]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/firewire/fw-ohci.c
firewire: fw-ohci: use of uninitialized data in AR handler
[linux-2.6-omap-h63xx.git] / drivers / firewire / fw-ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33
34 #include <asm/page.h>
35 #include <asm/system.h>
36
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40
41 #include "fw-ohci.h"
42 #include "fw-transaction.h"
43
44 #define DESCRIPTOR_OUTPUT_MORE          0
45 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
46 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
47 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
48 #define DESCRIPTOR_STATUS               (1 << 11)
49 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
50 #define DESCRIPTOR_PING                 (1 << 7)
51 #define DESCRIPTOR_YY                   (1 << 6)
52 #define DESCRIPTOR_NO_IRQ               (0 << 4)
53 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
54 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
55 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
56 #define DESCRIPTOR_WAIT                 (3 << 0)
57
58 struct descriptor {
59         __le16 req_count;
60         __le16 control;
61         __le32 data_address;
62         __le32 branch_address;
63         __le16 res_count;
64         __le16 transfer_status;
65 } __attribute__((aligned(16)));
66
67 struct db_descriptor {
68         __le16 first_size;
69         __le16 control;
70         __le16 second_req_count;
71         __le16 first_req_count;
72         __le32 branch_address;
73         __le16 second_res_count;
74         __le16 first_res_count;
75         __le32 reserved0;
76         __le32 first_buffer;
77         __le32 second_buffer;
78         __le32 reserved1;
79 } __attribute__((aligned(16)));
80
81 #define CONTROL_SET(regs)       (regs)
82 #define CONTROL_CLEAR(regs)     ((regs) + 4)
83 #define COMMAND_PTR(regs)       ((regs) + 12)
84 #define CONTEXT_MATCH(regs)     ((regs) + 16)
85
86 struct ar_buffer {
87         struct descriptor descriptor;
88         struct ar_buffer *next;
89         __le32 data[0];
90 };
91
92 struct ar_context {
93         struct fw_ohci *ohci;
94         struct ar_buffer *current_buffer;
95         struct ar_buffer *last_buffer;
96         void *pointer;
97         u32 regs;
98         struct tasklet_struct tasklet;
99 };
100
101 struct context;
102
103 typedef int (*descriptor_callback_t)(struct context *ctx,
104                                      struct descriptor *d,
105                                      struct descriptor *last);
106
107 /*
108  * A buffer that contains a block of DMA-able coherent memory used for
109  * storing a portion of a DMA descriptor program.
110  */
111 struct descriptor_buffer {
112         struct list_head list;
113         dma_addr_t buffer_bus;
114         size_t buffer_size;
115         size_t used;
116         struct descriptor buffer[0];
117 };
118
119 struct context {
120         struct fw_ohci *ohci;
121         u32 regs;
122         int total_allocation;
123
124         /*
125          * List of page-sized buffers for storing DMA descriptors.
126          * Head of list contains buffers in use and tail of list contains
127          * free buffers.
128          */
129         struct list_head buffer_list;
130
131         /*
132          * Pointer to a buffer inside buffer_list that contains the tail
133          * end of the current DMA program.
134          */
135         struct descriptor_buffer *buffer_tail;
136
137         /*
138          * The descriptor containing the branch address of the first
139          * descriptor that has not yet been filled by the device.
140          */
141         struct descriptor *last;
142
143         /*
144          * The last descriptor in the DMA program.  It contains the branch
145          * address that must be updated upon appending a new descriptor.
146          */
147         struct descriptor *prev;
148
149         descriptor_callback_t callback;
150
151         struct tasklet_struct tasklet;
152 };
153
154 #define IT_HEADER_SY(v)          ((v) <<  0)
155 #define IT_HEADER_TCODE(v)       ((v) <<  4)
156 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
157 #define IT_HEADER_TAG(v)         ((v) << 14)
158 #define IT_HEADER_SPEED(v)       ((v) << 16)
159 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
160
161 struct iso_context {
162         struct fw_iso_context base;
163         struct context context;
164         int excess_bytes;
165         void *header;
166         size_t header_length;
167 };
168
169 #define CONFIG_ROM_SIZE 1024
170
171 struct fw_ohci {
172         struct fw_card card;
173
174         u32 version;
175         __iomem char *registers;
176         dma_addr_t self_id_bus;
177         __le32 *self_id_cpu;
178         struct tasklet_struct bus_reset_tasklet;
179         int node_id;
180         int generation;
181         int request_generation; /* for timestamping incoming requests */
182         u32 bus_seconds;
183         bool old_uninorth;
184         bool bus_reset_packet_quirk;
185
186         /*
187          * Spinlock for accessing fw_ohci data.  Never call out of
188          * this driver with this lock held.
