]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/gpu/drm/i915/i915_gem.c
49c5a1798ac4db409a0072daa7923dee89dce277
[linux-2.6-omap-h63xx.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include <linux/swap.h>
33
34 static int
35 i915_gem_object_set_domain(struct drm_gem_object *obj,
36                             uint32_t read_domains,
37                             uint32_t write_domain);
38 static int
39 i915_gem_object_set_domain_range(struct drm_gem_object *obj,
40                                  uint64_t offset,
41                                  uint64_t size,
42                                  uint32_t read_domains,
43                                  uint32_t write_domain);
44 static int
45 i915_gem_set_domain(struct drm_gem_object *obj,
46                     struct drm_file *file_priv,
47                     uint32_t read_domains,
48                     uint32_t write_domain);
49 static int i915_gem_object_get_page_list(struct drm_gem_object *obj);
50 static void i915_gem_object_free_page_list(struct drm_gem_object *obj);
51 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
52
53 static void
54 i915_gem_cleanup_ringbuffer(struct drm_device *dev);
55
56 int
57 i915_gem_init_ioctl(struct drm_device *dev, void *data,
58                     struct drm_file *file_priv)
59 {
60         drm_i915_private_t *dev_priv = dev->dev_private;
61         struct drm_i915_gem_init *args = data;
62
63         mutex_lock(&dev->struct_mutex);
64
65         if (args->gtt_start >= args->gtt_end ||
66             (args->gtt_start & (PAGE_SIZE - 1)) != 0 ||
67             (args->gtt_end & (PAGE_SIZE - 1)) != 0) {
68                 mutex_unlock(&dev->struct_mutex);
69                 return -EINVAL;
70         }
71
72         drm_mm_init(&dev_priv->mm.gtt_space, args->gtt_start,
73             args->gtt_end - args->gtt_start);
74
75         dev->gtt_total = (uint32_t) (args->gtt_end - args->gtt_start);
76
77         mutex_unlock(&dev->struct_mutex);
78
79         return 0;
80 }
81
82
83 /**
84  * Creates a new mm object and returns a handle to it.
85  */
86 int
87 i915_gem_create_ioctl(struct drm_device *dev, void *data,
88                       struct drm_file *file_priv)
89 {
90         struct drm_i915_gem_create *args = data;
91         struct drm_gem_object *obj;
92         int handle, ret;
93
94         args->size = roundup(args->size, PAGE_SIZE);
95
96         /* Allocate the new object */
97         obj = drm_gem_object_alloc(dev, args->size);
98         if (obj == NULL)
99                 return -ENOMEM;
100
101         ret = drm_gem_handle_create(file_priv, obj, &handle);
102         mutex_lock(&dev->struct_mutex);
103         drm_gem_object_handle_unreference(obj);
104         mutex_unlock(&dev->struct_mutex);
105
106         if (ret)
107                 return ret;
108
109         args->handle = handle;
110
111         return 0;
112 }
113
114 /**
115  * Reads data from the object referenced by handle.
116  *
117  * On error, the contents of *data are undefined.
118  */
119 int
120 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
121                      struct drm_file *file_priv)
122 {
123         struct drm_i915_gem_pread *args = data;
124         struct drm_gem_object *obj;
125         struct drm_i915_gem_object *obj_priv;
126         ssize_t read;
127         loff_t offset;
128         int ret;
129
130         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
131         if (obj == NULL)
132                 return -EBADF;
133         obj_priv = obj->driver_private;
134
135         /* Bounds check source.
136          *
137          * XXX: This could use review for overflow issues...
138          */
139         if (args->offset > obj->size || args->size > obj->size ||
140             args->offset + args->size > obj->size) {
141                 drm_gem_object_unreference(obj);
142                 return -EINVAL;
143         }
144
145         mutex_lock(&dev->struct_mutex);
146
147         ret = i915_gem_object_set_domain_range(obj, args->offset, args->size,
148                                                I915_GEM_DOMAIN_CPU, 0);
149         if (ret != 0) {
150                 drm_gem_object_unreference(obj);
151                 mutex_unlock(&dev->struct_mutex);
152                 return ret;
153         }
154
155         offset = args->offset;
156
157         read = vfs_read(obj->filp, (char __user *)(uintptr_t)args->data_ptr,
158                         args->size, &offset);
159         if (read != args->size) {
160                 drm_gem_object_unreference(obj);
161                 mutex_unlock(&dev->struct_mutex);
162                 if (read < 0)
163                         return read;
164                 else
165                         return -EINVAL;
166         }
167
168         drm_gem_object_unreference(obj);
169         mutex_unlock(&dev->struct_mutex);
170
171         return 0;
172 }
173
174 /*
175  * Try to write quickly with an atomic kmap. Return true on success.
176  *
177  * If this fails (which includes a partial write), we'll redo the whole
178  * thing with the slow version.
179  *
180  * This is a workaround for the low performance of iounmap (approximate
181  * 10% cpu cost on normal 3D workloads).  kmap_atomic on HIGHMEM kernels
182  * happens to let us map card memory without taking IPIs.  When the vmap
183  * rework lands we should be able to dump this hack.
184  */
185 static inline int fast_user_write(unsigned long pfn, char __user *user_data, int l)
186 {
187 #ifdef CONFIG_HIGHMEM
188         unsigned long unwritten;
189         char *vaddr_atomic;
190
191         vaddr_atomic = kmap_atomic_pfn(pfn, KM_USER0);
192 #if WATCH_PWRITE
193         DRM_INFO("pwrite i %d o %d l %d pfn %ld vaddr %p\n",
194                  i, o, l, pfn, vaddr_atomic);
195 #endif
196         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + o, user_data, l);
197         kunmap_atomic(vaddr_atomic, KM_USER0);
198         return !unwritten;
199 #else
200         return 0;
201 #endif
202 }
203
204 static int
205 i915_gem_gtt_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
206                     struct drm_i915_gem_pwrite *args,
207                     struct drm_file *file_priv)
208 {
209         struct drm_i915_gem_object *obj_priv = obj->driver_private;
210         ssize_t remain;
211         loff_t offset;
212         char __user *user_data;
213         int ret = 0;
214
215         user_data = (char __user *) (uintptr_t) args->data_ptr;
216         remain = args->size;
217         if (!access_ok(VERIFY_READ, user_data, remain))
218                 return -EFAULT;
219
220
221         mutex_lock(&dev->struct_mutex);
222         ret = i915_gem_object_pin(obj, 0);
223         if (ret) {
224                 mutex_unlock(&dev->struct_mutex);
225                 return ret;
226         }
227         ret = i915_gem_set_domain(obj, file_priv,
228                                   I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
229         if (ret)
230                 goto fail;
231
232         obj_priv = obj->driver_private;
233         offset = obj_priv->gtt_offset + args->offset;
234         obj_priv->dirty = 1;
235
236         while (remain > 0) {
237                 unsigned long pfn;
238                 int i, o, l;
239
240                 /* Operation in this page
241                  *
242                  * i = page number
243                  * o = offset within page
244                  * l = bytes to copy
245                  */
246                 i = offset >> PAGE_SHIFT;
247                 o = offset & (PAGE_SIZE-1);
248                 l = remain;
249                 if ((o + l) > PAGE_SIZE)
250                         l = PAGE_SIZE - o;
251
252                 pfn = (dev->agp->base >> PAGE_SHIFT) + i;
253
254                 if (!fast_user_write(pfn, user_data, l)) {
255                         unsigned long unwritten;
256                         char __iomem *vaddr;
257
258                         vaddr = ioremap_wc(pfn << PAGE_SHIFT, PAGE_SIZE);
259 #if WATCH_PWRITE
260                         DRM_INFO("pwrite slow i %d o %d l %d "
261                                  "pfn %ld vaddr %p\n",
262                                  i, o, l, pfn, vaddr);
263 #endif
264                         if (vaddr == NULL) {
265                                 ret = -EFAULT;
266                                 goto fail;
267                         }
268                         unwritten = __copy_from_user(vaddr + o, user_data, l);
269 #if WATCH_PWRITE
270                         DRM_INFO("unwritten %ld\n", unwritten);
271 #endif
272                         iounmap(vaddr);
273                         if (unwritten) {
274                                 ret = -EFAULT;
275                                 goto fail;
276                         }
277                 }
278
279                 remain -= l;
280                 user_data += l;
281                 offset += l;
282         }
283 #if WATCH_PWRITE && 1
284         i915_gem_clflush_object(obj);
285         i915_gem_dump_object(obj, args->offset + args->size, __func__, ~0);
286         i915_gem_clflush_object(obj);
287 #endif
288
289 fail:
290         i915_gem_object_unpin(obj);
291         mutex_unlock(&dev->struct_mutex);
292
293         return ret;
294 }
295
296 static int
297 i915_gem_shmem_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
298                       struct drm_i915_gem_pwrite *args,
299                       struct drm_file *file_priv)
300 {
301         int ret;
302         loff_t offset;
303         ssize_t written;
304
305         mutex_lock(&dev->struct_mutex);
306
307         ret = i915_gem_set_domain(obj, file_priv,
308                                   I915_GEM_DOMAIN_CPU, I915_GEM_DOMAIN_CPU);
309         if (ret) {
310                 mutex_unlock(&dev->struct_mutex);
311                 return ret;
312         }
313
314         offset = args->offset;
315
316         written = vfs_write(obj->filp,
317                             (char __user *)(uintptr_t) args->data_ptr,
318                             args->size, &offset);
319         if (written != args->size) {
320                 mutex_unlock(&dev->struct_mutex);
321                 if (written < 0)
322                         return written;
323                 else
324                         return -EINVAL;
325         }
326
327         mutex_unlock(&dev->struct_mutex);
328
329         return 0;
330 }
331
332 /**
333  * Writes data to the object referenced by handle.
334  *
335  * On error, the contents of the buffer that were to be modified are undefined.
336  */
337 int
338 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
339                       struct drm_file *file_priv)
340 {
341         struct drm_i915_gem_pwrite *args = data;
342         struct drm_gem_object *obj;
343         struct drm_i915_gem_object *obj_priv;
344         int ret = 0;
345
346         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
347         if (obj == NULL)
348                 return -EBADF;
349         obj_priv = obj->driver_private;
350
351         /* Bounds check destination.
352          *
353          * XXX: This could use review for overflow issues...
354          */
355         if (args->offset > obj->size || args->size > obj->size ||
356             args->offset + args->size > obj->size) {
357                 drm_gem_object_unreference(obj);
358                 return -EINVAL;
359         }
360
361         /* We can only do the GTT pwrite on untiled buffers, as otherwise
362          * it would end up going through the fenced access, and we'll get
363          * different detiling behavior between reading and writing.
