]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/ide/ide-io.c
5f0ed59bac6b46bb6e5f8ff99ffea59fd3ced775
[linux-2.6-omap-h63xx.git] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
52
53 #include <asm/byteorder.h>
54 #include <asm/irq.h>
55 #include <asm/uaccess.h>
56 #include <asm/io.h>
57
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59                              int uptodate, unsigned int nr_bytes, int dequeue)
60 {
61         int ret = 1;
62         int error = 0;
63
64         if (uptodate <= 0)
65                 error = uptodate ? uptodate : -EIO;
66
67         /*
68          * if failfast is set on a request, override number of sectors and
69          * complete the whole request right now
70          */
71         if (blk_noretry_request(rq) && error)
72                 nr_bytes = rq->hard_nr_sectors << 9;
73
74         if (!blk_fs_request(rq) && error && !rq->errors)
75                 rq->errors = -EIO;
76
77         /*
78          * decide whether to reenable DMA -- 3 is a random magic for now,
79          * if we DMA timeout more than 3 times, just stay in PIO
80          */
81         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
82                 drive->state = 0;
83                 ide_dma_on(drive);
84         }
85
86         if (!__blk_end_request(rq, error, nr_bytes)) {
87                 if (dequeue)
88                         HWGROUP(drive)->rq = NULL;
89                 ret = 0;
90         }
91
92         return ret;
93 }
94
95 /**
96  *      ide_end_request         -       complete an IDE I/O
97  *      @drive: IDE device for the I/O
98  *      @uptodate:
99  *      @nr_sectors: number of sectors completed
100  *
101  *      This is our end_request wrapper function. We complete the I/O
102  *      update random number input and dequeue the request, which if
103  *      it was tagged may be out of order.
104  */
105
106 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 {
108         unsigned int nr_bytes = nr_sectors << 9;
109         struct request *rq;
110         unsigned long flags;
111         int ret = 1;
112
113         /*
114          * room for locking improvements here, the calls below don't
115          * need the queue lock held at all
116          */
117         spin_lock_irqsave(&ide_lock, flags);
118         rq = HWGROUP(drive)->rq;
119
120         if (!nr_bytes) {
121                 if (blk_pc_request(rq))
122                         nr_bytes = rq->data_len;
123                 else
124                         nr_bytes = rq->hard_cur_sectors << 9;
125         }
126
127         ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129         spin_unlock_irqrestore(&ide_lock, flags);
130         return ret;
131 }
132 EXPORT_SYMBOL(ide_end_request);
133
134 /*
135  * Power Management state machine. This one is rather trivial for now,
136  * we should probably add more, like switching back to PIO on suspend
137  * to help some BIOSes, re-do the door locking on resume, etc...
138  */
139
140 enum {
141         ide_pm_flush_cache      = ide_pm_state_start_suspend,
142         idedisk_pm_standby,
143
144         idedisk_pm_restore_pio  = ide_pm_state_start_resume,
145         idedisk_pm_idle,
146         ide_pm_restore_dma,
147 };
148
149 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150 {
151         struct request_pm_state *pm = rq->data;
152
153         if (drive->media != ide_disk)
154                 return;
155
156         switch (pm->pm_step) {
157         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
158                 if (pm->pm_state == PM_EVENT_FREEZE)
159                         pm->pm_step = ide_pm_state_completed;
160                 else
161                         pm->pm_step = idedisk_pm_standby;
162                 break;
163         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
164                 pm->pm_step = ide_pm_state_completed;
165                 break;
166         case idedisk_pm_restore_pio:    /* Resume step 1 complete */
167                 pm->pm_step = idedisk_pm_idle;
168                 break;
169         case idedisk_pm_idle:           /* Resume step 2 (idle) complete */
170                 pm->pm_step = ide_pm_restore_dma;
171                 break;
172         }
173 }
174
175 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176 {
177         struct request_pm_state *pm = rq->data;
178         ide_task_t *args = rq->special;
179
180         memset(args, 0, sizeof(*args));
181
182         switch (pm->pm_step) {
183         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
184                 if (drive->media != ide_disk)
185                         break;
186                 /* Not supported? Switch to next step now. */
187                 if (ata_id_flush_enabled(drive->id) == 0 ||
188                     (drive->dev_flags & IDE_DFLAG_WCACHE) == 0) {
189                         ide_complete_power_step(drive, rq, 0, 0);
190                         return ide_stopped;
191                 }
192                 if (ata_id_flush_ext_enabled(drive->id))
193                         args->tf.command = ATA_CMD_FLUSH_EXT;
194                 else
195                         args->tf.command = ATA_CMD_FLUSH;
196                 goto out_do_tf;
197
198         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
199                 args->tf.command = ATA_CMD_STANDBYNOW1;
200                 goto out_do_tf;
201
202         case idedisk_pm_restore_pio:    /* Resume step 1 (restore PIO) */
203                 ide_set_max_pio(drive);
204                 /*
205                  * skip idedisk_pm_idle for ATAPI devices
206                  */
207                 if (drive->media != ide_disk)
208                         pm->pm_step = ide_pm_restore_dma;
209                 else
210                         ide_complete_power_step(drive, rq, 0, 0);
211                 return ide_stopped;
212
213         case idedisk_pm_idle:           /* Resume step 2 (idle) */
214                 args->tf.command = ATA_CMD_IDLEIMMEDIATE;
215                 goto out_do_tf;
216
217         case ide_pm_restore_dma:        /* Resume step 3 (restore DMA) */
218                 /*
219                  * Right now, all we do is call ide_set_dma(drive),
220                  * we could be smarter and check for current xfer_speed
221                  * in struct drive etc...
222                  */
223                 if (drive->hwif->dma_ops == NULL)
224                         break;
225                 /*
226                  * TODO: respect IDE_DFLAG_USING_DMA
227                  */
228                 ide_set_dma(drive);
229                 break;
230         }
231         pm->pm_step = ide_pm_state_completed;
232         return ide_stopped;
233
234 out_do_tf:
235         args->tf_flags   = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
236         args->data_phase = TASKFILE_NO_DATA;
237         return do_rw_taskfile(drive, args);
238 }
239
240 /**
241  *      ide_end_dequeued_request        -       complete an IDE I/O
242  *      @drive: IDE device for the I/O
243  *      @uptodate:
244  *      @nr_sectors: number of sectors completed
245  *
246  *      Complete an I/O that is no longer on the request queue. This
247  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
248  *      We must still finish the old request but we must not tamper with the
249  *      queue in the meantime.
