]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/ide/ide-io.c
ide: respect current DMA setting during resume
[linux-2.6-omap-h63xx.git] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
52
53 #include <asm/byteorder.h>
54 #include <asm/irq.h>
55 #include <asm/uaccess.h>
56 #include <asm/io.h>
57
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59                              int uptodate, unsigned int nr_bytes, int dequeue)
60 {
61         int ret = 1;
62         int error = 0;
63
64         if (uptodate <= 0)
65                 error = uptodate ? uptodate : -EIO;
66
67         /*
68          * if failfast is set on a request, override number of sectors and
69          * complete the whole request right now
70          */
71         if (blk_noretry_request(rq) && error)
72                 nr_bytes = rq->hard_nr_sectors << 9;
73
74         if (!blk_fs_request(rq) && error && !rq->errors)
75                 rq->errors = -EIO;
76
77         /*
78          * decide whether to reenable DMA -- 3 is a random magic for now,
79          * if we DMA timeout more than 3 times, just stay in PIO
80          */
81         if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82             drive->retry_pio <= 3) {
83                 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84                 ide_dma_on(drive);
85         }
86
87         if (!__blk_end_request(rq, error, nr_bytes)) {
88                 if (dequeue)
89                         HWGROUP(drive)->rq = NULL;
90                 ret = 0;
91         }
92
93         return ret;
94 }
95
96 /**
97  *      ide_end_request         -       complete an IDE I/O
98  *      @drive: IDE device for the I/O
99  *      @uptodate:
100  *      @nr_sectors: number of sectors completed
101  *
102  *      This is our end_request wrapper function. We complete the I/O
103  *      update random number input and dequeue the request, which if
104  *      it was tagged may be out of order.
105  */
106
107 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108 {
109         unsigned int nr_bytes = nr_sectors << 9;
110         struct request *rq;
111         unsigned long flags;
112         int ret = 1;
113
114         /*
115          * room for locking improvements here, the calls below don't
116          * need the queue lock held at all
117          */
118         spin_lock_irqsave(&ide_lock, flags);
119         rq = HWGROUP(drive)->rq;
120
121         if (!nr_bytes) {
122                 if (blk_pc_request(rq))
123                         nr_bytes = rq->data_len;
124                 else
125                         nr_bytes = rq->hard_cur_sectors << 9;
126         }
127
128         ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
129
130         spin_unlock_irqrestore(&ide_lock, flags);
131         return ret;
132 }
133 EXPORT_SYMBOL(ide_end_request);
134
135 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
136 {
137         struct request_pm_state *pm = rq->data;
138
139         if (drive->media != ide_disk)
140                 return;
141
142         switch (pm->pm_step) {
143         case IDE_PM_FLUSH_CACHE:        /* Suspend step 1 (flush cache) */
144                 if (pm->pm_state == PM_EVENT_FREEZE)
145                         pm->pm_step = IDE_PM_COMPLETED;
146                 else
147                         pm->pm_step = IDE_PM_STANDBY;
148                 break;
149         case IDE_PM_STANDBY:            /* Suspend step 2 (standby) */
150                 pm->pm_step = IDE_PM_COMPLETED;
151                 break;
152         case IDE_PM_RESTORE_PIO:        /* Resume step 1 (restore PIO) */
153                 pm->pm_step = IDE_PM_IDLE;
154                 break;
155         case IDE_PM_IDLE:               /* Resume step 2 (idle)*/
156                 pm->pm_step = IDE_PM_RESTORE_DMA;
157                 break;
158         }
159 }
160
161 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
162 {
163         struct request_pm_state *pm = rq->data;
164         ide_task_t *args = rq->special;
165
166         memset(args, 0, sizeof(*args));
167
168         switch (pm->pm_step) {
169         case IDE_PM_FLUSH_CACHE:        /* Suspend step 1 (flush cache) */
170                 if (drive->media != ide_disk)
171                         break;
172                 /* Not supported? Switch to next step now. */
173                 if (ata_id_flush_enabled(drive->id) == 0 ||
174                     (drive->dev_flags & IDE_DFLAG_WCACHE) == 0) {
175                         ide_complete_power_step(drive, rq, 0, 0);
176                         return ide_stopped;
177                 }
178                 if (ata_id_flush_ext_enabled(drive->id))
179                         args->tf.command = ATA_CMD_FLUSH_EXT;
180                 else
181                         args->tf.command = ATA_CMD_FLUSH;
182                 goto out_do_tf;
183         case IDE_PM_STANDBY:            /* Suspend step 2 (standby) */
184                 args->tf.command = ATA_CMD_STANDBYNOW1;
185                 goto out_do_tf;
186         case IDE_PM_RESTORE_PIO:        /* Resume step 1 (restore PIO) */
187                 ide_set_max_pio(drive);
188                 /*
189                  * skip IDE_PM_IDLE for ATAPI devices
190                  */
191                 if (drive->media != ide_disk)
192                         pm->pm_step = IDE_PM_RESTORE_DMA;
193                 else
194                         ide_complete_power_step(drive, rq, 0, 0);
195                 return ide_stopped;
196         case IDE_PM_IDLE:               /* Resume step 2 (idle) */
197                 args->tf.command = ATA_CMD_IDLEIMMEDIATE;
198                 goto out_do_tf;
199         case IDE_PM_RESTORE_DMA:        /* Resume step 3 (restore DMA) */
200                 /*
201                  * Right now, all we do is call ide_set_dma(drive),
202                  * we could be smarter and check for current xfer_speed
203                  * in struct drive etc...
204                  */
205                 if (drive->hwif->dma_ops == NULL)
206                         break;
207                 if (drive->dev_flags & IDE_DFLAG_USING_DMA)
208                         ide_set_dma(drive);
209                 break;
210         }
211
212         pm->pm_step = IDE_PM_COMPLETED;
213         return ide_stopped;
214
215 out_do_tf:
216         args->tf_flags   = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
217         args->data_phase = TASKFILE_NO_DATA;
218         return do_rw_taskfile(drive, args);
219 }
220
221 /**
222  *      ide_end_dequeued_request        -       complete an IDE I/O
223  *      @drive: IDE device for the I/O
224  *      @uptodate:
225  *      @nr_sectors: number of sectors completed
226  *
227  *      Complete an I/O that is no longer on the request queue. This
228  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
229  *      We must still finish the old request but we must not tamper with the
230  *      queue in the meantime.