364          * pread/pwrite currently are reading and writing from the CPU
365          * perspective, requiring manual detiling by the client.
366          */
367         if (obj_priv->tiling_mode == I915_TILING_NONE &&
368             dev->gtt_total != 0)
369                 ret = i915_gem_gtt_pwrite(dev, obj, args, file_priv);
370         else
371                 ret = i915_gem_shmem_pwrite(dev, obj, args, file_priv);
372
373 #if WATCH_PWRITE
374         if (ret)
375                 DRM_INFO("pwrite failed %d\n", ret);
376 #endif
377
378         drm_gem_object_unreference(obj);
379
380         return ret;
381 }
382
383 /**
384  * Called when user space prepares to use an object
385  */
386 int
387 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
388                           struct drm_file *file_priv)
389 {
390         struct drm_i915_gem_set_domain *args = data;
391         struct drm_gem_object *obj;
392         int ret;
393
394         if (!(dev->driver->driver_features & DRIVER_GEM))
395                 return -ENODEV;
396
397         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
398         if (obj == NULL)
399                 return -EBADF;
400
401         mutex_lock(&dev->struct_mutex);
402 #if WATCH_BUF
403         DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
404                  obj, obj->size, args->read_domains, args->write_domain);
405 #endif
406         ret = i915_gem_set_domain(obj, file_priv,
407                                   args->read_domains, args->write_domain);
408         drm_gem_object_unreference(obj);
409         mutex_unlock(&dev->struct_mutex);
410         return ret;
411 }
412
413 /**
414  * Called when user space has done writes to this buffer
415  */
416 int
417 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
418                       struct drm_file *file_priv)
419 {
420         struct drm_i915_gem_sw_finish *args = data;
421         struct drm_gem_object *obj;
422         struct drm_i915_gem_object *obj_priv;
423         int ret = 0;
424
425         if (!(dev->driver->driver_features & DRIVER_GEM))
426                 return -ENODEV;
427
428         mutex_lock(&dev->struct_mutex);
429         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
430         if (obj == NULL) {
431                 mutex_unlock(&dev->struct_mutex);
432                 return -EBADF;
433         }
434
435 #if WATCH_BUF
436         DRM_INFO("%s: sw_finish %d (%p %d)\n",
437                  __func__, args->handle, obj, obj->size);
438 #endif
439         obj_priv = obj->driver_private;
440
441         /* Pinned buffers may be scanout, so flush the cache */
442         if ((obj->write_domain & I915_GEM_DOMAIN_CPU) && obj_priv->pin_count) {
443                 i915_gem_clflush_object(obj);
444                 drm_agp_chipset_flush(dev);
445         }
446         drm_gem_object_unreference(obj);
447         mutex_unlock(&dev->struct_mutex);
448         return ret;
449 }
450
451 /**
452  * Maps the contents of an object, returning the address it is mapped
453  * into.
454  *
455  * While the mapping holds a reference on the contents of the object, it doesn't
456  * imply a ref on the object itself.
457  */
458 int
459 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
460                    struct drm_file *file_priv)
461 {
462         struct drm_i915_gem_mmap *args = data;
463         struct drm_gem_object *obj;
464         loff_t offset;
465         unsigned long addr;
466
467         if (!(dev->driver->driver_features & DRIVER_GEM))
468                 return -ENODEV;
469
470         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
471         if (obj == NULL)
472                 return -EBADF;
473
474         offset = args->offset;
475
476         down_write(&current->mm->mmap_sem);
477         addr = do_mmap(obj->filp, 0, args->size,
478                        PROT_READ | PROT_WRITE, MAP_SHARED,
479                        args->offset);
480         up_write(&current->mm->mmap_sem);
481         mutex_lock(&dev->struct_mutex);
482         drm_gem_object_unreference(obj);
483         mutex_unlock(&dev->struct_mutex);
484         if (IS_ERR((void *)addr))
485                 return addr;
486
487         args->addr_ptr = (uint64_t) addr;
488
489         return 0;
490 }
491
492 static void
493 i915_gem_object_free_page_list(struct drm_gem_object *obj)
494 {
495         struct drm_i915_gem_object *obj_priv = obj->driver_private;
496         int page_count = obj->size / PAGE_SIZE;
497         int i;
498
499         if (obj_priv->page_list == NULL)
500                 return;
501
502
503         for (i = 0; i < page_count; i++)
504                 if (obj_priv->page_list[i] != NULL) {
505                         if (obj_priv->dirty)
506                                 set_page_dirty(obj_priv->page_list[i]);
507                         mark_page_accessed(obj_priv->page_list[i]);
508                         page_cache_release(obj_priv->page_list[i]);
509                 }
510         obj_priv->dirty = 0;
511
512         drm_free(obj_priv->page_list,
513                  page_count * sizeof(struct page *),
514                  DRM_MEM_DRIVER);
515         obj_priv->page_list = NULL;
516 }
517
518 static void
519 i915_gem_object_move_to_active(struct drm_gem_object *obj)
520 {
521         struct drm_device *dev = obj->dev;
522         drm_i915_private_t *dev_priv = dev->dev_private;
523         struct drm_i915_gem_object *obj_priv = obj->driver_private;
524
525         /* Add a reference if we're newly entering the active list. */
526         if (!obj_priv->active) {
527                 drm_gem_object_reference(obj);
528                 obj_priv->active = 1;
529         }
530         /* Move from whatever list we were on to the tail of execution. */
531         list_move_tail(&obj_priv->list,
532                        &dev_priv->mm.active_list);
533 }
534
535
536 static void
537 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
538 {
539         struct drm_device *dev = obj->dev;
540         drm_i915_private_t *dev_priv = dev->dev_private;
541         struct drm_i915_gem_object *obj_priv = obj->driver_private;
542
543         i915_verify_inactive(dev, __FILE__, __LINE__);
544         if (obj_priv->pin_count != 0)
545                 list_del_init(&obj_priv->list);
546         else
547                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
548
549         if (obj_priv->active) {
550                 obj_priv->active = 0;
551                 drm_gem_object_unreference(obj);
552         }
553         i915_verify_inactive(dev, __FILE__, __LINE__);
554 }
555
556 /**
557  * Creates a new sequence number, emitting a write of it to the status page
558  * plus an interrupt, which will trigger i915_user_interrupt_handler.
559  *
560  * Must be called with struct_lock held.
561  *
562  * Returned sequence numbers are nonzero on success.
563  */
564 static uint32_t
565 i915_add_request(struct drm_device *dev, uint32_t flush_domains)
566 {
567         drm_i915_private_t *dev_priv = dev->dev_private;
568         struct drm_i915_gem_request *request;
569         uint32_t seqno;
570         int was_empty;
571         RING_LOCALS;
572
573         request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
574         if (request == NULL)
575                 return 0;
576
577         /* Grab the seqno we're going to make this request be, and bump the
578          * next (skipping 0 so it can be the reserved no-seqno value).
579          */
580         seqno = dev_priv->mm.next_gem_seqno;
581         dev_priv->mm.next_gem_seqno++;
582         if (dev_priv->mm.next_gem_seqno == 0)
583                 dev_priv->mm.next_gem_seqno++;
584
585         BEGIN_LP_RING(4);
586         OUT_RING(MI_STORE_DWORD_INDEX);
587         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
588         OUT_RING(seqno);
589
590         OUT_RING(MI_USER_INTERRUPT);
591         ADVANCE_LP_RING();
592
593         DRM_DEBUG("%d\n", seqno);
594
595         request->seqno = seqno;
596         request->emitted_jiffies = jiffies;
597         request->flush_domains = flush_domains;
598         was_empty = list_empty(&dev_priv->mm.request_list);
599         list_add_tail(&request->list, &dev_priv->mm.request_list);
600
601         if (was_empty && !dev_priv->mm.suspended)
602                 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
603         return seqno;
604 }
605
606 /**
607  * Command execution barrier
608  *
609  * Ensures that all commands in the ring are finished
610  * before signalling the CPU
611  */
612 static uint32_t
613 i915_retire_commands(struct drm_device *dev)
614 {
615         drm_i915_private_t *dev_priv = dev->dev_private;
616         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
617         uint32_t flush_domains = 0;
618         RING_LOCALS;
619
620         /* The sampler always gets flushed on i965 (sigh) */
621         if (IS_I965G(dev))
622                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
623         BEGIN_LP_RING(2);
624         OUT_RING(cmd);
625         OUT_RING(0); /* noop */
626         ADVANCE_LP_RING();
627         return flush_domains;
628 }
629
630 /**
631  * Moves buffers associated only with the given active seqno from the active
632  * to inactive list, potentially freeing them.
633  */
634 static void
635 i915_gem_retire_request(struct drm_device *dev,
636                         struct drm_i915_gem_request *request)
637 {
638         drm_i915_private_t *dev_priv = dev->dev_private;
639
640         /* Move any buffers on the active list that are no longer referenced
641          * by the ringbuffer to the flushing/inactive lists as appropriate.
642          */
643         while (!list_empty(&dev_priv->mm.active_list)) {
644                 struct drm_gem_object *obj;
645                 struct drm_i915_gem_object *obj_priv;
646
647                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
648                                             struct drm_i915_gem_object,
649                                             list);
650                 obj = obj_priv->obj;
651
652                 /* If the seqno being retired doesn't match the oldest in the
653                  * list, then the oldest in the list must still be newer than
654                  * this seqno.
655                  */
656                 if (obj_priv->last_rendering_seqno != request->seqno)
657                         return;
658 #if WATCH_LRU
659                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
660                          __func__, request->seqno, obj);
661 #endif
662
663                 if (obj->write_domain != 0) {
664                         list_move_tail(&obj_priv->list,
665                                        &dev_priv->mm.flushing_list);
666                 } else {
667                         i915_gem_object_move_to_inactive(obj);
668                 }
669         }
670
671         if (request->flush_domains != 0) {
672                 struct drm_i915_gem_object *obj_priv, *next;
673
674                 /* Clear the write domain and activity from any buffers
675                  * that are just waiting for a flush matching the one retired.
676                  */
677                 list_for_each_entry_safe(obj_priv, next,
678                                          &dev_priv->mm.flushing_list, list) {
679                         struct drm_gem_object *obj = obj_priv->obj;
680
681                         if (obj->write_domain & request->flush_domains) {
682                                 obj->write_domain = 0;
683                                 i915_gem_object_move_to_inactive(obj);
684                         }
685                 }
686
687         }
688 }
689
690 /**
691  * Returns true if seq1 is later than seq2.
692  */
693 static int
694 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
695 {
696         return (int32_t)(seq1 - seq2) >= 0;
697 }
698
699 uint32_t
700 i915_get_gem_seqno(struct drm_device *dev)
701 {
702         drm_i915_private_t *dev_priv = dev->dev_private;
703
704         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
705 }
706
707 /**
708  * This function clears the request list as sequence numbers are passed.