250  *
251  *      NOTE: This path does not handle barrier, but barrier is not supported
252  *      on ide-cd anyway.
253  */
254
255 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
256                              int uptodate, int nr_sectors)
257 {
258         unsigned long flags;
259         int ret;
260
261         spin_lock_irqsave(&ide_lock, flags);
262         BUG_ON(!blk_rq_started(rq));
263         ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
264         spin_unlock_irqrestore(&ide_lock, flags);
265
266         return ret;
267 }
268 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
269
270
271 /**
272  *      ide_complete_pm_request - end the current Power Management request
273  *      @drive: target drive
274  *      @rq: request
275  *
276  *      This function cleans up the current PM request and stops the queue
277  *      if necessary.
278  */
279 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
280 {
281         unsigned long flags;
282
283 #ifdef DEBUG_PM
284         printk("%s: completing PM request, %s\n", drive->name,
285                blk_pm_suspend_request(rq) ? "suspend" : "resume");
286 #endif
287         spin_lock_irqsave(&ide_lock, flags);
288         if (blk_pm_suspend_request(rq)) {
289                 blk_stop_queue(drive->queue);
290         } else {
291                 drive->dev_flags &= ~IDE_DFLAG_BLOCKED;
292                 blk_start_queue(drive->queue);
293         }
294         HWGROUP(drive)->rq = NULL;
295         if (__blk_end_request(rq, 0, 0))
296                 BUG();
297         spin_unlock_irqrestore(&ide_lock, flags);
298 }
299
300 /**
301  *      ide_end_drive_cmd       -       end an explicit drive command
302  *      @drive: command 
303  *      @stat: status bits
304  *      @err: error bits
305  *
306  *      Clean up after success/failure of an explicit drive command.
307  *      These get thrown onto the queue so they are synchronized with
308  *      real I/O operations on the drive.
309  *
310  *      In LBA48 mode we have to read the register set twice to get
311  *      all the extra information out.
312  */
313  
314 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
315 {
316         unsigned long flags;
317         struct request *rq;
318
319         spin_lock_irqsave(&ide_lock, flags);
320         rq = HWGROUP(drive)->rq;
321         spin_unlock_irqrestore(&ide_lock, flags);
322
323         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
324                 ide_task_t *task = (ide_task_t *)rq->special;
325
326                 if (rq->errors == 0)
327                         rq->errors = !OK_STAT(stat, ATA_DRDY, BAD_STAT);
328
329                 if (task) {
330                         struct ide_taskfile *tf = &task->tf;
331
332                         tf->error = err;
333                         tf->status = stat;
334
335                         drive->hwif->tp_ops->tf_read(drive, task);
336
337                         if (task->tf_flags & IDE_TFLAG_DYN)
338                                 kfree(task);
339                 }
340         } else if (blk_pm_request(rq)) {
341                 struct request_pm_state *pm = rq->data;
342 #ifdef DEBUG_PM
343                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
344                         drive->name, rq->pm->pm_step, stat, err);
345 #endif
346                 ide_complete_power_step(drive, rq, stat, err);
347                 if (pm->pm_step == ide_pm_state_completed)
348                         ide_complete_pm_request(drive, rq);
349                 return;
350         }
351
352         spin_lock_irqsave(&ide_lock, flags);
353         HWGROUP(drive)->rq = NULL;
354         rq->errors = err;
355         if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
356                                        blk_rq_bytes(rq))))
357                 BUG();
358         spin_unlock_irqrestore(&ide_lock, flags);
359 }
360
361 EXPORT_SYMBOL(ide_end_drive_cmd);
362
363 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
364 {
365         if (rq->rq_disk) {
366                 ide_driver_t *drv;
367
368                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
369                 drv->end_request(drive, 0, 0);
370         } else
371                 ide_end_request(drive, 0, 0);
372 }
373
374 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
375 {
376         ide_hwif_t *hwif = drive->hwif;
377
378         if ((stat & ATA_BUSY) ||
379             ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
380                 /* other bits are useless when BUSY */
381                 rq->errors |= ERROR_RESET;
382         } else if (stat & ATA_ERR) {
383                 /* err has different meaning on cdrom and tape */
384                 if (err == ATA_ABORTED) {
385                         if (drive->select.b.lba &&
386                             /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
387                             hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
388                                 return ide_stopped;
389                 } else if ((err & BAD_CRC) == BAD_CRC) {
390                         /* UDMA crc error, just retry the operation */
391                         drive->crc_count++;
392                 } else if (err & (ATA_BBK | ATA_UNC)) {
393                         /* retries won't help these */
394                         rq->errors = ERROR_MAX;
395                 } else if (err & ATA_TRK0NF) {
396                         /* help it find track zero */
397                         rq->errors |= ERROR_RECAL;
398                 }
399         }
400
401         if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
402             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
403                 int nsect = drive->mult_count ? drive->mult_count : 1;
404
405                 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
406         }
407
408         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
409                 ide_kill_rq(drive, rq);
410                 return ide_stopped;
411         }
412
413         if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
414                 rq->errors |= ERROR_RESET;
415
416         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
417                 ++rq->errors;
418                 return ide_do_reset(drive);
419         }
420
421         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
422                 drive->special.b.recalibrate = 1;
423
424         ++rq->errors;
425
426         return ide_stopped;
427 }
428
429 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
430 {
431         ide_hwif_t *hwif = drive->hwif;
432
433         if ((stat & ATA_BUSY) ||
434             ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
435                 /* other bits are useless when BUSY */
436                 rq->errors |= ERROR_RESET;
437         } else {
438                 /* add decoding error stuff */
439         }
440
441         if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
442                 /* force an abort */
443                 hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
444
445         if (rq->errors >= ERROR_MAX) {
446                 ide_kill_rq(drive, rq);
447         } else {
448                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
449                         ++rq->errors;
450                         return ide_do_reset(drive);
451                 }
452                 ++rq->errors;
453         }
454
455         return ide_stopped;
456 }
457
458 ide_startstop_t
459 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
460 {
461         if (drive->media == ide_disk)
462                 return ide_ata_error(drive, rq, stat, err);
463         return ide_atapi_error(drive, rq, stat, err);
464 }
465
466 EXPORT_SYMBOL_GPL(__ide_error);
467
468 /**
469  *      ide_error       -       handle an error on the IDE
470  *      @drive: drive the error occurred on
471  *      @msg: message to report
472  *      @stat: status bits
473  *
474  *      ide_error() takes action based on the error returned by the drive.
