]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/firewire/fw-sbp2.c
firewire: fw-sbp2: reduce log noise
[linux-2.6-omap-h63xx.git] / drivers / firewire / fw-sbp2.c
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30
31 #include <linux/blkdev.h>
32 #include <linux/delay.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/kernel.h>
36 #include <linux/mod_devicetable.h>
37 #include <linux/module.h>
38 #include <linux/moduleparam.h>
39 #include <linux/scatterlist.h>
40 #include <linux/string.h>
41 #include <linux/stringify.h>
42 #include <linux/timer.h>
43 #include <linux/workqueue.h>
44 #include <asm/system.h>
45
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_host.h>
50
51 #include "fw-device.h"
52 #include "fw-topology.h"
53 #include "fw-transaction.h"
54
55 /*
56  * So far only bridges from Oxford Semiconductor are known to support
57  * concurrent logins. Depending on firmware, four or two concurrent logins
58  * are possible on OXFW911 and newer Oxsemi bridges.
59  *
60  * Concurrent logins are useful together with cluster filesystems.
61  */
62 static int sbp2_param_exclusive_login = 1;
63 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
64 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
65                  "(default = Y, use N for concurrent initiators)");
66
67 /*
68  * Flags for firmware oddities
69  *
70  * - 128kB max transfer
71  *   Limit transfer size. Necessary for some old bridges.
72  *
73  * - 36 byte inquiry
74  *   When scsi_mod probes the device, let the inquiry command look like that
75  *   from MS Windows.
76  *
77  * - skip mode page 8
78  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
79  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
80  *
81  * - fix capacity
82  *   Tell sd_mod to correct the last sector number reported by read_capacity.
83  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
84  *   Don't use this with devices which don't have this bug.
85  *
86  * - delay inquiry
87  *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
88  *
89  * - override internal blacklist
90  *   Instead of adding to the built-in blacklist, use only the workarounds
91  *   specified in the module load parameter.
92  *   Useful if a blacklist entry interfered with a non-broken device.
93  */
94 #define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
95 #define SBP2_WORKAROUND_INQUIRY_36      0x2
96 #define SBP2_WORKAROUND_MODE_SENSE_8    0x4
97 #define SBP2_WORKAROUND_FIX_CAPACITY    0x8
98 #define SBP2_WORKAROUND_DELAY_INQUIRY   0x10
99 #define SBP2_INQUIRY_DELAY              12
100 #define SBP2_WORKAROUND_OVERRIDE        0x100
101
102 static int sbp2_param_workarounds;
103 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
104 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
105         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
106         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
107         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
108         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
109         ", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
110         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
111         ", or a combination)");
112
113 /* I don't know why the SCSI stack doesn't define something like this... */
114 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
115
116 static const char sbp2_driver_name[] = "sbp2";
117
118 /*
119  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
120  * and one struct scsi_device per sbp2_logical_unit.
121  */
122 struct sbp2_logical_unit {
123         struct sbp2_target *tgt;
124         struct list_head link;
125         struct fw_address_handler address_handler;
126         struct list_head orb_list;
127
128         u64 command_block_agent_address;
129         u16 lun;
130         int login_id;
131
132         /*
133          * The generation is updated once we've logged in or reconnected
134          * to the logical unit.  Thus, I/O to the device will automatically
135          * fail and get retried if it happens in a window where the device
136          * is not ready, e.g. after a bus reset but before we reconnect.
137          */
138         int generation;
139         int retries;
140         struct delayed_work work;
141         bool has_sdev;
142         bool blocked;
143 };
144
145 /*
146  * We create one struct sbp2_target per IEEE 1212 Unit Directory
147  * and one struct Scsi_Host per sbp2_target.
148  */
149 struct sbp2_target {
150         struct kref kref;
151         struct fw_unit *unit;
152         const char *bus_id;
153         struct list_head lu_list;
154
155         u64 management_agent_address;
156         int directory_id;
157         int node_id;
158         int address_high;
159         unsigned int workarounds;
160         unsigned int mgt_orb_timeout;
161
162         int dont_block; /* counter for each logical unit */
163         int blocked;    /* ditto */
164 };
165
166 /*
167  * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
168  * provided in the config rom. Most devices do provide a value, which
169  * we'll use for login management orbs, but with some sane limits.
170  */
171 #define SBP2_MIN_LOGIN_ORB_TIMEOUT      5000U   /* Timeout in ms */
172 #define SBP2_MAX_LOGIN_ORB_TIMEOUT      40000U  /* Timeout in ms */
173 #define SBP2_ORB_TIMEOUT                2000U   /* Timeout in ms */
174 #define SBP2_ORB_NULL                   0x80000000
175 #define SBP2_MAX_SG_ELEMENT_LENGTH      0xf000
176 #define SBP2_RETRY_LIMIT                0xf     /* 15 retries */
177
178 /* Unit directory keys */
179 #define SBP2_CSR_UNIT_CHARACTERISTICS   0x3a
180 #define SBP2_CSR_FIRMWARE_REVISION      0x3c
181 #define SBP2_CSR_LOGICAL_UNIT_NUMBER    0x14
182 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
183
184 /* Management orb opcodes */
185 #define SBP2_LOGIN_REQUEST              0x0
186 #define SBP2_QUERY_LOGINS_REQUEST       0x1
187 #define SBP2_RECONNECT_REQUEST          0x3
188 #define SBP2_SET_PASSWORD_REQUEST       0x4
189 #define SBP2_LOGOUT_REQUEST             0x7
190 #define SBP2_ABORT_TASK_REQUEST         0xb
191 #define SBP2_ABORT_TASK_SET             0xc
192 #define SBP2_LOGICAL_UNIT_RESET         0xe
193 #define SBP2_TARGET_RESET_REQUEST       0xf
194
195 /* Offsets for command block agent registers */
196 #define SBP2_AGENT_STATE                0x00
197 #define SBP2_AGENT_RESET                0x04
198 #define SBP2_ORB_POINTER                0x08
199 #define SBP2_DOORBELL                   0x10
200 #define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
201
202 /* Status write response codes */
203 #define SBP2_STATUS_REQUEST_COMPLETE    0x0
204 #define SBP2_STATUS_TRANSPORT_FAILURE   0x1
205 #define SBP2_STATUS_ILLEGAL_REQUEST     0x2
206 #define SBP2_STATUS_VENDOR_DEPENDENT    0x3
207
208 #define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
209 #define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
210 #define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
211 #define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
212 #define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
213 #define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
214 #define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
215 #define STATUS_GET_DATA(v)              ((v).data)
216
217 struct sbp2_status {
218         u32 status;
219         u32 orb_low;
220         u8 data[24];
221 };
222
223 struct sbp2_pointer {
224         __be32 high;
225         __be32 low;
226 };
227
228 struct sbp2_orb {
229         struct fw_transaction t;
230         struct kref kref;
231         dma_addr_t request_bus;
232         int rcode;
233         struct sbp2_pointer pointer;
234         void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
235         struct list_head link;
236 };
237
238 #define MANAGEMENT_ORB_LUN(v)                   ((v))
239 #define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