709  */
710 void
711 i915_gem_retire_requests(struct drm_device *dev)
712 {
713         drm_i915_private_t *dev_priv = dev->dev_private;
714         uint32_t seqno;
715
716         seqno = i915_get_gem_seqno(dev);
717
718         while (!list_empty(&dev_priv->mm.request_list)) {
719                 struct drm_i915_gem_request *request;
720                 uint32_t retiring_seqno;
721
722                 request = list_first_entry(&dev_priv->mm.request_list,
723                                            struct drm_i915_gem_request,
724                                            list);
725                 retiring_seqno = request->seqno;
726
727                 if (i915_seqno_passed(seqno, retiring_seqno) ||
728                     dev_priv->mm.wedged) {
729                         i915_gem_retire_request(dev, request);
730
731                         list_del(&request->list);
732                         drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
733                 } else
734                         break;
735         }
736 }
737
738 void
739 i915_gem_retire_work_handler(struct work_struct *work)
740 {
741         drm_i915_private_t *dev_priv;
742         struct drm_device *dev;
743
744         dev_priv = container_of(work, drm_i915_private_t,
745                                 mm.retire_work.work);
746         dev = dev_priv->dev;
747
748         mutex_lock(&dev->struct_mutex);
749         i915_gem_retire_requests(dev);
750         if (!dev_priv->mm.suspended &&
751             !list_empty(&dev_priv->mm.request_list))
752                 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
753         mutex_unlock(&dev->struct_mutex);
754 }
755
756 /**
757  * Waits for a sequence number to be signaled, and cleans up the
758  * request and object lists appropriately for that event.
759  */
760 static int
761 i915_wait_request(struct drm_device *dev, uint32_t seqno)
762 {
763         drm_i915_private_t *dev_priv = dev->dev_private;
764         int ret = 0;
765
766         BUG_ON(seqno == 0);
767
768         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
769                 dev_priv->mm.waiting_gem_seqno = seqno;
770                 i915_user_irq_get(dev);
771                 ret = wait_event_interruptible(dev_priv->irq_queue,
772                                                i915_seqno_passed(i915_get_gem_seqno(dev),
773                                                                  seqno) ||
774                                                dev_priv->mm.wedged);
775                 i915_user_irq_put(dev);
776                 dev_priv->mm.waiting_gem_seqno = 0;
777         }
778         if (dev_priv->mm.wedged)
779                 ret = -EIO;
780
781         if (ret && ret != -ERESTARTSYS)
782                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
783                           __func__, ret, seqno, i915_get_gem_seqno(dev));
784
785         /* Directly dispatch request retiring.  While we have the work queue
786          * to handle this, the waiter on a request often wants an associated
787          * buffer to have made it to the inactive list, and we would need
788          * a separate wait queue to handle that.
789          */
790         if (ret == 0)
791                 i915_gem_retire_requests(dev);
792
793         return ret;
794 }
795
796 static void
797 i915_gem_flush(struct drm_device *dev,
798                uint32_t invalidate_domains,
799                uint32_t flush_domains)
800 {
801         drm_i915_private_t *dev_priv = dev->dev_private;
802         uint32_t cmd;
803         RING_LOCALS;
804
805 #if WATCH_EXEC
806         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
807                   invalidate_domains, flush_domains);
808 #endif
809
810         if (flush_domains & I915_GEM_DOMAIN_CPU)
811                 drm_agp_chipset_flush(dev);
812
813         if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
814                                                      I915_GEM_DOMAIN_GTT)) {
815                 /*
816                  * read/write caches:
817                  *
818                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
819                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
820                  * also flushed at 2d versus 3d pipeline switches.
821                  *
822                  * read-only caches:
823                  *
824                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
825                  * MI_READ_FLUSH is set, and is always flushed on 965.
826                  *
827                  * I915_GEM_DOMAIN_COMMAND may not exist?
828                  *
829                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
830                  * invalidated when MI_EXE_FLUSH is set.
831                  *
832                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
833                  * invalidated with every MI_FLUSH.
834                  *
835                  * TLBs:
836                  *
837                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
838                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
839                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
840                  * are flushed at any MI_FLUSH.
841                  */
842
843                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
844                 if ((invalidate_domains|flush_domains) &
845                     I915_GEM_DOMAIN_RENDER)
846                         cmd &= ~MI_NO_WRITE_FLUSH;
847                 if (!IS_I965G(dev)) {
848                         /*
849                          * On the 965, the sampler cache always gets flushed
850                          * and this bit is reserved.
851                          */
852                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
853                                 cmd |= MI_READ_FLUSH;
854                 }
855                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
856                         cmd |= MI_EXE_FLUSH;
857
858 #if WATCH_EXEC
859                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
860 #endif
861                 BEGIN_LP_RING(2);
862                 OUT_RING(cmd);
863                 OUT_RING(0); /* noop */
864                 ADVANCE_LP_RING();
865         }
866 }
867
868 /**
869  * Ensures that all rendering to the object has completed and the object is
870  * safe to unbind from the GTT or access from the CPU.
871  */
872 static int
873 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
874 {
875         struct drm_device *dev = obj->dev;
876         struct drm_i915_gem_object *obj_priv = obj->driver_private;
877         int ret;
878
879         /* If there are writes queued to the buffer, flush and
880          * create a new seqno to wait for.
881          */
882         if (obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT)) {
883                 uint32_t write_domain = obj->write_domain;
884 #if WATCH_BUF
885                 DRM_INFO("%s: flushing object %p from write domain %08x\n",
886                           __func__, obj, write_domain);
887 #endif
888                 i915_gem_flush(dev, 0, write_domain);
889
890                 i915_gem_object_move_to_active(obj);
891                 obj_priv->last_rendering_seqno = i915_add_request(dev,
892                                                                   write_domain);
893                 BUG_ON(obj_priv->last_rendering_seqno == 0);
894 #if WATCH_LRU
895                 DRM_INFO("%s: flush moves to exec list %p\n", __func__, obj);
896 #endif
897         }
898
899         /* If there is rendering queued on the buffer being evicted, wait for
900          * it.
901          */
902         if (obj_priv->active) {
903 #if WATCH_BUF
904                 DRM_INFO("%s: object %p wait for seqno %08x\n",
905                           __func__, obj, obj_priv->last_rendering_seqno);
906 #endif
907                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
908                 if (ret != 0)
909                         return ret;
910         }
911
912         return 0;
913 }
914
915 /**
916  * Unbinds an object from the GTT aperture.
917  */
918 static int
919 i915_gem_object_unbind(struct drm_gem_object *obj)
920 {
921         struct drm_device *dev = obj->dev;
922         struct drm_i915_gem_object *obj_priv = obj->driver_private;
923         int ret = 0;
924
925 #if WATCH_BUF
926         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
927         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
928 #endif
929         if (obj_priv->gtt_space == NULL)
930                 return 0;
931
932         if (obj_priv->pin_count != 0) {
933                 DRM_ERROR("Attempting to unbind pinned buffer\n");
934                 return -EINVAL;
935         }
936
937         /* Wait for any rendering to complete
938          */
939         ret = i915_gem_object_wait_rendering(obj);
940         if (ret) {
941                 DRM_ERROR("wait_rendering failed: %d\n", ret);
942                 return ret;
943         }
944
945         /* Move the object to the CPU domain to ensure that
946          * any possible CPU writes while it's not in the GTT
947          * are flushed when we go to remap it. This will
948          * also ensure that all pending GPU writes are finished
949          * before we unbind.
950          */
951         ret = i915_gem_object_set_domain(obj, I915_GEM_DOMAIN_CPU,
952                                          I915_GEM_DOMAIN_CPU);
953         if (ret) {
954                 DRM_ERROR("set_domain failed: %d\n", ret);
955                 return ret;
956         }
957
958         if (obj_priv->agp_mem != NULL) {
959                 drm_unbind_agp(obj_priv->agp_mem);
960                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
961                 obj_priv->agp_mem = NULL;
962         }
963
964         BUG_ON(obj_priv->active);
965
966         i915_gem_object_free_page_list(obj);
967
968         if (obj_priv->gtt_space) {
969                 atomic_dec(&dev->gtt_count);
970                 atomic_sub(obj->size, &dev->gtt_memory);
971
972                 drm_mm_put_block(obj_priv->gtt_space);
973                 obj_priv->gtt_space = NULL;
974         }
975
976         /* Remove ourselves from the LRU list if present. */
977         if (!list_empty(&obj_priv->list))
978                 list_del_init(&obj_priv->list);
979
980         return 0;
981 }
982
983 static int
984 i915_gem_evict_something(struct drm_device *dev)
985 {
986         drm_i915_private_t *dev_priv = dev->dev_private;
987         struct drm_gem_object *obj;
988         struct drm_i915_gem_object *obj_priv;
989         int ret = 0;
990
991         for (;;) {
992                 /* If there's an inactive buffer available now, grab it
993                  * and be done.
994                  */
995                 if (!list_empty(&dev_priv->mm.inactive_list)) {
996                         obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
997                                                     struct drm_i915_gem_object,
998                                                     list);
999                         obj = obj_priv->obj;
1000                         BUG_ON(obj_priv->pin_count != 0);
1001 #if WATCH_LRU
1002                         DRM_INFO("%s: evicting %p\n", __func__, obj);
1003 #endif
1004                         BUG_ON(obj_priv->active);
1005
1006                         /* Wait on the rendering and unbind the buffer. */
1007                         ret = i915_gem_object_unbind(obj);
1008                         break;
1009                 }
1010
1011                 /* If we didn't get anything, but the ring is still processing
1012                  * things, wait for one of those things to finish and hopefully
1013                  * leave us a buffer to evict.
1014                  */
1015                 if (!list_empty(&dev_priv->mm.request_list)) {
1016                         struct drm_i915_gem_request *request;
1017
1018                         request = list_first_entry(&dev_priv->mm.request_list,
1019                                                    struct drm_i915_gem_request,
1020                                                    list);
1021
1022                         ret = i915_wait_request(dev, request->seqno);
1023                         if (ret)
1024                                 break;
1025
1026                         /* if waiting caused an object to become inactive,
1027                          * then loop around and wait for it. Otherwise, we
1028                          * assume that waiting freed and unbound something,
1029                          * so there should now be some space in the GTT
1030                          */
1031                         if (!list_empty(&dev_priv->mm.inactive_list))
1032                                 continue;
1033                         break;
1034                 }
1035
1036                 /* If we didn't have anything on the request list but there
1037                  * are buffers awaiting a flush, emit one and try again.
1038                  * When we wait on it, those buffers waiting for that flush
1039                  * will get moved to inactive.
