]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/ide/ide-iops.c
ide: add cable detection for early UDMA66 devices (take 3)
[linux-2.6-omap-h63xx.git] / drivers / ide / ide-iops.c
1 /*
2  * linux/drivers/ide/ide-iops.c Version 0.37    Mar 05, 2003
3  *
4  *  Copyright (C) 2000-2002     Andre Hedrick <andre@linux-ide.org>
5  *  Copyright (C) 2003          Red Hat <alan@redhat.com>
6  *
7  */
8
9 #include <linux/module.h>
10 #include <linux/types.h>
11 #include <linux/string.h>
12 #include <linux/kernel.h>
13 #include <linux/timer.h>
14 #include <linux/mm.h>
15 #include <linux/interrupt.h>
16 #include <linux/major.h>
17 #include <linux/errno.h>
18 #include <linux/genhd.h>
19 #include <linux/blkpg.h>
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <linux/delay.h>
23 #include <linux/hdreg.h>
24 #include <linux/ide.h>
25 #include <linux/bitops.h>
26 #include <linux/nmi.h>
27
28 #include <asm/byteorder.h>
29 #include <asm/irq.h>
30 #include <asm/uaccess.h>
31 #include <asm/io.h>
32
33 /*
34  *      Conventional PIO operations for ATA devices
35  */
36
37 static u8 ide_inb (unsigned long port)
38 {
39         return (u8) inb(port);
40 }
41
42 static u16 ide_inw (unsigned long port)
43 {
44         return (u16) inw(port);
45 }
46
47 static void ide_insw (unsigned long port, void *addr, u32 count)
48 {
49         insw(port, addr, count);
50 }
51
52 static void ide_insl (unsigned long port, void *addr, u32 count)
53 {
54         insl(port, addr, count);
55 }
56
57 static void ide_outb (u8 val, unsigned long port)
58 {
59         outb(val, port);
60 }
61
62 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
63 {
64         outb(addr, port);
65 }
66
67 static void ide_outw (u16 val, unsigned long port)
68 {
69         outw(val, port);
70 }
71
72 static void ide_outsw (unsigned long port, void *addr, u32 count)
73 {
74         outsw(port, addr, count);
75 }
76
77 static void ide_outsl (unsigned long port, void *addr, u32 count)
78 {
79         outsl(port, addr, count);
80 }
81
82 void default_hwif_iops (ide_hwif_t *hwif)
83 {
84         hwif->OUTB      = ide_outb;
85         hwif->OUTBSYNC  = ide_outbsync;
86         hwif->OUTW      = ide_outw;
87         hwif->OUTSW     = ide_outsw;
88         hwif->OUTSL     = ide_outsl;
89         hwif->INB       = ide_inb;
90         hwif->INW       = ide_inw;
91         hwif->INSW      = ide_insw;
92         hwif->INSL      = ide_insl;
93 }
94
95 /*
96  *      MMIO operations, typically used for SATA controllers
97  */
98
99 static u8 ide_mm_inb (unsigned long port)
100 {
101         return (u8) readb((void __iomem *) port);
102 }
103
104 static u16 ide_mm_inw (unsigned long port)
105 {
106         return (u16) readw((void __iomem *) port);
107 }
108
109 static void ide_mm_insw (unsigned long port, void *addr, u32 count)
110 {
111         __ide_mm_insw((void __iomem *) port, addr, count);
112 }
113
114 static void ide_mm_insl (unsigned long port, void *addr, u32 count)
115 {
116         __ide_mm_insl((void __iomem *) port, addr, count);
117 }
118
119 static void ide_mm_outb (u8 value, unsigned long port)
120 {
121         writeb(value, (void __iomem *) port);
122 }
123
124 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
125 {
126         writeb(value, (void __iomem *) port);
127 }
128
129 static void ide_mm_outw (u16 value, unsigned long port)
130 {
131         writew(value, (void __iomem *) port);
132 }
133
134 static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
135 {
136         __ide_mm_outsw((void __iomem *) port, addr, count);
137 }
138
139 static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
140 {
141         __ide_mm_outsl((void __iomem *) port, addr, count);
142 }
143
144 void default_hwif_mmiops (ide_hwif_t *hwif)
145 {
146         hwif->OUTB      = ide_mm_outb;
147         /* Most systems will need to override OUTBSYNC, alas however
148            this one is controller specific! */
149         hwif->OUTBSYNC  = ide_mm_outbsync;
150         hwif->OUTW      = ide_mm_outw;
151         hwif->OUTSW     = ide_mm_outsw;
152         hwif->OUTSL     = ide_mm_outsl;
153         hwif->INB       = ide_mm_inb;
154         hwif->INW       = ide_mm_inw;
155         hwif->INSW      = ide_mm_insw;
156         hwif->INSL      = ide_mm_insl;
157 }
158
159 EXPORT_SYMBOL(default_hwif_mmiops);
160
161 u32 ide_read_24 (ide_drive_t *drive)
162 {
163         u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
164         u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
165         u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
166         return (hcyl<<16)|(lcyl<<8)|sect;
167 }
168
169 void SELECT_DRIVE (ide_drive_t *drive)
170 {
171         if (HWIF(drive)->selectproc)
172                 HWIF(drive)->selectproc(drive);
173         HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
174 }
175
176 EXPORT_SYMBOL(SELECT_DRIVE);
177
178 void SELECT_INTERRUPT (ide_drive_t *drive)
179 {
180         if (HWIF(drive)->intrproc)
181                 HWIF(drive)->intrproc(drive);
182         else
183                 HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
184 }
185
186 void SELECT_MASK (ide_drive_t *drive, int mask)
187 {
188         if (HWIF(drive)->maskproc)
189                 HWIF(drive)->maskproc(drive, mask);
190 }
191
192 void QUIRK_LIST (ide_drive_t *drive)
193 {
194         if (HWIF(drive)->quirkproc)
195                 drive->quirk_list = HWIF(drive)->quirkproc(drive);
196 }
197
198 /*
199  * Some localbus EIDE interfaces require a special access sequence
200  * when using 32-bit I/O instructions to transfer data.  We call this
201  * the "vlb_sync" sequence, which consists of three successive reads
202  * of the sector count register location, with interrupts disabled
203  * to ensure that the reads all happen together.
