]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/ide/ide-io.c
ide: fix HDIO_DRIVE_TASK[FILE] ioctls for CHS commands on LBA devices
[linux-2.6-omap-h63xx.git] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
52
53 #include <asm/byteorder.h>
54 #include <asm/irq.h>
55 #include <asm/uaccess.h>
56 #include <asm/io.h>
57
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59                              int uptodate, unsigned int nr_bytes, int dequeue)
60 {
61         int ret = 1;
62         int error = 0;
63
64         if (uptodate <= 0)
65                 error = uptodate ? uptodate : -EIO;
66
67         /*
68          * if failfast is set on a request, override number of sectors and
69          * complete the whole request right now
70          */
71         if (blk_noretry_request(rq) && error)
72                 nr_bytes = rq->hard_nr_sectors << 9;
73
74         if (!blk_fs_request(rq) && error && !rq->errors)
75                 rq->errors = -EIO;
76
77         /*
78          * decide whether to reenable DMA -- 3 is a random magic for now,
79          * if we DMA timeout more than 3 times, just stay in PIO
80          */
81         if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82             drive->retry_pio <= 3) {
83                 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84                 ide_dma_on(drive);
85         }
86
87         if (!__blk_end_request(rq, error, nr_bytes)) {
88                 if (dequeue)
89                         HWGROUP(drive)->rq = NULL;
90                 ret = 0;
91         }
92
93         return ret;
94 }
95
96 /**
97  *      ide_end_request         -       complete an IDE I/O
98  *      @drive: IDE device for the I/O
99  *      @uptodate:
100  *      @nr_sectors: number of sectors completed
101  *
102  *      This is our end_request wrapper function. We complete the I/O
103  *      update random number input and dequeue the request, which if
104  *      it was tagged may be out of order.
105  */
106
107 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108 {
109         unsigned int nr_bytes = nr_sectors << 9;
110         struct request *rq;
111         unsigned long flags;
112         int ret = 1;
113
114         /*
115          * room for locking improvements here, the calls below don't
116          * need the queue lock held at all
117          */
118         spin_lock_irqsave(&ide_lock, flags);
119         rq = HWGROUP(drive)->rq;
120
121         if (!nr_bytes) {
122                 if (blk_pc_request(rq))
123                         nr_bytes = rq->data_len;
124                 else
125                         nr_bytes = rq->hard_cur_sectors << 9;
126         }
127
128         ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
129
130         spin_unlock_irqrestore(&ide_lock, flags);
131         return ret;
132 }
133 EXPORT_SYMBOL(ide_end_request);
134
135 /*
136  * Power Management state machine. This one is rather trivial for now,
137  * we should probably add more, like switching back to PIO on suspend
138  * to help some BIOSes, re-do the door locking on resume, etc...
139  */
140
141 enum {
142         ide_pm_flush_cache      = ide_pm_state_start_suspend,
143         idedisk_pm_standby,
144
145         idedisk_pm_restore_pio  = ide_pm_state_start_resume,
146         idedisk_pm_idle,
147         ide_pm_restore_dma,
148 };
149
150 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
151 {
152         struct request_pm_state *pm = rq->data;
153
154         if (drive->media != ide_disk)
155                 return;
156
157         switch (pm->pm_step) {
158         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
159                 if (pm->pm_state == PM_EVENT_FREEZE)
160                         pm->pm_step = ide_pm_state_completed;
161                 else
162                         pm->pm_step = idedisk_pm_standby;
163                 break;
164         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
165                 pm->pm_step = ide_pm_state_completed;
166                 break;
167         case idedisk_pm_restore_pio:    /* Resume step 1 complete */
168                 pm->pm_step = idedisk_pm_idle;
169                 break;
170         case idedisk_pm_idle:           /* Resume step 2 (idle) complete */
171                 pm->pm_step = ide_pm_restore_dma;
172                 break;
173         }
174 }
175
176 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
177 {
178         struct request_pm_state *pm = rq->data;
179         ide_task_t *args = rq->special;
180
181         memset(args, 0, sizeof(*args));
182
183         switch (pm->pm_step) {
184         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
185                 if (drive->media != ide_disk)
186                         break;
187                 /* Not supported? Switch to next step now. */
188                 if (ata_id_flush_enabled(drive->id) == 0 ||
189                     (drive->dev_flags & IDE_DFLAG_WCACHE) == 0) {
190                         ide_complete_power_step(drive, rq, 0, 0);
191                         return ide_stopped;
192                 }
193                 if (ata_id_flush_ext_enabled(drive->id))
194                         args->tf.command = ATA_CMD_FLUSH_EXT;
195                 else
196                         args->tf.command = ATA_CMD_FLUSH;
197                 goto out_do_tf;
198
199         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
200                 args->tf.command = ATA_CMD_STANDBYNOW1;
201                 goto out_do_tf;
202
203         case idedisk_pm_restore_pio:    /* Resume step 1 (restore PIO) */
204                 ide_set_max_pio(drive);
205                 /*
206                  * skip idedisk_pm_idle for ATAPI devices
207                  */
208                 if (drive->media != ide_disk)
209                         pm->pm_step = ide_pm_restore_dma;
210                 else
211                         ide_complete_power_step(drive, rq, 0, 0);
212                 return ide_stopped;
213
214         case idedisk_pm_idle:           /* Resume step 2 (idle) */
215                 args->tf.command = ATA_CMD_IDLEIMMEDIATE;
216                 goto out_do_tf;
217
218         case ide_pm_restore_dma:        /* Resume step 3 (restore DMA) */
219                 /*
220                  * Right now, all we do is call ide_set_dma(drive),
221                  * we could be smarter and check for current xfer_speed
222                  * in struct drive etc...
223                  */
224                 if (drive->hwif->dma_ops == NULL)
225                         break;
226                 /*
227                  * TODO: respect IDE_DFLAG_USING_DMA
228                  */
229                 ide_set_dma(drive);
230                 break;
231         }
232         pm->pm_step = ide_pm_state_completed;
233         return ide_stopped;
234
235 out_do_tf:
236         args->tf_flags   = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
237         args->data_phase = TASKFILE_NO_DATA;
238         return do_rw_taskfile(drive, args);
239 }
240
241 /**
242  *      ide_end_dequeued_request        -       complete an IDE I/O
243  *      @drive: IDE device for the I/O
244  *      @uptodate:
245  *      @nr_sectors: number of sectors completed
246  *
247  *      Complete an I/O that is no longer on the request queue. This
248  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
249  *      We must still finish the old request but we must not tamper with the
250  *      queue in the meantime.