1040                  */
1041                 if (!list_empty(&dev_priv->mm.flushing_list)) {
1042                         obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1043                                                     struct drm_i915_gem_object,
1044                                                     list);
1045                         obj = obj_priv->obj;
1046
1047                         i915_gem_flush(dev,
1048                                        obj->write_domain,
1049                                        obj->write_domain);
1050                         i915_add_request(dev, obj->write_domain);
1051
1052                         obj = NULL;
1053                         continue;
1054                 }
1055
1056                 DRM_ERROR("inactive empty %d request empty %d "
1057                           "flushing empty %d\n",
1058                           list_empty(&dev_priv->mm.inactive_list),
1059                           list_empty(&dev_priv->mm.request_list),
1060                           list_empty(&dev_priv->mm.flushing_list));
1061                 /* If we didn't do any of the above, there's nothing to be done
1062                  * and we just can't fit it in.
1063                  */
1064                 return -ENOMEM;
1065         }
1066         return ret;
1067 }
1068
1069 static int
1070 i915_gem_object_get_page_list(struct drm_gem_object *obj)
1071 {
1072         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1073         int page_count, i;
1074         struct address_space *mapping;
1075         struct inode *inode;
1076         struct page *page;
1077         int ret;
1078
1079         if (obj_priv->page_list)
1080                 return 0;
1081
1082         /* Get the list of pages out of our struct file.  They'll be pinned
1083          * at this point until we release them.
1084          */
1085         page_count = obj->size / PAGE_SIZE;
1086         BUG_ON(obj_priv->page_list != NULL);
1087         obj_priv->page_list = drm_calloc(page_count, sizeof(struct page *),
1088                                          DRM_MEM_DRIVER);
1089         if (obj_priv->page_list == NULL) {
1090                 DRM_ERROR("Faled to allocate page list\n");
1091                 return -ENOMEM;
1092         }
1093
1094         inode = obj->filp->f_path.dentry->d_inode;
1095         mapping = inode->i_mapping;
1096         for (i = 0; i < page_count; i++) {
1097                 page = read_mapping_page(mapping, i, NULL);
1098                 if (IS_ERR(page)) {
1099                         ret = PTR_ERR(page);
1100                         DRM_ERROR("read_mapping_page failed: %d\n", ret);
1101                         i915_gem_object_free_page_list(obj);
1102                         return ret;
1103                 }
1104                 obj_priv->page_list[i] = page;
1105         }
1106         return 0;
1107 }
1108
1109 /**
1110  * Finds free space in the GTT aperture and binds the object there.
1111  */
1112 static int
1113 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
1114 {
1115         struct drm_device *dev = obj->dev;
1116         drm_i915_private_t *dev_priv = dev->dev_private;
1117         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1118         struct drm_mm_node *free_space;
1119         int page_count, ret;
1120
1121         if (alignment == 0)
1122                 alignment = PAGE_SIZE;
1123         if (alignment & (PAGE_SIZE - 1)) {
1124                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
1125                 return -EINVAL;
1126         }
1127
1128  search_free:
1129         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
1130                                         obj->size, alignment, 0);
1131         if (free_space != NULL) {
1132                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
1133                                                        alignment);
1134                 if (obj_priv->gtt_space != NULL) {
1135                         obj_priv->gtt_space->private = obj;
1136                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
1137                 }
1138         }
1139         if (obj_priv->gtt_space == NULL) {
1140                 /* If the gtt is empty and we're still having trouble
1141                  * fitting our object in, we're out of memory.
1142                  */
1143 #if WATCH_LRU
1144                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
1145 #endif
1146                 if (list_empty(&dev_priv->mm.inactive_list) &&
1147                     list_empty(&dev_priv->mm.flushing_list) &&
1148                     list_empty(&dev_priv->mm.active_list)) {
1149                         DRM_ERROR("GTT full, but LRU list empty\n");
1150                         return -ENOMEM;
1151                 }
1152
1153                 ret = i915_gem_evict_something(dev);
1154                 if (ret != 0) {
1155                         DRM_ERROR("Failed to evict a buffer %d\n", ret);
1156                         return ret;
1157                 }
1158                 goto search_free;
1159         }
1160
1161 #if WATCH_BUF
1162         DRM_INFO("Binding object of size %d at 0x%08x\n",
1163                  obj->size, obj_priv->gtt_offset);
1164 #endif
1165         ret = i915_gem_object_get_page_list(obj);
1166         if (ret) {
1167                 drm_mm_put_block(obj_priv->gtt_space);
1168                 obj_priv->gtt_space = NULL;
1169                 return ret;
1170         }
1171
1172         page_count = obj->size / PAGE_SIZE;
1173         /* Create an AGP memory structure pointing at our pages, and bind it
1174          * into the GTT.
1175          */
1176         obj_priv->agp_mem = drm_agp_bind_pages(dev,
1177                                                obj_priv->page_list,
1178                                                page_count,
1179                                                obj_priv->gtt_offset,
1180                                                obj_priv->agp_type);
1181         if (obj_priv->agp_mem == NULL) {
1182                 i915_gem_object_free_page_list(obj);
1183                 drm_mm_put_block(obj_priv->gtt_space);
1184                 obj_priv->gtt_space = NULL;
1185                 return -ENOMEM;
1186         }
1187         atomic_inc(&dev->gtt_count);
1188         atomic_add(obj->size, &dev->gtt_memory);
1189
1190         /* Assert that the object is not currently in any GPU domain. As it
1191          * wasn't in the GTT, there shouldn't be any way it could have been in
1192          * a GPU cache
1193          */
1194         BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1195         BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1196
1197         return 0;
1198 }
1199
1200 void
1201 i915_gem_clflush_object(struct drm_gem_object *obj)
1202 {
1203         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
1204
1205         /* If we don't have a page list set up, then we're not pinned
1206          * to GPU, and we can ignore the cache flush because it'll happen
1207          * again at bind time.
1208          */
1209         if (obj_priv->page_list == NULL)
1210                 return;
1211
1212         drm_clflush_pages(obj_priv->page_list, obj->size / PAGE_SIZE);
1213 }
1214
1215 /*
1216  * Set the next domain for the specified object. This
1217  * may not actually perform the necessary flushing/invaliding though,
1218  * as that may want to be batched with other set_domain operations
1219  *
1220  * This is (we hope) the only really tricky part of gem. The goal
1221  * is fairly simple -- track which caches hold bits of the object
1222  * and make sure they remain coherent. A few concrete examples may
1223  * help to explain how it works. For shorthand, we use the notation
1224  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
1225  * a pair of read and write domain masks.
1226  *
1227  * Case 1: the batch buffer
1228  *
1229  *      1. Allocated
1230  *      2. Written by CPU
1231  *      3. Mapped to GTT
1232  *      4. Read by GPU
1233  *      5. Unmapped from GTT
1234  *      6. Freed
1235  *
1236  *      Let's take these a step at a time
1237  *
1238  *      1. Allocated
1239  *              Pages allocated from the kernel may still have
1240  *              cache contents, so we set them to (CPU, CPU) always.
1241  *      2. Written by CPU (using pwrite)
1242  *              The pwrite function calls set_domain (CPU, CPU) and
1243  *              this function does nothing (as nothing changes)
1244  *      3. Mapped by GTT
1245  *              This function asserts that the object is not
1246  *              currently in any GPU-based read or write domains
1247  *      4. Read by GPU
1248  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
1249  *              As write_domain is zero, this function adds in the
1250  *              current read domains (CPU+COMMAND, 0).
1251  *              flush_domains is set to CPU.
1252  *              invalidate_domains is set to COMMAND
1253  *              clflush is run to get data out of the CPU caches
1254  *              then i915_dev_set_domain calls i915_gem_flush to
1255  *              emit an MI_FLUSH and drm_agp_chipset_flush
1256  *      5. Unmapped from GTT
1257  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
1258  *              flush_domains and invalidate_domains end up both zero
1259  *              so no flushing/invalidating happens
1260  *      6. Freed
1261  *              yay, done
1262  *
1263  * Case 2: The shared render buffer
1264  *
1265  *      1. Allocated
1266  *      2. Mapped to GTT
1267  *      3. Read/written by GPU
1268  *      4. set_domain to (CPU,CPU)
1269  *      5. Read/written by CPU
1270  *      6. Read/written by GPU
1271  *
1272  *      1. Allocated
1273  *              Same as last example, (CPU, CPU)
1274  *      2. Mapped to GTT
1275  *              Nothing changes (assertions find that it is not in the GPU)
1276  *      3. Read/written by GPU
1277  *              execbuffer calls set_domain (RENDER, RENDER)
1278  *              flush_domains gets CPU
1279  *              invalidate_domains gets GPU
1280  *              clflush (obj)
1281  *              MI_FLUSH and drm_agp_chipset_flush
1282  *      4. set_domain (CPU, CPU)
1283  *              flush_domains gets GPU
1284  *              invalidate_domains gets CPU
1285  *              wait_rendering (obj) to make sure all drawing is complete.
1286  *              This will include an MI_FLUSH to get the data from GPU
1287  *              to memory
1288  *              clflush (obj) to invalidate the CPU cache
1289  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
1290  *      5. Read/written by CPU
1291  *              cache lines are loaded and dirtied
1292  *      6. Read written by GPU
1293  *              Same as last GPU access
1294  *
1295  * Case 3: The constant buffer
1296  *
1297  *      1. Allocated
1298  *      2. Written by CPU
1299  *      3. Read by GPU
1300  *      4. Updated (written) by CPU again
1301  *      5. Read by GPU
1302  *
1303  *      1. Allocated
1304  *              (CPU, CPU)
1305  *      2. Written by CPU
1306  *              (CPU, CPU)
1307  *      3. Read by GPU
1308  *              (CPU+RENDER, 0)
1309  *              flush_domains = CPU
1310  *              invalidate_domains = RENDER
1311  *              clflush (obj)
1312  *              MI_FLUSH
1313  *              drm_agp_chipset_flush
1314  *      4. Updated (written) by CPU again
1315  *              (CPU, CPU)
1316  *              flush_domains = 0 (no previous write domain)
1317  *              invalidate_domains = 0 (no new read domains)
1318  *      5. Read by GPU
1319  *              (CPU+RENDER, 0)
1320  *              flush_domains = CPU
1321  *              invalidate_domains = RENDER
1322  *              clflush (obj)
1323  *              MI_FLUSH
1324  *              drm_agp_chipset_flush
1325  */
1326 static int
1327 i915_gem_object_set_domain(struct drm_gem_object *obj,
1328                             uint32_t read_domains,
1329                             uint32_t write_domain)
1330 {
1331         struct drm_device               *dev = obj->dev;
1332         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
1333         uint32_t                        invalidate_domains = 0;
1334         uint32_t                        flush_domains = 0;
1335         int                             ret;
1336
1337 #if WATCH_BUF
1338         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
1339                  __func__, obj,
1340                  obj->read_domains, read_domains,
1341                  obj->write_domain, write_domain);
1342 #endif
1343         /*
1344          * If the object isn't moving to a new write domain,
1345          * let the object stay in multiple read domains
1346          */
1347         if (write_domain == 0)
1348                 read_domains |= obj->read_domains;
1349         else
1350                 obj_priv->dirty = 1;
1351
1352         /*
1353          * Flush the current write domain if
1354          * the new read domains don't match. Invalidate
1355          * any read domains which differ from the old
1356          * write domain
1357          */
1358         if (obj->write_domain && obj->write_domain != read_domains) {
1359                 flush_domains |= obj->write_domain;
1360                 invalidate_domains |= read_domains & ~obj->write_domain;
1361         }
1362         /*
1363          * Invalidate any read caches which may have
1364          * stale data. That is, any new read domains.