189          */
190         spinlock_t lock;
191         u32 self_id_buffer[512];
192
193         /* Config rom buffers */
194         __be32 *config_rom;
195         dma_addr_t config_rom_bus;
196         __be32 *next_config_rom;
197         dma_addr_t next_config_rom_bus;
198         u32 next_header;
199
200         struct ar_context ar_request_ctx;
201         struct ar_context ar_response_ctx;
202         struct context at_request_ctx;
203         struct context at_response_ctx;
204
205         u32 it_context_mask;
206         struct iso_context *it_context_list;
207         u32 ir_context_mask;
208         struct iso_context *ir_context_list;
209 };
210
211 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
212 {
213         return container_of(card, struct fw_ohci, card);
214 }
215
216 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
217 #define IR_CONTEXT_BUFFER_FILL          0x80000000
218 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
219 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
220 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
221 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
222
223 #define CONTEXT_RUN     0x8000
224 #define CONTEXT_WAKE    0x1000
225 #define CONTEXT_DEAD    0x0800
226 #define CONTEXT_ACTIVE  0x0400
227
228 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
229 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
230 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
231
232 #define FW_OHCI_MAJOR                   240
233 #define OHCI1394_REGISTER_SIZE          0x800
234 #define OHCI_LOOP_COUNT                 500
235 #define OHCI1394_PCI_HCI_Control        0x40
236 #define SELF_ID_BUF_SIZE                0x800
237 #define OHCI_TCODE_PHY_PACKET           0x0e
238 #define OHCI_VERSION_1_1                0x010010
239
240 static char ohci_driver_name[] = KBUILD_MODNAME;
241
242 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
243
244 #define OHCI_PARAM_DEBUG_AT_AR          1
245 #define OHCI_PARAM_DEBUG_SELFIDS        2
246 #define OHCI_PARAM_DEBUG_IRQS           4
247 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
248
249 static int param_debug;
250 module_param_named(debug, param_debug, int, 0644);
251 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
252         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
253         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
254         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
255         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
256         ", or a combination, or all = -1)");
257
258 static void log_irqs(u32 evt)
259 {
260         if (likely(!(param_debug &
261                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
262                 return;
263
264         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
265             !(evt & OHCI1394_busReset))
266                 return;
267
268         printk(KERN_DEBUG KBUILD_MODNAME ": IRQ "
269                "%08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
270                evt,
271                evt & OHCI1394_selfIDComplete    ? " selfID"             : "",
272                evt & OHCI1394_RQPkt             ? " AR_req"             : "",
273                evt & OHCI1394_RSPkt             ? " AR_resp"            : "",
274                evt & OHCI1394_reqTxComplete     ? " AT_req"             : "",
275                evt & OHCI1394_respTxComplete    ? " AT_resp"            : "",
276                evt & OHCI1394_isochRx           ? " IR"                 : "",
277                evt & OHCI1394_isochTx           ? " IT"                 : "",
278                evt & OHCI1394_postedWriteErr    ? " postedWriteErr"     : "",
279                evt & OHCI1394_cycleTooLong      ? " cycleTooLong"       : "",
280                evt & OHCI1394_cycle64Seconds    ? " cycle64Seconds"     : "",
281                evt & OHCI1394_regAccessFail     ? " regAccessFail"      : "",
282                evt & OHCI1394_busReset          ? " busReset"           : "",
283                evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
284                        OHCI1394_RSPkt | OHCI1394_reqTxComplete |
285                        OHCI1394_respTxComplete | OHCI1394_isochRx |
286                        OHCI1394_isochTx | OHCI1394_postedWriteErr |
287                        OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
288                        OHCI1394_regAccessFail | OHCI1394_busReset)
289                                                 ? " ?"                  : "");
290 }
291
292 static const char *speed[] = {
293         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
294 };
295 static const char *power[] = {
296         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
297         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
298 };
299 static const char port[] = { '.', '-', 'p', 'c', };
300
301 static char _p(u32 *s, int shift)
302 {
303         return port[*s >> shift & 3];
304 }
305
306 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
307 {
308         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
309                 return;
310
311         printk(KERN_DEBUG KBUILD_MODNAME ": %d selfIDs, generation %d, "
312                "local node ID %04x\n", self_id_count, generation, node_id);
313
314         for (; self_id_count--; ++s)
315                 if ((*s & 1 << 23) == 0)
316                         printk(KERN_DEBUG "selfID 0: %08x, phy %d [%c%c%c] "