251  *
252  *      NOTE: This path does not handle barrier, but barrier is not supported
253  *      on ide-cd anyway.
254  */
255
256 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
257                              int uptodate, int nr_sectors)
258 {
259         unsigned long flags;
260         int ret;
261
262         spin_lock_irqsave(&ide_lock, flags);
263         BUG_ON(!blk_rq_started(rq));
264         ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
265         spin_unlock_irqrestore(&ide_lock, flags);
266
267         return ret;
268 }
269 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
270
271
272 /**
273  *      ide_complete_pm_request - end the current Power Management request
274  *      @drive: target drive
275  *      @rq: request
276  *
277  *      This function cleans up the current PM request and stops the queue
278  *      if necessary.
279  */
280 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
281 {
282         unsigned long flags;
283
284 #ifdef DEBUG_PM
285         printk("%s: completing PM request, %s\n", drive->name,
286                blk_pm_suspend_request(rq) ? "suspend" : "resume");
287 #endif
288         spin_lock_irqsave(&ide_lock, flags);
289         if (blk_pm_suspend_request(rq)) {
290                 blk_stop_queue(drive->queue);
291         } else {
292                 drive->dev_flags &= ~IDE_DFLAG_BLOCKED;
293                 blk_start_queue(drive->queue);
294         }
295         HWGROUP(drive)->rq = NULL;
296         if (__blk_end_request(rq, 0, 0))
297                 BUG();
298         spin_unlock_irqrestore(&ide_lock, flags);
299 }
300
301 /**
302  *      ide_end_drive_cmd       -       end an explicit drive command
303  *      @drive: command 
304  *      @stat: status bits
305  *      @err: error bits
306  *
307  *      Clean up after success/failure of an explicit drive command.
308  *      These get thrown onto the queue so they are synchronized with
309  *      real I/O operations on the drive.
310  *
311  *      In LBA48 mode we have to read the register set twice to get
312  *      all the extra information out.
313  */
314  
315 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
316 {
317         unsigned long flags;
318         struct request *rq;
319
320         spin_lock_irqsave(&ide_lock, flags);
321         rq = HWGROUP(drive)->rq;
322         spin_unlock_irqrestore(&ide_lock, flags);
323
324         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
325                 ide_task_t *task = (ide_task_t *)rq->special;
326
327                 if (rq->errors == 0)
328                         rq->errors = !OK_STAT(stat, ATA_DRDY, BAD_STAT);
329
330                 if (task) {
331                         struct ide_taskfile *tf = &task->tf;
332
333                         tf->error = err;
334                         tf->status = stat;
335
336                         drive->hwif->tp_ops->tf_read(drive, task);
337
338                         if (task->tf_flags & IDE_TFLAG_DYN)
339                                 kfree(task);
340                 }
341         } else if (blk_pm_request(rq)) {
342                 struct request_pm_state *pm = rq->data;
343 #ifdef DEBUG_PM
344                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
345                         drive->name, rq->pm->pm_step, stat, err);
346 #endif
347                 ide_complete_power_step(drive, rq, stat, err);
348                 if (pm->pm_step == ide_pm_state_completed)
349                         ide_complete_pm_request(drive, rq);
350                 return;
351         }
352
353         spin_lock_irqsave(&ide_lock, flags);
354         HWGROUP(drive)->rq = NULL;
355         rq->errors = err;
356         if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
357                                        blk_rq_bytes(rq))))
358                 BUG();
359         spin_unlock_irqrestore(&ide_lock, flags);
360 }
361
362 EXPORT_SYMBOL(ide_end_drive_cmd);
363
364 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
365 {
366         if (rq->rq_disk) {
367                 ide_driver_t *drv;
368
369                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
370                 drv->end_request(drive, 0, 0);
371         } else
372                 ide_end_request(drive, 0, 0);
373 }
374
375 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
376 {
377         ide_hwif_t *hwif = drive->hwif;
378
379         if ((stat & ATA_BUSY) ||
380             ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
381                 /* other bits are useless when BUSY */
382                 rq->errors |= ERROR_RESET;
383         } else if (stat & ATA_ERR) {
384                 /* err has different meaning on cdrom and tape */
385                 if (err == ATA_ABORTED) {
386                         if ((drive->dev_flags & IDE_DFLAG_LBA) &&
387                             /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
388                             hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
389                                 return ide_stopped;
390                 } else if ((err & BAD_CRC) == BAD_CRC) {
391                         /* UDMA crc error, just retry the operation */
392                         drive->crc_count++;
393                 } else if (err & (ATA_BBK | ATA_UNC)) {
394                         /* retries won't help these */
395                         rq->errors = ERROR_MAX;
396                 } else if (err & ATA_TRK0NF) {
397                         /* help it find track zero */
398                         rq->errors |= ERROR_RECAL;
399                 }
400         }
401
402         if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
403             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
404                 int nsect = drive->mult_count ? drive->mult_count : 1;
405
406                 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
407         }
408
409         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
410                 ide_kill_rq(drive, rq);
411                 return ide_stopped;
412         }
413
414         if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
415                 rq->errors |= ERROR_RESET;
416
417         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
418                 ++rq->errors;
419                 return ide_do_reset(drive);
420         }
421
422         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
423                 drive->special.b.recalibrate = 1;
424
425         ++rq->errors;
426
427         return ide_stopped;
428 }
429
430 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
431 {
432         ide_hwif_t *hwif = drive->hwif;
433
434         if ((stat & ATA_BUSY) ||
435             ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
436                 /* other bits are useless when BUSY */
437                 rq->errors |= ERROR_RESET;
438         } else {
439                 /* add decoding error stuff */
440         }
441
442         if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
443                 /* force an abort */
444                 hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
445
446         if (rq->errors >= ERROR_MAX) {
447                 ide_kill_rq(drive, rq);
448         } else {
449                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
450                         ++rq->errors;
451                         return ide_do_reset(drive);
452                 }
453                 ++rq->errors;
454         }
455
456         return ide_stopped;
457 }
458
459 ide_startstop_t
460 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
461 {
462         if (drive->media == ide_disk)
463                 return ide_ata_error(drive, rq, stat, err);
464         return ide_atapi_error(drive, rq, stat, err);
465 }
466
467 EXPORT_SYMBOL_GPL(__ide_error);
468
469 /**
470  *      ide_error       -       handle an error on the IDE
471  *      @drive: drive the error occurred on
472  *      @msg: message to report
473  *      @stat: status bits
474  *
475  *      ide_error() takes action based on the error returned by the drive.
