]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/firewire/fw-sbp2.c
firewire: fw-sbp2: increase login orb reply timeout, fix "failed to login"
[linux-2.6-omap-h63xx.git] / drivers / firewire / fw-sbp2.c
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/device.h>
36 #include <linux/scatterlist.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/blkdev.h>
39 #include <linux/string.h>
40 #include <linux/stringify.h>
41 #include <linux/timer.h>
42 #include <linux/workqueue.h>
43 #include <asm/system.h>
44
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_cmnd.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_host.h>
49
50 #include "fw-transaction.h"
51 #include "fw-topology.h"
52 #include "fw-device.h"
53
54 /*
55  * So far only bridges from Oxford Semiconductor are known to support
56  * concurrent logins. Depending on firmware, four or two concurrent logins
57  * are possible on OXFW911 and newer Oxsemi bridges.
58  *
59  * Concurrent logins are useful together with cluster filesystems.
60  */
61 static int sbp2_param_exclusive_login = 1;
62 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
63 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
64                  "(default = Y, use N for concurrent initiators)");
65
66 /*
67  * Flags for firmware oddities
68  *
69  * - 128kB max transfer
70  *   Limit transfer size. Necessary for some old bridges.
71  *
72  * - 36 byte inquiry
73  *   When scsi_mod probes the device, let the inquiry command look like that
74  *   from MS Windows.
75  *
76  * - skip mode page 8
77  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
78  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
79  *
80  * - fix capacity
81  *   Tell sd_mod to correct the last sector number reported by read_capacity.
82  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
83  *   Don't use this with devices which don't have this bug.
84  *
85  * - override internal blacklist
86  *   Instead of adding to the built-in blacklist, use only the workarounds
87  *   specified in the module load parameter.
88  *   Useful if a blacklist entry interfered with a non-broken device.
89  */
90 #define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
91 #define SBP2_WORKAROUND_INQUIRY_36      0x2
92 #define SBP2_WORKAROUND_MODE_SENSE_8    0x4
93 #define SBP2_WORKAROUND_FIX_CAPACITY    0x8
94 #define SBP2_WORKAROUND_OVERRIDE        0x100
95
96 static int sbp2_param_workarounds;
97 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
98 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
99         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
100         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
101         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
102         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
103         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
104         ", or a combination)");
105
106 /* I don't know why the SCSI stack doesn't define something like this... */
107 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
108
109 static const char sbp2_driver_name[] = "sbp2";
110
111 /*
112  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
113  * and one struct scsi_device per sbp2_logical_unit.
114  */
115 struct sbp2_logical_unit {
116         struct sbp2_target *tgt;
117         struct list_head link;
118         struct scsi_device *sdev;
119         struct fw_address_handler address_handler;
120         struct list_head orb_list;
121
122         u64 command_block_agent_address;
123         u16 lun;
124         int login_id;
125
126         /*
127          * The generation is updated once we've logged in or reconnected
128          * to the logical unit.  Thus, I/O to the device will automatically
129          * fail and get retried if it happens in a window where the device
130          * is not ready, e.g. after a bus reset but before we reconnect.
131          */
132         int generation;
133         int retries;
134         struct delayed_work work;
135 };
136
137 /*
138  * We create one struct sbp2_target per IEEE 1212 Unit Directory
139  * and one struct Scsi_Host per sbp2_target.
140  */
141 struct sbp2_target {
142         struct kref kref;
143         struct fw_unit *unit;
144
145         u64 management_agent_address;
146         int directory_id;
147         int node_id;
148         int address_high;
149
150         unsigned workarounds;
151         struct list_head lu_list;
152 };
153
154 /*
155  * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
156  * provided in the config rom.  A high timeout value really only matters
157  * on initial login, where we'll just use 20s rather than hassling with
158  * reading the config rom, since it really wouldn't buy us much.
159  */
160 #define SBP2_LOGIN_ORB_TIMEOUT          20000   /* Timeout in ms */
161 #define SBP2_ORB_TIMEOUT                2000    /* Timeout in ms */
162 #define SBP2_ORB_NULL                   0x80000000
163 #define SBP2_MAX_SG_ELEMENT_LENGTH      0xf000
164
165 #define SBP2_DIRECTION_TO_MEDIA         0x0
166 #define SBP2_DIRECTION_FROM_MEDIA       0x1
167
168 /* Unit directory keys */
169 #define SBP2_CSR_FIRMWARE_REVISION      0x3c
170 #define SBP2_CSR_LOGICAL_UNIT_NUMBER    0x14
171 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
172
173 /* Management orb opcodes */
174 #define SBP2_LOGIN_REQUEST              0x0
175 #define SBP2_QUERY_LOGINS_REQUEST       0x1
176 #define SBP2_RECONNECT_REQUEST          0x3
177 #define SBP2_SET_PASSWORD_REQUEST       0x4
178 #define SBP2_LOGOUT_REQUEST             0x7
179 #define SBP2_ABORT_TASK_REQUEST         0xb
180 #define SBP2_ABORT_TASK_SET             0xc
181 #define SBP2_LOGICAL_UNIT_RESET         0xe
182 #define SBP2_TARGET_RESET_REQUEST       0xf
183
184 /* Offsets for command block agent registers */
185 #define SBP2_AGENT_STATE                0x00
186 #define SBP2_AGENT_RESET                0x04
187 #define SBP2_ORB_POINTER                0x08
188 #define SBP2_DOORBELL                   0x10
189 #define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
190
191 /* Status write response codes */
192 #define SBP2_STATUS_REQUEST_COMPLETE    0x0
193 #define SBP2_STATUS_TRANSPORT_FAILURE   0x1
194 #define SBP2_STATUS_ILLEGAL_REQUEST     0x2
195 #define SBP2_STATUS_VENDOR_DEPENDENT    0x3
196
197 #define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
198 #define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
199 #define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
200 #define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
201 #define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
202 #define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
203 #define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
204 #define STATUS_GET_DATA(v)              ((v).data)
205
206 struct sbp2_status {
207         u32 status;
208         u32 orb_low;
209         u8 data[24];
210 };
211
212 struct sbp2_pointer {
213         u32 high;
214         u32 low;
215 };
216
217 struct sbp2_orb {
218         struct fw_transaction t;
219         struct kref kref;
220         dma_addr_t request_bus;
221         int rcode;
222         struct sbp2_pointer pointer;
223         void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
224         struct list_head link;
225 };
226
227 #define MANAGEMENT_ORB_LUN(v)                   ((v))