317                                "%s gc=%d %s %s%s%s\n",
318                                *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
319                                speed[*s >> 14 & 3], *s >> 16 & 63,
320                                power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
321                                *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
322                 else
323                         printk(KERN_DEBUG "selfID n: %08x, phy %d "
324                                "[%c%c%c%c%c%c%c%c]\n",
325                                *s, *s >> 24 & 63,
326                                _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
327                                _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
328 }
329
330 static const char *evts[] = {
331         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
332         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
333         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
334         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
335         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
336         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
337         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
338         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
339         [0x10] = "-reserved-",          [0x11] = "ack_complete",
340         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
341         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
342         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
343         [0x18] = "-reserved-",          [0x19] = "-reserved-",
344         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
345         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
346         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
347         [0x20] = "pending/cancelled",
348 };
349 static const char *tcodes[] = {
350         [0x0] = "QW req",               [0x1] = "BW req",
351         [0x2] = "W resp",               [0x3] = "-reserved-",
352         [0x4] = "QR req",               [0x5] = "BR req",
353         [0x6] = "QR resp",              [0x7] = "BR resp",
354         [0x8] = "cycle start",          [0x9] = "Lk req",
355         [0xa] = "async stream packet",  [0xb] = "Lk resp",
356         [0xc] = "-reserved-",           [0xd] = "-reserved-",
357         [0xe] = "link internal",        [0xf] = "-reserved-",
358 };
359 static const char *phys[] = {
360         [0x0] = "phy config packet",    [0x1] = "link-on packet",
361         [0x2] = "self-id packet",       [0x3] = "-reserved-",
362 };
363
364 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
365 {
366         int tcode = header[0] >> 4 & 0xf;
367         char specific[12];
368
369         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
370                 return;
371
372         if (unlikely(evt >= ARRAY_SIZE(evts)))
373                         evt = 0x1f;
374
375         if (evt == OHCI1394_evt_bus_reset) {
376                 printk(KERN_DEBUG "A%c evt_bus_reset, generation %d\n",
377                        dir, (header[2] >> 16) & 0xff);
378                 return;
379         }
380
381         if (header[0] == ~header[1]) {
382                 printk(KERN_DEBUG "A%c %s, %s, %08x\n",
383                        dir, evts[evt], phys[header[0] >> 30 & 0x3],
384                        header[0]);
385                 return;
386         }
387
388         switch (tcode) {
389         case 0x0: case 0x6: case 0x8:
390                 snprintf(specific, sizeof(specific), " = %08x",
391                          be32_to_cpu((__force __be32)header[3]));
392                 break;
393         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
394                 snprintf(specific, sizeof(specific), " %x,%x",
395                          header[3] >> 16, header[3] & 0xffff);
396                 break;
397         default:
398                 specific[0] = '\0';
399         }
400
401         switch (tcode) {
402         case 0xe: case 0xa:
403                 printk(KERN_DEBUG "A%c %s, %s\n",
404                        dir, evts[evt], tcodes[tcode]);
405                 break;
406         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
407                 printk(KERN_DEBUG "A%c spd %x tl %02x, "
408                        "%04x -> %04x, %s, "
409                        "%s, %04x%08x%s\n",
410                        dir, speed, header[0] >> 10 & 0x3f,
411                        header[1] >> 16, header[0] >> 16, evts[evt],
412                        tcodes[tcode], header[1] & 0xffff, header[2], specific);
413                 break;
414         default:
415                 printk(KERN_DEBUG "A%c spd %x tl %02x, "
416                        "%04x -> %04x, %s, "
417                        "%s%s\n",
418                        dir, speed, header[0] >> 10 & 0x3f,
419                        header[1] >> 16, header[0] >> 16, evts[evt],
420                        tcodes[tcode], specific);
421         }
422 }
423
424 #else
425
426 #define log_irqs(evt)
427 #define log_selfids(node_id, generation, self_id_count, sid)
428 #define log_ar_at_event(dir, speed, header, evt)
429
430 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
431
432 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
433 {
434         writel(data, ohci->registers + offset);
435 }
436
437 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