475  *      For normal I/O that may well include retries. We deal with
476  *      both new-style (taskfile) and old style command handling here.
477  *      In the case of taskfile command handling there is work left to
478  *      do
479  */
480  
481 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
482 {
483         struct request *rq;
484         u8 err;
485
486         err = ide_dump_status(drive, msg, stat);
487
488         if ((rq = HWGROUP(drive)->rq) == NULL)
489                 return ide_stopped;
490
491         /* retry only "normal" I/O: */
492         if (!blk_fs_request(rq)) {
493                 rq->errors = 1;
494                 ide_end_drive_cmd(drive, stat, err);
495                 return ide_stopped;
496         }
497
498         if (rq->rq_disk) {
499                 ide_driver_t *drv;
500
501                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
502                 return drv->error(drive, rq, stat, err);
503         } else
504                 return __ide_error(drive, rq, stat, err);
505 }
506
507 EXPORT_SYMBOL_GPL(ide_error);
508
509 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
510 {
511         tf->nsect   = drive->sect;
512         tf->lbal    = drive->sect;
513         tf->lbam    = drive->cyl;
514         tf->lbah    = drive->cyl >> 8;
515         tf->device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
516         tf->command = ATA_CMD_INIT_DEV_PARAMS;
517 }
518
519 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
520 {
521         tf->nsect   = drive->sect;
522         tf->command = ATA_CMD_RESTORE;
523 }
524
525 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
526 {
527         tf->nsect   = drive->mult_req;
528         tf->command = ATA_CMD_SET_MULTI;
529 }
530
531 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
532 {
533         special_t *s = &drive->special;
534         ide_task_t args;
535
536         memset(&args, 0, sizeof(ide_task_t));
537         args.data_phase = TASKFILE_NO_DATA;
538
539         if (s->b.set_geometry) {
540                 s->b.set_geometry = 0;
541                 ide_tf_set_specify_cmd(drive, &args.tf);
542         } else if (s->b.recalibrate) {
543                 s->b.recalibrate = 0;
544                 ide_tf_set_restore_cmd(drive, &args.tf);
545         } else if (s->b.set_multmode) {
546                 s->b.set_multmode = 0;
547                 ide_tf_set_setmult_cmd(drive, &args.tf);
548         } else if (s->all) {
549                 int special = s->all;
550                 s->all = 0;
551                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
552                 return ide_stopped;
553         }
554
555         args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
556                         IDE_TFLAG_CUSTOM_HANDLER;
557
558         do_rw_taskfile(drive, &args);
559
560         return ide_started;
561 }
562
563 /*
564  * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
565  */
566 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
567 {
568         switch (req_pio) {
569         case 202:
570         case 201:
571         case 200:
572         case 102:
573         case 101:
574         case 100:
575                 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
576         case 9:
577         case 8:
578                 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
579         case 7:
580         case 6:
581                 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
582         default:
583                 return 0;
584         }
585 }
586
587 /**
588  *      do_special              -       issue some special commands
589  *      @drive: drive the command is for
590  *
591  *      do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
592  *      ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
593  *
594  *      It used to do much more, but has been scaled back.
595  */
596
597 static ide_startstop_t do_special (ide_drive_t *drive)
598 {
599         special_t *s = &drive->special;
600
601 #ifdef DEBUG
602         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
603 #endif
604         if (s->b.set_tune) {
605                 ide_hwif_t *hwif = drive->hwif;
606                 const struct ide_port_ops *port_ops = hwif->port_ops;
607                 u8 req_pio = drive->tune_req;
608
609                 s->b.set_tune = 0;
610
611                 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
612                         /*
613                          * take ide_lock for IDE_DFLAG_[NO_]UNMASK/[NO_]IO_32BIT
614                          */
615                         if (req_pio == 8 || req_pio == 9) {
616                                 unsigned long flags;
617
618                                 spin_lock_irqsave(&ide_lock, flags);
619                                 port_ops->set_pio_mode(drive, req_pio);
620                                 spin_unlock_irqrestore(&ide_lock, flags);
621                         } else
622                                 port_ops->set_pio_mode(drive, req_pio);
623                 } else {
624                         int keep_dma =
625                                 !!(drive->dev_flags & IDE_DFLAG_USING_DMA);
626
627                         ide_set_pio(drive, req_pio);
628
629                         if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
630                                 if (keep_dma)
631                                         ide_dma_on(drive);
632                         }
633                 }
634
635                 return ide_stopped;
636         } else {
637                 if (drive->media == ide_disk)
638                         return ide_disk_special(drive);
639
640                 s->all = 0;
641                 drive->mult_req = 0;
642                 return ide_stopped;
643         }
644 }
645
646 void ide_map_sg(ide_drive_t *drive, struct request *rq)
647 {
648         ide_hwif_t *hwif = drive->hwif;
649         struct scatterlist *sg = hwif->sg_table;
650
651         if (hwif->sg_mapped)    /* needed by ide-scsi */
652                 return;
653
654         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
655                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
656         } else {
657                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
658                 hwif->sg_nents = 1;
659         }
660 }
661
662 EXPORT_SYMBOL_GPL(ide_map_sg);
663
664 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
665 {
666         ide_hwif_t *hwif = drive->hwif;
667
668         hwif->nsect = hwif->nleft = rq->nr_sectors;
669         hwif->cursg_ofs = 0;
670         hwif->cursg = NULL;
671 }
672
673 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
674
675 /**
676  *      execute_drive_command   -       issue special drive command
677  *      @drive: the drive to issue the command on
678  *      @rq: the request structure holding the command
679  *
680  *      execute_drive_cmd() issues a special drive command,  usually 
681  *      initiated by ioctl() from the external hdparm program. The
682  *      command can be a drive command, drive task or taskfile 
683  *      operation. Weirdly you can call it with NULL to wait for
684  *      all commands to finish. Don't do this as that is due to change
685  */
686
687 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
688                 struct request *rq)
689 {
690         ide_hwif_t *hwif = HWIF(drive);
691         ide_task_t *task = rq->special;
692
693         if (task) {
694                 hwif->data_phase = task->data_phase;
695
696                 switch (hwif->data_phase) {
697                 case TASKFILE_MULTI_OUT:
698                 case TASKFILE_OUT:
699                 case TASKFILE_MULTI_IN:
700                 case TASKFILE_IN:
701                         ide_init_sg_cmd(drive, rq);
702                         ide_map_sg(drive, rq);
703                 default:
704                         break;
705                 }
706
707                 return do_rw_taskfile(drive, task);
708         }
709
710         /*
711          * NULL is actually a valid way of waiting for
712          * all current requests to be flushed from the queue.
