]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/firewire/fw-sbp2.c
71146ba01e63b3fe110d8feca6ce9916ff64927a
[linux-2.6-omap-h63xx.git] / drivers / firewire / fw-sbp2.c
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30
31 #include <linux/blkdev.h>
32 #include <linux/delay.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/kernel.h>
36 #include <linux/mod_devicetable.h>
37 #include <linux/module.h>
38 #include <linux/moduleparam.h>
39 #include <linux/scatterlist.h>
40 #include <linux/string.h>
41 #include <linux/stringify.h>
42 #include <linux/timer.h>
43 #include <linux/workqueue.h>
44 #include <asm/system.h>
45
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_host.h>
50
51 #include "fw-device.h"
52 #include "fw-topology.h"
53 #include "fw-transaction.h"
54
55 /*
56  * So far only bridges from Oxford Semiconductor are known to support
57  * concurrent logins. Depending on firmware, four or two concurrent logins
58  * are possible on OXFW911 and newer Oxsemi bridges.
59  *
60  * Concurrent logins are useful together with cluster filesystems.
61  */
62 static int sbp2_param_exclusive_login = 1;
63 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
64 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
65                  "(default = Y, use N for concurrent initiators)");
66
67 /*
68  * Flags for firmware oddities
69  *
70  * - 128kB max transfer
71  *   Limit transfer size. Necessary for some old bridges.
72  *
73  * - 36 byte inquiry
74  *   When scsi_mod probes the device, let the inquiry command look like that
75  *   from MS Windows.
76  *
77  * - skip mode page 8
78  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
79  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
80  *
81  * - fix capacity
82  *   Tell sd_mod to correct the last sector number reported by read_capacity.
83  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
84  *   Don't use this with devices which don't have this bug.
85  *
86  * - delay inquiry
87  *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
88  *
89  * - override internal blacklist
90  *   Instead of adding to the built-in blacklist, use only the workarounds
91  *   specified in the module load parameter.
92  *   Useful if a blacklist entry interfered with a non-broken device.
93  */
94 #define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
95 #define SBP2_WORKAROUND_INQUIRY_36      0x2
96 #define SBP2_WORKAROUND_MODE_SENSE_8    0x4
97 #define SBP2_WORKAROUND_FIX_CAPACITY    0x8
98 #define SBP2_WORKAROUND_DELAY_INQUIRY   0x10
99 #define SBP2_INQUIRY_DELAY              12
100 #define SBP2_WORKAROUND_OVERRIDE        0x100
101
102 static int sbp2_param_workarounds;
103 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
104 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
105         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
106         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
107         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
108         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
109         ", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
110         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
111         ", or a combination)");
112
113 /* I don't know why the SCSI stack doesn't define something like this... */
114 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
115
116 static const char sbp2_driver_name[] = "sbp2";
117
118 /*
119  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
120  * and one struct scsi_device per sbp2_logical_unit.
121  */
122 struct sbp2_logical_unit {
123         struct sbp2_target *tgt;
124         struct list_head link;
125         struct fw_address_handler address_handler;
126         struct list_head orb_list;
127
128         u64 command_block_agent_address;
129         u16 lun;
130         int login_id;
131
132         /*
133          * The generation is updated once we've logged in or reconnected
134          * to the logical unit.  Thus, I/O to the device will automatically
135          * fail and get retried if it happens in a window where the device
136          * is not ready, e.g. after a bus reset but before we reconnect.
137          */
138         int generation;
139         int retries;
140         struct delayed_work work;
141         bool has_sdev;
142         bool blocked;
143 };
144
145 /*
146  * We create one struct sbp2_target per IEEE 1212 Unit Directory
147  * and one struct Scsi_Host per sbp2_target.
148  */
149 struct sbp2_target {
150         struct kref kref;
151         struct fw_unit *unit;
152         const char *bus_id;
153         struct list_head lu_list;
154
155         u64 management_agent_address;
156         int directory_id;
157         int node_id;
158         int address_high;
159         unsigned int workarounds;
160         unsigned int mgt_orb_timeout;
161
162         int dont_block; /* counter for each logical unit */
163         int blocked;    /* ditto */
164 };
165
166 /*
167  * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
168  * provided in the config rom. Most devices do provide a value, which
169  * we'll use for login management orbs, but with some sane limits.
170  */
171 #define SBP2_MIN_LOGIN_ORB_TIMEOUT      5000U   /* Timeout in ms */
172 #define SBP2_MAX_LOGIN_ORB_TIMEOUT      40000U  /* Timeout in ms */
173 #define SBP2_ORB_TIMEOUT                2000U   /* Timeout in ms */
174 #define SBP2_ORB_NULL                   0x80000000
175 #define SBP2_MAX_SG_ELEMENT_LENGTH      0xf000
176 #define SBP2_RETRY_LIMIT                0xf     /* 15 retries */
177
178 /* Unit directory keys */
179 #define SBP2_CSR_UNIT_CHARACTERISTICS   0x3a
180 #define SBP2_CSR_FIRMWARE_REVISION      0x3c
181 #define SBP2_CSR_LOGICAL_UNIT_NUMBER    0x14
182 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
183
184 /* Management orb opcodes */
185 #define SBP2_LOGIN_REQUEST              0x0
186 #define SBP2_QUERY_LOGINS_REQUEST       0x1
187 #define SBP2_RECONNECT_REQUEST          0x3
188 #define SBP2_SET_PASSWORD_REQUEST       0x4
189 #define SBP2_LOGOUT_REQUEST             0x7
190 #define SBP2_ABORT_TASK_REQUEST         0xb
191 #define SBP2_ABORT_TASK_SET             0xc
192 #define SBP2_LOGICAL_UNIT_RESET         0xe
193 #define SBP2_TARGET_RESET_REQUEST       0xf
194
195 /* Offsets for command block agent registers */
196 #define SBP2_AGENT_STATE                0x00
197 #define SBP2_AGENT_RESET                0x04
198 #define SBP2_ORB_POINTER                0x08
199 #define SBP2_DOORBELL                   0x10
200 #define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
201
202 /* Status write response codes */
203 #define SBP2_STATUS_REQUEST_COMPLETE    0x0
204 #define SBP2_STATUS_TRANSPORT_FAILURE   0x1
205 #define SBP2_STATUS_ILLEGAL_REQUEST     0x2
206 #define SBP2_STATUS_VENDOR_DEPENDENT    0x3
207
208 #define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
209 #define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
210 #define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
211 #define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
212 #define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
213 #define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
214 #define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
215 #define STATUS_GET_DATA(v)              ((v).data)
216
217 struct sbp2_status {
218         u32 status;
219         u32 orb_low;
220         u8 data[24];
221 };
222
223 struct sbp2_pointer {
224         __be32 high;
225         __be32 low;
226 };
227
228 struct sbp2_orb {
229         struct fw_transaction t;
230         struct kref kref;
231         dma_addr_t request_bus;
232         int rcode;
233         struct sbp2_pointer pointer;
234         void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
235         struct list_head link;
236 };
237
238 #define MANAGEMENT_ORB_LUN(v)                   ((v))
239 #define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