438 {
439         return readl(ohci->registers + offset);
440 }
441
442 static inline void flush_writes(const struct fw_ohci *ohci)
443 {
444         /* Do a dummy read to flush writes. */
445         reg_read(ohci, OHCI1394_Version);
446 }
447
448 static int
449 ohci_update_phy_reg(struct fw_card *card, int addr,
450                     int clear_bits, int set_bits)
451 {
452         struct fw_ohci *ohci = fw_ohci(card);
453         u32 val, old;
454
455         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
456         flush_writes(ohci);
457         msleep(2);
458         val = reg_read(ohci, OHCI1394_PhyControl);
459         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
460                 fw_error("failed to set phy reg bits.\n");
461                 return -EBUSY;
462         }
463
464         old = OHCI1394_PhyControl_ReadData(val);
465         old = (old & ~clear_bits) | set_bits;
466         reg_write(ohci, OHCI1394_PhyControl,
467                   OHCI1394_PhyControl_Write(addr, old));
468
469         return 0;
470 }
471
472 static int ar_context_add_page(struct ar_context *ctx)
473 {
474         struct device *dev = ctx->ohci->card.device;
475         struct ar_buffer *ab;
476         dma_addr_t uninitialized_var(ab_bus);
477         size_t offset;
478
479         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
480         if (ab == NULL)
481                 return -ENOMEM;
482
483         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
484         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
485                                                     DESCRIPTOR_STATUS |
486                                                     DESCRIPTOR_BRANCH_ALWAYS);
487         offset = offsetof(struct ar_buffer, data);
488         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
489         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
490         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
491         ab->descriptor.branch_address = 0;
492
493         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
494         ctx->last_buffer->next = ab;
495         ctx->last_buffer = ab;
496
497         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
498         flush_writes(ctx->ohci);
499
500         return 0;
501 }
502
503 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
504 #define cond_le32_to_cpu(v) \
505         (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
506 #else
507 #define cond_le32_to_cpu(v) le32_to_cpu(v)
508 #endif
509
510 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
511 {
512         struct fw_ohci *ohci = ctx->ohci;
513         struct fw_packet p;
514         u32 status, length, tcode;
515         int evt;
516
517         p.header[0] = cond_le32_to_cpu(buffer[0]);
518         p.header[1] = cond_le32_to_cpu(buffer[1]);
519         p.header[2] = cond_le32_to_cpu(buffer[2]);
520
521         tcode = (p.header[0] >> 4) & 0x0f;
522         switch (tcode) {
523         case TCODE_WRITE_QUADLET_REQUEST:
524         case TCODE_READ_QUADLET_RESPONSE:
525                 p.header[3] = (__force __u32) buffer[3];
526                 p.header_length = 16;
527                 p.payload_length = 0;
528                 break;
529
530         case TCODE_READ_BLOCK_REQUEST :
531                 p.header[3] = cond_le32_to_cpu(buffer[3]);
532                 p.header_length = 16;
533                 p.payload_length = 0;
534                 break;
535
536         case TCODE_WRITE_BLOCK_REQUEST:
537         case TCODE_READ_BLOCK_RESPONSE:
538         case TCODE_LOCK_REQUEST:
539         case TCODE_LOCK_RESPONSE:
540                 p.header[3] = cond_le32_to_cpu(buffer[3]);
541                 p.header_length = 16;
542                 p.payload_length = p.header[3] >> 16;
543                 break;
544
545         case TCODE_WRITE_RESPONSE:
546         case TCODE_READ_QUADLET_REQUEST:
547         case OHCI_TCODE_PHY_PACKET:
548                 p.header_length = 12;
549                 p.payload_length = 0;
550                 break;
551
552         default:
553                 /* FIXME: Stop context, discard everything, and restart? */
554                 p.header_length = 0;
555                 p.payload_length = 0;
556         }
557
558         p.payload = (void *) buffer + p.header_length;
559
560         /* FIXME: What to do about evt_* errors? */
561         length = (p.header_length + p.payload_length + 3) / 4;
562         status = cond_le32_to_cpu(buffer[length]);
563         evt    = (status >> 16) & 0x1f;
564
565         p.ack        = evt - 16;
566         p.speed      = (status >> 21) & 0x7;
567         p.timestamp  = status & 0xffff;
568         p.generation = ohci->request_generation;
569
570         log_ar_at_event('R', p.speed, p.header, evt);
571
572         /*
573          * The OHCI bus reset handler synthesizes a phy packet with
574          * the new generation number when a bus reset happens (see
575          * section 8.4.2.3).  This helps us determine when a request
576          * was received and make sure we send the response in the same
577          * generation.  We only need this for requests; for responses
578          * we use the unique tlabel for finding the matching
579          * request.
580          *
581          * Alas some chips sometimes emit bus reset packets with a
582          * wrong generation.  We set the correct generation for these
583          * at a slightly incorrect time (in bus_reset_tasklet).