204  */
205 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
206 {
207         (void) HWIF(drive)->INB(port);
208         (void) HWIF(drive)->INB(port);
209         (void) HWIF(drive)->INB(port);
210 }
211
212 /*
213  * This is used for most PIO data transfers *from* the IDE interface
214  */
215 static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
216 {
217         ide_hwif_t *hwif        = HWIF(drive);
218         u8 io_32bit             = drive->io_32bit;
219
220         if (io_32bit) {
221                 if (io_32bit & 2) {
222                         unsigned long flags;
223                         local_irq_save(flags);
224                         ata_vlb_sync(drive, IDE_NSECTOR_REG);
225                         hwif->INSL(IDE_DATA_REG, buffer, wcount);
226                         local_irq_restore(flags);
227                 } else
228                         hwif->INSL(IDE_DATA_REG, buffer, wcount);
229         } else {
230                 hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
231         }
232 }
233
234 /*
235  * This is used for most PIO data transfers *to* the IDE interface
236  */
237 static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
238 {
239         ide_hwif_t *hwif        = HWIF(drive);
240         u8 io_32bit             = drive->io_32bit;
241
242         if (io_32bit) {
243                 if (io_32bit & 2) {
244                         unsigned long flags;
245                         local_irq_save(flags);
246                         ata_vlb_sync(drive, IDE_NSECTOR_REG);
247                         hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
248                         local_irq_restore(flags);
249                 } else
250                         hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
251         } else {
252                 hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
253         }
254 }
255
256 /*
257  * The following routines are mainly used by the ATAPI drivers.
258  *
259  * These routines will round up any request for an odd number of bytes,
260  * so if an odd bytecount is specified, be sure that there's at least one
261  * extra byte allocated for the buffer.
262  */
263
264 static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
265 {
266         ide_hwif_t *hwif = HWIF(drive);
267
268         ++bytecount;
269 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
270         if (MACH_IS_ATARI || MACH_IS_Q40) {
271                 /* Atari has a byte-swapped IDE interface */
272                 insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
273                 return;
274         }
275 #endif /* CONFIG_ATARI || CONFIG_Q40 */
276         hwif->ata_input_data(drive, buffer, bytecount / 4);
277         if ((bytecount & 0x03) >= 2)
278                 hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
279 }
280
281 static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
282 {
283         ide_hwif_t *hwif = HWIF(drive);
284
285         ++bytecount;
286 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
287         if (MACH_IS_ATARI || MACH_IS_Q40) {
288                 /* Atari has a byte-swapped IDE interface */
289                 outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
290                 return;
291         }
292 #endif /* CONFIG_ATARI || CONFIG_Q40 */
293         hwif->ata_output_data(drive, buffer, bytecount / 4);
294         if ((bytecount & 0x03) >= 2)
295                 hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
296 }
297
298 void default_hwif_transport(ide_hwif_t *hwif)
299 {
300         hwif->ata_input_data            = ata_input_data;
301         hwif->ata_output_data           = ata_output_data;
302         hwif->atapi_input_bytes         = atapi_input_bytes;
303         hwif->atapi_output_bytes        = atapi_output_bytes;
304 }
305
306 /*
307  * Beginning of Taskfile OPCODE Library and feature sets.
