]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/ide/ide-iops.c
ide: remove QUIRK_LIST()
[linux-2.6-omap-h63xx.git] / drivers / ide / ide-iops.c
1 /*
2  * linux/drivers/ide/ide-iops.c Version 0.37    Mar 05, 2003
3  *
4  *  Copyright (C) 2000-2002     Andre Hedrick <andre@linux-ide.org>
5  *  Copyright (C) 2003          Red Hat <alan@redhat.com>
6  *
7  */
8
9 #include <linux/module.h>
10 #include <linux/types.h>
11 #include <linux/string.h>
12 #include <linux/kernel.h>
13 #include <linux/timer.h>
14 #include <linux/mm.h>
15 #include <linux/interrupt.h>
16 #include <linux/major.h>
17 #include <linux/errno.h>
18 #include <linux/genhd.h>
19 #include <linux/blkpg.h>
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <linux/delay.h>
23 #include <linux/hdreg.h>
24 #include <linux/ide.h>
25 #include <linux/bitops.h>
26 #include <linux/nmi.h>
27
28 #include <asm/byteorder.h>
29 #include <asm/irq.h>
30 #include <asm/uaccess.h>
31 #include <asm/io.h>
32
33 /*
34  *      Conventional PIO operations for ATA devices
35  */
36
37 static u8 ide_inb (unsigned long port)
38 {
39         return (u8) inb(port);
40 }
41
42 static u16 ide_inw (unsigned long port)
43 {
44         return (u16) inw(port);
45 }
46
47 static void ide_insw (unsigned long port, void *addr, u32 count)
48 {
49         insw(port, addr, count);
50 }
51
52 static void ide_insl (unsigned long port, void *addr, u32 count)
53 {
54         insl(port, addr, count);
55 }
56
57 static void ide_outb (u8 val, unsigned long port)
58 {
59         outb(val, port);
60 }
61
62 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
63 {
64         outb(addr, port);
65 }
66
67 static void ide_outw (u16 val, unsigned long port)
68 {
69         outw(val, port);
70 }
71
72 static void ide_outsw (unsigned long port, void *addr, u32 count)
73 {
74         outsw(port, addr, count);
75 }
76
77 static void ide_outsl (unsigned long port, void *addr, u32 count)
78 {
79         outsl(port, addr, count);
80 }
81
82 void default_hwif_iops (ide_hwif_t *hwif)
83 {
84         hwif->OUTB      = ide_outb;
85         hwif->OUTBSYNC  = ide_outbsync;
86         hwif->OUTW      = ide_outw;
87         hwif->OUTSW     = ide_outsw;
88         hwif->OUTSL     = ide_outsl;
89         hwif->INB       = ide_inb;
90         hwif->INW       = ide_inw;
91         hwif->INSW      = ide_insw;
92         hwif->INSL      = ide_insl;
93 }
94
95 /*
96  *      MMIO operations, typically used for SATA controllers
97  */
98
99 static u8 ide_mm_inb (unsigned long port)
100 {
101         return (u8) readb((void __iomem *) port);
102 }
103
104 static u16 ide_mm_inw (unsigned long port)
105 {
106         return (u16) readw((void __iomem *) port);
107 }
108
109 static void ide_mm_insw (unsigned long port, void *addr, u32 count)
110 {
111         __ide_mm_insw((void __iomem *) port, addr, count);
112 }
113
114 static void ide_mm_insl (unsigned long port, void *addr, u32 count)
115 {
116         __ide_mm_insl((void __iomem *) port, addr, count);
117 }
118
119 static void ide_mm_outb (u8 value, unsigned long port)
120 {
121         writeb(value, (void __iomem *) port);
122 }
123
124 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
125 {
126         writeb(value, (void __iomem *) port);
127 }
128
129 static void ide_mm_outw (u16 value, unsigned long port)
130 {
131         writew(value, (void __iomem *) port);
132 }
133
134 static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
135 {
136         __ide_mm_outsw((void __iomem *) port, addr, count);
137 }
138
139 static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
140 {
141         __ide_mm_outsl((void __iomem *) port, addr, count);
142 }
143
144 void default_hwif_mmiops (ide_hwif_t *hwif)
145 {
146         hwif->OUTB      = ide_mm_outb;
147         /* Most systems will need to override OUTBSYNC, alas however
148            this one is controller specific! */
149         hwif->OUTBSYNC  = ide_mm_outbsync;
150         hwif->OUTW      = ide_mm_outw;
151         hwif->OUTSW     = ide_mm_outsw;
152         hwif->OUTSL     = ide_mm_outsl;
153         hwif->INB       = ide_mm_inb;
154         hwif->INW       = ide_mm_inw;
155         hwif->INSW      = ide_mm_insw;
156         hwif->INSL      = ide_mm_insl;
157 }
158
159 EXPORT_SYMBOL(default_hwif_mmiops);
160
161 u32 ide_read_24 (ide_drive_t *drive)
162 {
163         u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
164         u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
165         u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
166         return (hcyl<<16)|(lcyl<<8)|sect;
167 }
168
169 void SELECT_DRIVE (ide_drive_t *drive)
170 {
171         if (HWIF(drive)->selectproc)
172                 HWIF(drive)->selectproc(drive);
173         HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
174 }
175
176 EXPORT_SYMBOL(SELECT_DRIVE);
177
178 void SELECT_INTERRUPT (ide_drive_t *drive)
179 {
180         if (HWIF(drive)->intrproc)
181                 HWIF(drive)->intrproc(drive);
182         else
183                 HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
184 }
185
186 void SELECT_MASK (ide_drive_t *drive, int mask)
187 {
188         if (HWIF(drive)->maskproc)
189                 HWIF(drive)->maskproc(drive, mask);
190 }
191
192 /*
193  * Some localbus EIDE interfaces require a special access sequence
194  * when using 32-bit I/O instructions to transfer data.  We call this
195  * the "vlb_sync" sequence, which consists of three successive reads
196  * of the sector count register location, with interrupts disabled
197  * to ensure that the reads all happen together.