713          */
714 #ifdef DEBUG
715         printk("%s: DRIVE_CMD (null)\n", drive->name);
716 #endif
717         ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
718                           ide_read_error(drive));
719
720         return ide_stopped;
721 }
722
723 int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
724                        int arg)
725 {
726         struct request_queue *q = drive->queue;
727         struct request *rq;
728         int ret = 0;
729
730         if (!(setting->flags & DS_SYNC))
731                 return setting->set(drive, arg);
732
733         rq = blk_get_request(q, READ, GFP_KERNEL);
734         if (!rq)
735                 return -ENOMEM;
736
737         rq->cmd_type = REQ_TYPE_SPECIAL;
738         rq->cmd_len = 5;
739         rq->cmd[0] = REQ_DEVSET_EXEC;
740         *(int *)&rq->cmd[1] = arg;
741         rq->special = setting->set;
742
743         if (blk_execute_rq(q, NULL, rq, 0))
744                 ret = rq->errors;
745         blk_put_request(rq);
746
747         return ret;
748 }
749 EXPORT_SYMBOL_GPL(ide_devset_execute);
750
751 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
752 {
753         switch (rq->cmd[0]) {
754         case REQ_DEVSET_EXEC:
755         {
756                 int err, (*setfunc)(ide_drive_t *, int) = rq->special;
757
758                 err = setfunc(drive, *(int *)&rq->cmd[1]);
759                 if (err)
760                         rq->errors = err;
761                 else
762                         err = 1;
763                 ide_end_request(drive, err, 0);
764                 return ide_stopped;
765         }
766         case REQ_DRIVE_RESET:
767                 return ide_do_reset(drive);
768         default:
769                 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
770                 ide_end_request(drive, 0, 0);
771                 return ide_stopped;
772         }
773 }
774
775 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
776 {
777         struct request_pm_state *pm = rq->data;
778
779         if (blk_pm_suspend_request(rq) &&
780             pm->pm_step == ide_pm_state_start_suspend)
781                 /* Mark drive blocked when starting the suspend sequence. */
782                 drive->dev_flags |= IDE_DFLAG_BLOCKED;
783         else if (blk_pm_resume_request(rq) &&
784                  pm->pm_step == ide_pm_state_start_resume) {
785                 /* 
786                  * The first thing we do on wakeup is to wait for BSY bit to
787                  * go away (with a looong timeout) as a drive on this hwif may
788                  * just be POSTing itself.
789                  * We do that before even selecting as the "other" device on
790                  * the bus may be broken enough to walk on our toes at this
791                  * point.
792                  */
793                 ide_hwif_t *hwif = drive->hwif;
794                 int rc;
795 #ifdef DEBUG_PM
796                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
797 #endif
798                 rc = ide_wait_not_busy(hwif, 35000);
799                 if (rc)
800                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
801                 SELECT_DRIVE(drive);
802                 hwif->tp_ops->set_irq(hwif, 1);
803                 rc = ide_wait_not_busy(hwif, 100000);
804                 if (rc)
805                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
806         }
807 }
808
809 /**
810  *      start_request   -       start of I/O and command issuing for IDE
811  *
812  *      start_request() initiates handling of a new I/O request. It
813  *      accepts commands and I/O (read/write) requests.
814  *
815  *      FIXME: this function needs a rename
816  */
817  
818 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
819 {
820         ide_startstop_t startstop;
821
822         BUG_ON(!blk_rq_started(rq));
823
824 #ifdef DEBUG
825         printk("%s: start_request: current=0x%08lx\n",
826                 HWIF(drive)->name, (unsigned long) rq);
827 #endif
828
829         /* bail early if we've exceeded max_failures */
830         if (drive->max_failures && (drive->failures > drive->max_failures)) {
831                 rq->cmd_flags |= REQ_FAILED;
832                 goto kill_rq;
833         }
834
835         if (blk_pm_request(rq))
836                 ide_check_pm_state(drive, rq);
837
838         SELECT_DRIVE(drive);
839         if (ide_wait_stat(&startstop, drive, drive->ready_stat,
840                           ATA_BUSY | ATA_DRQ, WAIT_READY)) {
841                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
842                 return startstop;
843         }
844         if (!drive->special.all) {
845                 ide_driver_t *drv;
846
847                 /*
848                  * We reset the drive so we need to issue a SETFEATURES.
849                  * Do it _after_ do_special() restored device parameters.
850                  */
851                 if (drive->current_speed == 0xff)
852                         ide_config_drive_speed(drive, drive->desired_speed);
853
854                 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
855                         return execute_drive_cmd(drive, rq);
856                 else if (blk_pm_request(rq)) {
857                         struct request_pm_state *pm = rq->data;
858 #ifdef DEBUG_PM
859                         printk("%s: start_power_step(step: %d)\n",
860                                 drive->name, rq->pm->pm_step);
861 #endif
862                         startstop = ide_start_power_step(drive, rq);
863                         if (startstop == ide_stopped &&
864                             pm->pm_step == ide_pm_state_completed)
865                                 ide_complete_pm_request(drive, rq);
866                         return startstop;
867                 } else if (!rq->rq_disk && blk_special_request(rq))
868                         /*
869                          * TODO: Once all ULDs have been modified to
870                          * check for specific op codes rather than
871                          * blindly accepting any special request, the
872                          * check for ->rq_disk above may be replaced
873                          * by a more suitable mechanism or even
874                          * dropped entirely.
875                          */
876                         return ide_special_rq(drive, rq);
877
878                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
879
880                 return drv->do_request(drive, rq, rq->sector);
881         }
882         return do_special(drive);
883 kill_rq:
884         ide_kill_rq(drive, rq);
885         return ide_stopped;
886 }
887
888 /**
889  *      ide_stall_queue         -       pause an IDE device
890  *      @drive: drive to stall
891  *      @timeout: time to stall for (jiffies)
892  *
893  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
894  *      to the hwgroup by sleeping for timeout jiffies.