476  *      For normal I/O that may well include retries. We deal with
477  *      both new-style (taskfile) and old style command handling here.
478  *      In the case of taskfile command handling there is work left to
479  *      do
480  */
481  
482 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
483 {
484         struct request *rq;
485         u8 err;
486
487         err = ide_dump_status(drive, msg, stat);
488
489         if ((rq = HWGROUP(drive)->rq) == NULL)
490                 return ide_stopped;
491
492         /* retry only "normal" I/O: */
493         if (!blk_fs_request(rq)) {
494                 rq->errors = 1;
495                 ide_end_drive_cmd(drive, stat, err);
496                 return ide_stopped;
497         }
498
499         if (rq->rq_disk) {
500                 ide_driver_t *drv;
501
502                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
503                 return drv->error(drive, rq, stat, err);
504         } else
505                 return __ide_error(drive, rq, stat, err);
506 }
507
508 EXPORT_SYMBOL_GPL(ide_error);
509
510 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
511 {
512         tf->nsect   = drive->sect;
513         tf->lbal    = drive->sect;
514         tf->lbam    = drive->cyl;
515         tf->lbah    = drive->cyl >> 8;
516         tf->device  = (drive->head - 1) | drive->select.all;
517         tf->command = ATA_CMD_INIT_DEV_PARAMS;
518 }
519
520 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
521 {
522         tf->nsect   = drive->sect;
523         tf->command = ATA_CMD_RESTORE;
524 }
525
526 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
527 {
528         tf->nsect   = drive->mult_req;
529         tf->command = ATA_CMD_SET_MULTI;
530 }
531
532 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
533 {
534         special_t *s = &drive->special;
535         ide_task_t args;
536
537         memset(&args, 0, sizeof(ide_task_t));
538         args.data_phase = TASKFILE_NO_DATA;
539
540         if (s->b.set_geometry) {
541                 s->b.set_geometry = 0;
542                 ide_tf_set_specify_cmd(drive, &args.tf);
543         } else if (s->b.recalibrate) {
544                 s->b.recalibrate = 0;
545                 ide_tf_set_restore_cmd(drive, &args.tf);
546         } else if (s->b.set_multmode) {
547                 s->b.set_multmode = 0;
548                 ide_tf_set_setmult_cmd(drive, &args.tf);
549         } else if (s->all) {
550                 int special = s->all;
551                 s->all = 0;
552                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
553                 return ide_stopped;
554         }
555
556         args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
557                         IDE_TFLAG_CUSTOM_HANDLER;
558
559         do_rw_taskfile(drive, &args);
560
561         return ide_started;
562 }
563
564 /*
565  * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
566  */
567 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
568 {
569         switch (req_pio) {
570         case 202:
571         case 201:
572         case 200:
573         case 102:
574         case 101:
575         case 100:
576                 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
577         case 9:
578         case 8:
579                 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
580         case 7:
581         case 6:
582                 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
583         default:
584                 return 0;
585         }
586 }
587
588 /**
589  *      do_special              -       issue some special commands
590  *      @drive: drive the command is for
591  *
592  *      do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
593  *      ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
594  *
595  *      It used to do much more, but has been scaled back.
596  */
597
598 static ide_startstop_t do_special (ide_drive_t *drive)
599 {
600         special_t *s = &drive->special;
601
602 #ifdef DEBUG
603         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
604 #endif
605         if (s->b.set_tune) {
606                 ide_hwif_t *hwif = drive->hwif;
607                 const struct ide_port_ops *port_ops = hwif->port_ops;
608                 u8 req_pio = drive->tune_req;
609
610                 s->b.set_tune = 0;
611
612                 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
613                         /*
614                          * take ide_lock for IDE_DFLAG_[NO_]UNMASK/[NO_]IO_32BIT
615                          */
616                         if (req_pio == 8 || req_pio == 9) {
617                                 unsigned long flags;
618
619                                 spin_lock_irqsave(&ide_lock, flags);
620                                 port_ops->set_pio_mode(drive, req_pio);
621                                 spin_unlock_irqrestore(&ide_lock, flags);
622                         } else
623                                 port_ops->set_pio_mode(drive, req_pio);
624                 } else {
625                         int keep_dma =
626                                 !!(drive->dev_flags & IDE_DFLAG_USING_DMA);
627
628                         ide_set_pio(drive, req_pio);
629
630                         if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
631                                 if (keep_dma)
632                                         ide_dma_on(drive);
633                         }
634                 }
635
636                 return ide_stopped;
637         } else {
638                 if (drive->media == ide_disk)
639                         return ide_disk_special(drive);
640
641                 s->all = 0;
642                 drive->mult_req = 0;
643                 return ide_stopped;
644         }
645 }
646
647 void ide_map_sg(ide_drive_t *drive, struct request *rq)
648 {
649         ide_hwif_t *hwif = drive->hwif;
650         struct scatterlist *sg = hwif->sg_table;
651
652         if (hwif->sg_mapped)    /* needed by ide-scsi */
653                 return;
654
655         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
656                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
657         } else {
658                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
659                 hwif->sg_nents = 1;
660         }
661 }
662
663 EXPORT_SYMBOL_GPL(ide_map_sg);
664
665 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
666 {
667         ide_hwif_t *hwif = drive->hwif;
668
669         hwif->nsect = hwif->nleft = rq->nr_sectors;
670         hwif->cursg_ofs = 0;
671         hwif->cursg = NULL;
672 }
673
674 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
675
676 /**
677  *      execute_drive_command   -       issue special drive command
678  *      @drive: the drive to issue the command on
679  *      @rq: the request structure holding the command
680  *
681  *      execute_drive_cmd() issues a special drive command,  usually 
682  *      initiated by ioctl() from the external hdparm program. The
683  *      command can be a drive command, drive task or taskfile 
684  *      operation. Weirdly you can call it with NULL to wait for
685  *      all commands to finish. Don't do this as that is due to change
686  */
687
688 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
689                 struct request *rq)
690 {
691         ide_hwif_t *hwif = HWIF(drive);
692         ide_task_t *task = rq->special;
693
694         if (task) {
695                 hwif->data_phase = task->data_phase;
696
697                 switch (hwif->data_phase) {
698                 case TASKFILE_MULTI_OUT:
699                 case TASKFILE_OUT:
700                 case TASKFILE_MULTI_IN:
701                 case TASKFILE_IN:
702                         ide_init_sg_cmd(drive, rq);
703                         ide_map_sg(drive, rq);
704                 default:
705                         break;
706                 }
707
708                 return do_rw_taskfile(drive, task);
709         }
710
711         /*
712          * NULL is actually a valid way of waiting for
713          * all current requests to be flushed from the queue.