584          */
585         if (evt == OHCI1394_evt_bus_reset) {
586                 if (!ohci->bus_reset_packet_quirk)
587                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
588         } else if (ctx == &ohci->ar_request_ctx) {
589                 fw_core_handle_request(&ohci->card, &p);
590         } else {
591                 fw_core_handle_response(&ohci->card, &p);
592         }
593
594         return buffer + length + 1;
595 }
596
597 static void ar_context_tasklet(unsigned long data)
598 {
599         struct ar_context *ctx = (struct ar_context *)data;
600         struct fw_ohci *ohci = ctx->ohci;
601         struct ar_buffer *ab;
602         struct descriptor *d;
603         void *buffer, *end;
604
605         ab = ctx->current_buffer;
606         d = &ab->descriptor;
607
608         if (d->res_count == 0) {
609                 size_t size, rest, offset;
610                 dma_addr_t start_bus;
611                 void *start;
612
613                 /*
614                  * This descriptor is finished and we may have a
615                  * packet split across this and the next buffer. We
616                  * reuse the page for reassembling the split packet.
617                  */
618
619                 offset = offsetof(struct ar_buffer, data);
620                 start = buffer = ab;
621                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
622
623                 ab = ab->next;
624                 d = &ab->descriptor;
625                 size = buffer + PAGE_SIZE - ctx->pointer;
626                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
627                 memmove(buffer, ctx->pointer, size);
628                 memcpy(buffer + size, ab->data, rest);
629                 ctx->current_buffer = ab;
630                 ctx->pointer = (void *) ab->data + rest;
631                 end = buffer + size + rest;
632
633                 while (buffer < end)
634                         buffer = handle_ar_packet(ctx, buffer);
635
636                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
637                                   start, start_bus);
638                 ar_context_add_page(ctx);
639         } else {
640                 buffer = ctx->pointer;
641                 ctx->pointer = end =
642                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
643
644                 while (buffer < end)
645                         buffer = handle_ar_packet(ctx, buffer);
646         }
647 }
648
649 static int
650 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
651 {
652         struct ar_buffer ab;
653
654         ctx->regs        = regs;
655         ctx->ohci        = ohci;
656         ctx->last_buffer = &ab;
657         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
658
659         ar_context_add_page(ctx);
660         ar_context_add_page(ctx);
661         ctx->current_buffer = ab.next;
662         ctx->pointer = ctx->current_buffer->data;
663
664         return 0;
665 }
666
667 static void ar_context_run(struct ar_context *ctx)
668 {
669         struct ar_buffer *ab = ctx->current_buffer;
670         dma_addr_t ab_bus;
671         size_t offset;
672
673         offset = offsetof(struct ar_buffer, data);
674         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
675
676         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
677         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
678         flush_writes(ctx->ohci);
679 }
680
681 static struct descriptor *
682 find_branch_descriptor(struct descriptor *d, int z)
683 {
684         int b, key;
685
686         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
687         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
688
689         /* figure out which descriptor the branch address goes in */
690         if (z == 2 && (b == 3 || key == 2))
691                 return d;
692         else
693                 return d + z - 1;
694 }
695
696 static void context_tasklet(unsigned long data)
697 {
698         struct context *ctx = (struct context *) data;
699         struct descriptor *d, *last;
700         u32 address;
701         int z;
702         struct descriptor_buffer *desc;
703
704         desc = list_entry(ctx->buffer_list.next,
705                         struct descriptor_buffer, list);
706         last = ctx->last;
707         while (last->branch_address != 0) {
708                 struct descriptor_buffer *old_desc = desc;
709                 address = le32_to_cpu(last->branch_address);
710                 z = address & 0xf;
711                 address &= ~0xf;
712
713                 /* If the branch address points to a buffer outside of the
714                  * current buffer, advance to the next buffer. */
715                 if (address < desc->buffer_bus ||
716                                 address >= desc->buffer_bus + desc->used)
717                         desc = list_entry(desc->list.next,
718                                         struct descriptor_buffer, list);
719                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
720                 last = find_branch_descriptor(d, z);
721
722                 if (!ctx->callback(ctx, d, last))
723                         break;
724
725                 if (old_desc != desc) {
726                         /* If we've advanced to the next buffer, move the
727                          * previous buffer to the free list. */
728                         unsigned long flags;
729                         old_desc->used = 0;
730                         spin_lock_irqsave(&ctx->ohci->lock, flags);
731                         list_move_tail(&old_desc->list, &ctx->buffer_list);
732                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
733                 }
734                 ctx->last = last;
735         }
736 }
737
738 /*
739  * Allocate a new buffer and add it to the list of free buffers for this
740  * context.  Must be called with ohci->lock held.
741  */
742 static int
743 context_add_buffer(struct context *ctx)
744 {
745         struct descriptor_buffer *desc;
746         dma_addr_t uninitialized_var(bus_addr);
747         int offset;
748
749         /*
750          * 16MB of descriptors should be far more than enough for any DMA
751          * program.  This will catch run-away userspace or DoS attacks.