198  */
199 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
200 {
201         (void) HWIF(drive)->INB(port);
202         (void) HWIF(drive)->INB(port);
203         (void) HWIF(drive)->INB(port);
204 }
205
206 /*
207  * This is used for most PIO data transfers *from* the IDE interface
208  */
209 static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
210 {
211         ide_hwif_t *hwif        = HWIF(drive);
212         u8 io_32bit             = drive->io_32bit;
213
214         if (io_32bit) {
215                 if (io_32bit & 2) {
216                         unsigned long flags;
217                         local_irq_save(flags);
218                         ata_vlb_sync(drive, IDE_NSECTOR_REG);
219                         hwif->INSL(IDE_DATA_REG, buffer, wcount);
220                         local_irq_restore(flags);
221                 } else
222                         hwif->INSL(IDE_DATA_REG, buffer, wcount);
223         } else {
224                 hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
225         }
226 }
227
228 /*
229  * This is used for most PIO data transfers *to* the IDE interface
230  */
231 static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
232 {
233         ide_hwif_t *hwif        = HWIF(drive);
234         u8 io_32bit             = drive->io_32bit;
235
236         if (io_32bit) {
237                 if (io_32bit & 2) {
238                         unsigned long flags;
239                         local_irq_save(flags);
240                         ata_vlb_sync(drive, IDE_NSECTOR_REG);
241                         hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
242                         local_irq_restore(flags);
243                 } else
244                         hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
245         } else {
246                 hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
247         }
248 }
249
250 /*
251  * The following routines are mainly used by the ATAPI drivers.
252  *
253  * These routines will round up any request for an odd number of bytes,
254  * so if an odd bytecount is specified, be sure that there's at least one
255  * extra byte allocated for the buffer.
256  */
257
258 static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
259 {
260         ide_hwif_t *hwif = HWIF(drive);
261
262         ++bytecount;
263 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
264         if (MACH_IS_ATARI || MACH_IS_Q40) {
265                 /* Atari has a byte-swapped IDE interface */
266                 insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
267                 return;
268         }
269 #endif /* CONFIG_ATARI || CONFIG_Q40 */
270         hwif->ata_input_data(drive, buffer, bytecount / 4);
271         if ((bytecount & 0x03) >= 2)
272                 hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
273 }
274
275 static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
276 {
277         ide_hwif_t *hwif = HWIF(drive);
278
279         ++bytecount;
280 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
281         if (MACH_IS_ATARI || MACH_IS_Q40) {
282                 /* Atari has a byte-swapped IDE interface */
283                 outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
284                 return;
285         }
286 #endif /* CONFIG_ATARI || CONFIG_Q40 */
287         hwif->ata_output_data(drive, buffer, bytecount / 4);
288         if ((bytecount & 0x03) >= 2)
289                 hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
290 }
291
292 void default_hwif_transport(ide_hwif_t *hwif)
293 {
294         hwif->ata_input_data            = ata_input_data;
295         hwif->ata_output_data           = ata_output_data;
296         hwif->atapi_input_bytes         = atapi_input_bytes;
297         hwif->atapi_output_bytes        = atapi_output_bytes;
298 }
299
300 void ide_fix_driveid (struct hd_driveid *id)
301 {
302 #ifndef __LITTLE_ENDIAN
303 # ifdef __BIG_ENDIAN
304         int i;
305         u16 *stringcast;
306
307         id->config         = __le16_to_cpu(id->config);
308         id->cyls           = __le16_to_cpu(id->cyls);
309         id->reserved2      = __le16_to_cpu(id->reserved2);
310         id->heads          = __le16_to_cpu(id->heads);
311         id->track_bytes    = __le16_to_cpu(id->track_bytes);
312         id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
313         id->sectors        = __le16_to_cpu(id->sectors);
314         id->vendor0        = __le16_to_cpu(id->vendor0);
315         id->vendor1        = __le16_to_cpu(id->vendor1);
316         id->vendor2        = __le16_to_cpu(id->vendor2);
317         stringcast = (u16 *)&id->serial_no[0];
318         for (i = 0; i < (20/2); i++)
319                 stringcast[i] = __le16_to_cpu(stringcast[i]);
320         id->buf_type       = __le16_to_cpu(id->buf_type);
321         id->buf_size       = __le16_to_cpu(id->buf_size);
322         id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
323         stringcast = (u16 *)&id->fw_rev[0];
324         for (i = 0; i < (8/2); i++)
325                 stringcast[i] = __le16_to_cpu(stringcast[i]);
326         stringcast = (u16 *)&id->model[0];
327         for (i = 0; i < (40/2); i++)
328                 stringcast[i] = __le16_to_cpu(stringcast[i]);
329         id->dword_io       = __le16_to_cpu(id->dword_io);
330         id->reserved50     = __le16_to_cpu(id->reserved50);
331         id->field_valid    = __le16_to_cpu(id->field_valid);
332         id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