714          */
715 #ifdef DEBUG
716         printk("%s: DRIVE_CMD (null)\n", drive->name);
717 #endif
718         ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
719                           ide_read_error(drive));
720
721         return ide_stopped;
722 }
723
724 int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
725                        int arg)
726 {
727         struct request_queue *q = drive->queue;
728         struct request *rq;
729         int ret = 0;
730
731         if (!(setting->flags & DS_SYNC))
732                 return setting->set(drive, arg);
733
734         rq = blk_get_request(q, READ, GFP_KERNEL);
735         if (!rq)
736                 return -ENOMEM;
737
738         rq->cmd_type = REQ_TYPE_SPECIAL;
739         rq->cmd_len = 5;
740         rq->cmd[0] = REQ_DEVSET_EXEC;
741         *(int *)&rq->cmd[1] = arg;
742         rq->special = setting->set;
743
744         if (blk_execute_rq(q, NULL, rq, 0))
745                 ret = rq->errors;
746         blk_put_request(rq);
747
748         return ret;
749 }
750 EXPORT_SYMBOL_GPL(ide_devset_execute);
751
752 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
753 {
754         switch (rq->cmd[0]) {
755         case REQ_DEVSET_EXEC:
756         {
757                 int err, (*setfunc)(ide_drive_t *, int) = rq->special;
758
759                 err = setfunc(drive, *(int *)&rq->cmd[1]);
760                 if (err)
761                         rq->errors = err;
762                 else
763                         err = 1;
764                 ide_end_request(drive, err, 0);
765                 return ide_stopped;
766         }
767         case REQ_DRIVE_RESET:
768                 return ide_do_reset(drive);
769         default:
770                 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
771                 ide_end_request(drive, 0, 0);
772                 return ide_stopped;
773         }
774 }
775
776 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
777 {
778         struct request_pm_state *pm = rq->data;
779
780         if (blk_pm_suspend_request(rq) &&
781             pm->pm_step == ide_pm_state_start_suspend)
782                 /* Mark drive blocked when starting the suspend sequence. */
783                 drive->dev_flags |= IDE_DFLAG_BLOCKED;
784         else if (blk_pm_resume_request(rq) &&
785                  pm->pm_step == ide_pm_state_start_resume) {
786                 /* 
787                  * The first thing we do on wakeup is to wait for BSY bit to
788                  * go away (with a looong timeout) as a drive on this hwif may
789                  * just be POSTing itself.
790                  * We do that before even selecting as the "other" device on
791                  * the bus may be broken enough to walk on our toes at this
792                  * point.
793                  */
794                 ide_hwif_t *hwif = drive->hwif;
795                 int rc;
796 #ifdef DEBUG_PM
797                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
798 #endif
799                 rc = ide_wait_not_busy(hwif, 35000);
800                 if (rc)
801                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
802                 SELECT_DRIVE(drive);
803                 hwif->tp_ops->set_irq(hwif, 1);
804                 rc = ide_wait_not_busy(hwif, 100000);
805                 if (rc)
806                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
807         }
808 }
809
810 /**
811  *      start_request   -       start of I/O and command issuing for IDE
812  *
813  *      start_request() initiates handling of a new I/O request. It
814  *      accepts commands and I/O (read/write) requests.
815  *
816  *      FIXME: this function needs a rename
817  */
818  
819 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
820 {
821         ide_startstop_t startstop;
822
823         BUG_ON(!blk_rq_started(rq));
824
825 #ifdef DEBUG
826         printk("%s: start_request: current=0x%08lx\n",
827                 HWIF(drive)->name, (unsigned long) rq);
828 #endif
829
830         /* bail early if we've exceeded max_failures */
831         if (drive->max_failures && (drive->failures > drive->max_failures)) {
832                 rq->cmd_flags |= REQ_FAILED;
833                 goto kill_rq;
834         }
835
836         if (blk_pm_request(rq))
837                 ide_check_pm_state(drive, rq);
838
839         SELECT_DRIVE(drive);
840         if (ide_wait_stat(&startstop, drive, drive->ready_stat,
841                           ATA_BUSY | ATA_DRQ, WAIT_READY)) {
842                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
843                 return startstop;
844         }
845         if (!drive->special.all) {
846                 ide_driver_t *drv;
847
848                 /*
849                  * We reset the drive so we need to issue a SETFEATURES.
850                  * Do it _after_ do_special() restored device parameters.
851                  */
852                 if (drive->current_speed == 0xff)
853                         ide_config_drive_speed(drive, drive->desired_speed);
854
855                 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
856                         return execute_drive_cmd(drive, rq);
857                 else if (blk_pm_request(rq)) {
858                         struct request_pm_state *pm = rq->data;
859 #ifdef DEBUG_PM
860                         printk("%s: start_power_step(step: %d)\n",
861                                 drive->name, rq->pm->pm_step);
862 #endif
863                         startstop = ide_start_power_step(drive, rq);
864                         if (startstop == ide_stopped &&
865                             pm->pm_step == ide_pm_state_completed)
866                                 ide_complete_pm_request(drive, rq);
867                         return startstop;
868                 } else if (!rq->rq_disk && blk_special_request(rq))
869                         /*
870                          * TODO: Once all ULDs have been modified to
871                          * check for specific op codes rather than
872                          * blindly accepting any special request, the
873                          * check for ->rq_disk above may be replaced
874                          * by a more suitable mechanism or even
875                          * dropped entirely.
876                          */
877                         return ide_special_rq(drive, rq);
878
879                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
880
881                 return drv->do_request(drive, rq, rq->sector);
882         }
883         return do_special(drive);
884 kill_rq:
885         ide_kill_rq(drive, rq);
886         return ide_stopped;
887 }
888
889 /**
890  *      ide_stall_queue         -       pause an IDE device
891  *      @drive: drive to stall
892  *      @timeout: time to stall for (jiffies)
893  *
894  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
895  *      to the hwgroup by sleeping for timeout jiffies.