895  */
896  
897 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
898 {
899         if (timeout > WAIT_WORSTCASE)
900                 timeout = WAIT_WORSTCASE;
901         drive->sleep = timeout + jiffies;
902         drive->dev_flags |= IDE_DFLAG_SLEEPING;
903 }
904
905 EXPORT_SYMBOL(ide_stall_queue);
906
907 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
908
909 /**
910  *      choose_drive            -       select a drive to service
911  *      @hwgroup: hardware group to select on
912  *
913  *      choose_drive() selects the next drive which will be serviced.
914  *      This is necessary because the IDE layer can't issue commands
915  *      to both drives on the same cable, unlike SCSI.
916  */
917  
918 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
919 {
920         ide_drive_t *drive, *best;
921
922 repeat: 
923         best = NULL;
924         drive = hwgroup->drive;
925
926         /*
927          * drive is doing pre-flush, ordered write, post-flush sequence. even
928          * though that is 3 requests, it must be seen as a single transaction.
929          * we must not preempt this drive until that is complete
930          */
931         if (blk_queue_flushing(drive->queue)) {
932                 /*
933                  * small race where queue could get replugged during
934                  * the 3-request flush cycle, just yank the plug since
935                  * we want it to finish asap
936                  */
937                 blk_remove_plug(drive->queue);
938                 return drive;
939         }
940
941         do {
942                 u8 dev_s = !!(drive->dev_flags & IDE_DFLAG_SLEEPING);
943                 u8 best_s = (best && !!(best->dev_flags & IDE_DFLAG_SLEEPING));
944
945                 if ((dev_s == 0 || time_after_eq(jiffies, drive->sleep)) &&
946                     !elv_queue_empty(drive->queue)) {
947                         if (best == NULL ||
948                             (dev_s && (best_s == 0 || time_before(drive->sleep, best->sleep))) ||
949                             (best_s == 0 && time_before(WAKEUP(drive), WAKEUP(best)))) {
950                                 if (!blk_queue_plugged(drive->queue))
951                                         best = drive;
952                         }
953                 }
954         } while ((drive = drive->next) != hwgroup->drive);
955
956         if (best && (best->dev_flags & IDE_DFLAG_NICE1) &&
957             (best->dev_flags & IDE_DFLAG_SLEEPING) == 0 &&
958             best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
959                 long t = (signed long)(WAKEUP(best) - jiffies);
960                 if (t >= WAIT_MIN_SLEEP) {
961                 /*
962                  * We *may* have some time to spare, but first let's see if
963                  * someone can potentially benefit from our nice mood today..
964                  */
965                         drive = best->next;
966                         do {
967                                 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) == 0
968                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
969                                  && time_before(WAKEUP(drive), jiffies + t))
970                                 {
971                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
972                                         goto repeat;
973                                 }
974                         } while ((drive = drive->next) != best);
975                 }
976         }
977         return best;
978 }
979
980 /*
981  * Issue a new request to a drive from hwgroup
982  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
983  *
984  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
985  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
986  * may have both interfaces in a single hwgroup to "serialize" access.
987  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
988  * together into one hwgroup for serialized access.
989  *
990  * Note also that several hwgroups can end up sharing a single IRQ,
991  * possibly along with many other devices.  This is especially common in
992  * PCI-based systems with off-board IDE controller cards.
993  *
994  * The IDE driver uses the single global ide_lock spinlock to protect
995  * access to the request queues, and to protect the hwgroup->busy flag.
996  *
997  * The first thread into the driver for a particular hwgroup sets the
998  * hwgroup->busy flag to indicate that this hwgroup is now active,
999  * and then initiates processing of the top request from the request queue.
1000  *
1001  * Other threads attempting entry notice the busy setting, and will simply
1002  * queue their new requests and exit immediately.  Note that hwgroup->busy
1003  * remains set even when the driver is merely awaiting the next interrupt.
1004  * Thus, the meaning is "this hwgroup is busy processing a request".
1005  *
1006  * When processing of a request completes, the completing thread or IRQ-handler
1007  * will start the next request from the queue.  If no more work remains,
1008  * the driver will clear the hwgroup->busy flag and exit.
1009  *
1010  * The ide_lock (spinlock) is used to protect all access to the
1011  * hwgroup->busy flag, but is otherwise not needed for most processing in
1012  * the driver.  This makes the driver much more friendlier to shared IRQs
1013  * than previous designs, while remaining 100% (?) SMP safe and capable.
1014  */
1015 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1016 {
1017         ide_drive_t     *drive;
1018         ide_hwif_t      *hwif;
1019         struct request  *rq;
1020         ide_startstop_t startstop;
1021         int             loops = 0;
1022
1023         /* for atari only: POSSIBLY BROKEN HERE(?) */
1024         ide_get_lock(ide_intr, hwgroup);
1025
1026         /* caller must own ide_lock */
1027         BUG_ON(!irqs_disabled());
1028
1029         while (!hwgroup->busy) {
1030                 hwgroup->busy = 1;
1031                 drive = choose_drive(hwgroup);
1032                 if (drive == NULL) {
1033                         int sleeping = 0;
1034                         unsigned long sleep = 0; /* shut up, gcc */
1035                         hwgroup->rq = NULL;
1036                         drive = hwgroup->drive;
1037                         do {
1038                                 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) &&
1039                                     (sleeping == 0 ||
1040                                      time_before(drive->sleep, sleep))) {
1041                                         sleeping = 1;
1042                                         sleep = drive->sleep;
1043                                 }
1044                         } while ((drive = drive->next) != hwgroup->drive);
1045                         if (sleeping) {
1046                 /*
1047                  * Take a short snooze, and then wake up this hwgroup again.
1048                  * This gives other hwgroups on the same a chance to
1049                  * play fairly with us, just in case there are big differences
1050                  * in relative throughputs.. don't want to hog the cpu too much.
1051                  */
1052                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1053                                         sleep = jiffies + WAIT_MIN_SLEEP;
1054 #if 1
1055                                 if (timer_pending(&hwgroup->timer))
1056                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1057 #endif
1058                                 /* so that ide_timer_expiry knows what to do */
1059                                 hwgroup->sleeping = 1;
1060                                 hwgroup->req_gen_timer = hwgroup->req_gen;
1061                                 mod_timer(&hwgroup->timer, sleep);
1062                                 /* we purposely leave hwgroup->busy==1
1063                                  * while sleeping */
1064                         } else {
1065                                 /* Ugly, but how can we sleep for the lock
1066                                  * otherwise? perhaps from tq_disk?