228 #define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
229 #define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
230 #define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
231 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
232 #define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
233
234 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
235 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
236
237 struct sbp2_management_orb {
238         struct sbp2_orb base;
239         struct {
240                 struct sbp2_pointer password;
241                 struct sbp2_pointer response;
242                 u32 misc;
243                 u32 length;
244                 struct sbp2_pointer status_fifo;
245         } request;
246         __be32 response[4];
247         dma_addr_t response_bus;
248         struct completion done;
249         struct sbp2_status status;
250 };
251
252 #define LOGIN_RESPONSE_GET_LOGIN_ID(v)  ((v).misc & 0xffff)
253 #define LOGIN_RESPONSE_GET_LENGTH(v)    (((v).misc >> 16) & 0xffff)
254
255 struct sbp2_login_response {
256         u32 misc;
257         struct sbp2_pointer command_block_agent;
258         u32 reconnect_hold;
259 };
260 #define COMMAND_ORB_DATA_SIZE(v)        ((v))
261 #define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
262 #define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
263 #define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
264 #define COMMAND_ORB_SPEED(v)            ((v) << 24)
265 #define COMMAND_ORB_DIRECTION(v)        ((v) << 27)
266 #define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
267 #define COMMAND_ORB_NOTIFY              ((1) << 31)
268
269 struct sbp2_command_orb {
270         struct sbp2_orb base;
271         struct {
272                 struct sbp2_pointer next;
273                 struct sbp2_pointer data_descriptor;
274                 u32 misc;
275                 u8 command_block[12];
276         } request;
277         struct scsi_cmnd *cmd;
278         scsi_done_fn_t done;
279         struct sbp2_logical_unit *lu;
280
281         struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
282         dma_addr_t page_table_bus;
283 };
284
285 /*
286  * List of devices with known bugs.
287  *
288  * The firmware_revision field, masked with 0xffff00, is the best
289  * indicator for the type of bridge chip of a device.  It yields a few
290  * false positives but this did not break correctly behaving devices
291  * so far.  We use ~0 as a wildcard, since the 24 bit values we get
292  * from the config rom can never match that.
293  */
294 static const struct {
295         u32 firmware_revision;
296         u32 model;
297         unsigned workarounds;
298 } sbp2_workarounds_table[] = {
299         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
300                 .firmware_revision      = 0x002800,
301                 .model                  = 0x001010,
302                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
303                                           SBP2_WORKAROUND_MODE_SENSE_8,
304         },
305         /* Initio bridges, actually only needed for some older ones */ {
306                 .firmware_revision      = 0x000200,
307                 .model                  = ~0,
308                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
309         },
310         /* Symbios bridge */ {
311                 .firmware_revision      = 0xa0b800,
312                 .model                  = ~0,
313                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
314         },
315
316         /*
317          * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
318          * these iPods do not feature the read_capacity bug according
319          * to one report.  Read_capacity behaviour as well as model_id
320          * could change due to Apple-supplied firmware updates though.
321          */
322
323         /* iPod 4th generation. */ {
324                 .firmware_revision      = 0x0a2700,
325                 .model                  = 0x000021,
326                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
327         },
328         /* iPod mini */ {
329                 .firmware_revision      = 0x0a2700,
330                 .model                  = 0x000023,
331                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
332         },
333         /* iPod Photo */ {
334                 .firmware_revision      = 0x0a2700,
335                 .model                  = 0x00007e,
336                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
337         }
338 };
339
340 static void
341 free_orb(struct kref *kref)
342 {
343         struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
344
345         kfree(orb);
346 }
347
348 static void
349 sbp2_status_write(struct fw_card *card, struct fw_request *request,
350                   int tcode, int destination, int source,
351                   int generation, int speed,
352                   unsigned long long offset,
353                   void *payload, size_t length, void *callback_data)
354 {
355         struct sbp2_logical_unit *lu = callback_data;
356         struct sbp2_orb *orb;
357         struct sbp2_status status;
358         size_t header_size;
359         unsigned long flags;
360
361         if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
362             length == 0 || length > sizeof(status)) {
363                 fw_send_response(card, request, RCODE_TYPE_ERROR);
364                 return;
365         }
366
367         header_size = min(length, 2 * sizeof(u32));
368         fw_memcpy_from_be32(&status, payload, header_size);
369         if (length > header_size)
370                 memcpy(status.data, payload + 8, length - header_size);
371         if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
372                 fw_notify("non-orb related status write, not handled\n");
373                 fw_send_response(card, request, RCODE_COMPLETE);
374                 return;
375         }
376
377         /* Lookup the orb corresponding to this status write. */
378         spin_lock_irqsave(&card->lock, flags);
379         list_for_each_entry(orb, &lu->orb_list, link) {
380                 if (STATUS_GET_ORB_HIGH(status) == 0 &&
381                     STATUS_GET_ORB_LOW(status) == orb->request_bus) {
382                         orb->rcode = RCODE_COMPLETE;
383                         list_del(&orb->link);
384                         break;
385                 }
386         }
387         spin_unlock_irqrestore(&card->lock, flags);
388
389         if (&orb->link != &lu->orb_list)
390                 orb->callback(orb, &status);
391         else
392                 fw_error("status write for unknown orb\n");
393
394         kref_put(&orb->kref, free_orb);
395
396         fw_send_response(card, request, RCODE_COMPLETE);
397 }
398
399 static void
400 complete_transaction(struct fw_card *card, int rcode,
401                      void *payload, size_t length, void *data)
402 {
403         struct sbp2_orb *orb = data;
404         unsigned long flags;
405
406         /*
407          * This is a little tricky.  We can get the status write for
408          * the orb before we get this callback.  The status write
409          * handler above will assume the orb pointer transaction was
410          * successful and set the rcode to RCODE_COMPLETE for the orb.