896  */
897  
898 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
899 {
900         if (timeout > WAIT_WORSTCASE)
901                 timeout = WAIT_WORSTCASE;
902         drive->sleep = timeout + jiffies;
903         drive->dev_flags |= IDE_DFLAG_SLEEPING;
904 }
905
906 EXPORT_SYMBOL(ide_stall_queue);
907
908 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
909
910 /**
911  *      choose_drive            -       select a drive to service
912  *      @hwgroup: hardware group to select on
913  *
914  *      choose_drive() selects the next drive which will be serviced.
915  *      This is necessary because the IDE layer can't issue commands
916  *      to both drives on the same cable, unlike SCSI.
917  */
918  
919 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
920 {
921         ide_drive_t *drive, *best;
922
923 repeat: 
924         best = NULL;
925         drive = hwgroup->drive;
926
927         /*
928          * drive is doing pre-flush, ordered write, post-flush sequence. even
929          * though that is 3 requests, it must be seen as a single transaction.
930          * we must not preempt this drive until that is complete
931          */
932         if (blk_queue_flushing(drive->queue)) {
933                 /*
934                  * small race where queue could get replugged during
935                  * the 3-request flush cycle, just yank the plug since
936                  * we want it to finish asap
937                  */
938                 blk_remove_plug(drive->queue);
939                 return drive;
940         }
941
942         do {
943                 u8 dev_s = !!(drive->dev_flags & IDE_DFLAG_SLEEPING);
944                 u8 best_s = (best && !!(best->dev_flags & IDE_DFLAG_SLEEPING));
945
946                 if ((dev_s == 0 || time_after_eq(jiffies, drive->sleep)) &&
947                     !elv_queue_empty(drive->queue)) {
948                         if (best == NULL ||
949                             (dev_s && (best_s == 0 || time_before(drive->sleep, best->sleep))) ||
950                             (best_s == 0 && time_before(WAKEUP(drive), WAKEUP(best)))) {
951                                 if (!blk_queue_plugged(drive->queue))
952                                         best = drive;
953                         }
954                 }
955         } while ((drive = drive->next) != hwgroup->drive);
956
957         if (best && (best->dev_flags & IDE_DFLAG_NICE1) &&
958             (best->dev_flags & IDE_DFLAG_SLEEPING) == 0 &&
959             best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
960                 long t = (signed long)(WAKEUP(best) - jiffies);
961                 if (t >= WAIT_MIN_SLEEP) {
962                 /*
963                  * We *may* have some time to spare, but first let's see if
964                  * someone can potentially benefit from our nice mood today..
965                  */
966                         drive = best->next;
967                         do {
968                                 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) == 0
969                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
970                                  && time_before(WAKEUP(drive), jiffies + t))
971                                 {
972                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
973                                         goto repeat;
974                                 }
975                         } while ((drive = drive->next) != best);
976                 }
977         }
978         return best;
979 }
980
981 /*
982  * Issue a new request to a drive from hwgroup
983  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
984  *
985  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
986  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
987  * may have both interfaces in a single hwgroup to "serialize" access.
988  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
989  * together into one hwgroup for serialized access.
990  *
991  * Note also that several hwgroups can end up sharing a single IRQ,
992  * possibly along with many other devices.  This is especially common in
993  * PCI-based systems with off-board IDE controller cards.
994  *
995  * The IDE driver uses the single global ide_lock spinlock to protect
996  * access to the request queues, and to protect the hwgroup->busy flag.
997  *
998  * The first thread into the driver for a particular hwgroup sets the
999  * hwgroup->busy flag to indicate that this hwgroup is now active,
1000  * and then initiates processing of the top request from the request queue.
1001  *
1002  * Other threads attempting entry notice the busy setting, and will simply
1003  * queue their new requests and exit immediately.  Note that hwgroup->busy
1004  * remains set even when the driver is merely awaiting the next interrupt.
1005  * Thus, the meaning is "this hwgroup is busy processing a request".
1006  *
1007  * When processing of a request completes, the completing thread or IRQ-handler
1008  * will start the next request from the queue.  If no more work remains,
1009  * the driver will clear the hwgroup->busy flag and exit.
1010  *
1011  * The ide_lock (spinlock) is used to protect all access to the
1012  * hwgroup->busy flag, but is otherwise not needed for most processing in
1013  * the driver.  This makes the driver much more friendlier to shared IRQs
1014  * than previous designs, while remaining 100% (?) SMP safe and capable.
1015  */
1016 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1017 {
1018         ide_drive_t     *drive;
1019         ide_hwif_t      *hwif;
1020         struct request  *rq;
1021         ide_startstop_t startstop;
1022         int             loops = 0;
1023
1024         /* for atari only: POSSIBLY BROKEN HERE(?) */
1025         ide_get_lock(ide_intr, hwgroup);
1026
1027         /* caller must own ide_lock */
1028         BUG_ON(!irqs_disabled());
1029
1030         while (!hwgroup->busy) {
1031                 hwgroup->busy = 1;
1032                 drive = choose_drive(hwgroup);
1033                 if (drive == NULL) {
1034                         int sleeping = 0;
1035                         unsigned long sleep = 0; /* shut up, gcc */
1036                         hwgroup->rq = NULL;
1037                         drive = hwgroup->drive;
1038                         do {
1039                                 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) &&
1040                                     (sleeping == 0 ||
1041                                      time_before(drive->sleep, sleep))) {
1042                                         sleeping = 1;
1043                                         sleep = drive->sleep;
1044                                 }
1045                         } while ((drive = drive->next) != hwgroup->drive);
1046                         if (sleeping) {
1047                 /*
1048                  * Take a short snooze, and then wake up this hwgroup again.
1049                  * This gives other hwgroups on the same a chance to
1050                  * play fairly with us, just in case there are big differences
1051                  * in relative throughputs.. don't want to hog the cpu too much.
1052                  */
1053                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1054                                         sleep = jiffies + WAIT_MIN_SLEEP;
1055 #if 1
1056                                 if (timer_pending(&hwgroup->timer))
1057                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1058 #endif
1059                                 /* so that ide_timer_expiry knows what to do */
1060                                 hwgroup->sleeping = 1;
1061                                 hwgroup->req_gen_timer = hwgroup->req_gen;
1062                                 mod_timer(&hwgroup->timer, sleep);
1063                                 /* we purposely leave hwgroup->busy==1
1064                                  * while sleeping */
1065                         } else {
1066                                 /* Ugly, but how can we sleep for the lock
1067                                  * otherwise? perhaps from tq_disk?