1067                                  */
1068
1069                                 /* for atari only */
1070                                 ide_release_lock();
1071                                 hwgroup->busy = 0;
1072                         }
1073
1074                         /* no more work for this hwgroup (for now) */
1075                         return;
1076                 }
1077         again:
1078                 hwif = HWIF(drive);
1079                 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1080                         /*
1081                          * set nIEN for previous hwif, drives in the
1082                          * quirk_list may not like intr setups/cleanups
1083                          */
1084                         if (drive->quirk_list != 1)
1085                                 hwif->tp_ops->set_irq(hwif, 0);
1086                 }
1087                 hwgroup->hwif = hwif;
1088                 hwgroup->drive = drive;
1089                 drive->dev_flags &= ~IDE_DFLAG_SLEEPING;
1090                 drive->service_start = jiffies;
1091
1092                 if (blk_queue_plugged(drive->queue)) {
1093                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1094                         break;
1095                 }
1096
1097                 /*
1098                  * we know that the queue isn't empty, but this can happen
1099                  * if the q->prep_rq_fn() decides to kill a request
1100                  */
1101                 rq = elv_next_request(drive->queue);
1102                 if (!rq) {
1103                         hwgroup->busy = 0;
1104                         break;
1105                 }
1106
1107                 /*
1108                  * Sanity: don't accept a request that isn't a PM request
1109                  * if we are currently power managed. This is very important as
1110                  * blk_stop_queue() doesn't prevent the elv_next_request()
1111                  * above to return us whatever is in the queue. Since we call
1112                  * ide_do_request() ourselves, we end up taking requests while
1113                  * the queue is blocked...
1114                  * 
1115                  * We let requests forced at head of queue with ide-preempt
1116                  * though. I hope that doesn't happen too much, hopefully not
1117                  * unless the subdriver triggers such a thing in its own PM
1118                  * state machine.
1119                  *
1120                  * We count how many times we loop here to make sure we service
1121                  * all drives in the hwgroup without looping for ever
1122                  */
1123                 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
1124                     blk_pm_request(rq) == 0 &&
1125                     (rq->cmd_flags & REQ_PREEMPT) == 0) {
1126                         drive = drive->next ? drive->next : hwgroup->drive;
1127                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1128                                 goto again;
1129                         /* We clear busy, there should be no pending ATA command at this point. */
1130                         hwgroup->busy = 0;
1131                         break;
1132                 }
1133
1134                 hwgroup->rq = rq;
1135
1136                 /*
1137                  * Some systems have trouble with IDE IRQs arriving while
1138                  * the driver is still setting things up.  So, here we disable
1139                  * the IRQ used by this interface while the request is being started.
1140                  * This may look bad at first, but pretty much the same thing
1141                  * happens anyway when any interrupt comes in, IDE or otherwise
1142                  *  -- the kernel masks the IRQ while it is being handled.
1143                  */
1144                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1145                         disable_irq_nosync(hwif->irq);
1146                 spin_unlock(&ide_lock);
1147                 local_irq_enable_in_hardirq();
1148                         /* allow other IRQs while we start this request */
1149                 startstop = start_request(drive, rq);
1150                 spin_lock_irq(&ide_lock);
1151                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1152                         enable_irq(hwif->irq);
1153                 if (startstop == ide_stopped)
1154                         hwgroup->busy = 0;
1155         }
1156 }
1157
1158 /*
1159  * Passes the stuff to ide_do_request
1160  */
1161 void do_ide_request(struct request_queue *q)
1162 {
1163         ide_drive_t *drive = q->queuedata;
1164
1165         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1166 }
1167
1168 /*
1169  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1170  * retry the current request in pio mode instead of risking tossing it
1171  * all away
1172  */
1173 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1174 {
1175         ide_hwif_t *hwif = HWIF(drive);
1176         struct request *rq;
1177         ide_startstop_t ret = ide_stopped;
1178
1179         /*
1180          * end current dma transaction
1181          */
1182
1183         if (error < 0) {
1184                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1185                 (void)hwif->dma_ops->dma_end(drive);
1186                 ret = ide_error(drive, "dma timeout error",
1187                                 hwif->tp_ops->read_status(hwif));
1188         } else {
1189                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1190                 hwif->dma_ops->dma_timeout(drive);
1191         }
1192
1193         /*
1194          * disable dma for now, but remember that we did so because of
1195          * a timeout -- we'll reenable after we finish this next request
1196          * (or rather the first chunk of it) in pio.
1197          */
1198         drive->retry_pio++;
1199         drive->state = DMA_PIO_RETRY;
1200         ide_dma_off_quietly(drive);
1201
1202         /*
1203          * un-busy drive etc (hwgroup->busy is cleared on return) and
1204          * make sure request is sane
1205          */
1206         rq = HWGROUP(drive)->rq;
1207
1208         if (!rq)
1209                 goto out;
1210
1211         HWGROUP(drive)->rq = NULL;
1212
1213         rq->errors = 0;
1214
1215         if (!rq->bio)
1216                 goto out;
1217
1218         rq->sector = rq->bio->bi_sector;
1219         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1220         rq->hard_cur_sectors = rq->current_nr_sectors;
1221         rq->buffer = bio_data(rq->bio);
1222 out:
1223         return ret;
1224 }
1225
1226 /**
1227  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1228  *      @data: timer callback magic (hwgroup)
1229  *
1230  *      An IDE command has timed out before the expected drive return
1231  *      occurred. At this point we attempt to clean up the current
1232  *      mess. If the current handler includes an expiry handler then
1233  *      we invoke the expiry handler, and providing it is happy the
1234  *      work is done. If that fails we apply generic recovery rules
1235  *      invoking the handler and checking the drive DMA status. We
1236  *      have an excessively incestuous relationship with the DMA
1237  *      logic that wants cleaning up.
1238  */
1239  
1240 void ide_timer_expiry (unsigned long data)
1241 {
1242         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1243         ide_handler_t   *handler;
1244         ide_expiry_t    *expiry;
1245         unsigned long   flags;
1246         unsigned long   wait = -1;
1247
1248         spin_lock_irqsave(&ide_lock, flags);
1249
1250         if (((handler = hwgroup->handler) == NULL) ||
1251             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1252                 /*
1253                  * Either a marginal timeout occurred
1254                  * (got the interrupt just as timer expired),
1255                  * or we were "sleeping" to give other devices a chance.