240 #define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
241 #define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
242 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
243 #define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
244
245 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
246 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
247
248 struct sbp2_management_orb {
249         struct sbp2_orb base;
250         struct {
251                 struct sbp2_pointer password;
252                 struct sbp2_pointer response;
253                 __be32 misc;
254                 __be32 length;
255                 struct sbp2_pointer status_fifo;
256         } request;
257         __be32 response[4];
258         dma_addr_t response_bus;
259         struct completion done;
260         struct sbp2_status status;
261 };
262
263 struct sbp2_login_response {
264         __be32 misc;
265         struct sbp2_pointer command_block_agent;
266         __be32 reconnect_hold;
267 };
268 #define COMMAND_ORB_DATA_SIZE(v)        ((v))
269 #define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
270 #define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
271 #define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
272 #define COMMAND_ORB_SPEED(v)            ((v) << 24)
273 #define COMMAND_ORB_DIRECTION           ((1) << 27)
274 #define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
275 #define COMMAND_ORB_NOTIFY              ((1) << 31)
276
277 struct sbp2_command_orb {
278         struct sbp2_orb base;
279         struct {
280                 struct sbp2_pointer next;
281                 struct sbp2_pointer data_descriptor;
282                 __be32 misc;
283                 u8 command_block[12];
284         } request;
285         struct scsi_cmnd *cmd;
286         scsi_done_fn_t done;
287         struct sbp2_logical_unit *lu;
288
289         struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
290         dma_addr_t page_table_bus;
291 };
292
293 /*
294  * List of devices with known bugs.
295  *
296  * The firmware_revision field, masked with 0xffff00, is the best
297  * indicator for the type of bridge chip of a device.  It yields a few
298  * false positives but this did not break correctly behaving devices
299  * so far.  We use ~0 as a wildcard, since the 24 bit values we get
300  * from the config rom can never match that.
301  */
302 static const struct {
303         u32 firmware_revision;
304         u32 model;
305         unsigned int workarounds;
306 } sbp2_workarounds_table[] = {
307         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
308                 .firmware_revision      = 0x002800,
309                 .model                  = 0x001010,
310                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
311                                           SBP2_WORKAROUND_MODE_SENSE_8,
312         },
313         /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
314                 .firmware_revision      = 0x002800,
315                 .model                  = 0x000000,
316                 .workarounds            = SBP2_WORKAROUND_DELAY_INQUIRY,
317         },
318         /* Initio bridges, actually only needed for some older ones */ {
319                 .firmware_revision      = 0x000200,
320                 .model                  = ~0,
321                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
322         },
323         /* Symbios bridge */ {
324                 .firmware_revision      = 0xa0b800,
325                 .model                  = ~0,
326                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
327         },
328         /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
329                 .firmware_revision      = 0x002600,
330                 .model                  = ~0,
331                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
332         },
333
334         /*
335          * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
336          * these iPods do not feature the read_capacity bug according
337          * to one report.  Read_capacity behaviour as well as model_id
338          * could change due to Apple-supplied firmware updates though.
339          */
340
341         /* iPod 4th generation. */ {
342                 .firmware_revision      = 0x0a2700,
343                 .model                  = 0x000021,
344                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
345         },
346         /* iPod mini */ {
347                 .firmware_revision      = 0x0a2700,
348                 .model                  = 0x000023,
349                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
350         },
351         /* iPod Photo */ {
352                 .firmware_revision      = 0x0a2700,
353                 .model                  = 0x00007e,
354                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
355         }
356 };
357
358 static void
359 free_orb(struct kref *kref)
360 {
361         struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
362
363         kfree(orb);
364 }
365
366 static void
367 sbp2_status_write(struct fw_card *card, struct fw_request *request,
368                   int tcode, int destination, int source,
369                   int generation, int speed,
370                   unsigned long long offset,
371                   void *payload, size_t length, void *callback_data)
372 {
373         struct sbp2_logical_unit *lu = callback_data;
374         struct sbp2_orb *orb;
375         struct sbp2_status status;
376         size_t header_size;
377         unsigned long flags;
378
379         if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
380             length == 0 || length > sizeof(status)) {
381                 fw_send_response(card, request, RCODE_TYPE_ERROR);
382                 return;
383         }
384
385         header_size = min(length, 2 * sizeof(u32));
386         fw_memcpy_from_be32(&status, payload, header_size);
387         if (length > header_size)
388                 memcpy(status.data, payload + 8, length - header_size);
389         if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
390                 fw_notify("non-orb related status write, not handled\n");
391                 fw_send_response(card, request, RCODE_COMPLETE);
392                 return;
393         }
394
395         /* Lookup the orb corresponding to this status write. */
396         spin_lock_irqsave(&card->lock, flags);
397         list_for_each_entry(orb, &lu->orb_list, link) {
398                 if (STATUS_GET_ORB_HIGH(status) == 0 &&
399                     STATUS_GET_ORB_LOW(status) == orb->request_bus) {
400                         orb->rcode = RCODE_COMPLETE;
401                         list_del(&orb->link);
402                         break;
403                 }
404         }
405         spin_unlock_irqrestore(&card->lock, flags);
406
407         if (&orb->link != &lu->orb_list)
408                 orb->callback(orb, &status);
409         else
410                 fw_error("status write for unknown orb\n");
411
412         kref_put(&orb->kref, free_orb);
413
414         fw_send_response(card, request, RCODE_COMPLETE);
415 }
416
417 static void
418 complete_transaction(struct fw_card *card, int rcode,
419                      void *payload, size_t length, void *data)
420 {
421         struct sbp2_orb *orb = data;
422         unsigned long flags;
423
424         /*
425          * This is a little tricky.  We can get the status write for
426          * the orb before we get this callback.  The status write
427          * handler above will assume the orb pointer transaction was
428          * successful and set the rcode to RCODE_COMPLETE for the orb.
429          * So this callback only sets the rcode if it hasn't already
430          * been set and only does the cleanup if the transaction
431          * failed and we didn't already get a status write.