240 #define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
241 #define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
242 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
243 #define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
244
245 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
246 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
247
248 struct sbp2_management_orb {
249         struct sbp2_orb base;
250         struct {
251                 struct sbp2_pointer password;
252                 struct sbp2_pointer response;
253                 __be32 misc;
254                 __be32 length;
255                 struct sbp2_pointer status_fifo;
256         } request;
257         __be32 response[4];
258         dma_addr_t response_bus;
259         struct completion done;
260         struct sbp2_status status;
261 };
262
263 struct sbp2_login_response {
264         __be32 misc;
265         struct sbp2_pointer command_block_agent;
266         __be32 reconnect_hold;
267 };
268 #define COMMAND_ORB_DATA_SIZE(v)        ((v))
269 #define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
270 #define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
271 #define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
272 #define COMMAND_ORB_SPEED(v)            ((v) << 24)
273 #define COMMAND_ORB_DIRECTION           ((1) << 27)
274 #define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
275 #define COMMAND_ORB_NOTIFY              ((1) << 31)
276
277 struct sbp2_command_orb {
278         struct sbp2_orb base;
279         struct {
280                 struct sbp2_pointer next;
281                 struct sbp2_pointer data_descriptor;
282                 __be32 misc;
283                 u8 command_block[12];
284         } request;
285         struct scsi_cmnd *cmd;
286         scsi_done_fn_t done;
287         struct sbp2_logical_unit *lu;
288
289         struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
290         dma_addr_t page_table_bus;
291 };
292
293 /*
294  * List of devices with known bugs.
295  *
296  * The firmware_revision field, masked with 0xffff00, is the best
297  * indicator for the type of bridge chip of a device.  It yields a few
298  * false positives but this did not break correctly behaving devices
299  * so far.  We use ~0 as a wildcard, since the 24 bit values we get
300  * from the config rom can never match that.
301  */
302 static const struct {
303         u32 firmware_revision;
304         u32 model;
305         unsigned int workarounds;
306 } sbp2_workarounds_table[] = {
307         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
308                 .firmware_revision      = 0x002800,
309                 .model                  = 0x001010,
310                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
311                                           SBP2_WORKAROUND_MODE_SENSE_8,
312         },
313         /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
314                 .firmware_revision      = 0x002800,
315                 .model                  = 0x000000,
316                 .workarounds            = SBP2_WORKAROUND_DELAY_INQUIRY,
317         },
318         /* Initio bridges, actually only needed for some older ones */ {
319                 .firmware_revision      = 0x000200,
320                 .model                  = ~0,
321                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
322         },
323         /* Symbios bridge */ {
324                 .firmware_revision      = 0xa0b800,
325                 .model                  = ~0,
326                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
327         },
328         /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
329                 .firmware_revision      = 0x002600,
330                 .model                  = ~0,
331                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
332         },
333
334         /*
335          * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
336          * these iPods do not feature the read_capacity bug according
337          * to one report.  Read_capacity behaviour as well as model_id
338          * could change due to Apple-supplied firmware updates though.
339          */
340
341         /* iPod 4th generation. */ {
342                 .firmware_revision      = 0x0a2700,
343                 .model                  = 0x000021,
344                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
345         },
346         /* iPod mini */ {
347                 .firmware_revision      = 0x0a2700,
348                 .model                  = 0x000023,
349                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
350         },
351         /* iPod Photo */ {
352                 .firmware_revision      = 0x0a2700,
353                 .model                  = 0x00007e,
354                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
355         }
356 };
357
358 static void
359 free_orb(struct kref *kref)
360 {
361         struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
362
363         kfree(orb);
364 }
365
366 static void
367 sbp2_status_write(struct fw_card *card, struct fw_request *request,
368                   int tcode, int destination, int source,
369                   int generation, int speed,
370                   unsigned long long offset,
371                   void *payload, size_t length, void *callback_data)
372 {
373         struct sbp2_logical_unit *lu = callback_data;
374         struct sbp2_orb *orb;
375         struct sbp2_status status;
376         size_t header_size;
377         unsigned long flags;
378
379         if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
380             length == 0 || length > sizeof(status)) {
381                 fw_send_response(card, request, RCODE_TYPE_ERROR);
382                 return;
383         }
384
385         header_size = min(length, 2 * sizeof(u32));
386         fw_memcpy_from_be32(&status, payload, header_size);
387         if (length > header_size)
388                 memcpy(status.data, payload + 8, length - header_size);
389         if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
390                 fw_notify("non-orb related status write, not handled\n");
391                 fw_send_response(card, request, RCODE_COMPLETE);
392                 return;
393         }
394
395         /* Lookup the orb corresponding to this status write. */
396         spin_lock_irqsave(&card->lock, flags);
397         list_for_each_entry(orb, &lu->orb_list, link) {
398                 if (STATUS_GET_ORB_HIGH(status) == 0 &&
399                     STATUS_GET_ORB_LOW(status) == orb->request_bus) {
400                         orb->rcode = RCODE_COMPLETE;
401                         list_del(&orb->link);
402                         break;
403                 }
404         }
405         spin_unlock_irqrestore(&card->lock, flags);
406
407         if (&orb->link != &lu->orb_list)
408                 orb->callback(orb, &status);
409         else
410                 fw_error("status write for unknown orb\n");
411
412         kref_put(&orb->kref, free_orb);
413
414         fw_send_response(card, request, RCODE_COMPLETE);
415 }
416
417 static void
418 complete_transaction(struct fw_card *card, int rcode,
419                      void *payload, size_t length, void *data)
420 {
421         struct sbp2_orb *orb = data;
422         unsigned long flags;
423
424         /*
425          * This is a little tricky.  We can get the status write for
426          * the orb before we get this callback.  The status write
427          * handler above will assume the orb pointer transaction was
428          * successful and set the rcode to RCODE_COMPLETE for the orb.
429          * So this callback only sets the rcode if it hasn't already
430          * been set and only does the cleanup if the transaction
431          * failed and we didn't already get a status write.