411          * So this callback only sets the rcode if it hasn't already
412          * been set and only does the cleanup if the transaction
413          * failed and we didn't already get a status write.
414          */
415         spin_lock_irqsave(&card->lock, flags);
416
417         if (orb->rcode == -1)
418                 orb->rcode = rcode;
419         if (orb->rcode != RCODE_COMPLETE) {
420                 list_del(&orb->link);
421                 spin_unlock_irqrestore(&card->lock, flags);
422                 orb->callback(orb, NULL);
423         } else {
424                 spin_unlock_irqrestore(&card->lock, flags);
425         }
426
427         kref_put(&orb->kref, free_orb);
428 }
429
430 static void
431 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
432               int node_id, int generation, u64 offset)
433 {
434         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
435         unsigned long flags;
436
437         orb->pointer.high = 0;
438         orb->pointer.low = orb->request_bus;
439         fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
440
441         spin_lock_irqsave(&device->card->lock, flags);
442         list_add_tail(&orb->link, &lu->orb_list);
443         spin_unlock_irqrestore(&device->card->lock, flags);
444
445         /* Take a ref for the orb list and for the transaction callback. */
446         kref_get(&orb->kref);
447         kref_get(&orb->kref);
448
449         fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
450                         node_id, generation, device->max_speed, offset,
451                         &orb->pointer, sizeof(orb->pointer),
452                         complete_transaction, orb);
453 }
454
455 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
456 {
457         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
458         struct sbp2_orb *orb, *next;
459         struct list_head list;
460         unsigned long flags;
461         int retval = -ENOENT;
462
463         INIT_LIST_HEAD(&list);
464         spin_lock_irqsave(&device->card->lock, flags);
465         list_splice_init(&lu->orb_list, &list);
466         spin_unlock_irqrestore(&device->card->lock, flags);
467
468         list_for_each_entry_safe(orb, next, &list, link) {
469                 retval = 0;
470                 if (fw_cancel_transaction(device->card, &orb->t) == 0)
471                         continue;
472
473                 orb->rcode = RCODE_CANCELLED;
474                 orb->callback(orb, NULL);
475         }
476
477         return retval;
478 }
479
480 static void
481 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
482 {
483         struct sbp2_management_orb *orb =
484                 container_of(base_orb, struct sbp2_management_orb, base);
485
486         if (status)
487                 memcpy(&orb->status, status, sizeof(*status));
488         complete(&orb->done);
489 }
490
491 static int
492 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
493                          int generation, int function, int lun_or_login_id,
494                          void *response)
495 {
496         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
497         struct sbp2_management_orb *orb;
498         unsigned int timeout;
499         int retval = -ENOMEM;
500
501         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
502         if (orb == NULL)
503                 return -ENOMEM;
504
505         kref_init(&orb->base.kref);
506         orb->response_bus =
507                 dma_map_single(device->card->device, &orb->response,
508                                sizeof(orb->response), DMA_FROM_DEVICE);
509         if (dma_mapping_error(orb->response_bus))
510                 goto fail_mapping_response;
511
512         orb->request.response.high    = 0;
513         orb->request.response.low     = orb->response_bus;
514
515         orb->request.misc =
516                 MANAGEMENT_ORB_NOTIFY |
517                 MANAGEMENT_ORB_FUNCTION(function) |
518                 MANAGEMENT_ORB_LUN(lun_or_login_id);
519         orb->request.length =
520                 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
521
522         orb->request.status_fifo.high = lu->address_handler.offset >> 32;
523         orb->request.status_fifo.low  = lu->address_handler.offset;
524
525         if (function == SBP2_LOGIN_REQUEST) {
526                 /* Ask for 2^2 == 4 seconds reconnect grace period */
527                 orb->request.misc |=
528                         MANAGEMENT_ORB_RECONNECT(2) |
529                         MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login);
530                 timeout = SBP2_LOGIN_ORB_TIMEOUT;
531         } else {
532                 timeout = SBP2_ORB_TIMEOUT;
533         }
534
535         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
536
537         init_completion(&orb->done);
538         orb->base.callback = complete_management_orb;
539
540         orb->base.request_bus =
541                 dma_map_single(device->card->device, &orb->request,
542                                sizeof(orb->request), DMA_TO_DEVICE);
543         if (dma_mapping_error(orb->base.request_bus))
544                 goto fail_mapping_request;
545
546         sbp2_send_orb(&orb->base, lu, node_id, generation,
547                       lu->tgt->management_agent_address);
548
549         wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
550
551         retval = -EIO;
552         if (sbp2_cancel_orbs(lu) == 0) {
553                 fw_error("orb reply timed out, rcode=0x%02x\n",
554                          orb->base.rcode);
555                 goto out;
556         }
557
558         if (orb->base.rcode != RCODE_COMPLETE) {
559                 fw_error("management write failed, rcode 0x%02x\n",
560                          orb->base.rcode);
561                 goto out;
562         }
563
564         if (STATUS_GET_RESPONSE(orb->status) != 0 ||
565             STATUS_GET_SBP_STATUS(orb->status) != 0) {
566                 fw_error("error status: %d:%d\n",
567                          STATUS_GET_RESPONSE(orb->status),
568                          STATUS_GET_SBP_STATUS(orb->status));