333         id->cur_heads      = __le16_to_cpu(id->cur_heads);
334         id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
335         id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
336         id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
337         id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
338         id->dma_1word      = __le16_to_cpu(id->dma_1word);
339         id->dma_mword      = __le16_to_cpu(id->dma_mword);
340         id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
341         id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
342         id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
343         id->eide_pio       = __le16_to_cpu(id->eide_pio);
344         id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
345         for (i = 0; i < 2; ++i)
346                 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
347         for (i = 0; i < 4; ++i)
348                 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
349         id->queue_depth    = __le16_to_cpu(id->queue_depth);
350         for (i = 0; i < 4; ++i)
351                 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
352         id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
353         id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
354         id->command_set_1  = __le16_to_cpu(id->command_set_1);
355         id->command_set_2  = __le16_to_cpu(id->command_set_2);
356         id->cfsse          = __le16_to_cpu(id->cfsse);
357         id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
358         id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
359         id->csf_default    = __le16_to_cpu(id->csf_default);
360         id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
361         id->trseuc         = __le16_to_cpu(id->trseuc);
362         id->trsEuc         = __le16_to_cpu(id->trsEuc);
363         id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
364         id->mprc           = __le16_to_cpu(id->mprc);
365         id->hw_config      = __le16_to_cpu(id->hw_config);
366         id->acoustic       = __le16_to_cpu(id->acoustic);
367         id->msrqs          = __le16_to_cpu(id->msrqs);
368         id->sxfert         = __le16_to_cpu(id->sxfert);
369         id->sal            = __le16_to_cpu(id->sal);
370         id->spg            = __le32_to_cpu(id->spg);
371         id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
372         for (i = 0; i < 22; i++)
373                 id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
374         id->last_lun       = __le16_to_cpu(id->last_lun);
375         id->word127        = __le16_to_cpu(id->word127);
376         id->dlf            = __le16_to_cpu(id->dlf);
377         id->csfo           = __le16_to_cpu(id->csfo);
378         for (i = 0; i < 26; i++)
379                 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
380         id->word156        = __le16_to_cpu(id->word156);
381         for (i = 0; i < 3; i++)
382                 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
383         id->cfa_power      = __le16_to_cpu(id->cfa_power);
384         for (i = 0; i < 14; i++)
385                 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
386         for (i = 0; i < 31; i++)
387                 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
388         for (i = 0; i < 48; i++)
389                 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
390         id->integrity_word  = __le16_to_cpu(id->integrity_word);
391 # else
392 #  error "Please fix <asm/byteorder.h>"
393 # endif
394 #endif
395 }
396
397 /*
398  * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
399  * removing leading/trailing blanks and compressing internal blanks.
400  * It is primarily used to tidy up the model name/number fields as
401  * returned by the WIN_[P]IDENTIFY commands.
402  */
403
404 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
405 {
406         u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
407
408         if (byteswap) {
409                 /* convert from big-endian to host byte order */
410                 for (p = end ; p != s;) {
411                         unsigned short *pp = (unsigned short *) (p -= 2);
412                         *pp = ntohs(*pp);
413                 }
414         }
415         /* strip leading blanks */
416         while (s != end && *s == ' ')
417                 ++s;
418         /* compress internal blanks and strip trailing blanks */
419         while (s != end && *s) {
420                 if (*s++ != ' ' || (s != end && *s && *s != ' '))
421                         *p++ = *(s-1);
422         }
423         /* wipe out trailing garbage */
424         while (p != end)
425                 *p++ = '\0';
426 }
427
428 EXPORT_SYMBOL(ide_fixstring);
429
430 /*
431  * Needed for PCI irq sharing
432  */
433 int drive_is_ready (ide_drive_t *drive)
434 {
435         ide_hwif_t *hwif        = HWIF(drive);
436         u8 stat                 = 0;
437
438         if (drive->waiting_for_dma)
439                 return hwif->ide_dma_test_irq(drive);
440
441 #if 0
442         /* need to guarantee 400ns since last command was issued */
443         udelay(1);
444 #endif
445
446         /*
447          * We do a passive status test under shared PCI interrupts on
448          * cards that truly share the ATA side interrupt, but may also share
449          * an interrupt with another pci card/device.  We make no assumptions
450          * about possible isa-pnp and pci-pnp issues yet.