1068                                  */
1069
1070                                 /* for atari only */
1071                                 ide_release_lock();
1072                                 hwgroup->busy = 0;
1073                         }
1074
1075                         /* no more work for this hwgroup (for now) */
1076                         return;
1077                 }
1078         again:
1079                 hwif = HWIF(drive);
1080                 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1081                         /*
1082                          * set nIEN for previous hwif, drives in the
1083                          * quirk_list may not like intr setups/cleanups
1084                          */
1085                         if (drive->quirk_list != 1)
1086                                 hwif->tp_ops->set_irq(hwif, 0);
1087                 }
1088                 hwgroup->hwif = hwif;
1089                 hwgroup->drive = drive;
1090                 drive->dev_flags &= ~IDE_DFLAG_SLEEPING;
1091                 drive->service_start = jiffies;
1092
1093                 if (blk_queue_plugged(drive->queue)) {
1094                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1095                         break;
1096                 }
1097
1098                 /*
1099                  * we know that the queue isn't empty, but this can happen
1100                  * if the q->prep_rq_fn() decides to kill a request
1101                  */
1102                 rq = elv_next_request(drive->queue);
1103                 if (!rq) {
1104                         hwgroup->busy = 0;
1105                         break;
1106                 }
1107
1108                 /*
1109                  * Sanity: don't accept a request that isn't a PM request
1110                  * if we are currently power managed. This is very important as
1111                  * blk_stop_queue() doesn't prevent the elv_next_request()
1112                  * above to return us whatever is in the queue. Since we call
1113                  * ide_do_request() ourselves, we end up taking requests while
1114                  * the queue is blocked...
1115                  * 
1116                  * We let requests forced at head of queue with ide-preempt
1117                  * though. I hope that doesn't happen too much, hopefully not
1118                  * unless the subdriver triggers such a thing in its own PM
1119                  * state machine.
1120                  *
1121                  * We count how many times we loop here to make sure we service
1122                  * all drives in the hwgroup without looping for ever
1123                  */
1124                 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
1125                     blk_pm_request(rq) == 0 &&
1126                     (rq->cmd_flags & REQ_PREEMPT) == 0) {
1127                         drive = drive->next ? drive->next : hwgroup->drive;
1128                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1129                                 goto again;
1130                         /* We clear busy, there should be no pending ATA command at this point. */
1131                         hwgroup->busy = 0;
1132                         break;
1133                 }
1134
1135                 hwgroup->rq = rq;
1136
1137                 /*
1138                  * Some systems have trouble with IDE IRQs arriving while
1139                  * the driver is still setting things up.  So, here we disable
1140                  * the IRQ used by this interface while the request is being started.
1141                  * This may look bad at first, but pretty much the same thing
1142                  * happens anyway when any interrupt comes in, IDE or otherwise
1143                  *  -- the kernel masks the IRQ while it is being handled.
1144                  */
1145                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1146                         disable_irq_nosync(hwif->irq);
1147                 spin_unlock(&ide_lock);
1148                 local_irq_enable_in_hardirq();
1149                         /* allow other IRQs while we start this request */
1150                 startstop = start_request(drive, rq);
1151                 spin_lock_irq(&ide_lock);
1152                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1153                         enable_irq(hwif->irq);
1154                 if (startstop == ide_stopped)
1155                         hwgroup->busy = 0;
1156         }
1157 }
1158
1159 /*
1160  * Passes the stuff to ide_do_request
1161  */
1162 void do_ide_request(struct request_queue *q)
1163 {
1164         ide_drive_t *drive = q->queuedata;
1165
1166         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1167 }
1168
1169 /*
1170  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1171  * retry the current request in pio mode instead of risking tossing it
1172  * all away
1173  */
1174 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1175 {
1176         ide_hwif_t *hwif = HWIF(drive);
1177         struct request *rq;
1178         ide_startstop_t ret = ide_stopped;
1179
1180         /*
1181          * end current dma transaction
1182          */
1183
1184         if (error < 0) {
1185                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1186                 (void)hwif->dma_ops->dma_end(drive);
1187                 ret = ide_error(drive, "dma timeout error",
1188                                 hwif->tp_ops->read_status(hwif));
1189         } else {
1190                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1191                 hwif->dma_ops->dma_timeout(drive);
1192         }
1193
1194         /*
1195          * disable dma for now, but remember that we did so because of
1196          * a timeout -- we'll reenable after we finish this next request
1197          * (or rather the first chunk of it) in pio.
1198          */
1199         drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
1200         drive->retry_pio++;
1201         ide_dma_off_quietly(drive);
1202
1203         /*
1204          * un-busy drive etc (hwgroup->busy is cleared on return) and
1205          * make sure request is sane
1206          */
1207         rq = HWGROUP(drive)->rq;
1208
1209         if (!rq)
1210                 goto out;
1211
1212         HWGROUP(drive)->rq = NULL;
1213
1214         rq->errors = 0;
1215
1216         if (!rq->bio)
1217                 goto out;
1218
1219         rq->sector = rq->bio->bi_sector;
1220         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1221         rq->hard_cur_sectors = rq->current_nr_sectors;
1222         rq->buffer = bio_data(rq->bio);
1223 out:
1224         return ret;
1225 }
1226
1227 /**
1228  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1229  *      @data: timer callback magic (hwgroup)
1230  *
1231  *      An IDE command has timed out before the expected drive return
1232  *      occurred. At this point we attempt to clean up the current
1233  *      mess. If the current handler includes an expiry handler then
1234  *      we invoke the expiry handler, and providing it is happy the
1235  *      work is done. If that fails we apply generic recovery rules
1236  *      invoking the handler and checking the drive DMA status. We
1237  *      have an excessively incestuous relationship with the DMA
1238  *      logic that wants cleaning up.
1239  */
1240  
1241 void ide_timer_expiry (unsigned long data)
1242 {
1243         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1244         ide_handler_t   *handler;
1245         ide_expiry_t    *expiry;
1246         unsigned long   flags;
1247         unsigned long   wait = -1;
1248
1249         spin_lock_irqsave(&ide_lock, flags);
1250
1251         if (((handler = hwgroup->handler) == NULL) ||
1252             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1253                 /*
1254                  * Either a marginal timeout occurred
1255                  * (got the interrupt just as timer expired),
1256                  * or we were "sleeping" to give other devices a chance.