569                 goto out;
570         }
571
572         retval = 0;
573  out:
574         dma_unmap_single(device->card->device, orb->base.request_bus,
575                          sizeof(orb->request), DMA_TO_DEVICE);
576  fail_mapping_request:
577         dma_unmap_single(device->card->device, orb->response_bus,
578                          sizeof(orb->response), DMA_FROM_DEVICE);
579  fail_mapping_response:
580         if (response)
581                 fw_memcpy_from_be32(response,
582                                     orb->response, sizeof(orb->response));
583         kref_put(&orb->base.kref, free_orb);
584
585         return retval;
586 }
587
588 static void
589 complete_agent_reset_write(struct fw_card *card, int rcode,
590                            void *payload, size_t length, void *data)
591 {
592         struct fw_transaction *t = data;
593
594         kfree(t);
595 }
596
597 static int sbp2_agent_reset(struct sbp2_logical_unit *lu)
598 {
599         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
600         struct fw_transaction *t;
601         static u32 zero;
602
603         t = kzalloc(sizeof(*t), GFP_ATOMIC);
604         if (t == NULL)
605                 return -ENOMEM;
606
607         fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
608                         lu->tgt->node_id, lu->generation, device->max_speed,
609                         lu->command_block_agent_address + SBP2_AGENT_RESET,
610                         &zero, sizeof(zero), complete_agent_reset_write, t);
611
612         return 0;
613 }
614
615 static void sbp2_release_target(struct kref *kref)
616 {
617         struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
618         struct sbp2_logical_unit *lu, *next;
619         struct Scsi_Host *shost =
620                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
621         struct fw_device *device = fw_device(tgt->unit->device.parent);
622
623         list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
624                 if (lu->sdev)
625                         scsi_remove_device(lu->sdev);
626
627                 if (!fw_device_is_shutdown(device))
628                         sbp2_send_management_orb(lu, tgt->node_id,
629                                         lu->generation, SBP2_LOGOUT_REQUEST,
630                                         lu->login_id, NULL);
631
632                 fw_core_remove_address_handler(&lu->address_handler);
633                 list_del(&lu->link);
634                 kfree(lu);
635         }
636         scsi_remove_host(shost);
637         fw_notify("released %s\n", tgt->unit->device.bus_id);
638
639         put_device(&tgt->unit->device);
640         scsi_host_put(shost);
641 }
642
643 static struct workqueue_struct *sbp2_wq;
644
645 /*
646  * Always get the target's kref when scheduling work on one its units.
647  * Each workqueue job is responsible to call sbp2_target_put() upon return.
648  */
649 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
650 {
651         if (queue_delayed_work(sbp2_wq, &lu->work, delay))
652                 kref_get(&lu->tgt->kref);
653 }
654
655 static void sbp2_target_put(struct sbp2_target *tgt)
656 {
657         kref_put(&tgt->kref, sbp2_release_target);
658 }
659
660 static void sbp2_reconnect(struct work_struct *work);
661
662 static void sbp2_login(struct work_struct *work)
663 {
664         struct sbp2_logical_unit *lu =
665                 container_of(work, struct sbp2_logical_unit, work.work);
666         struct Scsi_Host *shost =
667                 container_of((void *)lu->tgt, struct Scsi_Host, hostdata[0]);
668         struct scsi_device *sdev;
669         struct scsi_lun eight_bytes_lun;
670         struct fw_unit *unit = lu->tgt->unit;
671         struct fw_device *device = fw_device(unit->device.parent);
672         struct sbp2_login_response response;
673         int generation, node_id, local_node_id;
674
675         generation    = device->generation;
676         smp_rmb();    /* node_id must not be older than generation */
677         node_id       = device->node_id;
678         local_node_id = device->card->node_id;
679
680         if (sbp2_send_management_orb(lu, node_id, generation,
681                                 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
682                 if (lu->retries++ < 5)
683                         sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
684                 else
685                         fw_error("failed to login to %s LUN %04x\n",
686                                  unit->device.bus_id, lu->lun);
687                 goto out;
688         }
689
690         lu->generation        = generation;
691         lu->tgt->node_id      = node_id;
692         lu->tgt->address_high = local_node_id << 16;
693
694         /* Get command block agent offset and login id. */
695         lu->command_block_agent_address =
696                 ((u64) (response.command_block_agent.high & 0xffff) << 32) |
697                 response.command_block_agent.low;
698         lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
699
700         fw_notify("logged in to %s LUN %04x (%d retries)\n",
701                   unit->device.bus_id, lu->lun, lu->retries);
702
703 #if 0
704         /* FIXME: The linux1394 sbp2 does this last step. */
705         sbp2_set_busy_timeout(scsi_id);
706 #endif
707
708         PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
709         sbp2_agent_reset(lu);
710
711         memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
712         eight_bytes_lun.scsi_lun[0] = (lu->lun >> 8) & 0xff;
713         eight_bytes_lun.scsi_lun[1] = lu->lun & 0xff;
714
715         sdev = __scsi_add_device(shost, 0, 0,
716                                  scsilun_to_int(&eight_bytes_lun), lu);
717         if (IS_ERR(sdev)) {
718                 sbp2_send_management_orb(lu, node_id, generation,
719                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
720                 /*
721                  * Set this back to sbp2_login so we fall back and
722                  * retry login on bus reset.