308  */
309 void ide_fix_driveid (struct hd_driveid *id)
310 {
311 #ifndef __LITTLE_ENDIAN
312 # ifdef __BIG_ENDIAN
313         int i;
314         u16 *stringcast;
315
316         id->config         = __le16_to_cpu(id->config);
317         id->cyls           = __le16_to_cpu(id->cyls);
318         id->reserved2      = __le16_to_cpu(id->reserved2);
319         id->heads          = __le16_to_cpu(id->heads);
320         id->track_bytes    = __le16_to_cpu(id->track_bytes);
321         id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
322         id->sectors        = __le16_to_cpu(id->sectors);
323         id->vendor0        = __le16_to_cpu(id->vendor0);
324         id->vendor1        = __le16_to_cpu(id->vendor1);
325         id->vendor2        = __le16_to_cpu(id->vendor2);
326         stringcast = (u16 *)&id->serial_no[0];
327         for (i = 0; i < (20/2); i++)
328                 stringcast[i] = __le16_to_cpu(stringcast[i]);
329         id->buf_type       = __le16_to_cpu(id->buf_type);
330         id->buf_size       = __le16_to_cpu(id->buf_size);
331         id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
332         stringcast = (u16 *)&id->fw_rev[0];
333         for (i = 0; i < (8/2); i++)
334                 stringcast[i] = __le16_to_cpu(stringcast[i]);
335         stringcast = (u16 *)&id->model[0];
336         for (i = 0; i < (40/2); i++)
337                 stringcast[i] = __le16_to_cpu(stringcast[i]);
338         id->dword_io       = __le16_to_cpu(id->dword_io);
339         id->reserved50     = __le16_to_cpu(id->reserved50);
340         id->field_valid    = __le16_to_cpu(id->field_valid);
341         id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
342         id->cur_heads      = __le16_to_cpu(id->cur_heads);
343         id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
344         id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
345         id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
346         id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
347         id->dma_1word      = __le16_to_cpu(id->dma_1word);
348         id->dma_mword      = __le16_to_cpu(id->dma_mword);
349         id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
350         id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
351         id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
352         id->eide_pio       = __le16_to_cpu(id->eide_pio);
353         id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
354         for (i = 0; i < 2; ++i)
355                 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
356         for (i = 0; i < 4; ++i)
357                 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
358         id->queue_depth    = __le16_to_cpu(id->queue_depth);
359         for (i = 0; i < 4; ++i)
360                 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
361         id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
362         id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
363         id->command_set_1  = __le16_to_cpu(id->command_set_1);
364         id->command_set_2  = __le16_to_cpu(id->command_set_2);
365         id->cfsse          = __le16_to_cpu(id->cfsse);
366         id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
367         id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
368         id->csf_default    = __le16_to_cpu(id->csf_default);
369         id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
370         id->trseuc         = __le16_to_cpu(id->trseuc);
371         id->trsEuc         = __le16_to_cpu(id->trsEuc);
372         id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
373         id->mprc           = __le16_to_cpu(id->mprc);
374         id->hw_config      = __le16_to_cpu(id->hw_config);
375         id->acoustic       = __le16_to_cpu(id->acoustic);
376         id->msrqs          = __le16_to_cpu(id->msrqs);
377         id->sxfert         = __le16_to_cpu(id->sxfert);
378         id->sal            = __le16_to_cpu(id->sal);
379         id->spg            = __le32_to_cpu(id->spg);
380         id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
381         for (i = 0; i < 22; i++)
382                 id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
383         id->last_lun       = __le16_to_cpu(id->last_lun);
384         id->word127        = __le16_to_cpu(id->word127);
385         id->dlf            = __le16_to_cpu(id->dlf);
386         id->csfo           = __le16_to_cpu(id->csfo);
387         for (i = 0; i < 26; i++)
388                 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
389         id->word156        = __le16_to_cpu(id->word156);
390         for (i = 0; i < 3; i++)
391                 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
392         id->cfa_power      = __le16_to_cpu(id->cfa_power);
393         for (i = 0; i < 14; i++)
394                 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
395         for (i = 0; i < 31; i++)
396                 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
397         for (i = 0; i < 48; i++)
398                 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
399         id->integrity_word  = __le16_to_cpu(id->integrity_word);
400 # else
401 #  error "Please fix <asm/byteorder.h>"
402 # endif
403 #endif
404 }
405
406 /* FIXME: exported for use by the USB storage (isd200.c) code only */
407 EXPORT_SYMBOL(ide_fix_driveid);
408
409 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
410 {
411         u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
412
413         if (byteswap) {
414                 /* convert from big-endian to host byte order */
415                 for (p = end ; p != s;) {
416                         unsigned short *pp = (unsigned short *) (p -= 2);
417                         *pp = ntohs(*pp);
418                 }
419         }
420         /* strip leading blanks */
421         while (s != end && *s == ' ')
422                 ++s;
423         /* compress internal blanks and strip trailing blanks */
424         while (s != end && *s) {
425                 if (*s++ != ' ' || (s != end && *s && *s != ' '))
426                         *p++ = *(s-1);
427         }
428         /* wipe out trailing garbage */
429         while (p != end)
430                 *p++ = '\0';
431 }
432
433 EXPORT_SYMBOL(ide_fixstring);
434
435 /*
436  * Needed for PCI irq sharing
437  */
438 int drive_is_ready (ide_drive_t *drive)
439 {
440         ide_hwif_t *hwif        = HWIF(drive);
441         u8 stat                 = 0;
442
443         if (drive->waiting_for_dma)
444                 return hwif->ide_dma_test_irq(drive);
445
446 #if 0
447         /* need to guarantee 400ns since last command was issued */
448         udelay(1);
449 #endif
450
451 #ifdef CONFIG_IDEPCI_SHARE_IRQ
452         /*
453          * We do a passive status test under shared PCI interrupts on
454          * cards that truly share the ATA side interrupt, but may also share
455          * an interrupt with another pci card/device.  We make no assumptions
456          * about possible isa-pnp and pci-pnp issues yet.
