_DSC_RW_MIN and IDETAPE_DSC_RW_MAX.
3512          */
3513         tape->best_dsc_rw_freq = max_t(unsigned long,
3514                                 min_t(unsigned long, t, IDETAPE_DSC_RW_MAX),
3515                                 IDETAPE_DSC_RW_MIN);
3516         printk(KERN_INFO "ide-tape: %s <-> %s: %dKBps, %d*%dkB buffer, "
3517                 "%dkB pipeline, %lums tDSC%s\n",
3518                 drive->name, tape->name, *(u16 *)&tape->caps[14],
3519                 (*(u16 *)&tape->caps[16] * 512) / tape->stage_size,
3520                 tape->stage_size / 1024,
3521                 tape->max_stages * tape->stage_size / 1024,
3522                 tape->best_dsc_rw_freq * 1000 / HZ,
3523                 drive->using_dma ? ", DMA":"");
3524
3525         idetape_add_settings(drive);
3526 }
3527
3528 static void ide_tape_remove(ide_drive_t *drive)
3529 {
3530         idetape_tape_t *tape = drive->driver_data;
3531
3532         ide_proc_unregister_driver(drive, tape->driver);
3533
3534         ide_unregister_region(tape->disk);
3535
3536         ide_tape_put(tape);
3537 }
3538
3539 static void ide_tape_release(struct kref *kref)
3540 {
3541         struct ide_tape_obj *tape = to_ide_tape(kref);
3542         ide_drive_t *drive = tape->drive;
3543         struct gendisk *g = tape->disk;
3544
3545         BUG_ON(tape->first_stage != NULL || tape->merge_stage_size);
3546
3547         drive->dsc_overlap = 0;
3548         drive->driver_data = NULL;
3549         device_destroy(idetape_sysfs_class, MKDEV(IDETAPE_MAJOR, tape->minor));
3550         device_destroy(idetape_sysfs_class,
3551                         MKDEV(IDETAPE_MAJOR, tape->minor + 128));
3552         idetape_devs[tape->minor] = NULL;
3553         g->private_data = NULL;
3554         put_disk(g);
3555         kfree(tape);
3556 }
3557
3558 #ifdef CONFIG_IDE_PROC_FS
3559 static int proc_idetape_read_name
3560         (char *page, char **start, off_t off, int count, int *eof, void *data)
3561 {
3562         ide_drive_t     *drive = (ide_drive_t *) data;
3563         idetape_tape_t  *tape = drive->driver_data;
3564         char            *out = page;
3565         int             len;
3566
3567         len = sprintf(out, "%s\n", tape->name);
3568         PROC_IDE_READ_RETURN(page, start, off, count, eof, len);
3569 }
3570
3571 static ide_proc_entry_t idetape_proc[] = {
3572         { "capacity",   S_IFREG|S_IRUGO,        proc_ide_read_capacity, NULL },
3573         { "name",       S_IFREG|S_IRUGO,        proc_idetape_read_name, NULL },
3574         { NULL, 0, NULL, NULL }
3575 };
3576 #endif
3577
3578 static int ide_tape_probe(ide_drive_t *);
3579
3580 static ide_driver_t idetape_driver = {
3581         .gen_driver = {
3582                 .owner          = THIS_MODULE,
3583                 .name           = "ide-tape",
3584                 .bus            = &ide_bus_type,
3585         },
3586         .probe                  = ide_tape_probe,
3587         .remove                 = ide_tape_remove,
3588         .version                = IDETAPE_VERSION,
3589         .media                  = ide_tape,
3590         .supports_dsc_overlap   = 1,
3591         .do_request             = idetape_do_request,
3592         .end_request            = idetape_end_request,
3593         .error                  = __ide_error,
3594         .abort                  = __ide_abort,
3595 #ifdef CONFIG_IDE_PROC_FS
3596         .proc                   = idetape_proc,
3597 #endif
3598 };
3599
3600 /* Our character device supporting functions, passed to register_chrdev. */
3601 static const struct file_operations idetape_fops = {
3602         .owner          = THIS_MODULE,
3603         .read           = idetape_chrdev_read,
3604         .write          = idetape_chrdev_write,
3605         .ioctl          = idetape_chrdev_ioctl,
3606         .open           = idetape_chrdev_open,
3607         .release        = idetape_chrdev_release,
3608 };
3609
3610 static int idetape_open(struct inode *inode, struct file *filp)
3611 {
3612         struct gendisk *disk = inode->i_bdev->bd_disk;
3613         struct ide_tape_obj *tape;
3614
3615         tape = ide_tape_get(disk);
3616         if (!tape)
3617                 return -ENXIO;
3618
3619         return 0;
3620 }
3621
3622 static int idetape_release(struct inode *inode, struct file *filp)
3623 {
3624         struct gendisk *disk = inode->i_bdev->bd_disk;
3625         struct ide_tape_obj *tape = ide_tape_g(disk);
3626
3627         ide_tape_put(tape);
3628
3629         return 0;
3630 }
3631
3632 static int idetape_ioctl(struct inode *inode, struct file *file,