432          */
433         spin_lock_irqsave(&card->lock, flags);
434
435         if (orb->rcode == -1)
436                 orb->rcode = rcode;
437         if (orb->rcode != RCODE_COMPLETE) {
438                 list_del(&orb->link);
439                 spin_unlock_irqrestore(&card->lock, flags);
440                 orb->callback(orb, NULL);
441         } else {
442                 spin_unlock_irqrestore(&card->lock, flags);
443         }
444
445         kref_put(&orb->kref, free_orb);
446 }
447
448 static void
449 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
450               int node_id, int generation, u64 offset)
451 {
452         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
453         unsigned long flags;
454
455         orb->pointer.high = 0;
456         orb->pointer.low = cpu_to_be32(orb->request_bus);
457
458         spin_lock_irqsave(&device->card->lock, flags);
459         list_add_tail(&orb->link, &lu->orb_list);
460         spin_unlock_irqrestore(&device->card->lock, flags);
461
462         /* Take a ref for the orb list and for the transaction callback. */
463         kref_get(&orb->kref);
464         kref_get(&orb->kref);
465
466         fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
467                         node_id, generation, device->max_speed, offset,
468                         &orb->pointer, sizeof(orb->pointer),
469                         complete_transaction, orb);
470 }
471
472 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
473 {
474         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
475         struct sbp2_orb *orb, *next;
476         struct list_head list;
477         unsigned long flags;
478         int retval = -ENOENT;
479
480         INIT_LIST_HEAD(&list);
481         spin_lock_irqsave(&device->card->lock, flags);
482         list_splice_init(&lu->orb_list, &list);
483         spin_unlock_irqrestore(&device->card->lock, flags);
484
485         list_for_each_entry_safe(orb, next, &list, link) {
486                 retval = 0;
487                 if (fw_cancel_transaction(device->card, &orb->t) == 0)
488                         continue;
489
490                 orb->rcode = RCODE_CANCELLED;
491                 orb->callback(orb, NULL);
492         }
493
494         return retval;
495 }
496
497 static void
498 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
499 {
500         struct sbp2_management_orb *orb =
501                 container_of(base_orb, struct sbp2_management_orb, base);
502
503         if (status)
504                 memcpy(&orb->status, status, sizeof(*status));
505         complete(&orb->done);
506 }
507
508 static int
509 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
510                          int generation, int function, int lun_or_login_id,
511                          void *response)
512 {
513         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
514         struct sbp2_management_orb *orb;
515         unsigned int timeout;
516         int retval = -ENOMEM;
517
518         if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
519                 return 0;
520
521         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
522         if (orb == NULL)
523                 return -ENOMEM;
524
525         kref_init(&orb->base.kref);
526         orb->response_bus =
527                 dma_map_single(device->card->device, &orb->response,
528                                sizeof(orb->response), DMA_FROM_DEVICE);
529         if (dma_mapping_error(orb->response_bus))
530                 goto fail_mapping_response;
531
532         orb->request.response.high = 0;
533         orb->request.response.low  = cpu_to_be32(orb->response_bus);
534
535         orb->request.misc = cpu_to_be32(
536                 MANAGEMENT_ORB_NOTIFY |
537                 MANAGEMENT_ORB_FUNCTION(function) |
538                 MANAGEMENT_ORB_LUN(lun_or_login_id));
539         orb->request.length = cpu_to_be32(
540                 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
541
542         orb->request.status_fifo.high =
543                 cpu_to_be32(lu->address_handler.offset >> 32);
544         orb->request.status_fifo.low  =
545                 cpu_to_be32(lu->address_handler.offset);
546
547         if (function == SBP2_LOGIN_REQUEST) {
548                 /* Ask for 2^2 == 4 seconds reconnect grace period */
549                 orb->request.misc |= cpu_to_be32(
550                         MANAGEMENT_ORB_RECONNECT(2) |
551                         MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
552                 timeout = lu->tgt->mgt_orb_timeout;
553         } else {
554                 timeout = SBP2_ORB_TIMEOUT;
555         }
556
557         init_completion(&orb->done);
558         orb->base.callback = complete_management_orb;
559
560         orb->base.request_bus =
561                 dma_map_single(device->card->device, &orb->request,
562                                sizeof(orb->request), DMA_TO_DEVICE);
563         if (dma_mapping_error(orb->base.request_bus))
564                 goto fail_mapping_request;
565
566         sbp2_send_orb(&orb->base, lu, node_id, generation,
567                       lu->tgt->management_agent_address);
568
569         wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
570
571         retval = -EIO;
572         if (sbp2_cancel_orbs(lu) == 0) {
573                 fw_error("%s: orb reply timed out, rcode=0x%02x\n",
574                          lu->tgt->bus_id, orb->base.rcode);
575                 goto out;
576         }
577
578         if (orb->base.rcode != RCODE_COMPLETE) {
579                 fw_error("%s: management write failed, rcode 0x%02x\n",
580                          lu->tgt->bus_id, orb->base.rcode);
581                 goto out;
582         }
583
584         if (STATUS_GET_RESPONSE(orb->status) != 0 ||
585             STATUS_GET_SBP_STATUS(orb->status) != 0) {
586                 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
587                          STATUS_GET_RESPONSE(orb->status),
588                          STATUS_GET_SBP_STATUS(orb->status));
589                 goto out;
590         }
591
592         retval = 0;
593  out:
594         dma_unmap_single(device->card->device, orb->base.request_bus,
595                          sizeof(orb->request), DMA_TO_DEVICE);
596  fail_mapping_request:
597         dma_unmap_single(device->card->device, orb->response_bus,
598                          sizeof(orb->response), DMA_FROM_DEVICE);
599  fail_mapping_response:
600         if (response)
601                 memcpy(response, orb->response, sizeof(orb->response));
602         kref_put(&orb->base.kref, free_orb);
603
604         return retval;
605 }
606
607 static void
608 complete_agent_reset_write(struct fw_card *card, int rcode,
609                            void *payload, size_t length, void *done)
610 {
611         complete(done);
612 }
613
614 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
615 {
616         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
617         DECLARE_COMPLETION_ONSTACK(done);
618         struct fw_transaction t;
619         static u32 z;
620
621         fw_send_request(device->card, &t, TCODE_WRITE_QUADLET_REQUEST,
622                         lu->tgt->node_id, lu->generation, device->max_speed,
623                         lu->command_block_agent_address + SBP2_AGENT_RESET,
624                         &z, sizeof(z), complete_agent_reset_write, &done);
625         wait_for_completion(&done);
626 }
627
628 static void
629 complete_agent_reset_write_no_wait(struct fw_card *card, int rcode,
630                                    void *payload, size_t length, void *data)
631 {
632         kfree(data);
633 }
634
635 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
636 {
637         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
638         struct fw_transaction *t;
639         static u32 z;
640
641         t = kmalloc(sizeof(*t), GFP_ATOMIC);
642         if (t == NULL)
643                 return;
644
645         fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
646                         lu->tgt->node_id, lu->generation, device->max_speed,
647                         lu->command_block_agent_address + SBP2_AGENT_RESET,
648                         &z, sizeof(z), complete_agent_reset_write_no_wait, t);
649 }
650
651 static void sbp2_set_generation(struct sbp2_logical_unit *lu, int generation)
652 {
653         struct fw_card *card = fw_device(lu->tgt->unit->device.parent)->card;
654         unsigned long flags;
655
656         /* serialize with comparisons of lu->generation and card->generation */
657         spin_lock_irqsave(&card->lock, flags);
658         lu->generation = generation;
659         spin_unlock_irqrestore(&card->lock, flags);
660 }
661
662 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
663 {
664         /*
665          * We may access dont_block without taking card->lock here:
666          * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
667          * are currently serialized against each other.