1256                  * Either way, we don't really want to complain about anything.
1257                  */
1258                 if (hwgroup->sleeping) {
1259                         hwgroup->sleeping = 0;
1260                         hwgroup->busy = 0;
1261                 }
1262         } else {
1263                 ide_drive_t *drive = hwgroup->drive;
1264                 if (!drive) {
1265                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1266                         hwgroup->handler = NULL;
1267                 } else {
1268                         ide_hwif_t *hwif;
1269                         ide_startstop_t startstop = ide_stopped;
1270                         if (!hwgroup->busy) {
1271                                 hwgroup->busy = 1;      /* paranoia */
1272                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1273                         }
1274                         if ((expiry = hwgroup->expiry) != NULL) {
1275                                 /* continue */
1276                                 if ((wait = expiry(drive)) > 0) {
1277                                         /* reset timer */
1278                                         hwgroup->timer.expires  = jiffies + wait;
1279                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1280                                         add_timer(&hwgroup->timer);
1281                                         spin_unlock_irqrestore(&ide_lock, flags);
1282                                         return;
1283                                 }
1284                         }
1285                         hwgroup->handler = NULL;
1286                         /*
1287                          * We need to simulate a real interrupt when invoking
1288                          * the handler() function, which means we need to
1289                          * globally mask the specific IRQ:
1290                          */
1291                         spin_unlock(&ide_lock);
1292                         hwif  = HWIF(drive);
1293                         /* disable_irq_nosync ?? */
1294                         disable_irq(hwif->irq);
1295                         /* local CPU only,
1296                          * as if we were handling an interrupt */
1297                         local_irq_disable();
1298                         if (hwgroup->polling) {
1299                                 startstop = handler(drive);
1300                         } else if (drive_is_ready(drive)) {
1301                                 if (drive->waiting_for_dma)
1302                                         hwif->dma_ops->dma_lost_irq(drive);
1303                                 (void)ide_ack_intr(hwif);
1304                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1305                                 startstop = handler(drive);
1306                         } else {
1307                                 if (drive->waiting_for_dma) {
1308                                         startstop = ide_dma_timeout_retry(drive, wait);
1309                                 } else
1310                                         startstop =
1311                                         ide_error(drive, "irq timeout",
1312                                                   hwif->tp_ops->read_status(hwif));
1313                         }
1314                         drive->service_time = jiffies - drive->service_start;
1315                         spin_lock_irq(&ide_lock);
1316                         enable_irq(hwif->irq);
1317                         if (startstop == ide_stopped)
1318                                 hwgroup->busy = 0;
1319                 }
1320         }
1321         ide_do_request(hwgroup, IDE_NO_IRQ);
1322         spin_unlock_irqrestore(&ide_lock, flags);
1323 }
1324
1325 /**
1326  *      unexpected_intr         -       handle an unexpected IDE interrupt
1327  *      @irq: interrupt line
1328  *      @hwgroup: hwgroup being processed
1329  *
1330  *      There's nothing really useful we can do with an unexpected interrupt,
1331  *      other than reading the status register (to clear it), and logging it.
1332  *      There should be no way that an irq can happen before we're ready for it,
1333  *      so we needn't worry much about losing an "important" interrupt here.
1334  *
1335  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1336  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1337  *      looks "good", we just ignore the interrupt completely.
1338  *
1339  *      This routine assumes __cli() is in effect when called.
1340  *
1341  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1342  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1343  *      we could screw up by interfering with a new request being set up for 
1344  *      irq15.
1345  *
1346  *      In reality, this is a non-issue.  The new command is not sent unless 
1347  *      the drive is ready to accept one, in which case we know the drive is
1348  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1349  *      before completing the issuance of any new drive command, so we will not
1350  *      be accidentally invoked as a result of any valid command completion
1351  *      interrupt.
1352  *
1353  *      Note that we must walk the entire hwgroup here. We know which hwif
1354  *      is doing the current command, but we don't know which hwif burped
1355  *      mysteriously.
1356  */
1357  
1358 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1359 {
1360         u8 stat;
1361         ide_hwif_t *hwif = hwgroup->hwif;
1362
1363         /*
1364          * handle the unexpected interrupt
1365          */
1366         do {
1367                 if (hwif->irq == irq) {
1368                         stat = hwif->tp_ops->read_status(hwif);
1369
1370                         if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1371                                 /* Try to not flood the console with msgs */
1372                                 static unsigned long last_msgtime, count;
1373                                 ++count;
1374                                 if (time_after(jiffies, last_msgtime + HZ)) {
1375                                         last_msgtime = jiffies;
1376                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1377                                                 "status=0x%02x, count=%ld\n",
1378                                                 hwif->name,
1379                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1380                                 }
1381                         }
1382                 }
1383         } while ((hwif = hwif->next) != hwgroup->hwif);
1384 }
1385
1386 /**
1387  *      ide_intr        -       default IDE interrupt handler
1388  *      @irq: interrupt number
1389  *      @dev_id: hwif group
1390  *      @regs: unused weirdness from the kernel irq layer
1391  *
1392  *      This is the default IRQ handler for the IDE layer. You should
1393  *      not need to override it. If you do be aware it is subtle in
1394  *      places
1395  *
1396  *      hwgroup->hwif is the interface in the group currently performing
1397  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1398  *      the IRQ handler to call. As we issue a command the handlers
1399  *      step through multiple states, reassigning the handler to the
1400  *      next step in the process. Unlike a smart SCSI controller IDE
1401  *      expects the main processor to sequence the various transfer
1402  *      stages. We also manage a poll timer to catch up with most
1403  *      timeout situations. There are still a few where the handlers
1404  *      don't ever decide to give up.
1405  *
1406  *      The handler eventually returns ide_stopped to indicate the
1407  *      request completed. At this point we issue the next request
1408  *      on the hwgroup and the process begins again.
1409  */
1410  
1411 irqreturn_t ide_intr (int irq, void *dev_id)
1412 {
1413         unsigned long flags;
1414         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1415         ide_hwif_t *hwif;
1416         ide_drive_t *drive;
1417         ide_handler_t *handler;
1418         ide_startstop_t startstop;
1419
1420         spin_lock_irqsave(&ide_lock, flags);
1421         hwif = hwgroup->hwif;
1422
1423         if (!ide_ack_intr(hwif)) {
1424                 spin_unlock_irqrestore(&ide_lock, flags);
1425                 return IRQ_NONE;
1426         }
1427
1428         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1429                 /*
1430                  * Not expecting an interrupt from this drive.