432          */
433         spin_lock_irqsave(&card->lock, flags);
434
435         if (orb->rcode == -1)
436                 orb->rcode = rcode;
437         if (orb->rcode != RCODE_COMPLETE) {
438                 list_del(&orb->link);
439                 spin_unlock_irqrestore(&card->lock, flags);
440                 orb->callback(orb, NULL);
441         } else {
442                 spin_unlock_irqrestore(&card->lock, flags);
443         }
444
445         kref_put(&orb->kref, free_orb);
446 }
447
448 static void
449 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
450               int node_id, int generation, u64 offset)
451 {
452         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
453         unsigned long flags;
454
455         orb->pointer.high = 0;
456         orb->pointer.low = cpu_to_be32(orb->request_bus);
457
458         spin_lock_irqsave(&device->card->lock, flags);
459         list_add_tail(&orb->link, &lu->orb_list);
460         spin_unlock_irqrestore(&device->card->lock, flags);
461
462         /* Take a ref for the orb list and for the transaction callback. */
463         kref_get(&orb->kref);
464         kref_get(&orb->kref);
465
466         fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
467                         node_id, generation, device->max_speed, offset,
468                         &orb->pointer, sizeof(orb->pointer),
469                         complete_transaction, orb);
470 }
471
472 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
473 {
474         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
475         struct sbp2_orb *orb, *next;
476         struct list_head list;
477         unsigned long flags;
478         int retval = -ENOENT;
479
480         INIT_LIST_HEAD(&list);
481         spin_lock_irqsave(&device->card->lock, flags);
482         list_splice_init(&lu->orb_list, &list);
483         spin_unlock_irqrestore(&device->card->lock, flags);
484
485         list_for_each_entry_safe(orb, next, &list, link) {
486                 retval = 0;
487                 if (fw_cancel_transaction(device->card, &orb->t) == 0)
488                         continue;
489
490                 orb->rcode = RCODE_CANCELLED;
491                 orb->callback(orb, NULL);
492         }
493
494         return retval;
495 }
496
497 static void
498 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
499 {
500         struct sbp2_management_orb *orb =
501                 container_of(base_orb, struct sbp2_management_orb, base);
502
503         if (status)
504                 memcpy(&orb->status, status, sizeof(*status));
505         complete(&orb->done);
506 }
507
508 static int
509 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
510                          int generation, int function, int lun_or_login_id,
511                          void *response)
512 {
513         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
514         struct sbp2_management_orb *orb;
515         unsigned int timeout;
516         int retval = -ENOMEM;
517
518         if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
519                 return 0;
520
521         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
522         if (orb == NULL)
523                 return -ENOMEM;
524
525         kref_init(&orb->base.kref);
526         orb->response_bus =
527                 dma_map_single(device->card->device, &orb->response,
528                                sizeof(orb->response), DMA_FROM_DEVICE);
529         if (dma_mapping_error(orb->response_bus))
530                 goto fail_mapping_response;
531
532         orb->request.response.high = 0;
533         orb->request.response.low  = cpu_to_be32(orb->response_bus);
534
535         orb->request.misc = cpu_to_be32(
536                 MANAGEMENT_ORB_NOTIFY |
537                 MANAGEMENT_ORB_FUNCTION(function) |
538                 MANAGEMENT_ORB_LUN(lun_or_login_id));
539         orb->request.length = cpu_to_be32(
540                 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
541
542         orb->request.status_fifo.high =
543                 cpu_to_be32(lu->address_handler.offset >> 32);
544         orb->request.status_fifo.low  =
545                 cpu_to_be32(lu->address_handler.offset);
546
547         if (function == SBP2_LOGIN_REQUEST) {
548                 /* Ask for 2^2 == 4 seconds reconnect grace period */
549                 orb->request.misc |= cpu_to_be32(
550                         MANAGEMENT_ORB_RECONNECT(2) |
551                         MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
552                 timeout = lu->tgt->mgt_orb_timeout;
553         } else {
554                 timeout = SBP2_ORB_TIMEOUT;
555         }
556
557         init_completion(&orb->done);
558         orb->base.callback = complete_management_orb;
559
560         orb->base.request_bus =
561                 dma_map_single(device->card->device, &orb->request,
562                                sizeof(orb->request), DMA_TO_DEVICE);
563         if (dma_mapping_error(orb->base.request_bus))
564                 goto fail_mapping_request;
565
566         sbp2_send_orb(&orb->base, lu, node_id, generation,
567                       lu->tgt->management_agent_address);
568
569         wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
570
571         retval = -EIO;
572         if (sbp2_cancel_orbs(lu) == 0) {
573                 fw_error("%s: orb reply timed out, rcode=0x%02x\n",
574                          lu->tgt->bus_id, orb->base.rcode);
575                 goto out;
576         }
577
578         if (orb->base.rcode != RCODE_COMPLETE) {
579                 fw_error("%s: management write failed, rcode 0x%02x\n",
580                          lu->tgt->bus_id, orb->base.rcode);
581                 goto out;
582         }
583
584         if (STATUS_GET_RESPONSE(orb->status) != 0 ||
585             STATUS_GET_SBP_STATUS(orb->status) != 0) {
586                 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
587                          STATUS_GET_RESPONSE(orb->status),
588                          STATUS_GET_SBP_STATUS(orb->status));
589                 goto out;
590         }
591
592         retval = 0;
593  out:
594         dma_unmap_single(device->card->device, orb->base.request_bus,
595                          sizeof(orb->request), DMA_TO_DEVICE);
596  fail_mapping_request:
597         dma_unmap_single(device->card->device, orb->response_bus,
598                          sizeof(orb->response), DMA_FROM_DEVICE);
599  fail_mapping_response:
600         if (response)
601                 memcpy(response, orb->response, sizeof(orb->response));
602         kref_put(&orb->base.kref, free_orb);
603
604         return retval;
605 }
606
607 static void
608 complete_agent_reset_write(struct fw_card *card, int rcode,
609                            void *payload, size_t length, void *done)
610 {
611         complete(done);
612 }
613
614 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
615 {
616         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
617         DECLARE_COMPLETION_ONSTACK(done);
618         struct fw_transaction t;
619         static u32 z;
620
621         fw_send_request(device->card, &t, TCODE_WRITE_QUADLET_REQUEST,
622                         lu->tgt->node_id, lu->generation, device->max_speed,
623                         lu->command_block_agent_address + SBP2_AGENT_RESET,
624                         &z, sizeof(z), complete_agent_reset_write, &done);
625         wait_for_completion(&done);
626 }
627
628 static void
629 complete_agent_reset_write_no_wait(struct fw_card *card, int rcode,
630                                    void *payload, size_t length, void *data)
631 {
632         kfree(data);
633 }
634
635 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
636 {
637         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
638         struct fw_transaction *t;
639         static u32 z;
640
641         t = kmalloc(sizeof(*t), GFP_ATOMIC);
642         if (t == NULL)
643                 return;
644
645         fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
646                         lu->tgt->node_id, lu->generation, device->max_speed,
647                         lu->command_block_agent_address + SBP2_AGENT_RESET,
648                         &z, sizeof(z), complete_agent_reset_write_no_wait, t);
649 }
650
651 static void sbp2_set_generation(struct sbp2_logical_unit *lu, int generation)
652 {
653         struct fw_card *card = fw_device(lu->tgt->unit->device.parent)->card;
654         unsigned long flags;
655
656         /* serialize with comparisons of lu->generation and card->generation */
657         spin_lock_irqsave(&card->lock, flags);
658         lu->generation = generation;
659         spin_unlock_irqrestore(&card->lock, flags);
660 }
661
662 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
663 {
664         /*
665          * We may access dont_block without taking card->lock here:
666          * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
667          * are currently serialized against each other.