723                  */
724                 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
725         } else {
726                 lu->sdev = sdev;
727                 scsi_device_put(sdev);
728         }
729  out:
730         sbp2_target_put(lu->tgt);
731 }
732
733 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
734 {
735         struct sbp2_logical_unit *lu;
736
737         lu = kmalloc(sizeof(*lu), GFP_KERNEL);
738         if (!lu)
739                 return -ENOMEM;
740
741         lu->address_handler.length           = 0x100;
742         lu->address_handler.address_callback = sbp2_status_write;
743         lu->address_handler.callback_data    = lu;
744
745         if (fw_core_add_address_handler(&lu->address_handler,
746                                         &fw_high_memory_region) < 0) {
747                 kfree(lu);
748                 return -ENOMEM;
749         }
750
751         lu->tgt  = tgt;
752         lu->sdev = NULL;
753         lu->lun  = lun_entry & 0xffff;
754         lu->retries = 0;
755         INIT_LIST_HEAD(&lu->orb_list);
756         INIT_DELAYED_WORK(&lu->work, sbp2_login);
757
758         list_add_tail(&lu->link, &tgt->lu_list);
759         return 0;
760 }
761
762 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
763 {
764         struct fw_csr_iterator ci;
765         int key, value;
766
767         fw_csr_iterator_init(&ci, directory);
768         while (fw_csr_iterator_next(&ci, &key, &value))
769                 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
770                     sbp2_add_logical_unit(tgt, value) < 0)
771                         return -ENOMEM;
772         return 0;
773 }
774
775 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
776                               u32 *model, u32 *firmware_revision)
777 {
778         struct fw_csr_iterator ci;
779         int key, value;
780
781         fw_csr_iterator_init(&ci, directory);
782         while (fw_csr_iterator_next(&ci, &key, &value)) {
783                 switch (key) {
784
785                 case CSR_DEPENDENT_INFO | CSR_OFFSET:
786                         tgt->management_agent_address =
787                                         CSR_REGISTER_BASE + 4 * value;
788                         break;
789
790                 case CSR_DIRECTORY_ID:
791                         tgt->directory_id = value;
792                         break;
793
794                 case CSR_MODEL:
795                         *model = value;
796                         break;
797
798                 case SBP2_CSR_FIRMWARE_REVISION:
799                         *firmware_revision = value;
800                         break;
801
802                 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
803                         if (sbp2_add_logical_unit(tgt, value) < 0)
804                                 return -ENOMEM;
805                         break;
806
807                 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
808                         if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
809                                 return -ENOMEM;
810                         break;
811                 }
812         }
813         return 0;
814 }
815
816 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
817                                   u32 firmware_revision)
818 {
819         int i;
820         unsigned w = sbp2_param_workarounds;
821
822         if (w)
823                 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
824                           "if you need the workarounds parameter for %s\n",
825                           tgt->unit->device.bus_id);
826
827         if (w & SBP2_WORKAROUND_OVERRIDE)
828                 goto out;
829
830         for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
831
832                 if (sbp2_workarounds_table[i].firmware_revision !=
833                     (firmware_revision & 0xffffff00))
834                         continue;
835
836                 if (sbp2_workarounds_table[i].model != model &&
837                     sbp2_workarounds_table[i].model != ~0)
838                         continue;
839
840                 w |= sbp2_workarounds_table[i].workarounds;
841                 break;
842         }
843  out:
844         if (w)
845                 fw_notify("Workarounds for %s: 0x%x "
846                           "(firmware_revision 0x%06x, model_id 0x%06x)\n",
847                           tgt->unit->device.bus_id,
848                           w, firmware_revision, model);
849         tgt->workarounds = w;
850 }
851
852 static struct scsi_host_template scsi_driver_template;
853
854 static int sbp2_probe(struct device *dev)
855 {
856         struct fw_unit *unit = fw_unit(dev);
857         struct fw_device *device = fw_device(unit->device.parent);
858         struct sbp2_target *tgt;
859         struct sbp2_logical_unit *lu;
860         struct Scsi_Host *shost;
861         u32 model, firmware_revision;
862
863         shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
864         if (shost == NULL)
865                 return -ENOMEM;
866
867         tgt = (struct sbp2_target *)shost->hostdata;
868         unit->device.driver_data = tgt;
869         tgt->unit = unit;
870         kref_init(&tgt->kref);
871         INIT_LIST_HEAD(&tgt->lu_list);
872
873         if (fw_device_enable_phys_dma(device) < 0)
874                 goto fail_shost_put;
875
876         if (scsi_add_host(shost, &unit->device) < 0)
877                 goto fail_shost_put;
878
879         /* Initialize to values that won't match anything in our table. */
880         firmware_revision = 0xff000000;
881         model = 0xff000000;
882
883         /* implicit directory ID */
884         tgt->directory_id = ((unit->directory - device->config_rom) * 4
885                              + CSR_CONFIG_ROM) & 0xffffff;
886
887         if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
888                                &firmware_revision) < 0)
889                 goto fail_tgt_put;
890
891         sbp2_init_workarounds(tgt, model, firmware_revision);
892
893         get_device(&unit->device);
894
895         /* Do the login in a workqueue so we can easily reschedule retries. */
896         list_for_each_entry(lu, &tgt->lu_list, link)
897                 sbp2_queue_work(lu, 0);
898         return 0;
899
900  fail_tgt_put:
901         sbp2_target_put(tgt);
902         return -ENOMEM;
903
904  fail_shost_put:
905         scsi_host_put(shost);
906         return -ENOMEM;
907 }
908
909 static int sbp2_remove(struct device *dev)
910 {
911         struct fw_unit *unit = fw_unit(dev);
912         struct sbp2_target *tgt = unit->device.driver_data;
913
914         sbp2_target_put(tgt);
915         return 0;
916 }
917
918 static void sbp2_reconnect(struct work_struct *work)
919 {
920         struct sbp2_logical_unit *lu =
921                 container_of(work, struct sbp2_logical_unit, work.work);
922         struct fw_unit *unit = lu->tgt->unit;
923         struct fw_device *device = fw_device(unit->device.parent);
924         int generation, node_id, local_node_id;
925
926         generation    = device->generation;
927         smp_rmb();    /* node_id must not be older than generation */
928         node_id       = device->node_id;
929         local_node_id = device->card->node_id;
930
931         if (sbp2_send_management_orb(lu, node_id, generation,
932                                      SBP2_RECONNECT_REQUEST,
933                                      lu->login_id, NULL) < 0) {
934                 if (lu->retries++ >= 5) {
935                         fw_error("failed to reconnect to %s\n",
936                                  unit->device.bus_id);
937                         /* Fall back and try to log in again. */
938                         lu->retries = 0;
939                         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
940                 }
941                 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
942                 goto out;
943         }
944
945         lu->generation        = generation;
946         lu->tgt->node_id      = node_id;
947         lu->tgt->address_high = local_node_id << 16;
948
949         fw_notify("reconnected to %s LUN %04x (%d retries)\n",
950                   unit->device.bus_id, lu->lun, lu->retries);
951
952         sbp2_agent_reset(lu);
953         sbp2_cancel_orbs(lu);
954  out:
955         sbp2_target_put(lu->tgt);
956 }
957
958 static void sbp2_update(struct fw_unit *unit)
959 {
960         struct sbp2_target *tgt = unit->device.driver_data;
961         struct sbp2_logical_unit *lu;
962
963         fw_device_enable_phys_dma(fw_device(unit->device.parent));
964
965         /*
966          * Fw-core serializes sbp2_update() against sbp2_remove().
967          * Iteration over tgt->lu_list is therefore safe here.
968          */
969         list_for_each_entry(lu, &tgt->lu_list, link) {
970                 lu->retries = 0;
971                 sbp2_queue_work(lu, 0);
972         }
973 }
974
975 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
976 #define SBP2_SW_VERSION_ENTRY   0x00010483
977
978 static const struct fw_device_id sbp2_id_table[] = {
979         {
980                 .match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
981                 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
982                 .version      = SBP2_SW_VERSION_ENTRY,
983         },
984         { }
985 };
986
987 static struct fw_driver sbp2_driver = {
988         .driver   = {
989                 .owner  = THIS_MODULE,
990                 .name   = sbp2_driver_name,
991                 .bus    = &fw_bus_type,
992                 .probe  = sbp2_probe,
993                 .remove = sbp2_remove,
994         },
995         .update   = sbp2_update,
996         .id_table = sbp2_id_table,
997 };
998
999 static unsigned int
1000 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1001 {
1002         int sam_status;
1003
1004         sense_data[0] = 0x70;
1005         sense_data[1] = 0x0;
1006         sense_data[2] = sbp2_status[1];
1007         sense_data[3] = sbp2_status[4];
1008         sense_data[4] = sbp2_status[5];
1009         sense_data[5] = sbp2_status[6];
1010         sense_data[6] = sbp2_status[7];
1011         sense_data[7] = 10;
1012         sense_data[8] = sbp2_status[8];
1013         sense_data[9] = sbp2_status[9];
1014         sense_data[10] = sbp2_status[10];
1015         sense_data[11] = sbp2_status[11];
1016         sense_data[12] = sbp2_status[2];
1017         sense_data[13] = sbp2_status[3];
1018         sense_data[14] = sbp2_status[12];
1019         sense_data[15] = sbp2_status[13];
1020
1021         sam_status = sbp2_status[0] & 0x3f;
1022
1023         switch (sam_status) {
1024         case SAM_STAT_GOOD:
1025         case SAM_STAT_CHECK_CONDITION:
1026         case SAM_STAT_CONDITION_MET:
1027         case SAM_STAT_BUSY:
1028         case SAM_STAT_RESERVATION_CONFLICT:
1029         case SAM_STAT_COMMAND_TERMINATED:
1030                 return DID_OK << 16 | sam_status;
1031
1032         default:
1033                 return DID_ERROR << 16;
1034         }
1035 }
1036
1037 static void
1038 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1039 {
1040         struct sbp2_command_orb *orb =
1041                 container_of(base_orb, struct sbp2_command_orb, base);
1042         struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1043         int result;
1044
1045         if (status != NULL) {
1046                 if (STATUS_GET_DEAD(*status))
1047                         sbp2_agent_reset(orb->lu);
1048
1049                 switch (STATUS_GET_RESPONSE(*status)) {
1050                 case SBP2_STATUS_REQUEST_COMPLETE:
1051                         result = DID_OK << 16;
1052                         break;
1053                 case SBP2_STATUS_TRANSPORT_FAILURE:
1054                         result = DID_BUS_BUSY << 16;
1055                         break;
1056                 case SBP2_STATUS_ILLEGAL_REQUEST:
1057                 case SBP2_STATUS_VENDOR_DEPENDENT:
1058                 default:
1059                         result = DID_ERROR << 16;
1060                         break;
1061                 }
1062
1063                 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1064                         result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1065                                                            orb->cmd->sense_buffer);
1066         } else {
1067                 /*
1068                  * If the orb completes with status == NULL, something
1069                  * went wrong, typically a bus reset happened mid-orb
1070                  * or when sending the write (less likely).