668          * And a wrong result in sbp2_conditionally_block()'s access of
669          * dont_block is rather harmless, it simply misses its first chance.
670          */
671         --lu->tgt->dont_block;
672 }
673
674 /*
675  * Blocks lu->tgt if all of the following conditions are met:
676  *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
677  *     logical units have been finished (indicated by dont_block == 0).
678  *   - lu->generation is stale.
679  *
680  * Note, scsi_block_requests() must be called while holding card->lock,
681  * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
682  * unblock the target.
683  */
684 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
685 {
686         struct sbp2_target *tgt = lu->tgt;
687         struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
688         struct Scsi_Host *shost =
689                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
690         unsigned long flags;
691
692         spin_lock_irqsave(&card->lock, flags);
693         if (!tgt->dont_block && !lu->blocked &&
694             lu->generation != card->generation) {
695                 lu->blocked = true;
696                 if (++tgt->blocked == 1)
697                         scsi_block_requests(shost);
698         }
699         spin_unlock_irqrestore(&card->lock, flags);
700 }
701
702 /*
703  * Unblocks lu->tgt as soon as all its logical units can be unblocked.
704  * Note, it is harmless to run scsi_unblock_requests() outside the
705  * card->lock protected section.  On the other hand, running it inside
706  * the section might clash with shost->host_lock.
707  */
708 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
709 {
710         struct sbp2_target *tgt = lu->tgt;
711         struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
712         struct Scsi_Host *shost =
713                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
714         unsigned long flags;
715         bool unblock = false;
716
717         spin_lock_irqsave(&card->lock, flags);
718         if (lu->blocked && lu->generation == card->generation) {
719                 lu->blocked = false;
720                 unblock = --tgt->blocked == 0;
721         }
722         spin_unlock_irqrestore(&card->lock, flags);
723
724         if (unblock)
725                 scsi_unblock_requests(shost);
726 }
727
728 /*
729  * Prevents future blocking of tgt and unblocks it.
730  * Note, it is harmless to run scsi_unblock_requests() outside the
731  * card->lock protected section.  On the other hand, running it inside
732  * the section might clash with shost->host_lock.
733  */
734 static void sbp2_unblock(struct sbp2_target *tgt)
735 {
736         struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
737         struct Scsi_Host *shost =
738                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
739         unsigned long flags;
740
741         spin_lock_irqsave(&card->lock, flags);
742         ++tgt->dont_block;
743         spin_unlock_irqrestore(&card->lock, flags);
744
745         scsi_unblock_requests(shost);
746 }
747
748 static int sbp2_lun2int(u16 lun)
749 {
750         struct scsi_lun eight_bytes_lun;
751
752         memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
753         eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
754         eight_bytes_lun.scsi_lun[1] = lun & 0xff;
755
756         return scsilun_to_int(&eight_bytes_lun);
757 }
758
759 static void sbp2_release_target(struct kref *kref)
760 {
761         struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
762         struct sbp2_logical_unit *lu, *next;
763         struct Scsi_Host *shost =
764                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
765         struct scsi_device *sdev;
766         struct fw_device *device = fw_device(tgt->unit->device.parent);
767
768         /* prevent deadlocks */
769         sbp2_unblock(tgt);
770
771         list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
772                 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
773                 if (sdev) {
774                         scsi_remove_device(sdev);
775                         scsi_device_put(sdev);
776                 }
777                 sbp2_send_management_orb(lu, tgt->node_id, lu->generation,
778                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
779
780                 fw_core_remove_address_handler(&lu->address_handler);
781                 list_del(&lu->link);
782                 kfree(lu);
783         }
784         scsi_remove_host(shost);
785         fw_notify("released %s\n", tgt->bus_id);
786
787         fw_unit_put(tgt->unit);
788         scsi_host_put(shost);
789         fw_device_put(device);
790 }
791
792 static struct workqueue_struct *sbp2_wq;
793
794 /*
795  * Always get the target's kref when scheduling work on one its units.
796  * Each workqueue job is responsible to call sbp2_target_put() upon return.