3633                         unsigned int cmd, unsigned long arg)
3634 {
3635         struct block_device *bdev = inode->i_bdev;
3636         struct ide_tape_obj *tape = ide_tape_g(bdev->bd_disk);
3637         ide_drive_t *drive = tape->drive;
3638         int err = generic_ide_ioctl(drive, file, bdev, cmd, arg);
3639         if (err == -EINVAL)
3640                 err = idetape_blkdev_ioctl(drive, cmd, arg);
3641         return err;
3642 }
3643
3644 static struct block_device_operations idetape_block_ops = {
3645         .owner          = THIS_MODULE,
3646         .open           = idetape_open,
3647         .release        = idetape_release,
3648         .ioctl          = idetape_ioctl,
3649 };
3650
3651 static int ide_tape_probe(ide_drive_t *drive)
3652 {
3653         idetape_tape_t *tape;
3654         struct gendisk *g;
3655         int minor;
3656
3657         if (!strstr("ide-tape", drive->driver_req))
3658                 goto failed;
3659         if (!drive->present)
3660                 goto failed;
3661         if (drive->media != ide_tape)
3662                 goto failed;
3663         if (!idetape_identify_device(drive)) {
3664                 printk(KERN_ERR "ide-tape: %s: not supported by this version of"
3665                                 " the driver\n", drive->name);
3666                 goto failed;
3667         }
3668         if (drive->scsi) {
3669                 printk(KERN_INFO "ide-tape: passing drive %s to ide-scsi"
3670                                  " emulation.\n", drive->name);
3671                 goto failed;
3672         }
3673         tape = kzalloc(sizeof(idetape_tape_t), GFP_KERNEL);
3674         if (tape == NULL) {
3675                 printk(KERN_ERR "ide-tape: %s: Can't allocate a tape struct\n",
3676                                 drive->name);
3677                 goto failed;
3678         }
3679
3680         g = alloc_disk(1 << PARTN_BITS);
3681         if (!g)
3682                 goto out_free_tape;
3683
3684         ide_init_disk(g, drive);
3685
3686         ide_proc_register_driver(drive, &idetape_driver);
3687
3688         kref_init(&tape->kref);
3689
3690         tape->drive = drive;
3691         tape->driver = &idetape_driver;
3692         tape->disk = g;
3693
3694         g->private_data = &tape->driver;
3695
3696         drive->driver_data = tape;
3697
3698         mutex_lock(&idetape_ref_mutex);
3699         for (minor = 0; idetape_devs[minor]; minor++)
3700                 ;
3701         idetape_devs[minor] = tape;
3702         mutex_unlock(&idetape_ref_mutex);
3703
3704         idetape_setup(drive, tape, minor);
3705
3706         device_create(idetape_sysfs_class, &drive->gendev,
3707                       MKDEV(IDETAPE_MAJOR, minor), "%s", tape->name);
3708         device_create(idetape_sysfs_class, &drive->gendev,
3709                         MKDEV(IDETAPE_MAJOR, minor + 128), "n%s", tape->name);
3710
3711         g->fops = &idetape_block_ops;
3712         ide_register_region(g);
3713
3714         return 0;
3715
3716 out_free_tape:
3717         kfree(tape);
3718 failed:
3719         return -ENODEV;
3720 }
3721
3722 static void __exit idetape_exit(void)
3723 {
3724         driver_unregister(&idetape_driver.gen_driver);
3725         class_destroy(idetape_sysfs_class);
3726         unregister_chrdev(IDETAPE_MAJOR, "ht");
3727 }
3728
3729 static int __init idetape_init(void)
3730 {
3731         int error = 1;
3732         idetape_sysfs_class = class_create(THIS_MODULE, "ide_tape");
3733         if (IS_ERR(idetape_sysfs_class)) {
3734                 idetape_sysfs_class = NULL;
3735                 printk(KERN_ERR "Unable to create sysfs class for ide tapes\n");
3736                 error = -EBUSY;
3737                 goto out;
3738         }
3739
3740         if (register_chrdev(IDETAPE_MAJOR, "ht", &idetape_fops)) {
3741                 printk(KERN_ERR "ide-tape: Failed to register chrdev"
3742                                 " interface\n");
3743                 error = -EBUSY;
3744                 goto out_free_class;
3745         }
3746
3747         error = driver_register(&idetape_driver.gen_driver);
3748         if (error)
3749                 goto out_free_driver;
3750
3751         return 0;
3752
3753 out_free_driver:
3754         driver_unregister(&idetape_driver.gen_driver);
3755 out_free_class:
3756         class_destroy(idetape_sysfs_class);
3757 out:
3758         return error;
3759 }
3760
3761 MODULE_ALIAS("ide:*m-tape*");
3762 module_init(idetape_init);
3763 module_exit(idetape_exit);
3764 MODULE_ALIAS_CHARDEV_MAJOR(IDETAPE_MAJOR);
3765 MODULE_DESCRIPTION("ATAPI Streaming TAPE Driver");
3766 MODULE_LICENSE("GPL");