1365          */
1366         invalidate_domains |= read_domains & ~obj->read_domains;
1367         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
1368 #if WATCH_BUF
1369                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
1370                          __func__, flush_domains, invalidate_domains);
1371 #endif
1372                 /*
1373                  * If we're invaliding the CPU cache and flushing a GPU cache,
1374                  * then pause for rendering so that the GPU caches will be
1375                  * flushed before the cpu cache is invalidated
1376                  */
1377                 if ((invalidate_domains & I915_GEM_DOMAIN_CPU) &&
1378                     (flush_domains & ~(I915_GEM_DOMAIN_CPU |
1379                                        I915_GEM_DOMAIN_GTT))) {
1380                         ret = i915_gem_object_wait_rendering(obj);
1381                         if (ret)
1382                                 return ret;
1383                 }
1384                 i915_gem_clflush_object(obj);
1385         }
1386
1387         if ((write_domain | flush_domains) != 0)
1388                 obj->write_domain = write_domain;
1389
1390         /* If we're invalidating the CPU domain, clear the per-page CPU
1391          * domain list as well.
1392          */
1393         if (obj_priv->page_cpu_valid != NULL &&
1394             (write_domain != 0 ||
1395              read_domains & I915_GEM_DOMAIN_CPU)) {
1396                 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
1397                          DRM_MEM_DRIVER);
1398                 obj_priv->page_cpu_valid = NULL;
1399         }
1400         obj->read_domains = read_domains;
1401
1402         dev->invalidate_domains |= invalidate_domains;
1403         dev->flush_domains |= flush_domains;
1404 #if WATCH_BUF
1405         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
1406                  __func__,
1407                  obj->read_domains, obj->write_domain,
1408                  dev->invalidate_domains, dev->flush_domains);
1409 #endif
1410         return 0;
1411 }
1412
1413 /**
1414  * Set the read/write domain on a range of the object.
1415  *
1416  * Currently only implemented for CPU reads, otherwise drops to normal
1417  * i915_gem_object_set_domain().
1418  */
1419 static int
1420 i915_gem_object_set_domain_range(struct drm_gem_object *obj,
1421                                  uint64_t offset,
1422                                  uint64_t size,
1423                                  uint32_t read_domains,
1424                                  uint32_t write_domain)
1425 {
1426         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1427         int ret, i;
1428
1429         if (obj->read_domains & I915_GEM_DOMAIN_CPU)
1430                 return 0;
1431
1432         if (read_domains != I915_GEM_DOMAIN_CPU ||
1433             write_domain != 0)
1434                 return i915_gem_object_set_domain(obj,
1435                                                   read_domains, write_domain);
1436
1437         /* Wait on any GPU rendering to the object to be flushed. */
1438         if (obj->write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT)) {
1439                 ret = i915_gem_object_wait_rendering(obj);
1440                 if (ret)
1441                         return ret;
1442         }
1443
1444         if (obj_priv->page_cpu_valid == NULL) {
1445                 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
1446                                                       DRM_MEM_DRIVER);
1447         }
1448
1449         /* Flush the cache on any pages that are still invalid from the CPU's
1450          * perspective.
1451          */
1452         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE; i++) {
1453                 if (obj_priv->page_cpu_valid[i])
1454                         continue;
1455
1456                 drm_clflush_pages(obj_priv->page_list + i, 1);
1457
1458                 obj_priv->page_cpu_valid[i] = 1;
1459         }
1460
1461         return 0;
1462 }
1463
1464 /**
1465  * Once all of the objects have been set in the proper domain,
1466  * perform the necessary flush and invalidate operations.
1467  *
1468  * Returns the write domains flushed, for use in flush tracking.
1469  */
1470 static uint32_t
1471 i915_gem_dev_set_domain(struct drm_device *dev)
1472 {
1473         uint32_t flush_domains = dev->flush_domains;
1474
1475         /*
1476          * Now that all the buffers are synced to the proper domains,
1477          * flush and invalidate the collected domains
1478          */
1479         if (dev->invalidate_domains | dev->flush_domains) {
1480 #if WATCH_EXEC
1481                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
1482                           __func__,
1483                          dev->invalidate_domains,
1484                          dev->flush_domains);
1485 #endif
1486                 i915_gem_flush(dev,
1487                                dev->invalidate_domains,
1488                                dev->flush_domains);
1489                 dev->invalidate_domains = 0;
1490                 dev->flush_domains = 0;
1491         }
1492
1493         return flush_domains;
1494 }
1495
1496 /**
1497  * Pin an object to the GTT and evaluate the relocations landing in it.
1498  */
1499 static int
1500 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
1501                                  struct drm_file *file_priv,
1502                                  struct drm_i915_gem_exec_object *entry)
1503 {
1504         struct drm_device *dev = obj->dev;
1505         struct drm_i915_gem_relocation_entry reloc;
1506         struct drm_i915_gem_relocation_entry __user *relocs;
1507         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1508         int i, ret;
1509         uint32_t last_reloc_offset = -1;
1510         void __iomem *reloc_page = NULL;
1511
1512         /* Choose the GTT offset for our buffer and put it there. */
1513         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
1514         if (ret)
1515                 return ret;
1516
1517         entry->offset = obj_priv->gtt_offset;
1518
1519         relocs = (struct drm_i915_gem_relocation_entry __user *)
1520                  (uintptr_t) entry->relocs_ptr;
1521         /* Apply the relocations, using the GTT aperture to avoid cache
1522          * flushing requirements.
1523          */
1524         for (i = 0; i < entry->relocation_count; i++) {
1525                 struct drm_gem_object *target_obj;
1526                 struct drm_i915_gem_object *target_obj_priv;
1527                 uint32_t reloc_val, reloc_offset;
1528                 uint32_t __iomem *reloc_entry;
1529
1530                 ret = copy_from_user(&reloc, relocs + i, sizeof(reloc));
1531                 if (ret != 0) {
1532                         i915_gem_object_unpin(obj);
1533                         return ret;
1534                 }
1535
1536                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
1537                                                    reloc.target_handle);
1538                 if (target_obj == NULL) {
1539                         i915_gem_object_unpin(obj);
1540                         return -EBADF;
1541                 }
1542                 target_obj_priv = target_obj->driver_private;
1543
1544                 /* The target buffer should have appeared before us in the
1545                  * exec_object list, so it should have a GTT space bound by now.
1546                  */
1547                 if (target_obj_priv->gtt_space == NULL) {
1548                         DRM_ERROR("No GTT space found for object %d\n",
1549                                   reloc.target_handle);
1550                         drm_gem_object_unreference(target_obj);
1551                         i915_gem_object_unpin(obj);
1552                         return -EINVAL;
1553                 }
1554
1555                 if (reloc.offset > obj->size - 4) {
1556                         DRM_ERROR("Relocation beyond object bounds: "
1557                                   "obj %p target %d offset %d size %d.\n",
1558                                   obj, reloc.target_handle,
1559                                   (int) reloc.offset, (int) obj->size);
1560                         drm_gem_object_unreference(target_obj);
1561                         i915_gem_object_unpin(obj);
1562                         return -EINVAL;
1563                 }
1564                 if (reloc.offset & 3) {
1565                         DRM_ERROR("Relocation not 4-byte aligned: "
1566                                   "obj %p target %d offset %d.\n",
1567                                   obj, reloc.target_handle,
1568                                   (int) reloc.offset);
1569                         drm_gem_object_unreference(target_obj);
1570                         i915_gem_object_unpin(obj);
1571                         return -EINVAL;
1572                 }
1573
1574                 if (reloc.write_domain && target_obj->pending_write_domain &&
1575                     reloc.write_domain != target_obj->pending_write_domain) {
1576                         DRM_ERROR("Write domain conflict: "
1577                                   "obj %p target %d offset %d "
1578                                   "new %08x old %08x\n",
1579                                   obj, reloc.target_handle,
1580                                   (int) reloc.offset,
1581                                   reloc.write_domain,
1582                                   target_obj->pending_write_domain);
1583                         drm_gem_object_unreference(target_obj);
1584                         i915_gem_object_unpin(obj);
1585                         return -EINVAL;
1586                 }
1587
1588 #if WATCH_RELOC
1589                 DRM_INFO("%s: obj %p offset %08x target %d "
1590                          "read %08x write %08x gtt %08x "
1591                          "presumed %08x delta %08x\n",
1592                          __func__,
1593                          obj,
1594                          (int) reloc.offset,
1595                          (int) reloc.target_handle,
1596                          (int) reloc.read_domains,
1597                          (int) reloc.write_domain,
1598                          (int) target_obj_priv->gtt_offset,
1599                          (int) reloc.presumed_offset,
1600                          reloc.delta);
1601 #endif
1602
1603                 target_obj->pending_read_domains |= reloc.read_domains;
1604                 target_obj->pending_write_domain |= reloc.write_domain;
1605
1606                 /* If the relocation already has the right value in it, no
1607                  * more work needs to be done.
1608                  */
1609                 if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
1610                         drm_gem_object_unreference(target_obj);
1611                         continue;
1612                 }
1613
1614                 /* Now that we're going to actually write some data in,
1615                  * make sure that any rendering using this buffer's contents
1616                  * is completed.
1617                  */
1618                 i915_gem_object_wait_rendering(obj);
1619
1620                 /* As we're writing through the gtt, flush
1621                  * any CPU writes before we write the relocations
1622                  */
1623                 if (obj->write_domain & I915_GEM_DOMAIN_CPU) {
1624                         i915_gem_clflush_object(obj);
1625                         drm_agp_chipset_flush(dev);
1626                         obj->write_domain = 0;
1627                 }
1628
1629                 /* Map the page containing the relocation we're going to
1630                  * perform.