231  *
232  *      NOTE: This path does not handle barrier, but barrier is not supported
233  *      on ide-cd anyway.
234  */
235
236 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
237                              int uptodate, int nr_sectors)
238 {
239         unsigned long flags;
240         int ret;
241
242         spin_lock_irqsave(&ide_lock, flags);
243         BUG_ON(!blk_rq_started(rq));
244         ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
245         spin_unlock_irqrestore(&ide_lock, flags);
246
247         return ret;
248 }
249 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
250
251
252 /**
253  *      ide_complete_pm_request - end the current Power Management request
254  *      @drive: target drive
255  *      @rq: request
256  *
257  *      This function cleans up the current PM request and stops the queue
258  *      if necessary.
259  */
260 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
261 {
262         unsigned long flags;
263
264 #ifdef DEBUG_PM
265         printk("%s: completing PM request, %s\n", drive->name,
266                blk_pm_suspend_request(rq) ? "suspend" : "resume");
267 #endif
268         spin_lock_irqsave(&ide_lock, flags);
269         if (blk_pm_suspend_request(rq)) {
270                 blk_stop_queue(drive->queue);
271         } else {
272                 drive->dev_flags &= ~IDE_DFLAG_BLOCKED;
273                 blk_start_queue(drive->queue);
274         }
275         HWGROUP(drive)->rq = NULL;
276         if (__blk_end_request(rq, 0, 0))
277                 BUG();
278         spin_unlock_irqrestore(&ide_lock, flags);
279 }
280
281 /**
282  *      ide_end_drive_cmd       -       end an explicit drive command
283  *      @drive: command 
284  *      @stat: status bits
285  *      @err: error bits
286  *
287  *      Clean up after success/failure of an explicit drive command.
288  *      These get thrown onto the queue so they are synchronized with
289  *      real I/O operations on the drive.
290  *
291  *      In LBA48 mode we have to read the register set twice to get
292  *      all the extra information out.
293  */
294  
295 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
296 {
297         unsigned long flags;
298         struct request *rq;
299
300         spin_lock_irqsave(&ide_lock, flags);
301         rq = HWGROUP(drive)->rq;
302         spin_unlock_irqrestore(&ide_lock, flags);
303
304         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
305                 ide_task_t *task = (ide_task_t *)rq->special;
306
307                 if (rq->errors == 0)
308                         rq->errors = !OK_STAT(stat, ATA_DRDY, BAD_STAT);
309
310                 if (task) {
311                         struct ide_taskfile *tf = &task->tf;
312
313                         tf->error = err;
314                         tf->status = stat;
315
316                         drive->hwif->tp_ops->tf_read(drive, task);
317
318                         if (task->tf_flags & IDE_TFLAG_DYN)
319                                 kfree(task);
320                 }
321         } else if (blk_pm_request(rq)) {
322                 struct request_pm_state *pm = rq->data;
323 #ifdef DEBUG_PM
324                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
325                         drive->name, rq->pm->pm_step, stat, err);
326 #endif
327                 ide_complete_power_step(drive, rq, stat, err);
328                 if (pm->pm_step == IDE_PM_COMPLETED)
329                         ide_complete_pm_request(drive, rq);
330                 return;
331         }
332
333         spin_lock_irqsave(&ide_lock, flags);
334         HWGROUP(drive)->rq = NULL;
335         rq->errors = err;
336         if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
337                                        blk_rq_bytes(rq))))
338                 BUG();
339         spin_unlock_irqrestore(&ide_lock, flags);
340 }
341
342 EXPORT_SYMBOL(ide_end_drive_cmd);
343
344 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
345 {
346         if (rq->rq_disk) {
347                 ide_driver_t *drv;
348
349                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
350                 drv->end_request(drive, 0, 0);
351         } else
352                 ide_end_request(drive, 0, 0);
353 }
354
355 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
356 {
357         ide_hwif_t *hwif = drive->hwif;
358
359         if ((stat & ATA_BUSY) ||
360             ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
361                 /* other bits are useless when BUSY */
362                 rq->errors |= ERROR_RESET;
363         } else if (stat & ATA_ERR) {
364                 /* err has different meaning on cdrom and tape */
365                 if (err == ATA_ABORTED) {
366                         if ((drive->dev_flags & IDE_DFLAG_LBA) &&
367                             /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
368                             hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
369                                 return ide_stopped;
370                 } else if ((err & BAD_CRC) == BAD_CRC) {
371                         /* UDMA crc error, just retry the operation */
372                         drive->crc_count++;
373                 } else if (err & (ATA_BBK | ATA_UNC)) {
374                         /* retries won't help these */
375                         rq->errors = ERROR_MAX;
376                 } else if (err & ATA_TRK0NF) {
377                         /* help it find track zero */
378                         rq->errors |= ERROR_RECAL;
379                 }
380         }
381
382         if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
383             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
384                 int nsect = drive->mult_count ? drive->mult_count : 1;
385
386                 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
387         }
388
389         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
390                 ide_kill_rq(drive, rq);
391                 return ide_stopped;
392         }
393
394         if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
395                 rq->errors |= ERROR_RESET;
396
397         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
398                 ++rq->errors;
399                 return ide_do_reset(drive);
400         }
401
402         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
403                 drive->special.b.recalibrate = 1;
404
405         ++rq->errors;
406
407         return ide_stopped;
408 }
409
410 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
411 {
412         ide_hwif_t *hwif = drive->hwif;
413
414         if ((stat & ATA_BUSY) ||
415             ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
416                 /* other bits are useless when BUSY */
417                 rq->errors |= ERROR_RESET;
418         } else {
419                 /* add decoding error stuff */
420         }
421
422         if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
423                 /* force an abort */
424                 hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
425
426         if (rq->errors >= ERROR_MAX) {
427                 ide_kill_rq(drive, rq);
428         } else {
429                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
430                         ++rq->errors;
431                         return ide_do_reset(drive);
432                 }
433                 ++rq->errors;
434         }
435
436         return ide_stopped;
437 }
438
439 ide_startstop_t
440 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
441 {
442         if (drive->media == ide_disk)
443                 return ide_ata_error(drive, rq, stat, err);
444         return ide_atapi_error(drive, rq, stat, err);
445 }
446
447 EXPORT_SYMBOL_GPL(__ide_error);
448
449 /**
450  *      ide_error       -       handle an error on the IDE
451  *      @drive: drive the error occurred on
452  *      @msg: message to report
453  *      @stat: status bits
454  *
455  *      ide_error() takes action based on the error returned by the drive.