457          */
458         if (IDE_CONTROL_REG)
459                 stat = hwif->INB(IDE_ALTSTATUS_REG);
460         else
461 #endif /* CONFIG_IDEPCI_SHARE_IRQ */
462                 /* Note: this may clear a pending IRQ!! */
463                 stat = hwif->INB(IDE_STATUS_REG);
464
465         if (stat & BUSY_STAT)
466                 /* drive busy:  definitely not interrupting */
467                 return 0;
468
469         /* drive ready: *might* be interrupting */
470         return 1;
471 }
472
473 EXPORT_SYMBOL(drive_is_ready);
474
475 /*
476  * Global for All, and taken from ide-pmac.c. Can be called
477  * with spinlock held & IRQs disabled, so don't schedule !
478  */
479 int wait_for_ready (ide_drive_t *drive, int timeout)
480 {
481         ide_hwif_t *hwif        = HWIF(drive);
482         u8 stat                 = 0;
483
484         while(--timeout) {
485                 stat = hwif->INB(IDE_STATUS_REG);
486                 if (!(stat & BUSY_STAT)) {
487                         if (drive->ready_stat == 0)
488                                 break;
489                         else if ((stat & drive->ready_stat)||(stat & ERR_STAT))
490                                 break;
491                 }
492                 mdelay(1);
493         }
494         if ((stat & ERR_STAT) || timeout <= 0) {
495                 if (stat & ERR_STAT) {
496                         printk(KERN_ERR "%s: wait_for_ready, "
497                                 "error status: %x\n", drive->name, stat);
498                 }
499                 return 1;
500         }
501         return 0;
502 }
503
504 /*
505  * This routine busy-waits for the drive status to be not "busy".
506  * It then checks the status for all of the "good" bits and none
507  * of the "bad" bits, and if all is okay it returns 0.  All other
508  * cases return 1 after invoking ide_error() -- caller should just return.
509  *
510  * This routine should get fixed to not hog the cpu during extra long waits..
511  * That could be done by busy-waiting for the first jiffy or two, and then
512  * setting a timer to wake up at half second intervals thereafter,
513  * until timeout is achieved, before timing out.
514  */
515 int ide_wait_stat (ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
516 {
517         ide_hwif_t *hwif = HWIF(drive);
518         u8 stat;
519         int i;
520         unsigned long flags;
521  
522         /* bail early if we've exceeded max_failures */
523         if (drive->max_failures && (drive->failures > drive->max_failures)) {
524                 *startstop = ide_stopped;
525                 return 1;
526         }
527
528         udelay(1);      /* spec allows drive 400ns to assert "BUSY" */
529         if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
530                 local_irq_set(flags);
531                 timeout += jiffies;
532                 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
533                         if (time_after(jiffies, timeout)) {
534                                 /*
535                                  * One last read after the timeout in case
536                                  * heavy interrupt load made us not make any
537                                  * progress during the timeout..
538                                  */
539                                 stat = hwif->INB(IDE_STATUS_REG);
540                                 if (!(stat & BUSY_STAT))
541                                         break;
542
543                                 local_irq_restore(flags);
544                                 *startstop = ide_error(drive, "status timeout", stat);
545                                 return 1;
546                         }
547                 }
548                 local_irq_restore(flags);
549         }
550         /*
551          * Allow status to settle, then read it again.
552          * A few rare drives vastly violate the 400ns spec here,
553          * so we'll wait up to 10usec for a "good" status
554          * rather than expensively fail things immediately.
555          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
556          */
557         for (i = 0; i < 10; i++) {
558                 udelay(1);
559                 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad))
560                         return 0;
561         }
562         *startstop = ide_error(drive, "status error", stat);
563         return 1;
564 }
565
566 EXPORT_SYMBOL(ide_wait_stat);
567
568 /**
569  *      ide_in_drive_list       -       look for drive in black/white list
570  *      @id: drive identifier
571  *      @drive_table: list to inspect
572  *
573  *      Look for a drive in the blacklist and the whitelist tables
574  *      Returns 1 if the drive is found in the table.
575  */
576
577 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
578 {
579         for ( ; drive_table->id_model; drive_table++)
580                 if ((!strcmp(drive_table->id_model, id->model)) &&
581                     (!drive_table->id_firmware ||
582                      strstr(id->fw_rev, drive_table->id_firmware)))
583                         return 1;
584         return 0;
585 }
586
587 /*
588  * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
589  * We list them here and depend on the device side cable detection for them.
590  */
591 static const struct drive_list_entry ivb_list[] = {
592         { "QUANTUM FIREBALLlct10 05"    , "A03.0900"    },
593         { NULL                          , NULL          }
594 };
595
596 /*
597  *  All hosts that use the 80c ribbon must use!
598  *  The name is derived from upper byte of word 93 and the 80c ribbon.