752          */
753         if (ctx->total_allocation >= 16*1024*1024)
754                 return -ENOMEM;
755
756         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
757                         &bus_addr, GFP_ATOMIC);
758         if (!desc)
759                 return -ENOMEM;
760
761         offset = (void *)&desc->buffer - (void *)desc;
762         desc->buffer_size = PAGE_SIZE - offset;
763         desc->buffer_bus = bus_addr + offset;
764         desc->used = 0;
765
766         list_add_tail(&desc->list, &ctx->buffer_list);
767         ctx->total_allocation += PAGE_SIZE;
768
769         return 0;
770 }
771
772 static int
773 context_init(struct context *ctx, struct fw_ohci *ohci,
774              u32 regs, descriptor_callback_t callback)
775 {
776         ctx->ohci = ohci;
777         ctx->regs = regs;
778         ctx->total_allocation = 0;
779
780         INIT_LIST_HEAD(&ctx->buffer_list);
781         if (context_add_buffer(ctx) < 0)
782                 return -ENOMEM;
783
784         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
785                         struct descriptor_buffer, list);
786
787         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
788         ctx->callback = callback;
789
790         /*
791          * We put a dummy descriptor in the buffer that has a NULL
792          * branch address and looks like it's been sent.  That way we
793          * have a descriptor to append DMA programs to.
794          */
795         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
796         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
797         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
798         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
799         ctx->last = ctx->buffer_tail->buffer;
800         ctx->prev = ctx->buffer_tail->buffer;
801
802         return 0;
803 }
804
805 static void
806 context_release(struct context *ctx)
807 {
808         struct fw_card *card = &ctx->ohci->card;
809         struct descriptor_buffer *desc, *tmp;
810
811         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
812                 dma_free_coherent(card->device, PAGE_SIZE, desc,
813                         desc->buffer_bus -
814                         ((void *)&desc->buffer - (void *)desc));
815 }
816
817 /* Must be called with ohci->lock held */
818 static struct descriptor *
819 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
820 {
821         struct descriptor *d = NULL;
822         struct descriptor_buffer *desc = ctx->buffer_tail;
823
824         if (z * sizeof(*d) > desc->buffer_size)
825                 return NULL;
826
827         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
828                 /* No room for the descriptor in this buffer, so advance to the
829                  * next one. */
830
831                 if (desc->list.next == &ctx->buffer_list) {
832                         /* If there is no free buffer next in the list,
833                          * allocate one. */
834                         if (context_add_buffer(ctx) < 0)
835                                 return NULL;
836                 }
837                 desc = list_entry(desc->list.next,
838                                 struct descriptor_buffer, list);
839                 ctx->buffer_tail = desc;
840         }
841
842         d = desc->buffer + desc->used / sizeof(*d);
843         memset(d, 0, z * sizeof(*d));
844         *d_bus = desc->buffer_bus + desc->used;
845
846         return d;
847 }
848
849 static void context_run(struct context *ctx, u32 extra)
850 {
851         struct fw_ohci *ohci = ctx->ohci;
852
853         reg_write(ohci, COMMAND_PTR(ctx->regs),
854                   le32_to_cpu(ctx->last->branch_address));
855         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
856         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
857         flush_writes(ohci);
858 }
859
860 static void context_append(struct context *ctx,
861                            struct descriptor *d, int z, int extra)
862 {
863         dma_addr_t d_bus;
864         struct descriptor_buffer *desc = ctx->buffer_tail;
865
866         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
867
868         desc->used += (z + extra) * sizeof(*d);
869         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
870         ctx->prev = find_branch_descriptor(d, z);
871
872         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
873         flush_writes(ctx->ohci);
874 }
875
876 static void context_stop(struct context *ctx)
877 {
878         u32 reg;
879         int i;
880
881         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
882         flush_writes(ctx->ohci);
883
884         for (i = 0; i < 10; i++) {
885                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
886                 if ((reg & CONTEXT_ACTIVE) == 0)
887                         break;
888
889                 fw_notify("context_stop: still active (0x%08x)\n", reg);
890                 mdelay(1);
891         }
892 }
893
894 struct driver_data {
895         struct fw_packet *packet;
896 };
897
898 /*
899  * This function apppends a packet to the DMA queue for transmission.
900  * Must always be called with the ochi->lock held to ensure proper
901  * generation handling and locking around packet queue manipulation.