1257                  * Either way, we don't really want to complain about anything.
1258                  */
1259                 if (hwgroup->sleeping) {
1260                         hwgroup->sleeping = 0;
1261                         hwgroup->busy = 0;
1262                 }
1263         } else {
1264                 ide_drive_t *drive = hwgroup->drive;
1265                 if (!drive) {
1266                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1267                         hwgroup->handler = NULL;
1268                 } else {
1269                         ide_hwif_t *hwif;
1270                         ide_startstop_t startstop = ide_stopped;
1271                         if (!hwgroup->busy) {
1272                                 hwgroup->busy = 1;      /* paranoia */
1273                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1274                         }
1275                         if ((expiry = hwgroup->expiry) != NULL) {
1276                                 /* continue */
1277                                 if ((wait = expiry(drive)) > 0) {
1278                                         /* reset timer */
1279                                         hwgroup->timer.expires  = jiffies + wait;
1280                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1281                                         add_timer(&hwgroup->timer);
1282                                         spin_unlock_irqrestore(&ide_lock, flags);
1283                                         return;
1284                                 }
1285                         }
1286                         hwgroup->handler = NULL;
1287                         /*
1288                          * We need to simulate a real interrupt when invoking
1289                          * the handler() function, which means we need to
1290                          * globally mask the specific IRQ:
1291                          */
1292                         spin_unlock(&ide_lock);
1293                         hwif  = HWIF(drive);
1294                         /* disable_irq_nosync ?? */
1295                         disable_irq(hwif->irq);
1296                         /* local CPU only,
1297                          * as if we were handling an interrupt */
1298                         local_irq_disable();
1299                         if (hwgroup->polling) {
1300                                 startstop = handler(drive);
1301                         } else if (drive_is_ready(drive)) {
1302                                 if (drive->waiting_for_dma)
1303                                         hwif->dma_ops->dma_lost_irq(drive);
1304                                 (void)ide_ack_intr(hwif);
1305                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1306                                 startstop = handler(drive);
1307                         } else {
1308                                 if (drive->waiting_for_dma) {
1309                                         startstop = ide_dma_timeout_retry(drive, wait);
1310                                 } else
1311                                         startstop =
1312                                         ide_error(drive, "irq timeout",
1313                                                   hwif->tp_ops->read_status(hwif));
1314                         }
1315                         drive->service_time = jiffies - drive->service_start;
1316                         spin_lock_irq(&ide_lock);
1317                         enable_irq(hwif->irq);
1318                         if (startstop == ide_stopped)
1319                                 hwgroup->busy = 0;
1320                 }
1321         }
1322         ide_do_request(hwgroup, IDE_NO_IRQ);
1323         spin_unlock_irqrestore(&ide_lock, flags);
1324 }
1325
1326 /**
1327  *      unexpected_intr         -       handle an unexpected IDE interrupt
1328  *      @irq: interrupt line
1329  *      @hwgroup: hwgroup being processed
1330  *
1331  *      There's nothing really useful we can do with an unexpected interrupt,
1332  *      other than reading the status register (to clear it), and logging it.
1333  *      There should be no way that an irq can happen before we're ready for it,
1334  *      so we needn't worry much about losing an "important" interrupt here.
1335  *
1336  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1337  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1338  *      looks "good", we just ignore the interrupt completely.
1339  *
1340  *      This routine assumes __cli() is in effect when called.
1341  *
1342  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1343  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1344  *      we could screw up by interfering with a new request being set up for 
1345  *      irq15.
1346  *
1347  *      In reality, this is a non-issue.  The new command is not sent unless 
1348  *      the drive is ready to accept one, in which case we know the drive is
1349  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1350  *      before completing the issuance of any new drive command, so we will not
1351  *      be accidentally invoked as a result of any valid command completion
1352  *      interrupt.
1353  *
1354  *      Note that we must walk the entire hwgroup here. We know which hwif
1355  *      is doing the current command, but we don't know which hwif burped
1356  *      mysteriously.
1357  */
1358  
1359 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1360 {
1361         u8 stat;
1362         ide_hwif_t *hwif = hwgroup->hwif;
1363
1364         /*
1365          * handle the unexpected interrupt
1366          */
1367         do {
1368                 if (hwif->irq == irq) {
1369                         stat = hwif->tp_ops->read_status(hwif);
1370
1371                         if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1372                                 /* Try to not flood the console with msgs */
1373                                 static unsigned long last_msgtime, count;
1374                                 ++count;
1375                                 if (time_after(jiffies, last_msgtime + HZ)) {
1376                                         last_msgtime = jiffies;
1377                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1378                                                 "status=0x%02x, count=%ld\n",
1379                                                 hwif->name,
1380                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1381                                 }
1382                         }
1383                 }
1384         } while ((hwif = hwif->next) != hwgroup->hwif);
1385 }
1386
1387 /**
1388  *      ide_intr        -       default IDE interrupt handler
1389  *      @irq: interrupt number
1390  *      @dev_id: hwif group
1391  *      @regs: unused weirdness from the kernel irq layer
1392  *
1393  *      This is the default IRQ handler for the IDE layer. You should
1394  *      not need to override it. If you do be aware it is subtle in
1395  *      places
1396  *
1397  *      hwgroup->hwif is the interface in the group currently performing
1398  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1399  *      the IRQ handler to call. As we issue a command the handlers
1400  *      step through multiple states, reassigning the handler to the
1401  *      next step in the process. Unlike a smart SCSI controller IDE
1402  *      expects the main processor to sequence the various transfer
1403  *      stages. We also manage a poll timer to catch up with most
1404  *      timeout situations. There are still a few where the handlers
1405  *      don't ever decide to give up.
1406  *
1407  *      The handler eventually returns ide_stopped to indicate the
1408  *      request completed. At this point we issue the next request
1409  *      on the hwgroup and the process begins again.
1410  */
1411  
1412 irqreturn_t ide_intr (int irq, void *dev_id)
1413 {
1414         unsigned long flags;
1415         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1416         ide_hwif_t *hwif;
1417         ide_drive_t *drive;
1418         ide_handler_t *handler;
1419         ide_startstop_t startstop;
1420
1421         spin_lock_irqsave(&ide_lock, flags);
1422         hwif = hwgroup->hwif;
1423
1424         if (!ide_ack_intr(hwif)) {
1425                 spin_unlock_irqrestore(&ide_lock, flags);
1426                 return IRQ_NONE;
1427         }
1428
1429         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1430                 /*
1431                  * Not expecting an interrupt from this drive.