1631                  */
1632                 reloc_offset = obj_priv->gtt_offset + reloc.offset;
1633                 if (reloc_page == NULL ||
1634                     (last_reloc_offset & ~(PAGE_SIZE - 1)) !=
1635                     (reloc_offset & ~(PAGE_SIZE - 1))) {
1636                         if (reloc_page != NULL)
1637                                 iounmap(reloc_page);
1638
1639                         reloc_page = ioremap_wc(dev->agp->base +
1640                                                 (reloc_offset &
1641                                                  ~(PAGE_SIZE - 1)),
1642                                                 PAGE_SIZE);
1643                         last_reloc_offset = reloc_offset;
1644                         if (reloc_page == NULL) {
1645                                 drm_gem_object_unreference(target_obj);
1646                                 i915_gem_object_unpin(obj);
1647                                 return -ENOMEM;
1648                         }
1649                 }
1650
1651                 reloc_entry = (uint32_t __iomem *)(reloc_page +
1652                                            (reloc_offset & (PAGE_SIZE - 1)));
1653                 reloc_val = target_obj_priv->gtt_offset + reloc.delta;
1654
1655 #if WATCH_BUF
1656                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
1657                           obj, (unsigned int) reloc.offset,
1658                           readl(reloc_entry), reloc_val);
1659 #endif
1660                 writel(reloc_val, reloc_entry);
1661
1662                 /* Write the updated presumed offset for this entry back out
1663                  * to the user.
1664                  */
1665                 reloc.presumed_offset = target_obj_priv->gtt_offset;
1666                 ret = copy_to_user(relocs + i, &reloc, sizeof(reloc));
1667                 if (ret != 0) {
1668                         drm_gem_object_unreference(target_obj);
1669                         i915_gem_object_unpin(obj);
1670                         return ret;
1671                 }
1672
1673                 drm_gem_object_unreference(target_obj);
1674         }
1675
1676         if (reloc_page != NULL)
1677                 iounmap(reloc_page);
1678
1679 #if WATCH_BUF
1680         if (0)
1681                 i915_gem_dump_object(obj, 128, __func__, ~0);
1682 #endif
1683         return 0;
1684 }
1685
1686 /** Dispatch a batchbuffer to the ring
1687  */
1688 static int
1689 i915_dispatch_gem_execbuffer(struct drm_device *dev,
1690                               struct drm_i915_gem_execbuffer *exec,
1691                               uint64_t exec_offset)
1692 {
1693         drm_i915_private_t *dev_priv = dev->dev_private;
1694         struct drm_clip_rect __user *boxes = (struct drm_clip_rect __user *)
1695                                              (uintptr_t) exec->cliprects_ptr;
1696         int nbox = exec->num_cliprects;
1697         int i = 0, count;
1698         uint32_t        exec_start, exec_len;
1699         RING_LOCALS;
1700
1701         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
1702         exec_len = (uint32_t) exec->batch_len;
1703
1704         if ((exec_start | exec_len) & 0x7) {
1705                 DRM_ERROR("alignment\n");
1706                 return -EINVAL;
1707         }
1708
1709         if (!exec_start)
1710                 return -EINVAL;
1711
1712         count = nbox ? nbox : 1;
1713
1714         for (i = 0; i < count; i++) {
1715                 if (i < nbox) {
1716                         int ret = i915_emit_box(dev, boxes, i,
1717                                                 exec->DR1, exec->DR4);
1718                         if (ret)
1719                                 return ret;
1720                 }
1721
1722                 if (IS_I830(dev) || IS_845G(dev)) {
1723                         BEGIN_LP_RING(4);
1724                         OUT_RING(MI_BATCH_BUFFER);
1725                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
1726                         OUT_RING(exec_start + exec_len - 4);
1727                         OUT_RING(0);
1728                         ADVANCE_LP_RING();
1729                 } else {
1730                         BEGIN_LP_RING(2);
1731                         if (IS_I965G(dev)) {
1732                                 OUT_RING(MI_BATCH_BUFFER_START |
1733                                          (2 << 6) |
1734                                          MI_BATCH_NON_SECURE_I965);
1735                                 OUT_RING(exec_start);
1736                         } else {
1737                                 OUT_RING(MI_BATCH_BUFFER_START |
1738                                          (2 << 6));
1739                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
1740                         }
1741                         ADVANCE_LP_RING();
1742                 }
1743         }
1744
1745         /* XXX breadcrumb */
1746         return 0;
1747 }
1748
1749 /* Throttle our rendering by waiting until the ring has completed our requests
1750  * emitted over 20 msec ago.
1751  *
1752  * This should get us reasonable parallelism between CPU and GPU but also
1753  * relatively low latency when blocking on a particular request to finish.
1754  */
1755 static int
1756 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
1757 {
1758         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
1759         int ret = 0;
1760         uint32_t seqno;
1761
1762         mutex_lock(&dev->struct_mutex);
1763         seqno = i915_file_priv->mm.last_gem_throttle_seqno;
1764         i915_file_priv->mm.last_gem_throttle_seqno =
1765                 i915_file_priv->mm.last_gem_seqno;
1766         if (seqno)
1767                 ret = i915_wait_request(dev, seqno);
1768         mutex_unlock(&dev->struct_mutex);
1769         return ret;
1770 }
1771
1772 int
1773 i915_gem_execbuffer(struct drm_device *dev, void *data,
1774                     struct drm_file *file_priv)
1775 {
1776         drm_i915_private_t *dev_priv = dev->dev_private;
1777         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
1778         struct drm_i915_gem_execbuffer *args = data;
1779         struct drm_i915_gem_exec_object *exec_list = NULL;
1780         struct drm_gem_object **object_list = NULL;
1781         struct drm_gem_object *batch_obj;
1782         int ret, i, pinned = 0;
1783         uint64_t exec_offset;
1784         uint32_t seqno, flush_domains;
1785
1786 #if WATCH_EXEC
1787         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
1788                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
1789 #endif
1790
1791         if (args->buffer_count < 1) {
1792                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1793                 return -EINVAL;
1794         }
1795         /* Copy in the exec list from userland */
1796         exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
1797                                DRM_MEM_DRIVER);
1798         object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
1799                                  DRM_MEM_DRIVER);
1800         if (exec_list == NULL || object_list == NULL) {
1801                 DRM_ERROR("Failed to allocate exec or object list "
1802                           "for %d buffers\n",
1803                           args->buffer_count);
1804                 ret = -ENOMEM;
1805                 goto pre_mutex_err;
1806         }
1807         ret = copy_from_user(exec_list,
1808                              (struct drm_i915_relocation_entry __user *)
1809                              (uintptr_t) args->buffers_ptr,
1810                              sizeof(*exec_list) * args->buffer_count);
1811         if (ret != 0) {
1812                 DRM_ERROR("copy %d exec entries failed %d\n",
1813                           args->buffer_count, ret);
1814                 goto pre_mutex_err;
1815         }
1816
1817         mutex_lock(&dev->struct_mutex);
1818
1819         i915_verify_inactive(dev, __FILE__, __LINE__);
1820
1821         if (dev_priv->mm.wedged) {
1822                 DRM_ERROR("Execbuf while wedged\n");
1823                 mutex_unlock(&dev->struct_mutex);
1824                 return -EIO;
1825         }
1826
1827         if (dev_priv->mm.suspended) {
1828                 DRM_ERROR("Execbuf while VT-switched.\n");
1829                 mutex_unlock(&dev->struct_mutex);
1830                 return -EBUSY;
1831         }
1832
1833         /* Zero the gloabl flush/invalidate flags. These
1834          * will be modified as each object is bound to the
1835          * gtt
1836          */
1837         dev->invalidate_domains = 0;
1838         dev->flush_domains = 0;
1839
1840         /* Look up object handles and perform the relocations */
1841         for (i = 0; i < args->buffer_count; i++) {
1842                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
1843                                                        exec_list[i].handle);
1844                 if (object_list[i] == NULL) {
1845                         DRM_ERROR("Invalid object handle %d at index %d\n",
1846                                    exec_list[i].handle, i);
1847                         ret = -EBADF;
1848                         goto err;
1849                 }
1850
1851                 object_list[i]->pending_read_domains = 0;
1852                 object_list[i]->pending_write_domain = 0;
1853                 ret = i915_gem_object_pin_and_relocate(object_list[i],
1854                                                        file_priv,
1855                                                        &exec_list[i]);
1856                 if (ret) {
1857                         DRM_ERROR("object bind and relocate failed %d\n", ret);
1858                         goto err;
1859                 }
1860                 pinned = i + 1;
1861         }
1862
1863         /* Set the pending read domains for the batch buffer to COMMAND */
1864         batch_obj = object_list[args->buffer_count-1];
1865         batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
1866         batch_obj->pending_write_domain = 0;
1867
1868         i915_verify_inactive(dev, __FILE__, __LINE__);
1869
1870         for (i = 0; i < args->buffer_count; i++) {
1871                 struct drm_gem_object *obj = object_list[i];
1872                 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1873
1874                 if (obj_priv->gtt_space == NULL) {
1875                         /* We evicted the buffer in the process of validating
1876                          * our set of buffers in.  We could try to recover by
1877                          * kicking them everything out and trying again from
1878                          * the start.
1879                          */
1880                         ret = -ENOMEM;
1881                         goto err;
1882                 }
1883
1884                 /* make sure all previous memory operations have passed */
1885                 ret = i915_gem_object_set_domain(obj,
1886                                                  obj->pending_read_domains,
1887                                                  obj->pending_write_domain);
1888                 if (ret)
1889                         goto err;
1890         }
1891
1892         i915_verify_inactive(dev, __FILE__, __LINE__);
1893
1894         /* Flush/invalidate caches and chipset buffer */
1895         flush_domains = i915_gem_dev_set_domain(dev);
1896
1897         i915_verify_inactive(dev, __FILE__, __LINE__);
1898
1899 #if WATCH_COHERENCY
1900         for (i = 0; i < args->buffer_count; i++) {
1901                 i915_gem_object_check_coherency(object_list[i],
1902                                                 exec_list[i].handle);
1903         }
1904 #endif
1905
1906         exec_offset = exec_list[args->buffer_count - 1].offset;
1907
1908 #if WATCH_EXEC
1909         i915_gem_dump_object(object_list[args->buffer_count - 1],
1910                               args->batch_len,
1911                               __func__,
1912                               ~0);
1913 #endif
1914
1915         (void)i915_add_request(dev, flush_domains);
1916
1917         /* Exec the batchbuffer */
1918         ret = i915_dispatch_gem_execbuffer(dev, args, exec_offset);
1919         if (ret) {
1920                 DRM_ERROR("dispatch failed %d\n", ret);
1921                 goto err;
1922         }
1923
1924         /*
1925          * Ensure that the commands in the batch buffer are
1926          * finished before the interrupt fires
1927          */
1928         flush_domains = i915_retire_commands(dev);
1929
1930         i915_verify_inactive(dev, __FILE__, __LINE__);
1931
1932         /*
1933          * Get a seqno representing the execution of the current buffer,
1934          * which we can wait on.  We would like to mitigate these interrupts,
1935          * likely by only creating seqnos occasionally (so that we have
1936          * *some* interrupts representing completion of buffers that we can
1937          * wait on when trying to clear up gtt space).