1071                  */
1072                 result = DID_BUS_BUSY << 16;
1073         }
1074
1075         dma_unmap_single(device->card->device, orb->base.request_bus,
1076                          sizeof(orb->request), DMA_TO_DEVICE);
1077
1078         if (scsi_sg_count(orb->cmd) > 0)
1079                 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1080                              scsi_sg_count(orb->cmd),
1081                              orb->cmd->sc_data_direction);
1082
1083         if (orb->page_table_bus != 0)
1084                 dma_unmap_single(device->card->device, orb->page_table_bus,
1085                                  sizeof(orb->page_table), DMA_TO_DEVICE);
1086
1087         orb->cmd->result = result;
1088         orb->done(orb->cmd);
1089 }
1090
1091 static int
1092 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1093                      struct sbp2_logical_unit *lu)
1094 {
1095         struct scatterlist *sg;
1096         int sg_len, l, i, j, count;
1097         dma_addr_t sg_addr;
1098
1099         sg = scsi_sglist(orb->cmd);
1100         count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1101                            orb->cmd->sc_data_direction);
1102         if (count == 0)
1103                 goto fail;
1104
1105         /*
1106          * Handle the special case where there is only one element in
1107          * the scatter list by converting it to an immediate block
1108          * request. This is also a workaround for broken devices such
1109          * as the second generation iPod which doesn't support page
1110          * tables.
1111          */
1112         if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1113                 orb->request.data_descriptor.high = lu->tgt->address_high;
1114                 orb->request.data_descriptor.low  = sg_dma_address(sg);
1115                 orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1116                 return 0;
1117         }
1118
1119         /*
1120          * Convert the scatterlist to an sbp2 page table.  If any
1121          * scatterlist entries are too big for sbp2, we split them as we
1122          * go.  Even if we ask the block I/O layer to not give us sg
1123          * elements larger than 65535 bytes, some IOMMUs may merge sg elements
1124          * during DMA mapping, and Linux currently doesn't prevent this.
1125          */
1126         for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
1127                 sg_len = sg_dma_len(sg);
1128                 sg_addr = sg_dma_address(sg);
1129                 while (sg_len) {
1130                         /* FIXME: This won't get us out of the pinch. */
1131                         if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
1132                                 fw_error("page table overflow\n");
1133                                 goto fail_page_table;
1134                         }
1135                         l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1136                         orb->page_table[j].low = sg_addr;
1137                         orb->page_table[j].high = (l << 16);
1138                         sg_addr += l;
1139                         sg_len -= l;
1140                         j++;
1141                 }
1142         }
1143
1144         fw_memcpy_to_be32(orb->page_table, orb->page_table,
1145                           sizeof(orb->page_table[0]) * j);
1146         orb->page_table_bus =
1147                 dma_map_single(device->card->device, orb->page_table,
1148                                sizeof(orb->page_table), DMA_TO_DEVICE);
1149         if (dma_mapping_error(orb->page_table_bus))
1150                 goto fail_page_table;
1151
1152         /*
1153          * The data_descriptor pointer is the one case where we need
1154          * to fill in the node ID part of the address.  All other
1155          * pointers assume that the data referenced reside on the
1156          * initiator (i.e. us), but data_descriptor can refer to data
1157          * on other nodes so we need to put our ID in descriptor.high.
1158          */
1159         orb->request.data_descriptor.high = lu->tgt->address_high;
1160         orb->request.data_descriptor.low  = orb->page_table_bus;
1161         orb->request.misc |=
1162                 COMMAND_ORB_PAGE_TABLE_PRESENT |
1163                 COMMAND_ORB_DATA_SIZE(j);
1164
1165         return 0;
1166
1167  fail_page_table:
1168         dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1169                      orb->cmd->sc_data_direction);
1170  fail:
1171         return -ENOMEM;
1172 }
1173
1174 /* SCSI stack integration */
1175
1176 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1177 {
1178         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1179         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1180         struct sbp2_command_orb *orb;
1181         unsigned max_payload;
1182         int retval = SCSI_MLQUEUE_HOST_BUSY;
1183
1184         /*
1185          * Bidirectional commands are not yet implemented, and unknown
1186          * transfer direction not handled.