451          */
452         if (IDE_CONTROL_REG)
453                 stat = hwif->INB(IDE_ALTSTATUS_REG);
454         else
455                 /* Note: this may clear a pending IRQ!! */
456                 stat = hwif->INB(IDE_STATUS_REG);
457
458         if (stat & BUSY_STAT)
459                 /* drive busy:  definitely not interrupting */
460                 return 0;
461
462         /* drive ready: *might* be interrupting */
463         return 1;
464 }
465
466 EXPORT_SYMBOL(drive_is_ready);
467
468 /*
469  * This routine busy-waits for the drive status to be not "busy".
470  * It then checks the status for all of the "good" bits and none
471  * of the "bad" bits, and if all is okay it returns 0.  All other
472  * cases return error -- caller may then invoke ide_error().
473  *
474  * This routine should get fixed to not hog the cpu during extra long waits..
475  * That could be done by busy-waiting for the first jiffy or two, and then
476  * setting a timer to wake up at half second intervals thereafter,
477  * until timeout is achieved, before timing out.
478  */
479 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
480 {
481         ide_hwif_t *hwif = drive->hwif;
482         unsigned long flags;
483         int i;
484         u8 stat;
485
486         udelay(1);      /* spec allows drive 400ns to assert "BUSY" */
487         if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
488                 local_irq_set(flags);
489                 timeout += jiffies;
490                 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
491                         if (time_after(jiffies, timeout)) {
492                                 /*
493                                  * One last read after the timeout in case
494                                  * heavy interrupt load made us not make any
495                                  * progress during the timeout..
496                                  */
497                                 stat = hwif->INB(IDE_STATUS_REG);
498                                 if (!(stat & BUSY_STAT))
499                                         break;
500
501                                 local_irq_restore(flags);
502                                 *rstat = stat;
503                                 return -EBUSY;
504                         }
505                 }
506                 local_irq_restore(flags);
507         }
508         /*
509          * Allow status to settle, then read it again.
510          * A few rare drives vastly violate the 400ns spec here,
511          * so we'll wait up to 10usec for a "good" status
512          * rather than expensively fail things immediately.
513          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
514          */
515         for (i = 0; i < 10; i++) {
516                 udelay(1);
517                 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad)) {
518                         *rstat = stat;
519                         return 0;
520                 }
521         }
522         *rstat = stat;
523         return -EFAULT;
524 }
525
526 /*
527  * In case of error returns error value after doing "*startstop = ide_error()".
528  * The caller should return the updated value of "startstop" in this case,
529  * "startstop" is unchanged when the function returns 0.
530  */
531 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
532 {
533         int err;
534         u8 stat;
535
536         /* bail early if we've exceeded max_failures */
537         if (drive->max_failures && (drive->failures > drive->max_failures)) {
538                 *startstop = ide_stopped;
539                 return 1;
540         }
541
542         err = __ide_wait_stat(drive, good, bad, timeout, &stat);
543
544         if (err) {
545                 char *s = (err == -EBUSY) ? "status timeout" : "status error";
546                 *startstop = ide_error(drive, s, stat);
547         }
548
549         return err;
550 }
551
552 EXPORT_SYMBOL(ide_wait_stat);
553
554 /**
555  *      ide_in_drive_list       -       look for drive in black/white list
556  *      @id: drive identifier
557  *      @drive_table: list to inspect
558  *
559  *      Look for a drive in the blacklist and the whitelist tables
560  *      Returns 1 if the drive is found in the table.
561  */
562
563 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
564 {
565         for ( ; drive_table->id_model; drive_table++)
566                 if ((!strcmp(drive_table->id_model, id->model)) &&
567                     (!drive_table->id_firmware ||
568                      strstr(id->fw_rev, drive_table->id_firmware)))
569                         return 1;
570         return 0;
571 }
572
573 EXPORT_SYMBOL_GPL(ide_in_drive_list);
574
575 /*
576  * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
577  * We list them here and depend on the device side cable detection for them.
578  *
579  * Some optical devices with the buggy firmwares have the same problem.
580  */
581 static const struct drive_list_entry ivb_list[] = {
582         { "QUANTUM FIREBALLlct10 05"    , "A03.0900"    },
583         { "TSSTcorp CDDVDW SH-S202J"    , "SB00"        },
584         { "TSSTcorp CDDVDW SH-S202J"    , "SB01"        },
585         { "TSSTcorp CDDVDW SH-S202N"    , "SB00"        },
586         { "TSSTcorp CDDVDW SH-S202N"    , "SB01"        },
587         { NULL                          , NULL          }
588 };
589
590 /*
591  *  All hosts that use the 80c ribbon must use!
592  *  The name is derived from upper byte of word 93 and the 80c ribbon.