668          * And a wrong result in sbp2_conditionally_block()'s access of
669          * dont_block is rather harmless, it simply misses its first chance.
670          */
671         --lu->tgt->dont_block;
672 }
673
674 /*
675  * Blocks lu->tgt if all of the following conditions are met:
676  *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
677  *     logical units have been finished (indicated by dont_block == 0).
678  *   - lu->generation is stale.
679  *
680  * Note, scsi_block_requests() must be called while holding card->lock,
681  * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
682  * unblock the target.
683  */
684 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
685 {
686         struct sbp2_target *tgt = lu->tgt;
687         struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
688         struct Scsi_Host *shost =
689                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
690         unsigned long flags;
691
692         spin_lock_irqsave(&card->lock, flags);
693         if (!tgt->dont_block && !lu->blocked &&
694             lu->generation != card->generation) {
695                 lu->blocked = true;
696                 if (++tgt->blocked == 1) {
697                         scsi_block_requests(shost);
698                         fw_notify("blocked %s\n", lu->tgt->bus_id);
699                 }
700         }
701         spin_unlock_irqrestore(&card->lock, flags);
702 }
703
704 /*
705  * Unblocks lu->tgt as soon as all its logical units can be unblocked.
706  * Note, it is harmless to run scsi_unblock_requests() outside the
707  * card->lock protected section.  On the other hand, running it inside
708  * the section might clash with shost->host_lock.
709  */
710 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
711 {
712         struct sbp2_target *tgt = lu->tgt;
713         struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
714         struct Scsi_Host *shost =
715                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
716         unsigned long flags;
717         bool unblock = false;
718
719         spin_lock_irqsave(&card->lock, flags);
720         if (lu->blocked && lu->generation == card->generation) {
721                 lu->blocked = false;
722                 unblock = --tgt->blocked == 0;
723         }
724         spin_unlock_irqrestore(&card->lock, flags);
725
726         if (unblock) {
727                 scsi_unblock_requests(shost);
728                 fw_notify("unblocked %s\n", lu->tgt->bus_id);
729         }
730 }
731
732 /*
733  * Prevents future blocking of tgt and unblocks it.
734  * Note, it is harmless to run scsi_unblock_requests() outside the
735  * card->lock protected section.  On the other hand, running it inside
736  * the section might clash with shost->host_lock.
737  */
738 static void sbp2_unblock(struct sbp2_target *tgt)
739 {
740         struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
741         struct Scsi_Host *shost =
742                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
743         unsigned long flags;
744
745         spin_lock_irqsave(&card->lock, flags);
746         ++tgt->dont_block;
747         spin_unlock_irqrestore(&card->lock, flags);
748
749         scsi_unblock_requests(shost);
750 }
751
752 static int sbp2_lun2int(u16 lun)
753 {
754         struct scsi_lun eight_bytes_lun;
755
756         memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
757         eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
758         eight_bytes_lun.scsi_lun[1] = lun & 0xff;
759
760         return scsilun_to_int(&eight_bytes_lun);
761 }
762
763 static void sbp2_release_target(struct kref *kref)
764 {
765         struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
766         struct sbp2_logical_unit *lu, *next;
767         struct Scsi_Host *shost =
768                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
769         struct scsi_device *sdev;
770         struct fw_device *device = fw_device(tgt->unit->device.parent);
771
772         /* prevent deadlocks */
773         sbp2_unblock(tgt);
774
775         list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
776                 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
777                 if (sdev) {
778                         scsi_remove_device(sdev);
779                         scsi_device_put(sdev);
780                 }
781                 sbp2_send_management_orb(lu, tgt->node_id, lu->generation,
782                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
783
784                 fw_core_remove_address_handler(&lu->address_handler);
785                 list_del(&lu->link);
786                 kfree(lu);
787         }
788         scsi_remove_host(shost);
789         fw_notify("released %s\n", tgt->bus_id);
790
791         fw_unit_put(tgt->unit);
792         scsi_host_put(shost);
793         fw_device_put(device);
794 }
795
796 static struct workqueue_struct *sbp2_wq;
797
798 /*
799  * Always get the target's kref when scheduling work on one its units.
800  * Each workqueue job is responsible to call sbp2_target_put() upon return.