599  */
600 u8 eighty_ninty_three (ide_drive_t *drive)
601 {
602         ide_hwif_t *hwif = drive->hwif;
603         struct hd_driveid *id = drive->id;
604         int ivb = ide_in_drive_list(id, ivb_list);
605
606         if (hwif->cbl == ATA_CBL_PATA40_SHORT)
607                 return 1;
608
609         if (ivb)
610                 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
611                                   drive->name);
612
613         if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
614                 goto no_80w;
615
616         /* Check for SATA but only if we are ATA5 or higher */
617         if (id->hw_config == 0 && (id->major_rev_num & 0x7FE0))
618                 return 1;
619
620         /*
621          * FIXME:
622          * - change master/slave IDENTIFY order
623          * - force bit13 (80c cable present) check also for !ivb devices
624          *   (unless the slave device is pre-ATA3)
625          */
626 #ifndef CONFIG_IDEDMA_IVB
627         if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
628 #else
629         if (id->hw_config & 0x6000)
630 #endif
631                 return 1;
632
633 no_80w:
634         if (drive->udma33_warned == 1)
635                 return 0;
636
637         printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
638                             "limiting max speed to UDMA33\n",
639                             drive->name,
640                             hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
641
642         drive->udma33_warned = 1;
643
644         return 0;
645 }
646
647 int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
648 {
649         if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
650             (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) &&
651             (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) {
652                 if (eighty_ninty_three(drive) == 0) {
653                         printk(KERN_WARNING "%s: UDMA speeds >UDMA33 cannot "
654                                             "be set\n", drive->name);
655                         return 1;
656                 }
657         }
658
659         return 0;
660 }
661
662 /*
663  * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
664  * 1 : Safe to update drive->id DMA registers.
665  * 0 : OOPs not allowed.
666  */
667 int set_transfer (ide_drive_t *drive, ide_task_t *args)
668 {
669         if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
670             (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) &&
671             (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) &&
672             (drive->id->dma_ultra ||
673              drive->id->dma_mword ||
674              drive->id->dma_1word))
675                 return 1;
676
677         return 0;
678 }
679
680 #ifdef CONFIG_BLK_DEV_IDEDMA
681 static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
682 {
683         if (!drive->crc_count)
684                 return drive->current_speed;
685         drive->crc_count = 0;
686
687         switch(drive->current_speed) {
688                 case XFER_UDMA_7:       return XFER_UDMA_6;
689                 case XFER_UDMA_6:       return XFER_UDMA_5;
690                 case XFER_UDMA_5:       return XFER_UDMA_4;
691                 case XFER_UDMA_4:       return XFER_UDMA_3;
692                 case XFER_UDMA_3:       return XFER_UDMA_2;
693                 case XFER_UDMA_2:       return XFER_UDMA_1;
694                 case XFER_UDMA_1:       return XFER_UDMA_0;
695                         /*
696                          * OOPS we do not goto non Ultra DMA modes
697                          * without iCRC's available we force
698                          * the system to PIO and make the user
699                          * invoke the ATA-1 ATA-2 DMA modes.
700                          */
701                 case XFER_UDMA_0:
702                 default:                return XFER_PIO_4;
703         }
704 }
705 #endif /* CONFIG_BLK_DEV_IDEDMA */
706
707 /*
708  * Update the 
709  */
710 int ide_driveid_update (ide_drive_t *drive)
711 {
712         ide_hwif_t *hwif        = HWIF(drive);
713         struct hd_driveid *id;
714 #if 0
715         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
716         if (!id)
717                 return 0;
718
719         taskfile_lib_get_identify(drive, (char *)&id);
720
721         ide_fix_driveid(id);
722         if (id) {
723                 drive->id->dma_ultra = id->dma_ultra;
724                 drive->id->dma_mword = id->dma_mword;
725                 drive->id->dma_1word = id->dma_1word;
726                 /* anything more ? */
727                 kfree(id);
728         }
729         return 1;
730 #else
731         /*
732          * Re-read drive->id for possible DMA mode
733          * change (copied from ide-probe.c)
734          */
735         unsigned long timeout, flags;
736
737         SELECT_MASK(drive, 1);
738         if (IDE_CONTROL_REG)
739                 hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
740         msleep(50);
741         hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
742         timeout = jiffies + WAIT_WORSTCASE;
743         do {
744                 if (time_after(jiffies, timeout)) {
745                         SELECT_MASK(drive, 0);
746                         return 0;       /* drive timed-out */
747                 }
748                 msleep(50);     /* give drive a breather */
749         } while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
750         msleep(50);     /* wait for IRQ and DRQ_STAT */
751         if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
752                 SELECT_MASK(drive, 0);
753                 printk("%s: CHECK for good STATUS\n", drive->name);
754                 return 0;
755         }
756         local_irq_save(flags);
757         SELECT_MASK(drive, 0);
758         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
759         if (!id) {
760                 local_irq_restore(flags);
761                 return 0;
762         }
763         ata_input_data(drive, id, SECTOR_WORDS);
764         (void) hwif->INB(IDE_STATUS_REG);       /* clear drive IRQ */
765         local_irq_enable();
766         local_irq_restore(flags);
767         ide_fix_driveid(id);
768         if (id) {
769                 drive->id->dma_ultra = id->dma_ultra;
770                 drive->id->dma_mword = id->dma_mword;
771                 drive->id->dma_1word = id->dma_1word;
772                 /* anything more ? */
773                 kfree(id);
774         }
775
776         return 1;
777 #endif
778 }
779
780 /*
781  * Similar to ide_wait_stat(), except it never calls ide_error internally.
782  * This is a kludge to handle the new ide_config_drive_speed() function,
783  * and should not otherwise be used anywhere.  Eventually, the tuneproc's
784  * should be updated to return ide_startstop_t, in which case we can get
785  * rid of this abomination again.  :)   -ml
786  *
787  * It is gone..........
788  *
789  * const char *msg == consider adding for verbose errors.