593  */
594 u8 eighty_ninty_three (ide_drive_t *drive)
595 {
596         ide_hwif_t *hwif = drive->hwif;
597         struct hd_driveid *id = drive->id;
598         int ivb = ide_in_drive_list(id, ivb_list);
599
600         if (hwif->cbl == ATA_CBL_PATA40_SHORT)
601                 return 1;
602
603         if (ivb)
604                 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
605                                   drive->name);
606
607         if (ide_dev_is_sata(id) && !ivb)
608                 return 1;
609
610         if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
611                 goto no_80w;
612
613         /*
614          * FIXME:
615          * - force bit13 (80c cable present) check also for !ivb devices
616          *   (unless the slave device is pre-ATA3)
617          */
618         if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
619                 return 1;
620
621 no_80w:
622         if (drive->udma33_warned == 1)
623                 return 0;
624
625         printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
626                             "limiting max speed to UDMA33\n",
627                             drive->name,
628                             hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
629
630         drive->udma33_warned = 1;
631
632         return 0;
633 }
634
635 int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
636 {
637         if (args->tf.command == WIN_SETFEATURES &&
638             args->tf.lbal > XFER_UDMA_2 &&
639             args->tf.feature == SETFEATURES_XFER) {
640                 if (eighty_ninty_three(drive) == 0) {
641                         printk(KERN_WARNING "%s: UDMA speeds >UDMA33 cannot "
642                                             "be set\n", drive->name);
643                         return 1;
644                 }
645         }
646
647         return 0;
648 }
649
650 /*
651  * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
652  * 1 : Safe to update drive->id DMA registers.
653  * 0 : OOPs not allowed.
654  */
655 int set_transfer (ide_drive_t *drive, ide_task_t *args)
656 {
657         if (args->tf.command == WIN_SETFEATURES &&
658             args->tf.lbal >= XFER_SW_DMA_0 &&
659             args->tf.feature == SETFEATURES_XFER &&
660             (drive->id->dma_ultra ||
661              drive->id->dma_mword ||
662              drive->id->dma_1word))
663                 return 1;
664
665         return 0;
666 }
667
668 #ifdef CONFIG_BLK_DEV_IDEDMA
669 static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
670 {
671         if (!drive->crc_count)
672                 return drive->current_speed;
673         drive->crc_count = 0;
674
675         switch(drive->current_speed) {
676                 case XFER_UDMA_7:       return XFER_UDMA_6;
677                 case XFER_UDMA_6:       return XFER_UDMA_5;
678                 case XFER_UDMA_5:       return XFER_UDMA_4;
679                 case XFER_UDMA_4:       return XFER_UDMA_3;
680                 case XFER_UDMA_3:       return XFER_UDMA_2;
681                 case XFER_UDMA_2:       return XFER_UDMA_1;
682                 case XFER_UDMA_1:       return XFER_UDMA_0;
683                         /*
684                          * OOPS we do not goto non Ultra DMA modes
685                          * without iCRC's available we force
686                          * the system to PIO and make the user
687                          * invoke the ATA-1 ATA-2 DMA modes.
688                          */
689                 case XFER_UDMA_0:
690                 default:                return XFER_PIO_4;
691         }
692 }
693 #endif /* CONFIG_BLK_DEV_IDEDMA */
694
695 int ide_driveid_update(ide_drive_t *drive)
696 {
697         ide_hwif_t *hwif = drive->hwif;
698         struct hd_driveid *id;
699         unsigned long timeout, flags;
700
701         /*
702          * Re-read drive->id for possible DMA mode
703          * change (copied from ide-probe.c)
704          */
705
706         SELECT_MASK(drive, 1);
707         if (IDE_CONTROL_REG)
708                 hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
709         msleep(50);
710         hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
711         timeout = jiffies + WAIT_WORSTCASE;
712         do {
713                 if (time_after(jiffies, timeout)) {
714                         SELECT_MASK(drive, 0);
715                         return 0;       /* drive timed-out */
716                 }
717                 msleep(50);     /* give drive a breather */
718         } while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
719         msleep(50);     /* wait for IRQ and DRQ_STAT */
720         if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
721                 SELECT_MASK(drive, 0);
722                 printk("%s: CHECK for good STATUS\n", drive->name);
723                 return 0;
724         }
725         local_irq_save(flags);
726         SELECT_MASK(drive, 0);
727         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
728         if (!id) {
729                 local_irq_restore(flags);
730                 return 0;
731         }
732         ata_input_data(drive, id, SECTOR_WORDS);
733         (void) hwif->INB(IDE_STATUS_REG);       /* clear drive IRQ */
734         local_irq_enable();
735         local_irq_restore(flags);
736         ide_fix_driveid(id);
737         if (id) {
738                 drive->id->dma_ultra = id->dma_ultra;
739                 drive->id->dma_mword = id->dma_mword;
740                 drive->id->dma_1word = id->dma_1word;
741                 /* anything more ? */
742                 kfree(id);
743
744                 if (drive->using_dma && ide_id_dma_bug(drive))
745                         ide_dma_off(drive);
746         }
747
748         return 1;
749 }
750
751 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
752 {
753         ide_hwif_t *hwif = drive->hwif;
754         int error = 0;
755         u8 stat;
756
757 //      while (HWGROUP(drive)->busy)
758 //              msleep(50);
759
760 #ifdef CONFIG_BLK_DEV_IDEDMA
761         if (hwif->ide_dma_on)   /* check if host supports DMA */
762                 hwif->dma_host_off(drive);
763 #endif
764
765         /* Skip setting PIO flow-control modes on pre-EIDE drives */
766         if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
767                 goto skip;
768
769         /*
770          * Don't use ide_wait_cmd here - it will
771          * attempt to set_geometry and recalibrate,
772          * but for some reason these don't work at
773          * this point (lost interrupt).