801  */
802 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
803 {
804         if (queue_delayed_work(sbp2_wq, &lu->work, delay))
805                 kref_get(&lu->tgt->kref);
806 }
807
808 static void sbp2_target_put(struct sbp2_target *tgt)
809 {
810         kref_put(&tgt->kref, sbp2_release_target);
811 }
812
813 static void
814 complete_set_busy_timeout(struct fw_card *card, int rcode,
815                           void *payload, size_t length, void *done)
816 {
817         complete(done);
818 }
819
820 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
821 {
822         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
823         DECLARE_COMPLETION_ONSTACK(done);
824         struct fw_transaction t;
825         static __be32 busy_timeout;
826
827         /* FIXME: we should try to set dual-phase cycle_limit too */
828         busy_timeout = cpu_to_be32(SBP2_RETRY_LIMIT);
829
830         fw_send_request(device->card, &t, TCODE_WRITE_QUADLET_REQUEST,
831                         lu->tgt->node_id, lu->generation, device->max_speed,
832                         CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &busy_timeout,
833                         sizeof(busy_timeout), complete_set_busy_timeout, &done);
834         wait_for_completion(&done);
835 }
836
837 static void sbp2_reconnect(struct work_struct *work);
838
839 static void sbp2_login(struct work_struct *work)
840 {
841         struct sbp2_logical_unit *lu =
842                 container_of(work, struct sbp2_logical_unit, work.work);
843         struct sbp2_target *tgt = lu->tgt;
844         struct fw_device *device = fw_device(tgt->unit->device.parent);
845         struct Scsi_Host *shost;
846         struct scsi_device *sdev;
847         struct sbp2_login_response response;
848         int generation, node_id, local_node_id;
849
850         if (fw_device_is_shutdown(device))
851                 goto out;
852
853         generation    = device->generation;
854         smp_rmb();    /* node_id must not be older than generation */
855         node_id       = device->node_id;
856         local_node_id = device->card->node_id;
857
858         /* If this is a re-login attempt, log out, or we might be rejected. */
859         if (lu->has_sdev)
860                 sbp2_send_management_orb(lu, device->node_id, generation,
861                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
862
863         if (sbp2_send_management_orb(lu, node_id, generation,
864                                 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
865                 if (lu->retries++ < 5) {
866                         sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
867                 } else {
868                         fw_error("%s: failed to login to LUN %04x\n",
869                                  tgt->bus_id, lu->lun);
870                         /* Let any waiting I/O fail from now on. */
871                         sbp2_unblock(lu->tgt);
872                 }
873                 goto out;
874         }
875
876         tgt->node_id      = node_id;
877         tgt->address_high = local_node_id << 16;
878         sbp2_set_generation(lu, generation);
879
880         lu->command_block_agent_address =
881                 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
882                       << 32) | be32_to_cpu(response.command_block_agent.low);
883         lu->login_id = be32_to_cpu(response.misc) & 0xffff;
884
885         fw_notify("%s: logged in to LUN %04x (%d retries)\n",
886                   tgt->bus_id, lu->lun, lu->retries);
887
888         /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
889         sbp2_set_busy_timeout(lu);
890
891         PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
892         sbp2_agent_reset(lu);
893
894         /* This was a re-login. */
895         if (lu->has_sdev) {
896                 sbp2_cancel_orbs(lu);
897                 sbp2_conditionally_unblock(lu);
898                 goto out;
899         }
900
901         if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
902                 ssleep(SBP2_INQUIRY_DELAY);
903
904         shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
905         sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
906         /*
907          * FIXME:  We are unable to perform reconnects while in sbp2_login().
908          * Therefore __scsi_add_device() will get into trouble if a bus reset
909          * happens in parallel.  It will either fail or leave us with an
910          * unusable sdev.  As a workaround we check for this and retry the
911          * whole login and SCSI probing.
912          */
913
914         /* Reported error during __scsi_add_device() */
915         if (IS_ERR(sdev))
916                 goto out_logout_login;
917
918         /* Unreported error during __scsi_add_device() */
919         smp_rmb(); /* get current card generation */
920         if (generation != device->card->generation) {
921                 scsi_remove_device(sdev);
922                 scsi_device_put(sdev);
923                 goto out_logout_login;
924         }
925
926         /* No error during __scsi_add_device() */
927         lu->has_sdev = true;
928         scsi_device_put(sdev);
929         sbp2_allow_block(lu);
930         goto out;
931
932  out_logout_login:
933         smp_rmb(); /* generation may have changed */
934         generation = device->generation;
935         smp_rmb(); /* node_id must not be older than generation */
936
937         sbp2_send_management_orb(lu, device->node_id, generation,
938                                  SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
939         /*
940          * If a bus reset happened, sbp2_update will have requeued
941          * lu->work already.  Reset the work from reconnect to login.
942          */
943         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
944  out:
945         sbp2_target_put(tgt);
946 }
947
948 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
949 {
950         struct sbp2_logical_unit *lu;
951
952         lu = kmalloc(sizeof(*lu), GFP_KERNEL);
953         if (!lu)
954                 return -ENOMEM;
955
956         lu->address_handler.length           = 0x100;
957         lu->address_handler.address_callback = sbp2_status_write;
958         lu->address_handler.callback_data    = lu;
959
960         if (fw_core_add_address_handler(&lu->address_handler,
961                                         &fw_high_memory_region) < 0) {
962                 kfree(lu);
963                 return -ENOMEM;
964         }
965
966         lu->tgt      = tgt;
967         lu->lun      = lun_entry & 0xffff;
968         lu->retries  = 0;
969         lu->has_sdev = false;
970         lu->blocked  = false;
971         ++tgt->dont_block;
972         INIT_LIST_HEAD(&lu->orb_list);
973         INIT_DELAYED_WORK(&lu->work, sbp2_login);
974
975         list_add_tail(&lu->link, &tgt->lu_list);
976         return 0;
977 }
978
979 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
980 {
981         struct fw_csr_iterator ci;
982         int key, value;
983
984         fw_csr_iterator_init(&ci, directory);
985         while (fw_csr_iterator_next(&ci, &key, &value))
986                 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
987                     sbp2_add_logical_unit(tgt, value) < 0)
988                         return -ENOMEM;
989         return 0;
990 }
991
992 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
993                               u32 *model, u32 *firmware_revision)
994 {
995         struct fw_csr_iterator ci;
996         int key, value;
997         unsigned int timeout;
998
999         fw_csr_iterator_init(&ci, directory);
1000         while (fw_csr_iterator_next(&ci, &key, &value)) {
1001                 switch (key) {
1002
1003                 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1004                         tgt->management_agent_address =
1005                                         CSR_REGISTER_BASE + 4 * value;
1006                         break;
1007
1008                 case CSR_DIRECTORY_ID:
1009                         tgt->directory_id = value;