797  */
798 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
799 {
800         if (queue_delayed_work(sbp2_wq, &lu->work, delay))
801                 kref_get(&lu->tgt->kref);
802 }
803
804 static void sbp2_target_put(struct sbp2_target *tgt)
805 {
806         kref_put(&tgt->kref, sbp2_release_target);
807 }
808
809 static void
810 complete_set_busy_timeout(struct fw_card *card, int rcode,
811                           void *payload, size_t length, void *done)
812 {
813         complete(done);
814 }
815
816 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
817 {
818         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
819         DECLARE_COMPLETION_ONSTACK(done);
820         struct fw_transaction t;
821         static __be32 busy_timeout;
822
823         /* FIXME: we should try to set dual-phase cycle_limit too */
824         busy_timeout = cpu_to_be32(SBP2_RETRY_LIMIT);
825
826         fw_send_request(device->card, &t, TCODE_WRITE_QUADLET_REQUEST,
827                         lu->tgt->node_id, lu->generation, device->max_speed,
828                         CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &busy_timeout,
829                         sizeof(busy_timeout), complete_set_busy_timeout, &done);
830         wait_for_completion(&done);
831 }
832
833 static void sbp2_reconnect(struct work_struct *work);
834
835 static void sbp2_login(struct work_struct *work)
836 {
837         struct sbp2_logical_unit *lu =
838                 container_of(work, struct sbp2_logical_unit, work.work);
839         struct sbp2_target *tgt = lu->tgt;
840         struct fw_device *device = fw_device(tgt->unit->device.parent);
841         struct Scsi_Host *shost;
842         struct scsi_device *sdev;
843         struct sbp2_login_response response;
844         int generation, node_id, local_node_id;
845
846         if (fw_device_is_shutdown(device))
847                 goto out;
848
849         generation    = device->generation;
850         smp_rmb();    /* node_id must not be older than generation */
851         node_id       = device->node_id;
852         local_node_id = device->card->node_id;
853
854         /* If this is a re-login attempt, log out, or we might be rejected. */
855         if (lu->has_sdev)
856                 sbp2_send_management_orb(lu, device->node_id, generation,
857                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
858
859         if (sbp2_send_management_orb(lu, node_id, generation,
860                                 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
861                 if (lu->retries++ < 5) {
862                         sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
863                 } else {
864                         fw_error("%s: failed to login to LUN %04x\n",
865                                  tgt->bus_id, lu->lun);
866                         /* Let any waiting I/O fail from now on. */
867                         sbp2_unblock(lu->tgt);
868                 }
869                 goto out;
870         }
871
872         tgt->node_id      = node_id;
873         tgt->address_high = local_node_id << 16;
874         sbp2_set_generation(lu, generation);
875
876         lu->command_block_agent_address =
877                 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
878                       << 32) | be32_to_cpu(response.command_block_agent.low);
879         lu->login_id = be32_to_cpu(response.misc) & 0xffff;
880
881         fw_notify("%s: logged in to LUN %04x (%d retries)\n",
882                   tgt->bus_id, lu->lun, lu->retries);
883
884         /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
885         sbp2_set_busy_timeout(lu);
886
887         PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
888         sbp2_agent_reset(lu);
889
890         /* This was a re-login. */
891         if (lu->has_sdev) {
892                 sbp2_cancel_orbs(lu);
893                 sbp2_conditionally_unblock(lu);
894                 goto out;
895         }
896
897         if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
898                 ssleep(SBP2_INQUIRY_DELAY);
899
900         shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
901         sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
902         /*
903          * FIXME:  We are unable to perform reconnects while in sbp2_login().
904          * Therefore __scsi_add_device() will get into trouble if a bus reset
905          * happens in parallel.  It will either fail or leave us with an
906          * unusable sdev.  As a workaround we check for this and retry the
907          * whole login and SCSI probing.
908          */
909
910         /* Reported error during __scsi_add_device() */
911         if (IS_ERR(sdev))
912                 goto out_logout_login;
913
914         /* Unreported error during __scsi_add_device() */
915         smp_rmb(); /* get current card generation */
916         if (generation != device->card->generation) {
917                 scsi_remove_device(sdev);
918                 scsi_device_put(sdev);
919                 goto out_logout_login;
920         }
921
922         /* No error during __scsi_add_device() */
923         lu->has_sdev = true;
924         scsi_device_put(sdev);
925         sbp2_allow_block(lu);
926         goto out;
927
928  out_logout_login:
929         smp_rmb(); /* generation may have changed */
930         generation = device->generation;
931         smp_rmb(); /* node_id must not be older than generation */
932
933         sbp2_send_management_orb(lu, device->node_id, generation,
934                                  SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
935         /*
936          * If a bus reset happened, sbp2_update will have requeued
937          * lu->work already.  Reset the work from reconnect to login.
938          */
939         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
940  out:
941         sbp2_target_put(tgt);
942 }
943
944 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
945 {
946         struct sbp2_logical_unit *lu;
947
948         lu = kmalloc(sizeof(*lu), GFP_KERNEL);
949         if (!lu)
950                 return -ENOMEM;
951
952         lu->address_handler.length           = 0x100;
953         lu->address_handler.address_callback = sbp2_status_write;
954         lu->address_handler.callback_data    = lu;
955
956         if (fw_core_add_address_handler(&lu->address_handler,
957                                         &fw_high_memory_region) < 0) {
958                 kfree(lu);
959                 return -ENOMEM;
960         }
961
962         lu->tgt      = tgt;
963         lu->lun      = lun_entry & 0xffff;
964         lu->retries  = 0;
965         lu->has_sdev = false;
966         lu->blocked  = false;
967         ++tgt->dont_block;
968         INIT_LIST_HEAD(&lu->orb_list);
969         INIT_DELAYED_WORK(&lu->work, sbp2_login);
970
971         list_add_tail(&lu->link, &tgt->lu_list);
972         return 0;
973 }
974
975 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
976 {
977         struct fw_csr_iterator ci;
978         int key, value;
979
980         fw_csr_iterator_init(&ci, directory);
981         while (fw_csr_iterator_next(&ci, &key, &value))
982                 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
983                     sbp2_add_logical_unit(tgt, value) < 0)
984                         return -ENOMEM;
985         return 0;
986 }
987
988 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
989                               u32 *model, u32 *firmware_revision)
990 {
991         struct fw_csr_iterator ci;
992         int key, value;
993         unsigned int timeout;
994
995         fw_csr_iterator_init(&ci, directory);
996         while (fw_csr_iterator_next(&ci, &key, &value)) {
997                 switch (key) {
998
999                 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1000                         tgt->management_agent_address =
1001                                         CSR_REGISTER_BASE + 4 * value;
1002                         break;
1003
1004                 case CSR_DIRECTORY_ID:
1005                         tgt->directory_id = value;