1432                  * That means this could be:
1433                  *      (1) an interrupt from another PCI device
1434                  *      sharing the same PCI INT# as us.
1435                  * or   (2) a drive just entered sleep or standby mode,
1436                  *      and is interrupting to let us know.
1437                  * or   (3) a spurious interrupt of unknown origin.
1438                  *
1439                  * For PCI, we cannot tell the difference,
1440                  * so in that case we just ignore it and hope it goes away.
1441                  *
1442                  * FIXME: unexpected_intr should be hwif-> then we can
1443                  * remove all the ifdef PCI crap
1444                  */
1445 #ifdef CONFIG_BLK_DEV_IDEPCI
1446                 if (hwif->chipset != ide_pci)
1447 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1448                 {
1449                         /*
1450                          * Probably not a shared PCI interrupt,
1451                          * so we can safely try to do something about it:
1452                          */
1453                         unexpected_intr(irq, hwgroup);
1454 #ifdef CONFIG_BLK_DEV_IDEPCI
1455                 } else {
1456                         /*
1457                          * Whack the status register, just in case
1458                          * we have a leftover pending IRQ.
1459                          */
1460                         (void)hwif->tp_ops->read_status(hwif);
1461 #endif /* CONFIG_BLK_DEV_IDEPCI */
1462                 }
1463                 spin_unlock_irqrestore(&ide_lock, flags);
1464                 return IRQ_NONE;
1465         }
1466         drive = hwgroup->drive;
1467         if (!drive) {
1468                 /*
1469                  * This should NEVER happen, and there isn't much
1470                  * we could do about it here.
1471                  *
1472                  * [Note - this can occur if the drive is hot unplugged]
1473                  */
1474                 spin_unlock_irqrestore(&ide_lock, flags);
1475                 return IRQ_HANDLED;
1476         }
1477         if (!drive_is_ready(drive)) {
1478                 /*
1479                  * This happens regularly when we share a PCI IRQ with
1480                  * another device.  Unfortunately, it can also happen
1481                  * with some buggy drives that trigger the IRQ before
1482                  * their status register is up to date.  Hopefully we have
1483                  * enough advance overhead that the latter isn't a problem.
1484                  */
1485                 spin_unlock_irqrestore(&ide_lock, flags);
1486                 return IRQ_NONE;
1487         }
1488         if (!hwgroup->busy) {
1489                 hwgroup->busy = 1;      /* paranoia */
1490                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1491         }
1492         hwgroup->handler = NULL;
1493         hwgroup->req_gen++;
1494         del_timer(&hwgroup->timer);
1495         spin_unlock(&ide_lock);
1496
1497         /* Some controllers might set DMA INTR no matter DMA or PIO;
1498          * bmdma status might need to be cleared even for
1499          * PIO interrupts to prevent spurious/lost irq.
1500          */
1501         if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1502                 /* ide_dma_end() needs bmdma status for error checking.
1503                  * So, skip clearing bmdma status here and leave it
1504                  * to ide_dma_end() if this is dma interrupt.
1505                  */
1506                 hwif->ide_dma_clear_irq(drive);
1507
1508         if (drive->dev_flags & IDE_DFLAG_UNMASK)
1509                 local_irq_enable_in_hardirq();
1510         /* service this interrupt, may set handler for next interrupt */
1511         startstop = handler(drive);
1512         spin_lock_irq(&ide_lock);
1513
1514         /*
1515          * Note that handler() may have set things up for another
1516          * interrupt to occur soon, but it cannot happen until
1517          * we exit from this routine, because it will be the
1518          * same irq as is currently being serviced here, and Linux
1519          * won't allow another of the same (on any CPU) until we return.
1520          */
1521         drive->service_time = jiffies - drive->service_start;
1522         if (startstop == ide_stopped) {
1523                 if (hwgroup->handler == NULL) { /* paranoia */
1524                         hwgroup->busy = 0;
1525                         ide_do_request(hwgroup, hwif->irq);
1526                 } else {
1527                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1528                                 "on exit\n", drive->name);
1529                 }
1530         }
1531         spin_unlock_irqrestore(&ide_lock, flags);
1532         return IRQ_HANDLED;
1533 }
1534
1535 /**
1536  *      ide_do_drive_cmd        -       issue IDE special command
1537  *      @drive: device to issue command
1538  *      @rq: request to issue
1539  *
1540  *      This function issues a special IDE device request
1541  *      onto the request queue.
1542  *
1543  *      the rq is queued at the head of the request queue, displacing
1544  *      the currently-being-processed request and this function
1545  *      returns immediately without waiting for the new rq to be
1546  *      completed.  This is VERY DANGEROUS, and is intended for
1547  *      careful use by the ATAPI tape/cdrom driver code.
1548  */
1549
1550 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1551 {
1552         unsigned long flags;
1553         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1554
1555         spin_lock_irqsave(&ide_lock, flags);
1556         hwgroup->rq = NULL;
1557         __elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 1);
1558         __generic_unplug_device(drive->queue);
1559         spin_unlock_irqrestore(&ide_lock, flags);
1560 }
1561
1562 EXPORT_SYMBOL(ide_do_drive_cmd);
1563
1564 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1565 {
1566         ide_hwif_t *hwif = drive->hwif;
1567         ide_task_t task;
1568
1569         memset(&task, 0, sizeof(task));
1570         task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1571                         IDE_TFLAG_OUT_FEATURE | tf_flags;
1572         task.tf.feature = dma;          /* Use PIO/DMA */
1573         task.tf.lbam    = bcount & 0xff;
1574         task.tf.lbah    = (bcount >> 8) & 0xff;
1575
1576         ide_tf_dump(drive->name, &task.tf);
1577         hwif->tp_ops->set_irq(hwif, 1);
1578         SELECT_MASK(drive, 0);
1579         hwif->tp_ops->tf_load(drive, &task);
1580 }
1581
1582 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1583
1584 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1585 {
1586         ide_hwif_t *hwif = drive->hwif;
1587         u8 buf[4] = { 0 };
1588
1589         while (len > 0) {
1590                 if (write)
1591                         hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1592                 else
1593                         hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1594                 len -= 4;
1595         }
1596 }
1597 EXPORT_SYMBOL_GPL(ide_pad_transfer);