1431                  * That means this could be:
1432                  *      (1) an interrupt from another PCI device
1433                  *      sharing the same PCI INT# as us.
1434                  * or   (2) a drive just entered sleep or standby mode,
1435                  *      and is interrupting to let us know.
1436                  * or   (3) a spurious interrupt of unknown origin.
1437                  *
1438                  * For PCI, we cannot tell the difference,
1439                  * so in that case we just ignore it and hope it goes away.
1440                  *
1441                  * FIXME: unexpected_intr should be hwif-> then we can
1442                  * remove all the ifdef PCI crap
1443                  */
1444 #ifdef CONFIG_BLK_DEV_IDEPCI
1445                 if (hwif->chipset != ide_pci)
1446 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1447                 {
1448                         /*
1449                          * Probably not a shared PCI interrupt,
1450                          * so we can safely try to do something about it:
1451                          */
1452                         unexpected_intr(irq, hwgroup);
1453 #ifdef CONFIG_BLK_DEV_IDEPCI
1454                 } else {
1455                         /*
1456                          * Whack the status register, just in case
1457                          * we have a leftover pending IRQ.
1458                          */
1459                         (void)hwif->tp_ops->read_status(hwif);
1460 #endif /* CONFIG_BLK_DEV_IDEPCI */
1461                 }
1462                 spin_unlock_irqrestore(&ide_lock, flags);
1463                 return IRQ_NONE;
1464         }
1465         drive = hwgroup->drive;
1466         if (!drive) {
1467                 /*
1468                  * This should NEVER happen, and there isn't much
1469                  * we could do about it here.
1470                  *
1471                  * [Note - this can occur if the drive is hot unplugged]
1472                  */
1473                 spin_unlock_irqrestore(&ide_lock, flags);
1474                 return IRQ_HANDLED;
1475         }
1476         if (!drive_is_ready(drive)) {
1477                 /*
1478                  * This happens regularly when we share a PCI IRQ with
1479                  * another device.  Unfortunately, it can also happen
1480                  * with some buggy drives that trigger the IRQ before
1481                  * their status register is up to date.  Hopefully we have
1482                  * enough advance overhead that the latter isn't a problem.
1483                  */
1484                 spin_unlock_irqrestore(&ide_lock, flags);
1485                 return IRQ_NONE;
1486         }
1487         if (!hwgroup->busy) {
1488                 hwgroup->busy = 1;      /* paranoia */
1489                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1490         }
1491         hwgroup->handler = NULL;
1492         hwgroup->req_gen++;
1493         del_timer(&hwgroup->timer);
1494         spin_unlock(&ide_lock);
1495
1496         /* Some controllers might set DMA INTR no matter DMA or PIO;
1497          * bmdma status might need to be cleared even for
1498          * PIO interrupts to prevent spurious/lost irq.
1499          */
1500         if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1501                 /* ide_dma_end() needs bmdma status for error checking.
1502                  * So, skip clearing bmdma status here and leave it
1503                  * to ide_dma_end() if this is dma interrupt.
1504                  */
1505                 hwif->ide_dma_clear_irq(drive);
1506
1507         if (drive->dev_flags & IDE_DFLAG_UNMASK)
1508                 local_irq_enable_in_hardirq();
1509         /* service this interrupt, may set handler for next interrupt */
1510         startstop = handler(drive);
1511         spin_lock_irq(&ide_lock);
1512
1513         /*
1514          * Note that handler() may have set things up for another
1515          * interrupt to occur soon, but it cannot happen until
1516          * we exit from this routine, because it will be the
1517          * same irq as is currently being serviced here, and Linux
1518          * won't allow another of the same (on any CPU) until we return.
1519          */
1520         drive->service_time = jiffies - drive->service_start;
1521         if (startstop == ide_stopped) {
1522                 if (hwgroup->handler == NULL) { /* paranoia */
1523                         hwgroup->busy = 0;
1524                         ide_do_request(hwgroup, hwif->irq);
1525                 } else {
1526                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1527                                 "on exit\n", drive->name);
1528                 }
1529         }
1530         spin_unlock_irqrestore(&ide_lock, flags);
1531         return IRQ_HANDLED;
1532 }
1533
1534 /**
1535  *      ide_do_drive_cmd        -       issue IDE special command
1536  *      @drive: device to issue command
1537  *      @rq: request to issue
1538  *
1539  *      This function issues a special IDE device request
1540  *      onto the request queue.
1541  *
1542  *      the rq is queued at the head of the request queue, displacing
1543  *      the currently-being-processed request and this function
1544  *      returns immediately without waiting for the new rq to be
1545  *      completed.  This is VERY DANGEROUS, and is intended for
1546  *      careful use by the ATAPI tape/cdrom driver code.
1547  */
1548
1549 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1550 {
1551         unsigned long flags;
1552         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1553
1554         spin_lock_irqsave(&ide_lock, flags);
1555         hwgroup->rq = NULL;
1556         __elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 1);
1557         __generic_unplug_device(drive->queue);
1558         spin_unlock_irqrestore(&ide_lock, flags);
1559 }
1560
1561 EXPORT_SYMBOL(ide_do_drive_cmd);
1562
1563 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1564 {
1565         ide_hwif_t *hwif = drive->hwif;
1566         ide_task_t task;
1567
1568         memset(&task, 0, sizeof(task));
1569         task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1570                         IDE_TFLAG_OUT_FEATURE | tf_flags;
1571         task.tf.feature = dma;          /* Use PIO/DMA */
1572         task.tf.lbam    = bcount & 0xff;
1573         task.tf.lbah    = (bcount >> 8) & 0xff;
1574
1575         ide_tf_dump(drive->name, &task.tf);
1576         hwif->tp_ops->set_irq(hwif, 1);
1577         SELECT_MASK(drive, 0);
1578         hwif->tp_ops->tf_load(drive, &task);
1579 }
1580
1581 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1582
1583 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1584 {
1585         ide_hwif_t *hwif = drive->hwif;
1586         u8 buf[4] = { 0 };
1587
1588         while (len > 0) {
1589                 if (write)
1590                         hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1591                 else
1592                         hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1593                 len -= 4;
1594         }
1595 }
1596 EXPORT_SYMBOL_GPL(ide_pad_transfer);