456  *      For normal I/O that may well include retries. We deal with
457  *      both new-style (taskfile) and old style command handling here.
458  *      In the case of taskfile command handling there is work left to
459  *      do
460  */
461  
462 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
463 {
464         struct request *rq;
465         u8 err;
466
467         err = ide_dump_status(drive, msg, stat);
468
469         if ((rq = HWGROUP(drive)->rq) == NULL)
470                 return ide_stopped;
471
472         /* retry only "normal" I/O: */
473         if (!blk_fs_request(rq)) {
474                 rq->errors = 1;
475                 ide_end_drive_cmd(drive, stat, err);
476                 return ide_stopped;
477         }
478
479         if (rq->rq_disk) {
480                 ide_driver_t *drv;
481
482                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
483                 return drv->error(drive, rq, stat, err);
484         } else
485                 return __ide_error(drive, rq, stat, err);
486 }
487
488 EXPORT_SYMBOL_GPL(ide_error);
489
490 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
491 {
492         tf->nsect   = drive->sect;
493         tf->lbal    = drive->sect;
494         tf->lbam    = drive->cyl;
495         tf->lbah    = drive->cyl >> 8;
496         tf->device  = (drive->head - 1) | drive->select;
497         tf->command = ATA_CMD_INIT_DEV_PARAMS;
498 }
499
500 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
501 {
502         tf->nsect   = drive->sect;
503         tf->command = ATA_CMD_RESTORE;
504 }
505
506 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
507 {
508         tf->nsect   = drive->mult_req;
509         tf->command = ATA_CMD_SET_MULTI;
510 }
511
512 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
513 {
514         special_t *s = &drive->special;
515         ide_task_t args;
516
517         memset(&args, 0, sizeof(ide_task_t));
518         args.data_phase = TASKFILE_NO_DATA;
519
520         if (s->b.set_geometry) {
521                 s->b.set_geometry = 0;
522                 ide_tf_set_specify_cmd(drive, &args.tf);
523         } else if (s->b.recalibrate) {
524                 s->b.recalibrate = 0;
525                 ide_tf_set_restore_cmd(drive, &args.tf);
526         } else if (s->b.set_multmode) {
527                 s->b.set_multmode = 0;
528                 ide_tf_set_setmult_cmd(drive, &args.tf);
529         } else if (s->all) {
530                 int special = s->all;
531                 s->all = 0;
532                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
533                 return ide_stopped;
534         }
535
536         args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
537                         IDE_TFLAG_CUSTOM_HANDLER;
538
539         do_rw_taskfile(drive, &args);
540
541         return ide_started;
542 }
543
544 /**
545  *      do_special              -       issue some special commands
546  *      @drive: drive the command is for
547  *
548  *      do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
549  *      ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
550  *
551  *      It used to do much more, but has been scaled back.
552  */
553
554 static ide_startstop_t do_special (ide_drive_t *drive)
555 {
556         special_t *s = &drive->special;
557
558 #ifdef DEBUG
559         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
560 #endif
561         if (drive->media == ide_disk)
562                 return ide_disk_special(drive);
563
564         s->all = 0;
565         drive->mult_req = 0;
566         return ide_stopped;
567 }
568
569 void ide_map_sg(ide_drive_t *drive, struct request *rq)
570 {
571         ide_hwif_t *hwif = drive->hwif;
572         struct scatterlist *sg = hwif->sg_table;
573
574         if (hwif->sg_mapped)    /* needed by ide-scsi */
575                 return;
576
577         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
578                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
579         } else {
580                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
581                 hwif->sg_nents = 1;
582         }
583 }
584
585 EXPORT_SYMBOL_GPL(ide_map_sg);
586
587 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
588 {
589         ide_hwif_t *hwif = drive->hwif;
590
591         hwif->nsect = hwif->nleft = rq->nr_sectors;
592         hwif->cursg_ofs = 0;
593         hwif->cursg = NULL;
594 }
595
596 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
597
598 /**
599  *      execute_drive_command   -       issue special drive command
600  *      @drive: the drive to issue the command on
601  *      @rq: the request structure holding the command
602  *
603  *      execute_drive_cmd() issues a special drive command,  usually 
604  *      initiated by ioctl() from the external hdparm program. The
605  *      command can be a drive command, drive task or taskfile 
606  *      operation. Weirdly you can call it with NULL to wait for
607  *      all commands to finish. Don't do this as that is due to change
608  */
609
610 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
611                 struct request *rq)
612 {
613         ide_hwif_t *hwif = HWIF(drive);
614         ide_task_t *task = rq->special;
615
616         if (task) {
617                 hwif->data_phase = task->data_phase;
618
619                 switch (hwif->data_phase) {
620                 case TASKFILE_MULTI_OUT:
621                 case TASKFILE_OUT:
622                 case TASKFILE_MULTI_IN:
623                 case TASKFILE_IN:
624                         ide_init_sg_cmd(drive, rq);
625                         ide_map_sg(drive, rq);
626                 default:
627                         break;
628                 }
629
630                 return do_rw_taskfile(drive, task);
631         }
632
633         /*
634          * NULL is actually a valid way of waiting for
635          * all current requests to be flushed from the queue.