1006                         break;
1007
1008                 case CSR_MODEL:
1009                         *model = value;
1010                         break;
1011
1012                 case SBP2_CSR_FIRMWARE_REVISION:
1013                         *firmware_revision = value;
1014                         break;
1015
1016                 case SBP2_CSR_UNIT_CHARACTERISTICS:
1017                         /* the timeout value is stored in 500ms units */
1018                         timeout = ((unsigned int) value >> 8 & 0xff) * 500;
1019                         timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
1020                         tgt->mgt_orb_timeout =
1021                                   min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
1022
1023                         if (timeout > tgt->mgt_orb_timeout)
1024                                 fw_notify("%s: config rom contains %ds "
1025                                           "management ORB timeout, limiting "
1026                                           "to %ds\n", tgt->bus_id,
1027                                           timeout / 1000,
1028                                           tgt->mgt_orb_timeout / 1000);
1029                         break;
1030
1031                 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1032                         if (sbp2_add_logical_unit(tgt, value) < 0)
1033                                 return -ENOMEM;
1034                         break;
1035
1036                 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1037                         if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
1038                                 return -ENOMEM;
1039                         break;
1040                 }
1041         }
1042         return 0;
1043 }
1044
1045 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1046                                   u32 firmware_revision)
1047 {
1048         int i;
1049         unsigned int w = sbp2_param_workarounds;
1050
1051         if (w)
1052                 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1053                           "if you need the workarounds parameter for %s\n",
1054                           tgt->bus_id);
1055
1056         if (w & SBP2_WORKAROUND_OVERRIDE)
1057                 goto out;
1058
1059         for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1060
1061                 if (sbp2_workarounds_table[i].firmware_revision !=
1062                     (firmware_revision & 0xffffff00))
1063                         continue;
1064
1065                 if (sbp2_workarounds_table[i].model != model &&
1066                     sbp2_workarounds_table[i].model != ~0)
1067                         continue;
1068
1069                 w |= sbp2_workarounds_table[i].workarounds;
1070                 break;
1071         }
1072  out:
1073         if (w)
1074                 fw_notify("Workarounds for %s: 0x%x "
1075                           "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1076                           tgt->bus_id, w, firmware_revision, model);
1077         tgt->workarounds = w;
1078 }
1079
1080 static struct scsi_host_template scsi_driver_template;
1081
1082 static int sbp2_probe(struct device *dev)
1083 {
1084         struct fw_unit *unit = fw_unit(dev);
1085         struct fw_device *device = fw_device(unit->device.parent);
1086         struct sbp2_target *tgt;
1087         struct sbp2_logical_unit *lu;
1088         struct Scsi_Host *shost;
1089         u32 model, firmware_revision;
1090
1091         shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1092         if (shost == NULL)
1093                 return -ENOMEM;
1094
1095         tgt = (struct sbp2_target *)shost->hostdata;
1096         unit->device.driver_data = tgt;
1097         tgt->unit = unit;
1098         kref_init(&tgt->kref);
1099         INIT_LIST_HEAD(&tgt->lu_list);
1100         tgt->bus_id = unit->device.bus_id;
1101
1102         if (fw_device_enable_phys_dma(device) < 0)
1103                 goto fail_shost_put;
1104
1105         if (scsi_add_host(shost, &unit->device) < 0)
1106                 goto fail_shost_put;
1107
1108         fw_device_get(device);
1109         fw_unit_get(unit);
1110
1111         /* Initialize to values that won't match anything in our table. */
1112         firmware_revision = 0xff000000;
1113         model = 0xff000000;
1114
1115         /* implicit directory ID */
1116         tgt->directory_id = ((unit->directory - device->config_rom) * 4
1117                              + CSR_CONFIG_ROM) & 0xffffff;
1118
1119         if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1120                                &firmware_revision) < 0)
1121                 goto fail_tgt_put;
1122
1123         sbp2_init_workarounds(tgt, model, firmware_revision);
1124
1125         /* Do the login in a workqueue so we can easily reschedule retries. */
1126         list_for_each_entry(lu, &tgt->lu_list, link)
1127                 sbp2_queue_work(lu, 0);
1128         return 0;
1129
1130  fail_tgt_put:
1131         sbp2_target_put(tgt);
1132         return -ENOMEM;
1133
1134  fail_shost_put:
1135         scsi_host_put(shost);
1136         return -ENOMEM;
1137 }
1138
1139 static int sbp2_remove(struct device *dev)
1140 {
1141         struct fw_unit *unit = fw_unit(dev);
1142         struct sbp2_target *tgt = unit->device.driver_data;
1143
1144         sbp2_target_put(tgt);
1145         return 0;
1146 }
1147
1148 static void sbp2_reconnect(struct work_struct *work)
1149 {
1150         struct sbp2_logical_unit *lu =
1151                 container_of(work, struct sbp2_logical_unit, work.work);
1152         struct sbp2_target *tgt = lu->tgt;
1153         struct fw_device *device = fw_device(tgt->unit->device.parent);
1154         int generation, node_id, local_node_id;
1155
1156         if (fw_device_is_shutdown(device))
1157                 goto out;
1158
1159         generation    = device->generation;
1160         smp_rmb();    /* node_id must not be older than generation */
1161         node_id       = device->node_id;
1162         local_node_id = device->card->node_id;
1163
1164         if (sbp2_send_management_orb(lu, node_id, generation,
1165                                      SBP2_RECONNECT_REQUEST,
1166                                      lu->login_id, NULL) < 0) {
1167                 /*
1168                  * If reconnect was impossible even though we are in the
1169                  * current generation, fall back and try to log in again.
1170                  *
1171                  * We could check for "Function rejected" status, but
1172                  * looking at the bus generation as simpler and more general.
1173                  */
1174                 smp_rmb(); /* get current card generation */
1175                 if (generation == device->card->generation ||
1176                     lu->retries++ >= 5) {
1177                         fw_error("%s: failed to reconnect\n", tgt->bus_id);
1178                         lu->retries = 0;
1179                         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1180                 }
1181                 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1182                 goto out;
1183         }
1184
1185         tgt->node_id      = node_id;
1186         tgt->address_high = local_node_id << 16;
1187         sbp2_set_generation(lu, generation);
1188
1189         fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1190                   tgt->bus_id, lu->lun, lu->retries);
1191
1192         sbp2_agent_reset(lu);
1193         sbp2_cancel_orbs(lu);
1194         sbp2_conditionally_unblock(lu);
1195  out:
1196         sbp2_target_put(tgt);
1197 }
1198
1199 static void sbp2_update(struct fw_unit *unit)
1200 {
1201         struct sbp2_target *tgt = unit->device.driver_data;
1202         struct sbp2_logical_unit *lu;
1203
1204         fw_device_enable_phys_dma(fw_device(unit->device.parent));
1205
1206         /*
1207          * Fw-core serializes sbp2_update() against sbp2_remove().
1208          * Iteration over tgt->lu_list is therefore safe here.