1938          */
1939         seqno = i915_add_request(dev, flush_domains);
1940         BUG_ON(seqno == 0);
1941         i915_file_priv->mm.last_gem_seqno = seqno;
1942         for (i = 0; i < args->buffer_count; i++) {
1943                 struct drm_gem_object *obj = object_list[i];
1944                 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1945
1946                 i915_gem_object_move_to_active(obj);
1947                 obj_priv->last_rendering_seqno = seqno;
1948 #if WATCH_LRU
1949                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
1950 #endif
1951         }
1952 #if WATCH_LRU
1953         i915_dump_lru(dev, __func__);
1954 #endif
1955
1956         i915_verify_inactive(dev, __FILE__, __LINE__);
1957
1958         /* Copy the new buffer offsets back to the user's exec list. */
1959         ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1960                            (uintptr_t) args->buffers_ptr,
1961                            exec_list,
1962                            sizeof(*exec_list) * args->buffer_count);
1963         if (ret)
1964                 DRM_ERROR("failed to copy %d exec entries "
1965                           "back to user (%d)\n",
1966                            args->buffer_count, ret);
1967 err:
1968         if (object_list != NULL) {
1969                 for (i = 0; i < pinned; i++)
1970                         i915_gem_object_unpin(object_list[i]);
1971
1972                 for (i = 0; i < args->buffer_count; i++)
1973                         drm_gem_object_unreference(object_list[i]);
1974         }
1975         mutex_unlock(&dev->struct_mutex);
1976
1977 pre_mutex_err:
1978         drm_free(object_list, sizeof(*object_list) * args->buffer_count,
1979                  DRM_MEM_DRIVER);
1980         drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
1981                  DRM_MEM_DRIVER);
1982
1983         return ret;
1984 }
1985
1986 int
1987 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
1988 {
1989         struct drm_device *dev = obj->dev;
1990         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1991         int ret;
1992
1993         i915_verify_inactive(dev, __FILE__, __LINE__);
1994         if (obj_priv->gtt_space == NULL) {
1995                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
1996                 if (ret != 0) {
1997                         DRM_ERROR("Failure to bind: %d", ret);
1998                         return ret;
1999                 }
2000         }
2001         obj_priv->pin_count++;
2002
2003         /* If the object is not active and not pending a flush,
2004          * remove it from the inactive list
2005          */
2006         if (obj_priv->pin_count == 1) {
2007                 atomic_inc(&dev->pin_count);
2008                 atomic_add(obj->size, &dev->pin_memory);
2009                 if (!obj_priv->active &&
2010                     (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2011                                            I915_GEM_DOMAIN_GTT)) == 0 &&
2012                     !list_empty(&obj_priv->list))
2013                         list_del_init(&obj_priv->list);
2014         }
2015         i915_verify_inactive(dev, __FILE__, __LINE__);
2016
2017         return 0;
2018 }
2019
2020 void
2021 i915_gem_object_unpin(struct drm_gem_object *obj)
2022 {
2023         struct drm_device *dev = obj->dev;
2024         drm_i915_private_t *dev_priv = dev->dev_private;
2025         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2026
2027         i915_verify_inactive(dev, __FILE__, __LINE__);
2028         obj_priv->pin_count--;
2029         BUG_ON(obj_priv->pin_count < 0);
2030         BUG_ON(obj_priv->gtt_space == NULL);
2031
2032         /* If the object is no longer pinned, and is
2033          * neither active nor being flushed, then stick it on
2034          * the inactive list
2035          */
2036         if (obj_priv->pin_count == 0) {
2037                 if (!obj_priv->active &&
2038                     (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2039                                            I915_GEM_DOMAIN_GTT)) == 0)
2040                         list_move_tail(&obj_priv->list,
2041                                        &dev_priv->mm.inactive_list);
2042                 atomic_dec(&dev->pin_count);
2043                 atomic_sub(obj->size, &dev->pin_memory);
2044         }
2045         i915_verify_inactive(dev, __FILE__, __LINE__);
2046 }
2047
2048 int
2049 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
2050                    struct drm_file *file_priv)
2051 {
2052         struct drm_i915_gem_pin *args = data;
2053         struct drm_gem_object *obj;
2054         struct drm_i915_gem_object *obj_priv;
2055         int ret;
2056
2057         mutex_lock(&dev->struct_mutex);
2058
2059         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2060         if (obj == NULL) {
2061                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
2062                           args->handle);
2063                 mutex_unlock(&dev->struct_mutex);
2064                 return -EBADF;
2065         }
2066         obj_priv = obj->driver_private;
2067
2068         ret = i915_gem_object_pin(obj, args->alignment);
2069         if (ret != 0) {
2070                 drm_gem_object_unreference(obj);
2071                 mutex_unlock(&dev->struct_mutex);
2072                 return ret;
2073         }
2074
2075         /* XXX - flush the CPU caches for pinned objects
2076          * as the X server doesn't manage domains yet
2077          */
2078         if (obj->write_domain & I915_GEM_DOMAIN_CPU) {
2079                 i915_gem_clflush_object(obj);
2080                 drm_agp_chipset_flush(dev);
2081                 obj->write_domain = 0;
2082         }
2083         args->offset = obj_priv->gtt_offset;
2084         drm_gem_object_unreference(obj);
2085         mutex_unlock(&dev->struct_mutex);
2086
2087         return 0;
2088 }
2089
2090 int
2091 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
2092                      struct drm_file *file_priv)
2093 {
2094         struct drm_i915_gem_pin *args = data;
2095         struct drm_gem_object *obj;
2096
2097         mutex_lock(&dev->struct_mutex);
2098
2099         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2100         if (obj == NULL) {
2101                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
2102                           args->handle);
2103                 mutex_unlock(&dev->struct_mutex);
2104                 return -EBADF;
2105         }
2106
2107         i915_gem_object_unpin(obj);
2108
2109         drm_gem_object_unreference(obj);
2110         mutex_unlock(&dev->struct_mutex);
2111         return 0;
2112 }
2113
2114 int
2115 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2116                     struct drm_file *file_priv)
2117 {
2118         struct drm_i915_gem_busy *args = data;
2119         struct drm_gem_object *obj;
2120         struct drm_i915_gem_object *obj_priv;
2121
2122         mutex_lock(&dev->struct_mutex);
2123         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2124         if (obj == NULL) {
2125                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
2126                           args->handle);
2127                 mutex_unlock(&dev->struct_mutex);
2128                 return -EBADF;
2129         }
2130
2131         obj_priv = obj->driver_private;
2132         args->busy = obj_priv->active;
2133
2134         drm_gem_object_unreference(obj);
2135         mutex_unlock(&dev->struct_mutex);
2136         return 0;
2137 }
2138
2139 int
2140 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2141                         struct drm_file *file_priv)
2142 {
2143     return i915_gem_ring_throttle(dev, file_priv);
2144 }
2145
2146 int i915_gem_init_object(struct drm_gem_object *obj)
2147 {
2148         struct drm_i915_gem_object *obj_priv;
2149
2150         obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
2151         if (obj_priv == NULL)
2152                 return -ENOMEM;
2153
2154         /*
2155          * We've just allocated pages from the kernel,
2156          * so they've just been written by the CPU with
2157          * zeros. They'll need to be clflushed before we
2158          * use them with the GPU.
2159          */
2160         obj->write_domain = I915_GEM_DOMAIN_CPU;
2161         obj->read_domains = I915_GEM_DOMAIN_CPU;
2162
2163         obj_priv->agp_type = AGP_USER_MEMORY;
2164
2165         obj->driver_private = obj_priv;
2166         obj_priv->obj = obj;
2167         INIT_LIST_HEAD(&obj_priv->list);
2168         return 0;
2169 }
2170
2171 void i915_gem_free_object(struct drm_gem_object *obj)
2172 {
2173         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2174
2175         while (obj_priv->pin_count > 0)
2176                 i915_gem_object_unpin(obj);
2177
2178         i915_gem_object_unbind(obj);
2179
2180         drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
2181         drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
2182 }
2183
2184 static int
2185 i915_gem_set_domain(struct drm_gem_object *obj,
2186                     struct drm_file *file_priv,
2187                     uint32_t read_domains,
2188                     uint32_t write_domain)
2189 {
2190         struct drm_device *dev = obj->dev;
2191         int ret;
2192         uint32_t flush_domains;
2193
2194         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
2195
2196         ret = i915_gem_object_set_domain(obj, read_domains, write_domain);
2197         if (ret)
2198                 return ret;
2199         flush_domains = i915_gem_dev_set_domain(obj->dev);
2200
2201         if (flush_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT))
2202                 (void) i915_add_request(dev, flush_domains);
2203
2204         return 0;
2205 }
2206
2207 /** Unbinds all objects that are on the given buffer list. */
2208 static int
2209 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
2210 {
2211         struct drm_gem_object *obj;
2212         struct drm_i915_gem_object *obj_priv;
2213         int ret;
2214
2215         while (!list_empty(head)) {
2216                 obj_priv = list_first_entry(head,
2217                                             struct drm_i915_gem_object,
2218                                             list);
2219                 obj = obj_priv->obj;
2220
2221                 if (obj_priv->pin_count != 0) {
2222                         DRM_ERROR("Pinned object in unbind list\n");
2223                         mutex_unlock(&dev->struct_mutex);
2224                         return -EINVAL;
2225                 }
2226
2227                 ret = i915_gem_object_unbind(obj);
2228                 if (ret != 0) {
2229                         DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
2230                                   ret);
2231                         mutex_unlock(&dev->struct_mutex);
2232                         return ret;
2233                 }
2234         }
2235
2236
2237         return 0;
2238 }
2239
2240 static int
2241 i915_gem_idle(struct drm_device *dev)
2242 {
2243         drm_i915_private_t *dev_priv = dev->dev_private;
2244         uint32_t seqno, cur_seqno, last_seqno;
2245         int stuck, ret;
2246
2247         mutex_lock(&dev->struct_mutex);
2248
2249         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
2250                 mutex_unlock(&dev->struct_mutex);
2251                 return 0;
2252         }
2253
2254         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
2255          * We need to replace this with a semaphore, or something.