636          */
637 #ifdef DEBUG
638         printk("%s: DRIVE_CMD (null)\n", drive->name);
639 #endif
640         ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
641                           ide_read_error(drive));
642
643         return ide_stopped;
644 }
645
646 int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
647                        int arg)
648 {
649         struct request_queue *q = drive->queue;
650         struct request *rq;
651         int ret = 0;
652
653         if (!(setting->flags & DS_SYNC))
654                 return setting->set(drive, arg);
655
656         rq = blk_get_request(q, READ, __GFP_WAIT);
657         rq->cmd_type = REQ_TYPE_SPECIAL;
658         rq->cmd_len = 5;
659         rq->cmd[0] = REQ_DEVSET_EXEC;
660         *(int *)&rq->cmd[1] = arg;
661         rq->special = setting->set;
662
663         if (blk_execute_rq(q, NULL, rq, 0))
664                 ret = rq->errors;
665         blk_put_request(rq);
666
667         return ret;
668 }
669 EXPORT_SYMBOL_GPL(ide_devset_execute);
670
671 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
672 {
673         u8 cmd = rq->cmd[0];
674
675         if (cmd == REQ_PARK_HEADS || cmd == REQ_UNPARK_HEADS) {
676                 ide_task_t task;
677                 struct ide_taskfile *tf = &task.tf;
678
679                 memset(&task, 0, sizeof(task));
680                 if (cmd == REQ_PARK_HEADS) {
681                         drive->sleep = *(unsigned long *)rq->special;
682                         drive->dev_flags |= IDE_DFLAG_SLEEPING;
683                         tf->command = ATA_CMD_IDLEIMMEDIATE;
684                         tf->feature = 0x44;
685                         tf->lbal = 0x4c;
686                         tf->lbam = 0x4e;
687                         tf->lbah = 0x55;
688                         task.tf_flags |= IDE_TFLAG_CUSTOM_HANDLER;
689                 } else          /* cmd == REQ_UNPARK_HEADS */
690                         tf->command = ATA_CMD_CHK_POWER;
691
692                 task.tf_flags |= IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
693                 task.rq = rq;
694                 drive->hwif->data_phase = task.data_phase = TASKFILE_NO_DATA;
695                 return do_rw_taskfile(drive, &task);
696         }
697
698         switch (cmd) {
699         case REQ_DEVSET_EXEC:
700         {
701                 int err, (*setfunc)(ide_drive_t *, int) = rq->special;
702
703                 err = setfunc(drive, *(int *)&rq->cmd[1]);
704                 if (err)
705                         rq->errors = err;
706                 else
707                         err = 1;
708                 ide_end_request(drive, err, 0);
709                 return ide_stopped;
710         }
711         case REQ_DRIVE_RESET:
712                 return ide_do_reset(drive);
713         default:
714                 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
715                 ide_end_request(drive, 0, 0);
716                 return ide_stopped;
717         }
718 }
719
720 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
721 {
722         struct request_pm_state *pm = rq->data;
723
724         if (blk_pm_suspend_request(rq) &&
725             pm->pm_step == IDE_PM_START_SUSPEND)
726                 /* Mark drive blocked when starting the suspend sequence. */
727                 drive->dev_flags |= IDE_DFLAG_BLOCKED;
728         else if (blk_pm_resume_request(rq) &&
729                  pm->pm_step == IDE_PM_START_RESUME) {
730                 /* 
731                  * The first thing we do on wakeup is to wait for BSY bit to
732                  * go away (with a looong timeout) as a drive on this hwif may
733                  * just be POSTing itself.
734                  * We do that before even selecting as the "other" device on
735                  * the bus may be broken enough to walk on our toes at this
736                  * point.
737                  */
738                 ide_hwif_t *hwif = drive->hwif;
739                 int rc;
740 #ifdef DEBUG_PM
741                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
742 #endif
743                 rc = ide_wait_not_busy(hwif, 35000);
744                 if (rc)
745                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
746                 SELECT_DRIVE(drive);
747                 hwif->tp_ops->set_irq(hwif, 1);
748                 rc = ide_wait_not_busy(hwif, 100000);
749                 if (rc)
750                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
751         }
752 }
753
754 /**
755  *      start_request   -       start of I/O and command issuing for IDE
756  *
757  *      start_request() initiates handling of a new I/O request. It
758  *      accepts commands and I/O (read/write) requests.
759  *
760  *      FIXME: this function needs a rename
761  */
762  
763 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
764 {
765         ide_startstop_t startstop;
766
767         BUG_ON(!blk_rq_started(rq));
768
769 #ifdef DEBUG
770         printk("%s: start_request: current=0x%08lx\n",
771                 HWIF(drive)->name, (unsigned long) rq);
772 #endif
773
774         /* bail early if we've exceeded max_failures */
775         if (drive->max_failures && (drive->failures > drive->max_failures)) {
776                 rq->cmd_flags |= REQ_FAILED;
777                 goto kill_rq;
778         }
779
780         if (blk_pm_request(rq))
781                 ide_check_pm_state(drive, rq);
782
783         SELECT_DRIVE(drive);
784         if (ide_wait_stat(&startstop, drive, drive->ready_stat,
785                           ATA_BUSY | ATA_DRQ, WAIT_READY)) {
786                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
787                 return startstop;
788         }
789         if (!drive->special.all) {
790                 ide_driver_t *drv;
791
792                 /*
793                  * We reset the drive so we need to issue a SETFEATURES.
794                  * Do it _after_ do_special() restored device parameters.
795                  */
796                 if (drive->current_speed == 0xff)
797                         ide_config_drive_speed(drive, drive->desired_speed);
798
799                 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
800                         return execute_drive_cmd(drive, rq);
801                 else if (blk_pm_request(rq)) {
802                         struct request_pm_state *pm = rq->data;
803 #ifdef DEBUG_PM
804                         printk("%s: start_power_step(step: %d)\n",
805                                 drive->name, rq->pm->pm_step);
806 #endif
807                         startstop = ide_start_power_step(drive, rq);
808                         if (startstop == ide_stopped &&
809                             pm->pm_step == IDE_PM_COMPLETED)
810                                 ide_complete_pm_request(drive, rq);
811                         return startstop;
812                 } else if (!rq->rq_disk && blk_special_request(rq))
813                         /*
814                          * TODO: Once all ULDs have been modified to
815                          * check for specific op codes rather than
816                          * blindly accepting any special request, the
817                          * check for ->rq_disk above may be replaced
818                          * by a more suitable mechanism or even
819                          * dropped entirely.
820                          */
821                         return ide_special_rq(drive, rq);
822
823                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
824
825                 return drv->do_request(drive, rq, rq->sector);
826         }
827         return do_special(drive);
828 kill_rq:
829         ide_kill_rq(drive, rq);
830         return ide_stopped;
831 }
832
833 /**
834  *      ide_stall_queue         -       pause an IDE device
835  *      @drive: drive to stall
836  *      @timeout: time to stall for (jiffies)
837  *
838  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
839  *      to the hwgroup by sleeping for timeout jiffies.