774          */
775         /*
776          * Select the drive, and issue the SETFEATURES command
777          */
778         disable_irq_nosync(hwif->irq);
779         
780         /*
781          *      FIXME: we race against the running IRQ here if
782          *      this is called from non IRQ context. If we use
783          *      disable_irq() we hang on the error path. Work
784          *      is needed.
785          */
786          
787         udelay(1);
788         SELECT_DRIVE(drive);
789         SELECT_MASK(drive, 0);
790         udelay(1);
791         if (IDE_CONTROL_REG)
792                 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
793         hwif->OUTB(speed, IDE_NSECTOR_REG);
794         hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
795         hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
796         if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
797                 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
798
799         error = __ide_wait_stat(drive, drive->ready_stat,
800                                 BUSY_STAT|DRQ_STAT|ERR_STAT,
801                                 WAIT_CMD, &stat);
802
803         SELECT_MASK(drive, 0);
804
805         enable_irq(hwif->irq);
806
807         if (error) {
808                 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
809                 return error;
810         }
811
812         drive->id->dma_ultra &= ~0xFF00;
813         drive->id->dma_mword &= ~0x0F00;
814         drive->id->dma_1word &= ~0x0F00;
815
816  skip:
817 #ifdef CONFIG_BLK_DEV_IDEDMA
818         if (speed >= XFER_SW_DMA_0)
819                 hwif->dma_host_on(drive);
820         else if (hwif->ide_dma_on)      /* check if host supports DMA */
821                 hwif->dma_off_quietly(drive);
822 #endif
823
824         switch(speed) {
825                 case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
826                 case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
827                 case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
828                 case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
829                 case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
830                 case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
831                 case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
832                 case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
833                 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
834                 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
835                 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
836                 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
837                 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
838                 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
839                 default: break;
840         }
841         if (!drive->init_speed)
842                 drive->init_speed = speed;
843         drive->current_speed = speed;
844         return error;
845 }
846
847 /*
848  * This should get invoked any time we exit the driver to
849  * wait for an interrupt response from a drive.  handler() points
850  * at the appropriate code to handle the next interrupt, and a
851  * timer is started to prevent us from waiting forever in case
852  * something goes wrong (see the ide_timer_expiry() handler later on).
853  *
854  * See also ide_execute_command
855  */
856 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
857                       unsigned int timeout, ide_expiry_t *expiry)
858 {
859         ide_hwgroup_t *hwgroup = HWGROUP(drive);
860
861         if (hwgroup->handler != NULL) {
862                 printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
863                         "old=%p, new=%p\n",
864                         drive->name, hwgroup->handler, handler);
865         }
866         hwgroup->handler        = handler;
867         hwgroup->expiry         = expiry;
868         hwgroup->timer.expires  = jiffies + timeout;
869         hwgroup->req_gen_timer = hwgroup->req_gen;
870         add_timer(&hwgroup->timer);
871 }
872
873 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
874                       unsigned int timeout, ide_expiry_t *expiry)
875 {
876         unsigned long flags;
877         spin_lock_irqsave(&ide_lock, flags);
878         __ide_set_handler(drive, handler, timeout, expiry);
879         spin_unlock_irqrestore(&ide_lock, flags);
880 }
881
882 EXPORT_SYMBOL(ide_set_handler);
883  
884 /**
885  *      ide_execute_command     -       execute an IDE command
886  *      @drive: IDE drive to issue the command against
887  *      @command: command byte to write
888  *      @handler: handler for next phase
889  *      @timeout: timeout for command
890  *      @expiry:  handler to run on timeout
891  *
892  *      Helper function to issue an IDE command. This handles the
893  *      atomicity requirements, command timing and ensures that the 
894  *      handler and IRQ setup do not race. All IDE command kick off
895  *      should go via this function or do equivalent locking.
896  */
897
898 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
899                          unsigned timeout, ide_expiry_t *expiry)
900 {
901         unsigned long flags;
902         ide_hwgroup_t *hwgroup = HWGROUP(drive);
903         ide_hwif_t *hwif = HWIF(drive);
904         
905         spin_lock_irqsave(&ide_lock, flags);
906         
907         BUG_ON(hwgroup->handler);
908         hwgroup->handler        = handler;
909         hwgroup->expiry         = expiry;
910         hwgroup->timer.expires  = jiffies + timeout;
911         hwgroup->req_gen_timer = hwgroup->req_gen;
912         add_timer(&hwgroup->timer);
913         hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
914         /* Drive takes 400nS to respond, we must avoid the IRQ being
915            serviced before that. 