1209          */
1210         list_for_each_entry(lu, &tgt->lu_list, link) {
1211                 sbp2_conditionally_block(lu);
1212                 lu->retries = 0;
1213                 sbp2_queue_work(lu, 0);
1214         }
1215 }
1216
1217 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1218 #define SBP2_SW_VERSION_ENTRY   0x00010483
1219
1220 static const struct fw_device_id sbp2_id_table[] = {
1221         {
1222                 .match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
1223                 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1224                 .version      = SBP2_SW_VERSION_ENTRY,
1225         },
1226         { }
1227 };
1228
1229 static struct fw_driver sbp2_driver = {
1230         .driver   = {
1231                 .owner  = THIS_MODULE,
1232                 .name   = sbp2_driver_name,
1233                 .bus    = &fw_bus_type,
1234                 .probe  = sbp2_probe,
1235                 .remove = sbp2_remove,
1236         },
1237         .update   = sbp2_update,
1238         .id_table = sbp2_id_table,
1239 };
1240
1241 static unsigned int
1242 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1243 {
1244         int sam_status;
1245
1246         sense_data[0] = 0x70;
1247         sense_data[1] = 0x0;
1248         sense_data[2] = sbp2_status[1];
1249         sense_data[3] = sbp2_status[4];
1250         sense_data[4] = sbp2_status[5];
1251         sense_data[5] = sbp2_status[6];
1252         sense_data[6] = sbp2_status[7];
1253         sense_data[7] = 10;
1254         sense_data[8] = sbp2_status[8];
1255         sense_data[9] = sbp2_status[9];
1256         sense_data[10] = sbp2_status[10];
1257         sense_data[11] = sbp2_status[11];
1258         sense_data[12] = sbp2_status[2];
1259         sense_data[13] = sbp2_status[3];
1260         sense_data[14] = sbp2_status[12];
1261         sense_data[15] = sbp2_status[13];
1262
1263         sam_status = sbp2_status[0] & 0x3f;
1264
1265         switch (sam_status) {
1266         case SAM_STAT_GOOD:
1267         case SAM_STAT_CHECK_CONDITION:
1268         case SAM_STAT_CONDITION_MET:
1269         case SAM_STAT_BUSY:
1270         case SAM_STAT_RESERVATION_CONFLICT:
1271         case SAM_STAT_COMMAND_TERMINATED:
1272                 return DID_OK << 16 | sam_status;
1273
1274         default:
1275                 return DID_ERROR << 16;
1276         }
1277 }
1278
1279 static void
1280 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1281 {
1282         struct sbp2_command_orb *orb =
1283                 container_of(base_orb, struct sbp2_command_orb, base);
1284         struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1285         int result;
1286
1287         if (status != NULL) {
1288                 if (STATUS_GET_DEAD(*status))
1289                         sbp2_agent_reset_no_wait(orb->lu);
1290
1291                 switch (STATUS_GET_RESPONSE(*status)) {
1292                 case SBP2_STATUS_REQUEST_COMPLETE:
1293                         result = DID_OK << 16;
1294                         break;
1295                 case SBP2_STATUS_TRANSPORT_FAILURE:
1296                         result = DID_BUS_BUSY << 16;
1297                         break;
1298                 case SBP2_STATUS_ILLEGAL_REQUEST:
1299                 case SBP2_STATUS_VENDOR_DEPENDENT:
1300                 default:
1301                         result = DID_ERROR << 16;
1302                         break;
1303                 }
1304
1305                 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1306                         result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1307                                                            orb->cmd->sense_buffer);
1308         } else {
1309                 /*
1310                  * If the orb completes with status == NULL, something
1311                  * went wrong, typically a bus reset happened mid-orb
1312                  * or when sending the write (less likely).
1313                  */
1314                 result = DID_BUS_BUSY << 16;
1315                 sbp2_conditionally_block(orb->lu);
1316         }
1317
1318         dma_unmap_single(device->card->device, orb->base.request_bus,
1319                          sizeof(orb->request), DMA_TO_DEVICE);
1320
1321         if (scsi_sg_count(orb->cmd) > 0)
1322                 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1323                              scsi_sg_count(orb->cmd),
1324                              orb->cmd->sc_data_direction);
1325
1326         if (orb->page_table_bus != 0)
1327                 dma_unmap_single(device->card->device, orb->page_table_bus,
1328                                  sizeof(orb->page_table), DMA_TO_DEVICE);
1329
1330         orb->cmd->result = result;
1331         orb->done(orb->cmd);
1332 }
1333
1334 static int
1335 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1336                      struct sbp2_logical_unit *lu)
1337 {
1338         struct scatterlist *sg;
1339         int sg_len, l, i, j, count;
1340         dma_addr_t sg_addr;
1341
1342         sg = scsi_sglist(orb->cmd);
1343         count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1344                            orb->cmd->sc_data_direction);
1345         if (count == 0)
1346                 goto fail;
1347
1348         /*
1349          * Handle the special case where there is only one element in
1350          * the scatter list by converting it to an immediate block
1351          * request. This is also a workaround for broken devices such
1352          * as the second generation iPod which doesn't support page
1353          * tables.
1354          */
1355         if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1356                 orb->request.data_descriptor.high =
1357                         cpu_to_be32(lu->tgt->address_high);
1358                 orb->request.data_descriptor.low  =
1359                         cpu_to_be32(sg_dma_address(sg));
1360                 orb->request.misc |=
1361                         cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1362                 return 0;
1363         }
1364
1365         /*
1366          * Convert the scatterlist to an sbp2 page table.  If any
1367          * scatterlist entries are too big for sbp2, we split them as we
1368          * go.  Even if we ask the block I/O layer to not give us sg
1369          * elements larger than 65535 bytes, some IOMMUs may merge sg elements
1370          * during DMA mapping, and Linux currently doesn't prevent this.
1371          */
1372         for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
1373                 sg_len = sg_dma_len(sg);
1374                 sg_addr = sg_dma_address(sg);
1375                 while (sg_len) {
1376                         /* FIXME: This won't get us out of the pinch. */
1377                         if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
1378                                 fw_error("page table overflow\n");
1379                                 goto fail_page_table;
1380                         }
1381                         l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1382                         orb->page_table[j].low = cpu_to_be32(sg_addr);
1383                         orb->page_table[j].high = cpu_to_be32(l << 16);
1384                         sg_addr += l;
1385                         sg_len -= l;
1386                         j++;
1387                 }
1388         }
1389
1390         orb->page_table_bus =
1391                 dma_map_single(device->card->device, orb->page_table,
1392                                sizeof(orb->page_table), DMA_TO_DEVICE);
1393         if (dma_mapping_error(orb->page_table_bus))
1394                 goto fail_page_table;
1395
1396         /*
1397          * The data_descriptor pointer is the one case where we need
1398          * to fill in the node ID part of the address.  All other
1399          * pointers assume that the data referenced reside on the
1400          * initiator (i.e. us), but data_descriptor can refer to data
1401          * on other nodes so we need to put our ID in descriptor.high.