1010                         break;
1011
1012                 case CSR_MODEL:
1013                         *model = value;
1014                         break;
1015
1016                 case SBP2_CSR_FIRMWARE_REVISION:
1017                         *firmware_revision = value;
1018                         break;
1019
1020                 case SBP2_CSR_UNIT_CHARACTERISTICS:
1021                         /* the timeout value is stored in 500ms units */
1022                         timeout = ((unsigned int) value >> 8 & 0xff) * 500;
1023                         timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
1024                         tgt->mgt_orb_timeout =
1025                                   min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
1026
1027                         if (timeout > tgt->mgt_orb_timeout)
1028                                 fw_notify("%s: config rom contains %ds "
1029                                           "management ORB timeout, limiting "
1030                                           "to %ds\n", tgt->bus_id,
1031                                           timeout / 1000,
1032                                           tgt->mgt_orb_timeout / 1000);
1033                         break;
1034
1035                 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1036                         if (sbp2_add_logical_unit(tgt, value) < 0)
1037                                 return -ENOMEM;
1038                         break;
1039
1040                 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1041                         if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
1042                                 return -ENOMEM;
1043                         break;
1044                 }
1045         }
1046         return 0;
1047 }
1048
1049 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1050                                   u32 firmware_revision)
1051 {
1052         int i;
1053         unsigned int w = sbp2_param_workarounds;
1054
1055         if (w)
1056                 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1057                           "if you need the workarounds parameter for %s\n",
1058                           tgt->bus_id);
1059
1060         if (w & SBP2_WORKAROUND_OVERRIDE)
1061                 goto out;
1062
1063         for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1064
1065                 if (sbp2_workarounds_table[i].firmware_revision !=
1066                     (firmware_revision & 0xffffff00))
1067                         continue;
1068
1069                 if (sbp2_workarounds_table[i].model != model &&
1070                     sbp2_workarounds_table[i].model != ~0)
1071                         continue;
1072
1073                 w |= sbp2_workarounds_table[i].workarounds;
1074                 break;
1075         }
1076  out:
1077         if (w)
1078                 fw_notify("Workarounds for %s: 0x%x "
1079                           "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1080                           tgt->bus_id, w, firmware_revision, model);
1081         tgt->workarounds = w;
1082 }
1083
1084 static struct scsi_host_template scsi_driver_template;
1085
1086 static int sbp2_probe(struct device *dev)
1087 {
1088         struct fw_unit *unit = fw_unit(dev);
1089         struct fw_device *device = fw_device(unit->device.parent);
1090         struct sbp2_target *tgt;
1091         struct sbp2_logical_unit *lu;
1092         struct Scsi_Host *shost;
1093         u32 model, firmware_revision;
1094
1095         shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1096         if (shost == NULL)
1097                 return -ENOMEM;
1098
1099         tgt = (struct sbp2_target *)shost->hostdata;
1100         unit->device.driver_data = tgt;
1101         tgt->unit = unit;
1102         kref_init(&tgt->kref);
1103         INIT_LIST_HEAD(&tgt->lu_list);
1104         tgt->bus_id = unit->device.bus_id;
1105
1106         if (fw_device_enable_phys_dma(device) < 0)
1107                 goto fail_shost_put;
1108
1109         if (scsi_add_host(shost, &unit->device) < 0)
1110                 goto fail_shost_put;
1111
1112         fw_device_get(device);
1113         fw_unit_get(unit);
1114
1115         /* Initialize to values that won't match anything in our table. */
1116         firmware_revision = 0xff000000;
1117         model = 0xff000000;
1118
1119         /* implicit directory ID */
1120         tgt->directory_id = ((unit->directory - device->config_rom) * 4
1121                              + CSR_CONFIG_ROM) & 0xffffff;
1122
1123         if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1124                                &firmware_revision) < 0)
1125                 goto fail_tgt_put;
1126
1127         sbp2_init_workarounds(tgt, model, firmware_revision);
1128
1129         /* Do the login in a workqueue so we can easily reschedule retries. */
1130         list_for_each_entry(lu, &tgt->lu_list, link)
1131                 sbp2_queue_work(lu, 0);
1132         return 0;
1133
1134  fail_tgt_put:
1135         sbp2_target_put(tgt);
1136         return -ENOMEM;
1137
1138  fail_shost_put:
1139         scsi_host_put(shost);
1140         return -ENOMEM;
1141 }
1142
1143 static int sbp2_remove(struct device *dev)
1144 {
1145         struct fw_unit *unit = fw_unit(dev);
1146         struct sbp2_target *tgt = unit->device.driver_data;
1147
1148         sbp2_target_put(tgt);
1149         return 0;
1150 }
1151
1152 static void sbp2_reconnect(struct work_struct *work)
1153 {
1154         struct sbp2_logical_unit *lu =
1155                 container_of(work, struct sbp2_logical_unit, work.work);
1156         struct sbp2_target *tgt = lu->tgt;
1157         struct fw_device *device = fw_device(tgt->unit->device.parent);
1158         int generation, node_id, local_node_id;
1159
1160         if (fw_device_is_shutdown(device))
1161                 goto out;
1162
1163         generation    = device->generation;
1164         smp_rmb();    /* node_id must not be older than generation */
1165         node_id       = device->node_id;
1166         local_node_id = device->card->node_id;
1167
1168         if (sbp2_send_management_orb(lu, node_id, generation,
1169                                      SBP2_RECONNECT_REQUEST,
1170                                      lu->login_id, NULL) < 0) {
1171                 /*
1172                  * If reconnect was impossible even though we are in the
1173                  * current generation, fall back and try to log in again.
1174                  *
1175                  * We could check for "Function rejected" status, but
1176                  * looking at the bus generation as simpler and more general.
1177                  */
1178                 smp_rmb(); /* get current card generation */
1179                 if (generation == device->card->generation ||
1180                     lu->retries++ >= 5) {
1181                         fw_error("%s: failed to reconnect\n", tgt->bus_id);
1182                         lu->retries = 0;
1183                         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1184                 }
1185                 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1186                 goto out;
1187         }
1188
1189         tgt->node_id      = node_id;
1190         tgt->address_high = local_node_id << 16;
1191         sbp2_set_generation(lu, generation);
1192
1193         fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1194                   tgt->bus_id, lu->lun, lu->retries);
1195
1196         sbp2_agent_reset(lu);
1197         sbp2_cancel_orbs(lu);
1198         sbp2_conditionally_unblock(lu);
1199  out:
1200         sbp2_target_put(tgt);
1201 }
1202
1203 static void sbp2_update(struct fw_unit *unit)
1204 {
1205         struct sbp2_target *tgt = unit->device.driver_data;
1206         struct sbp2_logical_unit *lu;
1207
1208         fw_device_enable_phys_dma(fw_device(unit->device.parent));
1209
1210         /*
1211          * Fw-core serializes sbp2_update() against sbp2_remove().
1212          * Iteration over tgt->lu_list is therefore safe here.