902  */
903 static int
904 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
905 {
906         struct fw_ohci *ohci = ctx->ohci;
907         dma_addr_t d_bus, uninitialized_var(payload_bus);
908         struct driver_data *driver_data;
909         struct descriptor *d, *last;
910         __le32 *header;
911         int z, tcode;
912         u32 reg;
913
914         d = context_get_descriptors(ctx, 4, &d_bus);
915         if (d == NULL) {
916                 packet->ack = RCODE_SEND_ERROR;
917                 return -1;
918         }
919
920         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
921         d[0].res_count = cpu_to_le16(packet->timestamp);
922
923         /*
924          * The DMA format for asyncronous link packets is different
925          * from the IEEE1394 layout, so shift the fields around
926          * accordingly.  If header_length is 8, it's a PHY packet, to
927          * which we need to prepend an extra quadlet.
928          */
929
930         header = (__le32 *) &d[1];
931         if (packet->header_length > 8) {
932                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
933                                         (packet->speed << 16));
934                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
935                                         (packet->header[0] & 0xffff0000));
936                 header[2] = cpu_to_le32(packet->header[2]);
937
938                 tcode = (packet->header[0] >> 4) & 0x0f;
939                 if (TCODE_IS_BLOCK_PACKET(tcode))
940                         header[3] = cpu_to_le32(packet->header[3]);
941                 else
942                         header[3] = (__force __le32) packet->header[3];
943
944                 d[0].req_count = cpu_to_le16(packet->header_length);
945         } else {
946                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
947                                         (packet->speed << 16));
948                 header[1] = cpu_to_le32(packet->header[0]);
949                 header[2] = cpu_to_le32(packet->header[1]);
950                 d[0].req_count = cpu_to_le16(12);
951         }
952
953         driver_data = (struct driver_data *) &d[3];
954         driver_data->packet = packet;
955         packet->driver_data = driver_data;
956
957         if (packet->payload_length > 0) {
958                 payload_bus =
959                         dma_map_single(ohci->card.device, packet->payload,
960                                        packet->payload_length, DMA_TO_DEVICE);
961                 if (dma_mapping_error(payload_bus)) {
962                         packet->ack = RCODE_SEND_ERROR;
963                         return -1;
964                 }
965
966                 d[2].req_count    = cpu_to_le16(packet->payload_length);
967                 d[2].data_address = cpu_to_le32(payload_bus);
968                 last = &d[2];
969                 z = 3;
970         } else {
971                 last = &d[0];
972                 z = 2;
973         }
974
975         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
976                                      DESCRIPTOR_IRQ_ALWAYS |
977                                      DESCRIPTOR_BRANCH_ALWAYS);
978
979         /*
980          * If the controller and packet generations don't match, we need to
981          * bail out and try again.  If IntEvent.busReset is set, the AT context
982          * is halted, so appending to the context and trying to run it is
983          * futile.  Most controllers do the right thing and just flush the AT
984          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
985          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
986          * up stalling out.  So we just bail out in software and try again
987          * later, and everyone is happy.
988          * FIXME: Document how the locking works.
989          */
990         if (ohci->generation != packet->generation ||
991             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
992                 if (packet->payload_length > 0)
993                         dma_unmap_single(ohci->card.device, payload_bus,
994                                          packet->payload_length, DMA_TO_DEVICE);
995                 packet->ack = RCODE_GENERATION;
996                 return -1;
997         }
998
999         context_append(ctx, d, z, 4 - z);
1000
1001         /* If the context isn't already running, start it up. */
1002         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1003         if ((reg & CONTEXT_RUN) == 0)
1004                 context_run(ctx, 0);
1005
1006         return 0;
1007 }
1008
1009 static int handle_at_packet(struct context *context,
1010                             struct descriptor *d,
1011                             struct descriptor *last)
1012 {
1013         struct driver_data *driver_data;
1014         struct fw_packet *packet;
1015         struct fw_ohci *ohci = context->ohci;
1016         dma_addr_t payload_bus;
1017         int evt;
1018
1019         if (last->transfer_status == 0)
1020                 /* This descriptor isn't done yet, stop iteration. */
1021                 return 0;
1022
1023         driver_data = (struct driver_data *) &d[3];
1024         packet = driver_data->packet;
1025         if (packet == NULL)
1026                 /* This packet was cancelled, just continue. */
1027                 return 1;
1028
1029         payload_bus = le32_to_cpu(last->data_address);
1030         if (payload_bus != 0)
1031                 dma_unmap_single(ohci->card.device, payload_bus,
1032                                  packet->payload_length, DMA_TO_DEVICE);
1033
1034         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1035         packet->timestamp = le16_to_cpu(last->res_count);
1036
1037         log_ar_at_event('T', packet->speed, packet->header, evt);
1038
1039         switch (evt) {
1040         case OHCI1394_evt_timeout:
1041                 /* Async response transmit timed out. */
1042                 packet->ack = RCODE_CANCELLED;
1043                 break;
1044
1045         case OHCI1394_evt_flushed:
1046                 /*
1047                  * The packet was flushed should give same error as
1048                  * when we try to use a stale generation count.