916            
917            FIXME: we could skip this delay with care on non shared
918            devices 
919         */
920         ndelay(400);
921         spin_unlock_irqrestore(&ide_lock, flags);
922 }
923
924 EXPORT_SYMBOL(ide_execute_command);
925
926
927 /* needed below */
928 static ide_startstop_t do_reset1 (ide_drive_t *, int);
929
930 /*
931  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
932  * during an atapi drive reset operation. If the drive has not yet responded,
933  * and we have not yet hit our maximum waiting time, then the timer is restarted
934  * for another 50ms.
935  */
936 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
937 {
938         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
939         ide_hwif_t *hwif        = HWIF(drive);
940         u8 stat;
941
942         SELECT_DRIVE(drive);
943         udelay (10);
944
945         if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
946                 printk("%s: ATAPI reset complete\n", drive->name);
947         } else {
948                 if (time_before(jiffies, hwgroup->poll_timeout)) {
949                         BUG_ON(HWGROUP(drive)->handler != NULL);
950                         ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
951                         /* continue polling */
952                         return ide_started;
953                 }
954                 /* end of polling */
955                 hwgroup->polling = 0;
956                 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
957                                 drive->name, stat);
958                 /* do it the old fashioned way */
959                 return do_reset1(drive, 1);
960         }
961         /* done polling */
962         hwgroup->polling = 0;
963         hwgroup->resetting = 0;
964         return ide_stopped;
965 }
966
967 /*
968  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
969  * during an ide reset operation. If the drives have not yet responded,
970  * and we have not yet hit our maximum waiting time, then the timer is restarted
971  * for another 50ms.
972  */
973 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
974 {
975         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
976         ide_hwif_t *hwif        = HWIF(drive);
977         u8 tmp;
978
979         if (hwif->reset_poll != NULL) {
980                 if (hwif->reset_poll(drive)) {
981                         printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
982                                 hwif->name, drive->name);
983                         return ide_stopped;
984                 }
985         }
986
987         if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
988                 if (time_before(jiffies, hwgroup->poll_timeout)) {
989                         BUG_ON(HWGROUP(drive)->handler != NULL);
990                         ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
991                         /* continue polling */
992                         return ide_started;
993                 }
994                 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
995                 drive->failures++;
996         } else  {
997                 printk("%s: reset: ", hwif->name);
998                 if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
999                         printk("success\n");
1000                         drive->failures = 0;
1001                 } else {
1002                         drive->failures++;
1003                         printk("master: ");
1004                         switch (tmp & 0x7f) {
1005                                 case 1: printk("passed");
1006                                         break;
1007                                 case 2: printk("formatter device error");
1008                                         break;
1009                                 case 3: printk("sector buffer error");
1010                                         break;
1011                                 case 4: printk("ECC circuitry error");
1012                                         break;
1013                                 case 5: printk("controlling MPU error");
1014                                         break;
1015                                 default:printk("error (0x%02x?)", tmp);
1016                         }
1017                         if (tmp & 0x80)
1018                                 printk("; slave: failed");
1019                         printk("\n");
1020                 }
1021         }
1022         hwgroup->polling = 0;   /* done polling */
1023         hwgroup->resetting = 0; /* done reset attempt */
1024         return ide_stopped;
1025 }
1026
1027 static void check_dma_crc(ide_drive_t *drive)
1028 {
1029 #ifdef CONFIG_BLK_DEV_IDEDMA
1030         if (drive->crc_count) {
1031                 drive->hwif->dma_off_quietly(drive);
1032                 ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1033                 if (drive->current_speed >= XFER_SW_DMA_0)
1034                         (void) HWIF(drive)->ide_dma_on(drive);
1035         } else
1036                 ide_dma_off(drive);
1037 #endif
1038 }
1039
1040 static void ide_disk_pre_reset(ide_drive_t *drive)
1041 {
1042         int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1043
1044         drive->special.all = 0;
1045         drive->special.b.set_geometry = legacy;
1046         drive->special.b.recalibrate  = legacy;
1047         drive->mult_count = 0;
1048         if (!drive->keep_settings && !drive->using_dma)
1049                 drive->mult_req = 0;
1050         if (drive->mult_req != drive->mult_count)
1051                 drive->special.b.set_multmode = 1;
1052 }
1053
1054 static void pre_reset(ide_drive_t *drive)
1055 {
1056         if (drive->media == ide_disk)
1057                 ide_disk_pre_reset(drive);
1058         else
1059                 drive->post_reset = 1;
1060
1061         if (!drive->keep_settings) {
1062                 if (drive->using_dma) {
1063                         check_dma_crc(drive);
1064                 } else {
1065                         drive->unmask = 0;
1066                         drive->io_32bit = 0;
1067                 }
1068                 return;
1069         }
1070         if (drive->using_dma)
1071                 check_dma_crc(drive);
1072
1073         if (HWIF(drive)->pre_reset != NULL)
1074                 HWIF(drive)->pre_reset(drive);
1075
1076         if (drive->current_speed != 0xff)
1077                 drive->desired_speed = drive->current_speed;
1078         drive->current_speed = 0xff;
1079 }
1080
1081 /*
1082  * do_reset1() attempts to recover a confused drive by resetting it.