840  */
841  
842 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
843 {
844         if (timeout > WAIT_WORSTCASE)
845                 timeout = WAIT_WORSTCASE;
846         drive->sleep = timeout + jiffies;
847         drive->dev_flags |= IDE_DFLAG_SLEEPING;
848 }
849
850 EXPORT_SYMBOL(ide_stall_queue);
851
852 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
853
854 /**
855  *      choose_drive            -       select a drive to service
856  *      @hwgroup: hardware group to select on
857  *
858  *      choose_drive() selects the next drive which will be serviced.
859  *      This is necessary because the IDE layer can't issue commands
860  *      to both drives on the same cable, unlike SCSI.
861  */
862  
863 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
864 {
865         ide_drive_t *drive, *best;
866
867 repeat: 
868         best = NULL;
869         drive = hwgroup->drive;
870
871         /*
872          * drive is doing pre-flush, ordered write, post-flush sequence. even
873          * though that is 3 requests, it must be seen as a single transaction.
874          * we must not preempt this drive until that is complete
875          */
876         if (blk_queue_flushing(drive->queue)) {
877                 /*
878                  * small race where queue could get replugged during
879                  * the 3-request flush cycle, just yank the plug since
880                  * we want it to finish asap
881                  */
882                 blk_remove_plug(drive->queue);
883                 return drive;
884         }
885
886         do {
887                 u8 dev_s = !!(drive->dev_flags & IDE_DFLAG_SLEEPING);
888                 u8 best_s = (best && !!(best->dev_flags & IDE_DFLAG_SLEEPING));
889
890                 if ((dev_s == 0 || time_after_eq(jiffies, drive->sleep)) &&
891                     !elv_queue_empty(drive->queue)) {
892                         if (best == NULL ||
893                             (dev_s && (best_s == 0 || time_before(drive->sleep, best->sleep))) ||
894                             (best_s == 0 && time_before(WAKEUP(drive), WAKEUP(best)))) {
895                                 if (!blk_queue_plugged(drive->queue))
896                                         best = drive;
897                         }
898                 }
899         } while ((drive = drive->next) != hwgroup->drive);
900
901         if (best && (best->dev_flags & IDE_DFLAG_NICE1) &&
902             (best->dev_flags & IDE_DFLAG_SLEEPING) == 0 &&
903             best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
904                 long t = (signed long)(WAKEUP(best) - jiffies);
905                 if (t >= WAIT_MIN_SLEEP) {
906                 /*
907                  * We *may* have some time to spare, but first let's see if
908                  * someone can potentially benefit from our nice mood today..
909                  */
910                         drive = best->next;
911                         do {
912                                 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) == 0
913                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
914                                  && time_before(WAKEUP(drive), jiffies + t))
915                                 {
916                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
917                                         goto repeat;
918                                 }
919                         } while ((drive = drive->next) != best);
920                 }
921         }
922         return best;
923 }
924
925 /*
926  * Issue a new request to a drive from hwgroup
927  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
928  *
929  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
930  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
931  * may have both interfaces in a single hwgroup to "serialize" access.
932  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
933  * together into one hwgroup for serialized access.
934  *
935  * Note also that several hwgroups can end up sharing a single IRQ,
936  * possibly along with many other devices.  This is especially common in
937  * PCI-based systems with off-board IDE controller cards.
938  *
939  * The IDE driver uses the single global ide_lock spinlock to protect
940  * access to the request queues, and to protect the hwgroup->busy flag.
941  *
942  * The first thread into the driver for a particular hwgroup sets the
943  * hwgroup->busy flag to indicate that this hwgroup is now active,
944  * and then initiates processing of the top request from the request queue.
945  *
946  * Other threads attempting entry notice the busy setting, and will simply
947  * queue their new requests and exit immediately.  Note that hwgroup->busy
948  * remains set even when the driver is merely awaiting the next interrupt.
949  * Thus, the meaning is "this hwgroup is busy processing a request".
950  *
951  * When processing of a request completes, the completing thread or IRQ-handler
952  * will start the next request from the queue.  If no more work remains,
953  * the driver will clear the hwgroup->busy flag and exit.
954  *
955  * The ide_lock (spinlock) is used to protect all access to the
956  * hwgroup->busy flag, but is otherwise not needed for most processing in
957  * the driver.  This makes the driver much more friendlier to shared IRQs
958  * than previous designs, while remaining 100% (?) SMP safe and capable.
959  */
960 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
961 {
962         ide_drive_t     *drive;
963         ide_hwif_t      *hwif;
964         struct request  *rq;
965         ide_startstop_t startstop;
966         int             loops = 0;
967
968         /* caller must own ide_lock */
969         BUG_ON(!irqs_disabled());
970
971         while (!hwgroup->busy) {
972                 hwgroup->busy = 1;
973                 /* for atari only */
974                 ide_get_lock(ide_intr, hwgroup);
975                 drive = choose_drive(hwgroup);
976                 if (drive == NULL) {
977                         int sleeping = 0;
978                         unsigned long sleep = 0; /* shut up, gcc */
979                         hwgroup->rq = NULL;
980                         drive = hwgroup->drive;
981                         do {
982                                 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) &&
983                                     (sleeping == 0 ||
984                                      time_before(drive->sleep, sleep))) {
985                                         sleeping = 1;
986                                         sleep = drive->sleep;
987                                 }
988                         } while ((drive = drive->next) != hwgroup->drive);
989                         if (sleeping) {
990                 /*
991                  * Take a short snooze, and then wake up this hwgroup again.
992                  * This gives other hwgroups on the same a chance to
993                  * play fairly with us, just in case there are big differences
994                  * in relative throughputs.. don't want to hog the cpu too much.
995                  */
996                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
997                                         sleep = jiffies + WAIT_MIN_SLEEP;
998 #if 1
999                                 if (timer_pending(&hwgroup->timer))
1000                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1001 #endif
1002                                 /* so that ide_timer_expiry knows what to do */
1003                                 hwgroup->sleeping = 1;
1004                                 hwgroup->req_gen_timer = hwgroup->req_gen;
1005                                 mod_timer(&hwgroup->timer, sleep);
1006                                 /* we purposely leave hwgroup->busy==1
1007                                  * while sleeping */
1008                         } else {
1009                                 /* Ugly, but how can we sleep for the lock
1010                                  * otherwise? perhaps from tq_disk?