1213          */
1214         list_for_each_entry(lu, &tgt->lu_list, link) {
1215                 sbp2_conditionally_block(lu);
1216                 lu->retries = 0;
1217                 sbp2_queue_work(lu, 0);
1218         }
1219 }
1220
1221 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1222 #define SBP2_SW_VERSION_ENTRY   0x00010483
1223
1224 static const struct fw_device_id sbp2_id_table[] = {
1225         {
1226                 .match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
1227                 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1228                 .version      = SBP2_SW_VERSION_ENTRY,
1229         },
1230         { }
1231 };
1232
1233 static struct fw_driver sbp2_driver = {
1234         .driver   = {
1235                 .owner  = THIS_MODULE,
1236                 .name   = sbp2_driver_name,
1237                 .bus    = &fw_bus_type,
1238                 .probe  = sbp2_probe,
1239                 .remove = sbp2_remove,
1240         },
1241         .update   = sbp2_update,
1242         .id_table = sbp2_id_table,
1243 };
1244
1245 static unsigned int
1246 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1247 {
1248         int sam_status;
1249
1250         sense_data[0] = 0x70;
1251         sense_data[1] = 0x0;
1252         sense_data[2] = sbp2_status[1];
1253         sense_data[3] = sbp2_status[4];
1254         sense_data[4] = sbp2_status[5];
1255         sense_data[5] = sbp2_status[6];
1256         sense_data[6] = sbp2_status[7];
1257         sense_data[7] = 10;
1258         sense_data[8] = sbp2_status[8];
1259         sense_data[9] = sbp2_status[9];
1260         sense_data[10] = sbp2_status[10];
1261         sense_data[11] = sbp2_status[11];
1262         sense_data[12] = sbp2_status[2];
1263         sense_data[13] = sbp2_status[3];
1264         sense_data[14] = sbp2_status[12];
1265         sense_data[15] = sbp2_status[13];
1266
1267         sam_status = sbp2_status[0] & 0x3f;
1268
1269         switch (sam_status) {
1270         case SAM_STAT_GOOD:
1271         case SAM_STAT_CHECK_CONDITION:
1272         case SAM_STAT_CONDITION_MET:
1273         case SAM_STAT_BUSY:
1274         case SAM_STAT_RESERVATION_CONFLICT:
1275         case SAM_STAT_COMMAND_TERMINATED:
1276                 return DID_OK << 16 | sam_status;
1277
1278         default:
1279                 return DID_ERROR << 16;
1280         }
1281 }
1282
1283 static void
1284 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1285 {
1286         struct sbp2_command_orb *orb =
1287                 container_of(base_orb, struct sbp2_command_orb, base);
1288         struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1289         int result;
1290
1291         if (status != NULL) {
1292                 if (STATUS_GET_DEAD(*status))
1293                         sbp2_agent_reset_no_wait(orb->lu);
1294
1295                 switch (STATUS_GET_RESPONSE(*status)) {
1296                 case SBP2_STATUS_REQUEST_COMPLETE:
1297                         result = DID_OK << 16;
1298                         break;
1299                 case SBP2_STATUS_TRANSPORT_FAILURE:
1300                         result = DID_BUS_BUSY << 16;
1301                         break;
1302                 case SBP2_STATUS_ILLEGAL_REQUEST:
1303                 case SBP2_STATUS_VENDOR_DEPENDENT:
1304                 default:
1305                         result = DID_ERROR << 16;
1306                         break;
1307                 }
1308
1309                 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1310                         result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1311                                                            orb->cmd->sense_buffer);
1312         } else {
1313                 /*
1314                  * If the orb completes with status == NULL, something
1315                  * went wrong, typically a bus reset happened mid-orb
1316                  * or when sending the write (less likely).
1317                  */
1318                 result = DID_BUS_BUSY << 16;
1319                 sbp2_conditionally_block(orb->lu);
1320         }
1321
1322         dma_unmap_single(device->card->device, orb->base.request_bus,
1323                          sizeof(orb->request), DMA_TO_DEVICE);
1324
1325         if (scsi_sg_count(orb->cmd) > 0)
1326                 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1327                              scsi_sg_count(orb->cmd),
1328                              orb->cmd->sc_data_direction);
1329
1330         if (orb->page_table_bus != 0)
1331                 dma_unmap_single(device->card->device, orb->page_table_bus,
1332                                  sizeof(orb->page_table), DMA_TO_DEVICE);
1333
1334         orb->cmd->result = result;
1335         orb->done(orb->cmd);
1336 }
1337
1338 static int
1339 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1340                      struct sbp2_logical_unit *lu)
1341 {
1342         struct scatterlist *sg;
1343         int sg_len, l, i, j, count;
1344         dma_addr_t sg_addr;
1345
1346         sg = scsi_sglist(orb->cmd);
1347         count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1348                            orb->cmd->sc_data_direction);
1349         if (count == 0)
1350                 goto fail;
1351
1352         /*
1353          * Handle the special case where there is only one element in
1354          * the scatter list by converting it to an immediate block
1355          * request. This is also a workaround for broken devices such
1356          * as the second generation iPod which doesn't support page
1357          * tables.
1358          */
1359         if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1360                 orb->request.data_descriptor.high =
1361                         cpu_to_be32(lu->tgt->address_high);
1362                 orb->request.data_descriptor.low  =
1363                         cpu_to_be32(sg_dma_address(sg));
1364                 orb->request.misc |=
1365                         cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1366                 return 0;
1367         }
1368
1369         /*
1370          * Convert the scatterlist to an sbp2 page table.  If any
1371          * scatterlist entries are too big for sbp2, we split them as we
1372          * go.  Even if we ask the block I/O layer to not give us sg
1373          * elements larger than 65535 bytes, some IOMMUs may merge sg elements
1374          * during DMA mapping, and Linux currently doesn't prevent this.
1375          */
1376         for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
1377                 sg_len = sg_dma_len(sg);
1378                 sg_addr = sg_dma_address(sg);
1379                 while (sg_len) {
1380                         /* FIXME: This won't get us out of the pinch. */
1381                         if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
1382                                 fw_error("page table overflow\n");
1383                                 goto fail_page_table;
1384                         }
1385                         l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1386                         orb->page_table[j].low = cpu_to_be32(sg_addr);
1387                         orb->page_table[j].high = cpu_to_be32(l << 16);
1388                         sg_addr += l;
1389                         sg_len -= l;
1390                         j++;
1391                 }
1392         }
1393
1394         orb->page_table_bus =
1395                 dma_map_single(device->card->device, orb->page_table,
1396                                sizeof(orb->page_table), DMA_TO_DEVICE);
1397         if (dma_mapping_error(orb->page_table_bus))
1398                 goto fail_page_table;
1399
1400         /*
1401          * The data_descriptor pointer is the one case where we need
1402          * to fill in the node ID part of the address.  All other
1403          * pointers assume that the data referenced reside on the
1404          * initiator (i.e. us), but data_descriptor can refer to data
1405          * on other nodes so we need to put our ID in descriptor.high.