790  */
791 int ide_config_drive_speed (ide_drive_t *drive, u8 speed)
792 {
793         ide_hwif_t *hwif        = HWIF(drive);
794         int     i, error        = 1;
795         u8 stat;
796
797 //      while (HWGROUP(drive)->busy)
798 //              msleep(50);
799
800 #ifdef CONFIG_BLK_DEV_IDEDMA
801         if (hwif->ide_dma_check)         /* check if host supports DMA */
802                 hwif->dma_host_off(drive);
803 #endif
804
805         /*
806          * Don't use ide_wait_cmd here - it will
807          * attempt to set_geometry and recalibrate,
808          * but for some reason these don't work at
809          * this point (lost interrupt).
810          */
811         /*
812          * Select the drive, and issue the SETFEATURES command
813          */
814         disable_irq_nosync(hwif->irq);
815         
816         /*
817          *      FIXME: we race against the running IRQ here if
818          *      this is called from non IRQ context. If we use
819          *      disable_irq() we hang on the error path. Work
820          *      is needed.
821          */
822          
823         udelay(1);
824         SELECT_DRIVE(drive);
825         SELECT_MASK(drive, 0);
826         udelay(1);
827         if (IDE_CONTROL_REG)
828                 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
829         hwif->OUTB(speed, IDE_NSECTOR_REG);
830         hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
831         hwif->OUTB(WIN_SETFEATURES, IDE_COMMAND_REG);
832         if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
833                 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
834         udelay(1);
835         /*
836          * Wait for drive to become non-BUSY
837          */
838         if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
839                 unsigned long flags, timeout;
840                 local_irq_set(flags);
841                 timeout = jiffies + WAIT_CMD;
842                 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
843                         if (time_after(jiffies, timeout))
844                                 break;
845                 }
846                 local_irq_restore(flags);
847         }
848
849         /*
850          * Allow status to settle, then read it again.
851          * A few rare drives vastly violate the 400ns spec here,
852          * so we'll wait up to 10usec for a "good" status
853          * rather than expensively fail things immediately.
854          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
855          */
856         for (i = 0; i < 10; i++) {
857                 udelay(1);
858                 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), DRIVE_READY, BUSY_STAT|DRQ_STAT|ERR_STAT)) {
859                         error = 0;
860                         break;
861                 }
862         }
863
864         SELECT_MASK(drive, 0);
865
866         enable_irq(hwif->irq);
867
868         if (error) {
869                 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
870                 return error;
871         }
872
873         drive->id->dma_ultra &= ~0xFF00;
874         drive->id->dma_mword &= ~0x0F00;
875         drive->id->dma_1word &= ~0x0F00;
876
877 #ifdef CONFIG_BLK_DEV_IDEDMA
878         if (speed >= XFER_SW_DMA_0)
879                 hwif->dma_host_on(drive);
880         else if (hwif->ide_dma_check)   /* check if host supports DMA */
881                 hwif->dma_off_quietly(drive);
882 #endif
883
884         switch(speed) {
885                 case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
886                 case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
887                 case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
888                 case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
889                 case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
890                 case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
891                 case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
892                 case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
893                 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
894                 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
895                 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
896                 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
897                 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
898                 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
899                 default: break;
900         }
901         if (!drive->init_speed)
902                 drive->init_speed = speed;
903         drive->current_speed = speed;
904         return error;
905 }
906
907 EXPORT_SYMBOL(ide_config_drive_speed);
908
909
910 /*
911  * This should get invoked any time we exit the driver to
912  * wait for an interrupt response from a drive.  handler() points
913  * at the appropriate code to handle the next interrupt, and a
914  * timer is started to prevent us from waiting forever in case
915  * something goes wrong (see the ide_timer_expiry() handler later on).
916  *
917  * See also ide_execute_command
918  */
919 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
920                       unsigned int timeout, ide_expiry_t *expiry)
921 {
922         ide_hwgroup_t *hwgroup = HWGROUP(drive);
923
924         if (hwgroup->handler != NULL) {
925                 printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
926                         "old=%p, new=%p\n",
927                         drive->name, hwgroup->handler, handler);
928         }
929         hwgroup->handler        = handler;
930         hwgroup->expiry         = expiry;
931         hwgroup->timer.expires  = jiffies + timeout;
932         hwgroup->req_gen_timer = hwgroup->req_gen;
933         add_timer(&hwgroup->timer);
934 }
935
936 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
937                       unsigned int timeout, ide_expiry_t *expiry)
938 {
939         unsigned long flags;
940         spin_lock_irqsave(&ide_lock, flags);
941         __ide_set_handler(drive, handler, timeout, expiry);
942         spin_unlock_irqrestore(&ide_lock, flags);
943 }
944
945 EXPORT_SYMBOL(ide_set_handler);
946  
947 /**
948  *      ide_execute_command     -       execute an IDE command
949  *      @drive: IDE drive to issue the command against
950  *      @command: command byte to write
951  *      @handler: handler for next phase
952  *      @timeout: timeout for command
953  *      @expiry:  handler to run on timeout
954  *
955  *      Helper function to issue an IDE command. This handles the
956  *      atomicity requirements, command timing and ensures that the 
957  *      handler and IRQ setup do not race. All IDE command kick off
958  *      should go via this function or do equivalent locking.