1011                                  */
1012
1013                                 /* for atari only */
1014                                 ide_release_lock();
1015                                 hwgroup->busy = 0;
1016                         }
1017
1018                         /* no more work for this hwgroup (for now) */
1019                         return;
1020                 }
1021         again:
1022                 hwif = HWIF(drive);
1023                 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1024                         /*
1025                          * set nIEN for previous hwif, drives in the
1026                          * quirk_list may not like intr setups/cleanups
1027                          */
1028                         if (drive->quirk_list != 1)
1029                                 hwif->tp_ops->set_irq(hwif, 0);
1030                 }
1031                 hwgroup->hwif = hwif;
1032                 hwgroup->drive = drive;
1033                 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
1034                 drive->service_start = jiffies;
1035
1036                 if (blk_queue_plugged(drive->queue)) {
1037                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1038                         break;
1039                 }
1040
1041                 /*
1042                  * we know that the queue isn't empty, but this can happen
1043                  * if the q->prep_rq_fn() decides to kill a request
1044                  */
1045                 rq = elv_next_request(drive->queue);
1046                 if (!rq) {
1047                         hwgroup->busy = 0;
1048                         break;
1049                 }
1050
1051                 /*
1052                  * Sanity: don't accept a request that isn't a PM request
1053                  * if we are currently power managed. This is very important as
1054                  * blk_stop_queue() doesn't prevent the elv_next_request()
1055                  * above to return us whatever is in the queue. Since we call
1056                  * ide_do_request() ourselves, we end up taking requests while
1057                  * the queue is blocked...
1058                  * 
1059                  * We let requests forced at head of queue with ide-preempt
1060                  * though. I hope that doesn't happen too much, hopefully not
1061                  * unless the subdriver triggers such a thing in its own PM
1062                  * state machine.
1063                  *
1064                  * We count how many times we loop here to make sure we service
1065                  * all drives in the hwgroup without looping for ever
1066                  */
1067                 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
1068                     blk_pm_request(rq) == 0 &&
1069                     (rq->cmd_flags & REQ_PREEMPT) == 0) {
1070                         drive = drive->next ? drive->next : hwgroup->drive;
1071                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1072                                 goto again;
1073                         /* We clear busy, there should be no pending ATA command at this point. */
1074                         hwgroup->busy = 0;
1075                         break;
1076                 }
1077
1078                 hwgroup->rq = rq;
1079
1080                 /*
1081                  * Some systems have trouble with IDE IRQs arriving while
1082                  * the driver is still setting things up.  So, here we disable
1083                  * the IRQ used by this interface while the request is being started.
1084                  * This may look bad at first, but pretty much the same thing
1085                  * happens anyway when any interrupt comes in, IDE or otherwise
1086                  *  -- the kernel masks the IRQ while it is being handled.
1087                  */
1088                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1089                         disable_irq_nosync(hwif->irq);
1090                 spin_unlock(&ide_lock);
1091                 local_irq_enable_in_hardirq();
1092                         /* allow other IRQs while we start this request */
1093                 startstop = start_request(drive, rq);
1094                 spin_lock_irq(&ide_lock);
1095                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1096                         enable_irq(hwif->irq);
1097                 if (startstop == ide_stopped)
1098                         hwgroup->busy = 0;
1099         }
1100 }
1101
1102 /*
1103  * Passes the stuff to ide_do_request
1104  */
1105 void do_ide_request(struct request_queue *q)
1106 {
1107         ide_drive_t *drive = q->queuedata;
1108
1109         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1110 }
1111
1112 /*
1113  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1114  * retry the current request in pio mode instead of risking tossing it
1115  * all away
1116  */
1117 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1118 {
1119         ide_hwif_t *hwif = HWIF(drive);
1120         struct request *rq;
1121         ide_startstop_t ret = ide_stopped;
1122
1123         /*
1124          * end current dma transaction
1125          */
1126
1127         if (error < 0) {
1128                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1129                 (void)hwif->dma_ops->dma_end(drive);
1130                 ret = ide_error(drive, "dma timeout error",
1131                                 hwif->tp_ops->read_status(hwif));
1132         } else {
1133                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1134                 hwif->dma_ops->dma_timeout(drive);
1135         }
1136
1137         /*
1138          * disable dma for now, but remember that we did so because of
1139          * a timeout -- we'll reenable after we finish this next request
1140          * (or rather the first chunk of it) in pio.
1141          */
1142         drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
1143         drive->retry_pio++;
1144         ide_dma_off_quietly(drive);
1145
1146         /*
1147          * un-busy drive etc (hwgroup->busy is cleared on return) and
1148          * make sure request is sane
1149          */
1150         rq = HWGROUP(drive)->rq;
1151
1152         if (!rq)
1153                 goto out;
1154
1155         HWGROUP(drive)->rq = NULL;
1156
1157         rq->errors = 0;
1158
1159         if (!rq->bio)
1160                 goto out;
1161
1162         rq->sector = rq->bio->bi_sector;
1163         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1164         rq->hard_cur_sectors = rq->current_nr_sectors;
1165         rq->buffer = bio_data(rq->bio);
1166 out:
1167         return ret;
1168 }
1169
1170 /**
1171  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1172  *      @data: timer callback magic (hwgroup)
1173  *
1174  *      An IDE command has timed out before the expected drive return
1175  *      occurred. At this point we attempt to clean up the current
1176  *      mess. If the current handler includes an expiry handler then
1177  *      we invoke the expiry handler, and providing it is happy the
1178  *      work is done. If that fails we apply generic recovery rules
1179  *      invoking the handler and checking the drive DMA status. We
1180  *      have an excessively incestuous relationship with the DMA
1181  *      logic that wants cleaning up.
1182  */
1183  
1184 void ide_timer_expiry (unsigned long data)
1185 {
1186         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1187         ide_handler_t   *handler;
1188         ide_expiry_t    *expiry;
1189         unsigned long   flags;
1190         unsigned long   wait = -1;
1191
1192         spin_lock_irqsave(&ide_lock, flags);
1193
1194         if (((handler = hwgroup->handler) == NULL) ||
1195             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1196                 /*
1197                  * Either a marginal timeout occurred
1198                  * (got the interrupt just as timer expired),
1199                  * or we were "sleeping" to give other devices a chance.