1083  * Unfortunately, resetting a disk drive actually resets all devices on
1084  * the same interface, so it can really be thought of as resetting the
1085  * interface rather than resetting the drive.
1086  *
1087  * ATAPI devices have their own reset mechanism which allows them to be
1088  * individually reset without clobbering other devices on the same interface.
1089  *
1090  * Unfortunately, the IDE interface does not generate an interrupt to let
1091  * us know when the reset operation has finished, so we must poll for this.
1092  * Equally poor, though, is the fact that this may a very long time to complete,
1093  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1094  * we set a timer to poll at 50ms intervals.
1095  */
1096 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1097 {
1098         unsigned int unit;
1099         unsigned long flags;
1100         ide_hwif_t *hwif;
1101         ide_hwgroup_t *hwgroup;
1102         
1103         spin_lock_irqsave(&ide_lock, flags);
1104         hwif = HWIF(drive);
1105         hwgroup = HWGROUP(drive);
1106
1107         /* We must not reset with running handlers */
1108         BUG_ON(hwgroup->handler != NULL);
1109
1110         /* For an ATAPI device, first try an ATAPI SRST. */
1111         if (drive->media != ide_disk && !do_not_try_atapi) {
1112                 hwgroup->resetting = 1;
1113                 pre_reset(drive);
1114                 SELECT_DRIVE(drive);
1115                 udelay (20);
1116                 hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1117                 ndelay(400);
1118                 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1119                 hwgroup->polling = 1;
1120                 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1121                 spin_unlock_irqrestore(&ide_lock, flags);
1122                 return ide_started;
1123         }
1124
1125         /*
1126          * First, reset any device state data we were maintaining
1127          * for any of the drives on this interface.
1128          */
1129         for (unit = 0; unit < MAX_DRIVES; ++unit)
1130                 pre_reset(&hwif->drives[unit]);
1131
1132         if (!IDE_CONTROL_REG) {
1133                 spin_unlock_irqrestore(&ide_lock, flags);
1134                 return ide_stopped;
1135         }
1136
1137         hwgroup->resetting = 1;
1138         /*
1139          * Note that we also set nIEN while resetting the device,
1140          * to mask unwanted interrupts from the interface during the reset.
1141          * However, due to the design of PC hardware, this will cause an
1142          * immediate interrupt due to the edge transition it produces.
1143          * This single interrupt gives us a "fast poll" for drives that
1144          * recover from reset very quickly, saving us the first 50ms wait time.
1145          */
1146         /* set SRST and nIEN */
1147         hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1148         /* more than enough time */
1149         udelay(10);
1150         if (drive->quirk_list == 2) {
1151                 /* clear SRST and nIEN */
1152                 hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1153         } else {
1154                 /* clear SRST, leave nIEN */
1155                 hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1156         }
1157         /* more than enough time */
1158         udelay(10);
1159         hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1160         hwgroup->polling = 1;
1161         __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1162
1163         /*
1164          * Some weird controller like resetting themselves to a strange
1165          * state when the disks are reset this way. At least, the Winbond
1166          * 553 documentation says that
1167          */
1168         if (hwif->resetproc)
1169                 hwif->resetproc(drive);
1170
1171         spin_unlock_irqrestore(&ide_lock, flags);
1172         return ide_started;
1173 }
1174
1175 /*
1176  * ide_do_reset() is the entry point to the drive/interface reset code.
1177  */
1178
1179 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1180 {
1181         return do_reset1(drive, 0);
1182 }
1183
1184 EXPORT_SYMBOL(ide_do_reset);
1185
1186 /*
1187  * ide_wait_not_busy() waits for the currently selected device on the hwif
1188  * to report a non-busy status, see comments in probe_hwif().
1189  */
1190 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1191 {
1192         u8 stat = 0;
1193
1194         while(timeout--) {
1195                 /*
1196                  * Turn this into a schedule() sleep once I'm sure
1197                  * about locking issues (2.5 work ?).
1198                  */
1199                 mdelay(1);
1200                 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1201                 if ((stat & BUSY_STAT) == 0)
1202                         return 0;
1203                 /*
1204                  * Assume a value of 0xff means nothing is connected to
1205                  * the interface and it doesn't implement the pull-down
1206                  * resistor on D7.
1207                  */
1208                 if (stat == 0xff)
1209                         return -ENODEV;
1210                 touch_softlockup_watchdog();
1211                 touch_nmi_watchdog();
1212         }
1213         return -EBUSY;
1214 }
1215
1216 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1217