1406          */
1407         orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1408         orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
1409         orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1410                                          COMMAND_ORB_DATA_SIZE(j));
1411
1412         return 0;
1413
1414  fail_page_table:
1415         dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1416                      orb->cmd->sc_data_direction);
1417  fail:
1418         return -ENOMEM;
1419 }
1420
1421 /* SCSI stack integration */
1422
1423 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1424 {
1425         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1426         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1427         struct sbp2_command_orb *orb;
1428         unsigned int max_payload;
1429         int retval = SCSI_MLQUEUE_HOST_BUSY;
1430
1431         /*
1432          * Bidirectional commands are not yet implemented, and unknown
1433          * transfer direction not handled.
1434          */
1435         if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1436                 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1437                 cmd->result = DID_ERROR << 16;
1438                 done(cmd);
1439                 return 0;
1440         }
1441
1442         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1443         if (orb == NULL) {
1444                 fw_notify("failed to alloc orb\n");
1445                 return SCSI_MLQUEUE_HOST_BUSY;
1446         }
1447
1448         /* Initialize rcode to something not RCODE_COMPLETE. */
1449         orb->base.rcode = -1;
1450         kref_init(&orb->base.kref);
1451
1452         orb->lu   = lu;
1453         orb->done = done;
1454         orb->cmd  = cmd;
1455
1456         orb->request.next.high   = cpu_to_be32(SBP2_ORB_NULL);
1457         /*
1458          * At speed 100 we can do 512 bytes per packet, at speed 200,
1459          * 1024 bytes per packet etc.  The SBP-2 max_payload field
1460          * specifies the max payload size as 2 ^ (max_payload + 2), so
1461          * if we set this to max_speed + 7, we get the right value.
1462          */
1463         max_payload = min(device->max_speed + 7,
1464                           device->card->max_receive - 1);
1465         orb->request.misc = cpu_to_be32(
1466                 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1467                 COMMAND_ORB_SPEED(device->max_speed) |
1468                 COMMAND_ORB_NOTIFY);
1469
1470         if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1471                 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1472
1473         if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1474                 goto out;
1475
1476         memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1477
1478         orb->base.callback = complete_command_orb;
1479         orb->base.request_bus =
1480                 dma_map_single(device->card->device, &orb->request,
1481                                sizeof(orb->request), DMA_TO_DEVICE);
1482         if (dma_mapping_error(orb->base.request_bus))
1483                 goto out;
1484
1485         sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
1486                       lu->command_block_agent_address + SBP2_ORB_POINTER);
1487         retval = 0;
1488  out:
1489         kref_put(&orb->base.kref, free_orb);
1490         return retval;
1491 }
1492
1493 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1494 {
1495         struct sbp2_logical_unit *lu = sdev->hostdata;
1496
1497         /* (Re-)Adding logical units via the SCSI stack is not supported. */
1498         if (!lu)
1499                 return -ENOSYS;
1500
1501         sdev->allow_restart = 1;
1502
1503         /* SBP-2 requires quadlet alignment of the data buffers. */
1504         blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1505
1506         if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1507                 sdev->inquiry_len = 36;
1508
1509         return 0;
1510 }
1511
1512 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1513 {
1514         struct sbp2_logical_unit *lu = sdev->hostdata;
1515
1516         sdev->use_10_for_rw = 1;
1517
1518         if (sdev->type == TYPE_ROM)
1519                 sdev->use_10_for_ms = 1;
1520
1521         if (sdev->type == TYPE_DISK &&
1522             lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1523                 sdev->skip_ms_page_8 = 1;
1524
1525         if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1526                 sdev->fix_capacity = 1;
1527
1528         if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1529                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1530
1531         return 0;
1532 }
1533
1534 /*
1535  * Called by scsi stack when something has really gone wrong.  Usually
1536  * called when a command has timed-out for some reason.
1537  */
1538 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1539 {
1540         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1541
1542         fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1543         sbp2_agent_reset(lu);
1544         sbp2_cancel_orbs(lu);
1545
1546         return SUCCESS;
1547 }
1548
1549 /*
1550  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1551  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1552  *
1553  * This is the concatenation of target port identifier and logical unit
1554  * identifier as per SAM-2...SAM-4 annex A.
1555  */
1556 static ssize_t
1557 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1558                             char *buf)
1559 {
1560         struct scsi_device *sdev = to_scsi_device(dev);
1561         struct sbp2_logical_unit *lu;
1562         struct fw_device *device;
1563
1564         if (!sdev)
1565                 return 0;
1566
1567         lu = sdev->hostdata;
1568         device = fw_device(lu->tgt->unit->device.parent);
1569
1570         return sprintf(buf, "%08x%08x:%06x:%04x\n",
1571                         device->config_rom[3], device->config_rom[4],
1572                         lu->tgt->directory_id, lu->lun);
1573 }
1574
1575 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1576
1577 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1578         &dev_attr_ieee1394_id,
1579         NULL
1580 };
1581
1582 static struct scsi_host_template scsi_driver_template = {
1583         .module                 = THIS_MODULE,
1584         .name                   = "SBP-2 IEEE-1394",
1585         .proc_name              = sbp2_driver_name,
1586         .queuecommand           = sbp2_scsi_queuecommand,
1587         .slave_alloc            = sbp2_scsi_slave_alloc,
1588         .slave_configure        = sbp2_scsi_slave_configure,
1589         .eh_abort_handler       = sbp2_scsi_abort,
1590         .this_id                = -1,
1591         .sg_tablesize           = SG_ALL,
1592         .use_clustering         = ENABLE_CLUSTERING,
1593         .cmd_per_lun            = 1,
1594         .can_queue              = 1,
1595         .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1596 };
1597
1598 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1599 MODULE_DESCRIPTION("SCSI over IEEE1394");
1600 MODULE_LICENSE("GPL");
1601 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1602
1603 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1604 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1605 MODULE_ALIAS("sbp2");
1606 #endif
1607
1608 static int __init sbp2_init(void)
1609 {
1610         sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1611         if (!sbp2_wq)
1612                 return -ENOMEM;
1613
1614         return driver_register(&sbp2_driver.driver);
1615 }
1616
1617 static void __exit sbp2_cleanup(void)
1618 {
1619         driver_unregister(&sbp2_driver.driver);
1620         destroy_workqueue(sbp2_wq);
1621 }
1622
1623 module_init(sbp2_init);
1624 module_exit(sbp2_cleanup);