1200                  * Either way, we don't really want to complain about anything.
1201                  */
1202                 if (hwgroup->sleeping) {
1203                         hwgroup->sleeping = 0;
1204                         hwgroup->busy = 0;
1205                 }
1206         } else {
1207                 ide_drive_t *drive = hwgroup->drive;
1208                 if (!drive) {
1209                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1210                         hwgroup->handler = NULL;
1211                 } else {
1212                         ide_hwif_t *hwif;
1213                         ide_startstop_t startstop = ide_stopped;
1214                         if (!hwgroup->busy) {
1215                                 hwgroup->busy = 1;      /* paranoia */
1216                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1217                         }
1218                         if ((expiry = hwgroup->expiry) != NULL) {
1219                                 /* continue */
1220                                 if ((wait = expiry(drive)) > 0) {
1221                                         /* reset timer */
1222                                         hwgroup->timer.expires  = jiffies + wait;
1223                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1224                                         add_timer(&hwgroup->timer);
1225                                         spin_unlock_irqrestore(&ide_lock, flags);
1226                                         return;
1227                                 }
1228                         }
1229                         hwgroup->handler = NULL;
1230                         /*
1231                          * We need to simulate a real interrupt when invoking
1232                          * the handler() function, which means we need to
1233                          * globally mask the specific IRQ:
1234                          */
1235                         spin_unlock(&ide_lock);
1236                         hwif  = HWIF(drive);
1237                         /* disable_irq_nosync ?? */
1238                         disable_irq(hwif->irq);
1239                         /* local CPU only,
1240                          * as if we were handling an interrupt */
1241                         local_irq_disable();
1242                         if (hwgroup->polling) {
1243                                 startstop = handler(drive);
1244                         } else if (drive_is_ready(drive)) {
1245                                 if (drive->waiting_for_dma)
1246                                         hwif->dma_ops->dma_lost_irq(drive);
1247                                 (void)ide_ack_intr(hwif);
1248                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1249                                 startstop = handler(drive);
1250                         } else {
1251                                 if (drive->waiting_for_dma) {
1252                                         startstop = ide_dma_timeout_retry(drive, wait);
1253                                 } else
1254                                         startstop =
1255                                         ide_error(drive, "irq timeout",
1256                                                   hwif->tp_ops->read_status(hwif));
1257                         }
1258                         drive->service_time = jiffies - drive->service_start;
1259                         spin_lock_irq(&ide_lock);
1260                         enable_irq(hwif->irq);
1261                         if (startstop == ide_stopped)
1262                                 hwgroup->busy = 0;
1263                 }
1264         }
1265         ide_do_request(hwgroup, IDE_NO_IRQ);
1266         spin_unlock_irqrestore(&ide_lock, flags);
1267 }
1268
1269 /**
1270  *      unexpected_intr         -       handle an unexpected IDE interrupt
1271  *      @irq: interrupt line
1272  *      @hwgroup: hwgroup being processed
1273  *
1274  *      There's nothing really useful we can do with an unexpected interrupt,
1275  *      other than reading the status register (to clear it), and logging it.
1276  *      There should be no way that an irq can happen before we're ready for it,
1277  *      so we needn't worry much about losing an "important" interrupt here.
1278  *
1279  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1280  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1281  *      looks "good", we just ignore the interrupt completely.
1282  *
1283  *      This routine assumes __cli() is in effect when called.
1284  *
1285  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1286  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1287  *      we could screw up by interfering with a new request being set up for 
1288  *      irq15.
1289  *
1290  *      In reality, this is a non-issue.  The new command is not sent unless 
1291  *      the drive is ready to accept one, in which case we know the drive is
1292  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1293  *      before completing the issuance of any new drive command, so we will not
1294  *      be accidentally invoked as a result of any valid command completion
1295  *      interrupt.
1296  *
1297  *      Note that we must walk the entire hwgroup here. We know which hwif
1298  *      is doing the current command, but we don't know which hwif burped
1299  *      mysteriously.
1300  */
1301  
1302 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1303 {
1304         u8 stat;
1305         ide_hwif_t *hwif = hwgroup->hwif;
1306
1307         /*
1308          * handle the unexpected interrupt
1309          */
1310         do {
1311                 if (hwif->irq == irq) {
1312                         stat = hwif->tp_ops->read_status(hwif);
1313
1314                         if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1315                                 /* Try to not flood the console with msgs */
1316                                 static unsigned long last_msgtime, count;
1317                                 ++count;
1318                                 if (time_after(jiffies, last_msgtime + HZ)) {
1319                                         last_msgtime = jiffies;
1320                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1321                                                 "status=0x%02x, count=%ld\n",
1322                                                 hwif->name,
1323                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1324                                 }
1325                         }
1326                 }
1327         } while ((hwif = hwif->next) != hwgroup->hwif);
1328 }
1329
1330 /**
1331  *      ide_intr        -       default IDE interrupt handler
1332  *      @irq: interrupt number
1333  *      @dev_id: hwif group
1334  *      @regs: unused weirdness from the kernel irq layer
1335  *
1336  *      This is the default IRQ handler for the IDE layer. You should
1337  *      not need to override it. If you do be aware it is subtle in
1338  *      places
1339  *
1340  *      hwgroup->hwif is the interface in the group currently performing
1341  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1342  *      the IRQ handler to call. As we issue a command the handlers
1343  *      step through multiple states, reassigning the handler to the
1344  *      next step in the process. Unlike a smart SCSI controller IDE
1345  *      expects the main processor to sequence the various transfer
1346  *      stages. We also manage a poll timer to catch up with most
1347  *      timeout situations. There are still a few where the handlers
1348  *      don't ever decide to give up.
1349  *
1350  *      The handler eventually returns ide_stopped to indicate the
1351  *      request completed. At this point we issue the next request
1352  *      on the hwgroup and the process begins again.