2256          */
2257         dev_priv->mm.suspended = 1;
2258
2259         /* Cancel the retire work handler, wait for it to finish if running
2260          */
2261         mutex_unlock(&dev->struct_mutex);
2262         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
2263         mutex_lock(&dev->struct_mutex);
2264
2265         i915_kernel_lost_context(dev);
2266
2267         /* Flush the GPU along with all non-CPU write domains
2268          */
2269         i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
2270                        ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2271         seqno = i915_add_request(dev, ~(I915_GEM_DOMAIN_CPU |
2272                                         I915_GEM_DOMAIN_GTT));
2273
2274         if (seqno == 0) {
2275                 mutex_unlock(&dev->struct_mutex);
2276                 return -ENOMEM;
2277         }
2278
2279         dev_priv->mm.waiting_gem_seqno = seqno;
2280         last_seqno = 0;
2281         stuck = 0;
2282         for (;;) {
2283                 cur_seqno = i915_get_gem_seqno(dev);
2284                 if (i915_seqno_passed(cur_seqno, seqno))
2285                         break;
2286                 if (last_seqno == cur_seqno) {
2287                         if (stuck++ > 100) {
2288                                 DRM_ERROR("hardware wedged\n");
2289                                 dev_priv->mm.wedged = 1;
2290                                 DRM_WAKEUP(&dev_priv->irq_queue);
2291                                 break;
2292                         }
2293                 }
2294                 msleep(10);
2295                 last_seqno = cur_seqno;
2296         }
2297         dev_priv->mm.waiting_gem_seqno = 0;
2298
2299         i915_gem_retire_requests(dev);
2300
2301         /* Active and flushing should now be empty as we've
2302          * waited for a sequence higher than any pending execbuffer
2303          */
2304         BUG_ON(!list_empty(&dev_priv->mm.active_list));
2305         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2306
2307         /* Request should now be empty as we've also waited
2308          * for the last request in the list
2309          */
2310         BUG_ON(!list_empty(&dev_priv->mm.request_list));
2311
2312         /* Move all buffers out of the GTT. */
2313         ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
2314         if (ret) {
2315                 mutex_unlock(&dev->struct_mutex);
2316                 return ret;
2317         }
2318
2319         BUG_ON(!list_empty(&dev_priv->mm.active_list));
2320         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2321         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
2322         BUG_ON(!list_empty(&dev_priv->mm.request_list));
2323
2324         i915_gem_cleanup_ringbuffer(dev);
2325         mutex_unlock(&dev->struct_mutex);
2326
2327         return 0;
2328 }
2329
2330 static int
2331 i915_gem_init_hws(struct drm_device *dev)
2332 {
2333         drm_i915_private_t *dev_priv = dev->dev_private;
2334         struct drm_gem_object *obj;
2335         struct drm_i915_gem_object *obj_priv;
2336         int ret;
2337
2338         /* If we need a physical address for the status page, it's already
2339          * initialized at driver load time.
2340          */
2341         if (!I915_NEED_GFX_HWS(dev))
2342                 return 0;
2343
2344         obj = drm_gem_object_alloc(dev, 4096);
2345         if (obj == NULL) {
2346                 DRM_ERROR("Failed to allocate status page\n");
2347                 return -ENOMEM;
2348         }
2349         obj_priv = obj->driver_private;
2350         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
2351
2352         ret = i915_gem_object_pin(obj, 4096);
2353         if (ret != 0) {
2354                 drm_gem_object_unreference(obj);
2355                 return ret;
2356         }
2357
2358         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
2359
2360         dev_priv->hw_status_page = kmap(obj_priv->page_list[0]);
2361         if (dev_priv->hw_status_page == NULL) {
2362                 DRM_ERROR("Failed to map status page.\n");
2363                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
2364                 drm_gem_object_unreference(obj);
2365                 return -EINVAL;
2366         }
2367         dev_priv->hws_obj = obj;
2368         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
2369         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
2370         I915_READ(HWS_PGA); /* posting read */
2371         DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
2372
2373         return 0;
2374 }
2375
2376 static int
2377 i915_gem_init_ringbuffer(struct drm_device *dev)
2378 {
2379         drm_i915_private_t *dev_priv = dev->dev_private;
2380         struct drm_gem_object *obj;
2381         struct drm_i915_gem_object *obj_priv;
2382         int ret;
2383         u32 head;
2384
2385         ret = i915_gem_init_hws(dev);
2386         if (ret != 0)
2387                 return ret;
2388
2389         obj = drm_gem_object_alloc(dev, 128 * 1024);
2390         if (obj == NULL) {
2391                 DRM_ERROR("Failed to allocate ringbuffer\n");
2392                 return -ENOMEM;
2393         }
2394         obj_priv = obj->driver_private;
2395
2396         ret = i915_gem_object_pin(obj, 4096);
2397         if (ret != 0) {
2398                 drm_gem_object_unreference(obj);
2399                 return ret;
2400         }
2401
2402         /* Set up the kernel mapping for the ring. */
2403         dev_priv->ring.Size = obj->size;
2404         dev_priv->ring.tail_mask = obj->size - 1;
2405
2406         dev_priv->ring.map.offset = dev->agp->base + obj_priv->gtt_offset;
2407         dev_priv->ring.map.size = obj->size;
2408         dev_priv->ring.map.type = 0;
2409         dev_priv->ring.map.flags = 0;
2410         dev_priv->ring.map.mtrr = 0;
2411
2412         drm_core_ioremap_wc(&dev_priv->ring.map, dev);
2413         if (dev_priv->ring.map.handle == NULL) {
2414                 DRM_ERROR("Failed to map ringbuffer.\n");
2415                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
2416                 drm_gem_object_unreference(obj);
2417                 return -EINVAL;
2418         }
2419         dev_priv->ring.ring_obj = obj;
2420         dev_priv->ring.virtual_start = dev_priv->ring.map.handle;
2421
2422         /* Stop the ring if it's running. */
2423         I915_WRITE(PRB0_CTL, 0);
2424         I915_WRITE(PRB0_TAIL, 0);
2425         I915_WRITE(PRB0_HEAD, 0);
2426
2427         /* Initialize the ring. */
2428         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
2429         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
2430
2431         /* G45 ring initialization fails to reset head to zero */
2432         if (head != 0) {
2433                 DRM_ERROR("Ring head not reset to zero "
2434                           "ctl %08x head %08x tail %08x start %08x\n",
2435                           I915_READ(PRB0_CTL),
2436                           I915_READ(PRB0_HEAD),
2437                           I915_READ(PRB0_TAIL),
2438                           I915_READ(PRB0_START));
2439                 I915_WRITE(PRB0_HEAD, 0);
2440
2441                 DRM_ERROR("Ring head forced to zero "
2442                           "ctl %08x head %08x tail %08x start %08x\n",
2443                           I915_READ(PRB0_CTL),
2444                           I915_READ(PRB0_HEAD),
2445                           I915_READ(PRB0_TAIL),
2446                           I915_READ(PRB0_START));
2447         }
2448
2449         I915_WRITE(PRB0_CTL,
2450                    ((obj->size - 4096) & RING_NR_PAGES) |
2451                    RING_NO_REPORT |
2452                    RING_VALID);
2453
2454         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
2455
2456         /* If the head is still not zero, the ring is dead */
2457         if (head != 0) {
2458                 DRM_ERROR("Ring initialization failed "
2459                           "ctl %08x head %08x tail %08x start %08x\n",
2460                           I915_READ(PRB0_CTL),
2461                           I915_READ(PRB0_HEAD),
2462                           I915_READ(PRB0_TAIL),
2463                           I915_READ(PRB0_START));
2464                 return -EIO;
2465         }
2466
2467         /* Update our cache of the ring state */
2468         i915_kernel_lost_context(dev);
2469
2470         return 0;
2471 }
2472
2473 static void
2474 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
2475 {
2476         drm_i915_private_t *dev_priv = dev->dev_private;
2477
2478         if (dev_priv->ring.ring_obj == NULL)
2479                 return;
2480
2481         drm_core_ioremapfree(&dev_priv->ring.map, dev);
2482
2483         i915_gem_object_unpin(dev_priv->ring.ring_obj);
2484         drm_gem_object_unreference(dev_priv->ring.ring_obj);
2485         dev_priv->ring.ring_obj = NULL;
2486         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
2487
2488         if (dev_priv->hws_obj != NULL) {
2489                 struct drm_gem_object *obj = dev_priv->hws_obj;
2490                 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2491
2492                 kunmap(obj_priv->page_list[0]);
2493                 i915_gem_object_unpin(obj);
2494                 drm_gem_object_unreference(obj);
2495                 dev_priv->hws_obj = NULL;
2496                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
2497                 dev_priv->hw_status_page = NULL;
2498
2499                 /* Write high address into HWS_PGA when disabling. */
2500                 I915_WRITE(HWS_PGA, 0x1ffff000);
2501         }
2502 }
2503
2504 int
2505 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
2506                        struct drm_file *file_priv)
2507 {
2508         drm_i915_private_t *dev_priv = dev->dev_private;
2509         int ret;
2510
2511         if (dev_priv->mm.wedged) {
2512                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
2513                 dev_priv->mm.wedged = 0;
2514         }
2515
2516         ret = i915_gem_init_ringbuffer(dev);
2517         if (ret != 0)
2518                 return ret;
2519
2520         mutex_lock(&dev->struct_mutex);
2521         BUG_ON(!list_empty(&dev_priv->mm.active_list));
2522         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2523         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
2524         BUG_ON(!list_empty(&dev_priv->mm.request_list));
2525         dev_priv->mm.suspended = 0;
2526         mutex_unlock(&dev->struct_mutex);
2527
2528         drm_irq_install(dev);
2529
2530         return 0;
2531 }
2532
2533 int
2534 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
2535                        struct drm_file *file_priv)
2536 {
2537         int ret;
2538
2539         ret = i915_gem_idle(dev);
2540         drm_irq_uninstall(dev);
2541
2542         return ret;
2543 }
2544
2545 void
2546 i915_gem_lastclose(struct drm_device *dev)
2547 {
2548         int ret;
2549
2550         ret = i915_gem_idle(dev);
2551         if (ret)
2552                 DRM_ERROR("failed to idle hardware: %d\n", ret);
2553 }
2554
2555 void
2556 i915_gem_load(struct drm_device *dev)
2557 {
2558         drm_i915_private_t *dev_priv = dev->dev_private;
2559
2560         INIT_LIST_HEAD(&dev_priv->mm.active_list);
2561         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
2562         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
2563         INIT_LIST_HEAD(&dev_priv->mm.request_list);
2564         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
2565                           i915_gem_retire_work_handler);
2566         INIT_WORK(&dev_priv->mm.vblank_work,
2567                   i915_gem_vblank_work_handler);
2568         dev_priv->mm.next_gem_seqno = 1;
2569
2570         i915_gem_detect_bit_6_swizzle(dev);
2571 }