1187          */
1188         if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1189                 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1190                 cmd->result = DID_ERROR << 16;
1191                 done(cmd);
1192                 return 0;
1193         }
1194
1195         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1196         if (orb == NULL) {
1197                 fw_notify("failed to alloc orb\n");
1198                 return SCSI_MLQUEUE_HOST_BUSY;
1199         }
1200
1201         /* Initialize rcode to something not RCODE_COMPLETE. */
1202         orb->base.rcode = -1;
1203         kref_init(&orb->base.kref);
1204
1205         orb->lu   = lu;
1206         orb->done = done;
1207         orb->cmd  = cmd;
1208
1209         orb->request.next.high   = SBP2_ORB_NULL;
1210         orb->request.next.low    = 0x0;
1211         /*
1212          * At speed 100 we can do 512 bytes per packet, at speed 200,
1213          * 1024 bytes per packet etc.  The SBP-2 max_payload field
1214          * specifies the max payload size as 2 ^ (max_payload + 2), so
1215          * if we set this to max_speed + 7, we get the right value.
1216          */
1217         max_payload = min(device->max_speed + 7,
1218                           device->card->max_receive - 1);
1219         orb->request.misc =
1220                 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1221                 COMMAND_ORB_SPEED(device->max_speed) |
1222                 COMMAND_ORB_NOTIFY;
1223
1224         if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1225                 orb->request.misc |=
1226                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1227         else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1228                 orb->request.misc |=
1229                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1230
1231         if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1232                 goto out;
1233
1234         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1235
1236         memset(orb->request.command_block,
1237                0, sizeof(orb->request.command_block));
1238         memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1239
1240         orb->base.callback = complete_command_orb;
1241         orb->base.request_bus =
1242                 dma_map_single(device->card->device, &orb->request,
1243                                sizeof(orb->request), DMA_TO_DEVICE);
1244         if (dma_mapping_error(orb->base.request_bus))
1245                 goto out;
1246
1247         sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
1248                       lu->command_block_agent_address + SBP2_ORB_POINTER);
1249         retval = 0;
1250  out:
1251         kref_put(&orb->base.kref, free_orb);
1252         return retval;
1253 }
1254
1255 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1256 {
1257         struct sbp2_logical_unit *lu = sdev->hostdata;
1258
1259         sdev->allow_restart = 1;
1260
1261         /*
1262          * Update the dma alignment (minimum alignment requirements for
1263          * start and end of DMA transfers) to be a sector
1264          */
1265         blk_queue_update_dma_alignment(sdev->request_queue, 511);
1266
1267         if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1268                 sdev->inquiry_len = 36;
1269
1270         return 0;
1271 }
1272
1273 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1274 {
1275         struct sbp2_logical_unit *lu = sdev->hostdata;
1276
1277         sdev->use_10_for_rw = 1;
1278
1279         if (sdev->type == TYPE_ROM)
1280                 sdev->use_10_for_ms = 1;
1281
1282         if (sdev->type == TYPE_DISK &&
1283             lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1284                 sdev->skip_ms_page_8 = 1;
1285
1286         if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1287                 sdev->fix_capacity = 1;
1288
1289         if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1290                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1291
1292         return 0;
1293 }
1294
1295 /*
1296  * Called by scsi stack when something has really gone wrong.  Usually
1297  * called when a command has timed-out for some reason.
1298  */
1299 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1300 {
1301         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1302
1303         fw_notify("sbp2_scsi_abort\n");
1304         sbp2_agent_reset(lu);
1305         sbp2_cancel_orbs(lu);
1306
1307         return SUCCESS;
1308 }
1309
1310 /*
1311  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1312  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1313  *
1314  * This is the concatenation of target port identifier and logical unit
1315  * identifier as per SAM-2...SAM-4 annex A.
1316  */
1317 static ssize_t
1318 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1319                             char *buf)
1320 {
1321         struct scsi_device *sdev = to_scsi_device(dev);
1322         struct sbp2_logical_unit *lu;
1323         struct fw_device *device;
1324
1325         if (!sdev)
1326                 return 0;
1327
1328         lu = sdev->hostdata;
1329         device = fw_device(lu->tgt->unit->device.parent);
1330
1331         return sprintf(buf, "%08x%08x:%06x:%04x\n",
1332                         device->config_rom[3], device->config_rom[4],
1333                         lu->tgt->directory_id, lu->lun);
1334 }
1335
1336 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1337
1338 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1339         &dev_attr_ieee1394_id,
1340         NULL
1341 };
1342
1343 static struct scsi_host_template scsi_driver_template = {
1344         .module                 = THIS_MODULE,
1345         .name                   = "SBP-2 IEEE-1394",
1346         .proc_name              = sbp2_driver_name,
1347         .queuecommand           = sbp2_scsi_queuecommand,
1348         .slave_alloc            = sbp2_scsi_slave_alloc,
1349         .slave_configure        = sbp2_scsi_slave_configure,
1350         .eh_abort_handler       = sbp2_scsi_abort,
1351         .this_id                = -1,
1352         .sg_tablesize           = SG_ALL,
1353         .use_clustering         = ENABLE_CLUSTERING,
1354         .cmd_per_lun            = 1,
1355         .can_queue              = 1,
1356         .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1357 };
1358
1359 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1360 MODULE_DESCRIPTION("SCSI over IEEE1394");
1361 MODULE_LICENSE("GPL");
1362 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1363
1364 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1365 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1366 MODULE_ALIAS("sbp2");
1367 #endif
1368
1369 static int __init sbp2_init(void)
1370 {
1371         sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1372         if (!sbp2_wq)
1373                 return -ENOMEM;
1374
1375         return driver_register(&sbp2_driver.driver);
1376 }
1377
1378 static void __exit sbp2_cleanup(void)
1379 {
1380         driver_unregister(&sbp2_driver.driver);
1381         destroy_workqueue(sbp2_wq);
1382 }
1383
1384 module_init(sbp2_init);
1385 module_exit(sbp2_cleanup);