1353  */
1354  
1355 irqreturn_t ide_intr (int irq, void *dev_id)
1356 {
1357         unsigned long flags;
1358         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1359         ide_hwif_t *hwif;
1360         ide_drive_t *drive;
1361         ide_handler_t *handler;
1362         ide_startstop_t startstop;
1363
1364         spin_lock_irqsave(&ide_lock, flags);
1365         hwif = hwgroup->hwif;
1366
1367         if (!ide_ack_intr(hwif)) {
1368                 spin_unlock_irqrestore(&ide_lock, flags);
1369                 return IRQ_NONE;
1370         }
1371
1372         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1373                 /*
1374                  * Not expecting an interrupt from this drive.
1375                  * That means this could be:
1376                  *      (1) an interrupt from another PCI device
1377                  *      sharing the same PCI INT# as us.
1378                  * or   (2) a drive just entered sleep or standby mode,
1379                  *      and is interrupting to let us know.
1380                  * or   (3) a spurious interrupt of unknown origin.
1381                  *
1382                  * For PCI, we cannot tell the difference,
1383                  * so in that case we just ignore it and hope it goes away.
1384                  *
1385                  * FIXME: unexpected_intr should be hwif-> then we can
1386                  * remove all the ifdef PCI crap
1387                  */
1388 #ifdef CONFIG_BLK_DEV_IDEPCI
1389                 if (hwif->chipset != ide_pci)
1390 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1391                 {
1392                         /*
1393                          * Probably not a shared PCI interrupt,
1394                          * so we can safely try to do something about it:
1395                          */
1396                         unexpected_intr(irq, hwgroup);
1397 #ifdef CONFIG_BLK_DEV_IDEPCI
1398                 } else {
1399                         /*
1400                          * Whack the status register, just in case
1401                          * we have a leftover pending IRQ.
1402                          */
1403                         (void)hwif->tp_ops->read_status(hwif);
1404 #endif /* CONFIG_BLK_DEV_IDEPCI */
1405                 }
1406                 spin_unlock_irqrestore(&ide_lock, flags);
1407                 return IRQ_NONE;
1408         }
1409         drive = hwgroup->drive;
1410         if (!drive) {
1411                 /*
1412                  * This should NEVER happen, and there isn't much
1413                  * we could do about it here.
1414                  *
1415                  * [Note - this can occur if the drive is hot unplugged]
1416                  */
1417                 spin_unlock_irqrestore(&ide_lock, flags);
1418                 return IRQ_HANDLED;
1419         }
1420         if (!drive_is_ready(drive)) {
1421                 /*
1422                  * This happens regularly when we share a PCI IRQ with
1423                  * another device.  Unfortunately, it can also happen
1424                  * with some buggy drives that trigger the IRQ before
1425                  * their status register is up to date.  Hopefully we have
1426                  * enough advance overhead that the latter isn't a problem.
1427                  */
1428                 spin_unlock_irqrestore(&ide_lock, flags);
1429                 return IRQ_NONE;
1430         }
1431         if (!hwgroup->busy) {
1432                 hwgroup->busy = 1;      /* paranoia */
1433                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1434         }
1435         hwgroup->handler = NULL;
1436         hwgroup->req_gen++;
1437         del_timer(&hwgroup->timer);
1438         spin_unlock(&ide_lock);
1439
1440         if (hwif->port_ops && hwif->port_ops->clear_irq)
1441                 hwif->port_ops->clear_irq(drive);
1442
1443         if (drive->dev_flags & IDE_DFLAG_UNMASK)
1444                 local_irq_enable_in_hardirq();
1445
1446         /* service this interrupt, may set handler for next interrupt */
1447         startstop = handler(drive);
1448
1449         spin_lock_irq(&ide_lock);
1450         /*
1451          * Note that handler() may have set things up for another
1452          * interrupt to occur soon, but it cannot happen until
1453          * we exit from this routine, because it will be the
1454          * same irq as is currently being serviced here, and Linux
1455          * won't allow another of the same (on any CPU) until we return.
1456          */
1457         drive->service_time = jiffies - drive->service_start;
1458         if (startstop == ide_stopped) {
1459                 if (hwgroup->handler == NULL) { /* paranoia */
1460                         hwgroup->busy = 0;
1461                         ide_do_request(hwgroup, hwif->irq);
1462                 } else {
1463                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1464                                 "on exit\n", drive->name);
1465                 }
1466         }
1467         spin_unlock_irqrestore(&ide_lock, flags);
1468         return IRQ_HANDLED;
1469 }
1470
1471 /**
1472  *      ide_do_drive_cmd        -       issue IDE special command
1473  *      @drive: device to issue command
1474  *      @rq: request to issue
1475  *
1476  *      This function issues a special IDE device request
1477  *      onto the request queue.
1478  *
1479  *      the rq is queued at the head of the request queue, displacing
1480  *      the currently-being-processed request and this function
1481  *      returns immediately without waiting for the new rq to be
1482  *      completed.  This is VERY DANGEROUS, and is intended for
1483  *      careful use by the ATAPI tape/cdrom driver code.
1484  */
1485
1486 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1487 {
1488         unsigned long flags;
1489         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1490
1491         spin_lock_irqsave(&ide_lock, flags);
1492         hwgroup->rq = NULL;
1493         __elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 0);
1494         blk_start_queueing(drive->queue);
1495         spin_unlock_irqrestore(&ide_lock, flags);
1496 }
1497
1498 EXPORT_SYMBOL(ide_do_drive_cmd);
1499
1500 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1501 {
1502         ide_hwif_t *hwif = drive->hwif;
1503         ide_task_t task;
1504
1505         memset(&task, 0, sizeof(task));
1506         task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1507                         IDE_TFLAG_OUT_FEATURE | tf_flags;
1508         task.tf.feature = dma;          /* Use PIO/DMA */
1509         task.tf.lbam    = bcount & 0xff;
1510         task.tf.lbah    = (bcount >> 8) & 0xff;
1511
1512         ide_tf_dump(drive->name, &task.tf);
1513         hwif->tp_ops->set_irq(hwif, 1);
1514         SELECT_MASK(drive, 0);
1515         hwif->tp_ops->tf_load(drive, &task);
1516 }
1517
1518 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1519
1520 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1521 {
1522         ide_hwif_t *hwif = drive->hwif;
1523         u8 buf[4] = { 0 };
1524
1525         while (len > 0) {
1526                 if (write)
1527                         hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1528                 else
1529                         hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1530                 len -= 4;
1531         }
1532 }
1533 EXPORT_SYMBOL_GPL(ide_pad_transfer);