959  */
960  
961 void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry)
962 {
963         unsigned long flags;
964         ide_hwgroup_t *hwgroup = HWGROUP(drive);
965         ide_hwif_t *hwif = HWIF(drive);
966         
967         spin_lock_irqsave(&ide_lock, flags);
968         
969         BUG_ON(hwgroup->handler);
970         hwgroup->handler        = handler;
971         hwgroup->expiry         = expiry;
972         hwgroup->timer.expires  = jiffies + timeout;
973         hwgroup->req_gen_timer = hwgroup->req_gen;
974         add_timer(&hwgroup->timer);
975         hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
976         /* Drive takes 400nS to respond, we must avoid the IRQ being
977            serviced before that. 
978            
979            FIXME: we could skip this delay with care on non shared
980            devices 
981         */
982         ndelay(400);
983         spin_unlock_irqrestore(&ide_lock, flags);
984 }
985
986 EXPORT_SYMBOL(ide_execute_command);
987
988
989 /* needed below */
990 static ide_startstop_t do_reset1 (ide_drive_t *, int);
991
992 /*
993  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
994  * during an atapi drive reset operation. If the drive has not yet responded,
995  * and we have not yet hit our maximum waiting time, then the timer is restarted
996  * for another 50ms.
997  */
998 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
999 {
1000         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
1001         ide_hwif_t *hwif        = HWIF(drive);
1002         u8 stat;
1003
1004         SELECT_DRIVE(drive);
1005         udelay (10);
1006
1007         if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
1008                 printk("%s: ATAPI reset complete\n", drive->name);
1009         } else {
1010                 if (time_before(jiffies, hwgroup->poll_timeout)) {
1011                         BUG_ON(HWGROUP(drive)->handler != NULL);
1012                         ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1013                         /* continue polling */
1014                         return ide_started;
1015                 }
1016                 /* end of polling */
1017                 hwgroup->polling = 0;
1018                 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
1019                                 drive->name, stat);
1020                 /* do it the old fashioned way */
1021                 return do_reset1(drive, 1);
1022         }
1023         /* done polling */
1024         hwgroup->polling = 0;
1025         hwgroup->resetting = 0;
1026         return ide_stopped;
1027 }
1028
1029 /*
1030  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
1031  * during an ide reset operation. If the drives have not yet responded,
1032  * and we have not yet hit our maximum waiting time, then the timer is restarted
1033  * for another 50ms.
1034  */
1035 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
1036 {
1037         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
1038         ide_hwif_t *hwif        = HWIF(drive);
1039         u8 tmp;
1040
1041         if (hwif->reset_poll != NULL) {
1042                 if (hwif->reset_poll(drive)) {
1043                         printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
1044                                 hwif->name, drive->name);
1045                         return ide_stopped;
1046                 }
1047         }
1048
1049         if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
1050                 if (time_before(jiffies, hwgroup->poll_timeout)) {
1051                         BUG_ON(HWGROUP(drive)->handler != NULL);
1052                         ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1053                         /* continue polling */
1054                         return ide_started;
1055                 }
1056                 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1057                 drive->failures++;
1058         } else  {
1059                 printk("%s: reset: ", hwif->name);
1060                 if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
1061                         printk("success\n");
1062                         drive->failures = 0;
1063                 } else {
1064                         drive->failures++;
1065                         printk("master: ");
1066                         switch (tmp & 0x7f) {
1067                                 case 1: printk("passed");
1068                                         break;
1069                                 case 2: printk("formatter device error");
1070                                         break;
1071                                 case 3: printk("sector buffer error");
1072                                         break;
1073                                 case 4: printk("ECC circuitry error");
1074                                         break;
1075                                 case 5: printk("controlling MPU error");
1076                                         break;
1077                                 default:printk("error (0x%02x?)", tmp);
1078                         }
1079                         if (tmp & 0x80)
1080                                 printk("; slave: failed");
1081                         printk("\n");
1082                 }
1083         }
1084         hwgroup->polling = 0;   /* done polling */
1085         hwgroup->resetting = 0; /* done reset attempt */
1086         return ide_stopped;
1087 }
1088
1089 static void check_dma_crc(ide_drive_t *drive)
1090 {
1091 #ifdef CONFIG_BLK_DEV_IDEDMA
1092         if (drive->crc_count) {
1093                 drive->hwif->dma_off_quietly(drive);
1094                 ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1095                 if (drive->current_speed >= XFER_SW_DMA_0)
1096                         (void) HWIF(drive)->ide_dma_on(drive);
1097         } else
1098                 ide_dma_off(drive);
1099 #endif
1100 }
1101
1102 static void ide_disk_pre_reset(ide_drive_t *drive)
1103 {
1104         int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1105
1106         drive->special.all = 0;
1107         drive->special.b.set_geometry = legacy;
1108         drive->special.b.recalibrate  = legacy;
1109         if (OK_TO_RESET_CONTROLLER)
1110                 drive->mult_count = 0;
1111         if (!drive->keep_settings && !drive->using_dma)
1112                 drive->mult_req = 0;
1113         if (drive->mult_req != drive->mult_count)
1114                 drive->special.b.set_multmode = 1;
1115 }
1116
1117 static void pre_reset(ide_drive_t *drive)
1118 {
1119         if (drive->media == ide_disk)
1120                 ide_disk_pre_reset(drive);
1121         else
1122                 drive->post_reset = 1;
1123
1124         if (!drive->keep_settings) {
1125                 if (drive->using_dma) {
1126                         check_dma_crc(drive);
1127                 } else {
1128                         drive->unmask = 0;
1129                         drive->io_32bit = 0;
1130                 }
1131                 return;
1132         }
1133         if (drive->using_dma)
1134                 check_dma_crc(drive);
1135
1136         if (HWIF(drive)->pre_reset != NULL)
1137                 HWIF(drive)->pre_reset(drive);
1138
1139         if (drive->current_speed != 0xff)
1140                 drive->desired_speed = drive->current_speed;
1141         drive->current_speed = 0xff;
1142 }
1143
1144 /*
1145  * do_reset1() attempts to recover a confused drive by resetting it.