1402          */
1403         orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1404         orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
1405         orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1406                                          COMMAND_ORB_DATA_SIZE(j));
1407
1408         return 0;
1409
1410  fail_page_table:
1411         dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1412                      orb->cmd->sc_data_direction);
1413  fail:
1414         return -ENOMEM;
1415 }
1416
1417 /* SCSI stack integration */
1418
1419 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1420 {
1421         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1422         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1423         struct sbp2_command_orb *orb;
1424         unsigned int max_payload;
1425         int retval = SCSI_MLQUEUE_HOST_BUSY;
1426
1427         /*
1428          * Bidirectional commands are not yet implemented, and unknown
1429          * transfer direction not handled.
1430          */
1431         if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1432                 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1433                 cmd->result = DID_ERROR << 16;
1434                 done(cmd);
1435                 return 0;
1436         }
1437
1438         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1439         if (orb == NULL) {
1440                 fw_notify("failed to alloc orb\n");
1441                 return SCSI_MLQUEUE_HOST_BUSY;
1442         }
1443
1444         /* Initialize rcode to something not RCODE_COMPLETE. */
1445         orb->base.rcode = -1;
1446         kref_init(&orb->base.kref);
1447
1448         orb->lu   = lu;
1449         orb->done = done;
1450         orb->cmd  = cmd;
1451
1452         orb->request.next.high   = cpu_to_be32(SBP2_ORB_NULL);
1453         /*
1454          * At speed 100 we can do 512 bytes per packet, at speed 200,
1455          * 1024 bytes per packet etc.  The SBP-2 max_payload field
1456          * specifies the max payload size as 2 ^ (max_payload + 2), so
1457          * if we set this to max_speed + 7, we get the right value.
1458          */
1459         max_payload = min(device->max_speed + 7,
1460                           device->card->max_receive - 1);
1461         orb->request.misc = cpu_to_be32(
1462                 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1463                 COMMAND_ORB_SPEED(device->max_speed) |
1464                 COMMAND_ORB_NOTIFY);
1465
1466         if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1467                 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1468
1469         if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1470                 goto out;
1471
1472         memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1473
1474         orb->base.callback = complete_command_orb;
1475         orb->base.request_bus =
1476                 dma_map_single(device->card->device, &orb->request,
1477                                sizeof(orb->request), DMA_TO_DEVICE);
1478         if (dma_mapping_error(orb->base.request_bus))
1479                 goto out;
1480
1481         sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
1482                       lu->command_block_agent_address + SBP2_ORB_POINTER);
1483         retval = 0;
1484  out:
1485         kref_put(&orb->base.kref, free_orb);
1486         return retval;
1487 }
1488
1489 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1490 {
1491         struct sbp2_logical_unit *lu = sdev->hostdata;
1492
1493         /* (Re-)Adding logical units via the SCSI stack is not supported. */
1494         if (!lu)
1495                 return -ENOSYS;
1496
1497         sdev->allow_restart = 1;
1498
1499         /* SBP-2 requires quadlet alignment of the data buffers. */
1500         blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1501
1502         if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1503                 sdev->inquiry_len = 36;
1504
1505         return 0;
1506 }
1507
1508 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1509 {
1510         struct sbp2_logical_unit *lu = sdev->hostdata;
1511
1512         sdev->use_10_for_rw = 1;
1513
1514         if (sdev->type == TYPE_ROM)
1515                 sdev->use_10_for_ms = 1;
1516
1517         if (sdev->type == TYPE_DISK &&
1518             lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1519                 sdev->skip_ms_page_8 = 1;
1520
1521         if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1522                 sdev->fix_capacity = 1;
1523
1524         if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1525                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1526
1527         return 0;
1528 }
1529
1530 /*
1531  * Called by scsi stack when something has really gone wrong.  Usually
1532  * called when a command has timed-out for some reason.
1533  */
1534 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1535 {
1536         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1537
1538         fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1539         sbp2_agent_reset(lu);
1540         sbp2_cancel_orbs(lu);
1541
1542         return SUCCESS;
1543 }
1544
1545 /*
1546  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1547  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1548  *
1549  * This is the concatenation of target port identifier and logical unit
1550  * identifier as per SAM-2...SAM-4 annex A.
1551  */
1552 static ssize_t
1553 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1554                             char *buf)
1555 {
1556         struct scsi_device *sdev = to_scsi_device(dev);
1557         struct sbp2_logical_unit *lu;
1558         struct fw_device *device;
1559
1560         if (!sdev)
1561                 return 0;
1562
1563         lu = sdev->hostdata;
1564         device = fw_device(lu->tgt->unit->device.parent);
1565
1566         return sprintf(buf, "%08x%08x:%06x:%04x\n",
1567                         device->config_rom[3], device->config_rom[4],
1568                         lu->tgt->directory_id, lu->lun);
1569 }
1570
1571 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1572
1573 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1574         &dev_attr_ieee1394_id,
1575         NULL
1576 };
1577
1578 static struct scsi_host_template scsi_driver_template = {
1579         .module                 = THIS_MODULE,
1580         .name                   = "SBP-2 IEEE-1394",
1581         .proc_name              = sbp2_driver_name,
1582         .queuecommand           = sbp2_scsi_queuecommand,
1583         .slave_alloc            = sbp2_scsi_slave_alloc,
1584         .slave_configure        = sbp2_scsi_slave_configure,
1585         .eh_abort_handler       = sbp2_scsi_abort,
1586         .this_id                = -1,
1587         .sg_tablesize           = SG_ALL,
1588         .use_clustering         = ENABLE_CLUSTERING,
1589         .cmd_per_lun            = 1,
1590         .can_queue              = 1,
1591         .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1592 };
1593
1594 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1595 MODULE_DESCRIPTION("SCSI over IEEE1394");
1596 MODULE_LICENSE("GPL");
1597 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1598
1599 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1600 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1601 MODULE_ALIAS("sbp2");
1602 #endif
1603
1604 static int __init sbp2_init(void)
1605 {
1606         sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1607         if (!sbp2_wq)
1608                 return -ENOMEM;
1609
1610         return driver_register(&sbp2_driver.driver);
1611 }
1612
1613 static void __exit sbp2_cleanup(void)
1614 {
1615         driver_unregister(&sbp2_driver.driver);
1616         destroy_workqueue(sbp2_wq);
1617 }
1618
1619 module_init(sbp2_init);
1620 module_exit(sbp2_cleanup);