1146  * Unfortunately, resetting a disk drive actually resets all devices on
1147  * the same interface, so it can really be thought of as resetting the
1148  * interface rather than resetting the drive.
1149  *
1150  * ATAPI devices have their own reset mechanism which allows them to be
1151  * individually reset without clobbering other devices on the same interface.
1152  *
1153  * Unfortunately, the IDE interface does not generate an interrupt to let
1154  * us know when the reset operation has finished, so we must poll for this.
1155  * Equally poor, though, is the fact that this may a very long time to complete,
1156  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1157  * we set a timer to poll at 50ms intervals.
1158  */
1159 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1160 {
1161         unsigned int unit;
1162         unsigned long flags;
1163         ide_hwif_t *hwif;
1164         ide_hwgroup_t *hwgroup;
1165         
1166         spin_lock_irqsave(&ide_lock, flags);
1167         hwif = HWIF(drive);
1168         hwgroup = HWGROUP(drive);
1169
1170         /* We must not reset with running handlers */
1171         BUG_ON(hwgroup->handler != NULL);
1172
1173         /* For an ATAPI device, first try an ATAPI SRST. */
1174         if (drive->media != ide_disk && !do_not_try_atapi) {
1175                 hwgroup->resetting = 1;
1176                 pre_reset(drive);
1177                 SELECT_DRIVE(drive);
1178                 udelay (20);
1179                 hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1180                 ndelay(400);
1181                 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1182                 hwgroup->polling = 1;
1183                 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1184                 spin_unlock_irqrestore(&ide_lock, flags);
1185                 return ide_started;
1186         }
1187
1188         /*
1189          * First, reset any device state data we were maintaining
1190          * for any of the drives on this interface.
1191          */
1192         for (unit = 0; unit < MAX_DRIVES; ++unit)
1193                 pre_reset(&hwif->drives[unit]);
1194
1195 #if OK_TO_RESET_CONTROLLER
1196         if (!IDE_CONTROL_REG) {
1197                 spin_unlock_irqrestore(&ide_lock, flags);
1198                 return ide_stopped;
1199         }
1200
1201         hwgroup->resetting = 1;
1202         /*
1203          * Note that we also set nIEN while resetting the device,
1204          * to mask unwanted interrupts from the interface during the reset.
1205          * However, due to the design of PC hardware, this will cause an
1206          * immediate interrupt due to the edge transition it produces.
1207          * This single interrupt gives us a "fast poll" for drives that
1208          * recover from reset very quickly, saving us the first 50ms wait time.
1209          */
1210         /* set SRST and nIEN */
1211         hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1212         /* more than enough time */
1213         udelay(10);
1214         if (drive->quirk_list == 2) {
1215                 /* clear SRST and nIEN */
1216                 hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1217         } else {
1218                 /* clear SRST, leave nIEN */
1219                 hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1220         }
1221         /* more than enough time */
1222         udelay(10);
1223         hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1224         hwgroup->polling = 1;
1225         __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1226
1227         /*
1228          * Some weird controller like resetting themselves to a strange
1229          * state when the disks are reset this way. At least, the Winbond
1230          * 553 documentation says that
1231          */
1232         if (hwif->resetproc != NULL) {
1233                 hwif->resetproc(drive);
1234         }
1235         
1236 #endif  /* OK_TO_RESET_CONTROLLER */
1237
1238         spin_unlock_irqrestore(&ide_lock, flags);
1239         return ide_started;
1240 }
1241
1242 /*
1243  * ide_do_reset() is the entry point to the drive/interface reset code.
1244  */
1245
1246 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1247 {
1248         return do_reset1(drive, 0);
1249 }
1250
1251 EXPORT_SYMBOL(ide_do_reset);
1252
1253 /*
1254  * ide_wait_not_busy() waits for the currently selected device on the hwif
1255  * to report a non-busy status, see comments in probe_hwif().
1256  */
1257 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1258 {
1259         u8 stat = 0;
1260
1261         while(timeout--) {
1262                 /*
1263                  * Turn this into a schedule() sleep once I'm sure
1264                  * about locking issues (2.5 work ?).
1265                  */
1266                 mdelay(1);
1267                 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1268                 if ((stat & BUSY_STAT) == 0)
1269                         return 0;
1270                 /*
1271                  * Assume a value of 0xff means nothing is connected to
1272                  * the interface and it doesn't implement the pull-down
1273                  * resistor on D7.
1274                  */
1275                 if (stat == 0xff)
1276                         return -ENODEV;
1277                 touch_softlockup_watchdog();
1278                 touch_nmi_watchdog();
1279         }
1280         return -EBUSY;
1281 }
1282
1283 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1284