1049                  */
1050                 packet->ack = RCODE_GENERATION;
1051                 break;
1052
1053         case OHCI1394_evt_missing_ack:
1054                 /*
1055                  * Using a valid (current) generation count, but the
1056                  * node is not on the bus or not sending acks.
1057                  */
1058                 packet->ack = RCODE_NO_ACK;
1059                 break;
1060
1061         case ACK_COMPLETE + 0x10:
1062         case ACK_PENDING + 0x10:
1063         case ACK_BUSY_X + 0x10:
1064         case ACK_BUSY_A + 0x10:
1065         case ACK_BUSY_B + 0x10:
1066         case ACK_DATA_ERROR + 0x10:
1067         case ACK_TYPE_ERROR + 0x10:
1068                 packet->ack = evt - 0x10;
1069                 break;
1070
1071         default:
1072                 packet->ack = RCODE_SEND_ERROR;
1073                 break;
1074         }
1075
1076         packet->callback(packet, &ohci->card, packet->ack);
1077
1078         return 1;
1079 }
1080
1081 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1082 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1083 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1084 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1085 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1086
1087 static void
1088 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1089 {
1090         struct fw_packet response;
1091         int tcode, length, i;
1092
1093         tcode = HEADER_GET_TCODE(packet->header[0]);
1094         if (TCODE_IS_BLOCK_PACKET(tcode))
1095                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1096         else
1097                 length = 4;
1098
1099         i = csr - CSR_CONFIG_ROM;
1100         if (i + length > CONFIG_ROM_SIZE) {
1101                 fw_fill_response(&response, packet->header,
1102                                  RCODE_ADDRESS_ERROR, NULL, 0);
1103         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1104                 fw_fill_response(&response, packet->header,
1105                                  RCODE_TYPE_ERROR, NULL, 0);
1106         } else {
1107                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1108                                  (void *) ohci->config_rom + i, length);
1109         }
1110
1111         fw_core_handle_response(&ohci->card, &response);
1112 }
1113
1114 static void
1115 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1116 {
1117         struct fw_packet response;
1118         int tcode, length, ext_tcode, sel;
1119         __be32 *payload, lock_old;
1120         u32 lock_arg, lock_data;
1121
1122         tcode = HEADER_GET_TCODE(packet->header[0]);
1123         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1124         payload = packet->payload;
1125         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1126
1127         if (tcode == TCODE_LOCK_REQUEST &&
1128             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1129                 lock_arg = be32_to_cpu(payload[0]);
1130                 lock_data = be32_to_cpu(payload[1]);
1131         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1132                 lock_arg = 0;
1133                 lock_data = 0;
1134         } else {
1135                 fw_fill_response(&response, packet->header,
1136                                  RCODE_TYPE_ERROR, NULL, 0);
1137                 goto out;
1138         }
1139
1140         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1141         reg_write(ohci, OHCI1394_CSRData, lock_data);
1142         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1143         reg_write(ohci, OHCI1394_CSRControl, sel);
1144
1145         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1146                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1147         else
1148                 fw_notify("swap not done yet\n");
1149
1150         fw_fill_response(&response, packet->header,
1151                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1152  out:
1153         fw_core_handle_response(&ohci->card, &response);
1154 }
1155
1156 static void
1157 handle_local_request(struct context *ctx, struct fw_packet *packet)
1158 {
1159         u64 offset;
1160         u32 csr;
1161
1162         if (ctx == &ctx->ohci->at_request_ctx) {
1163                 packet->ack = ACK_PENDING;
1164                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1165         }
1166
1167         offset =
1168                 ((unsigned long long)
1169                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1170                 packet->header[2];
1171         csr = offset - CSR_REGISTER_BASE;
1172
1173         /* Handle config rom reads. */
1174         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1175                 handle_local_rom(ctx->ohci, packet, csr);
1176         else switch (csr) {
1177         case CSR_BUS_MANAGER_ID:
1178         case CSR_BANDWIDTH_AVAILABLE:
1179         case CSR_CHANNELS_AVAILABLE_HI:
1180         case CSR_CHANNELS_AVAILABLE_LO:
1181                 handle_local_lock(ctx->ohci, packet, csr);
1182                 break;
1183         default:
1184                 if (ctx == &ctx->ohci->at_request_ctx)
1185                         fw_core_handle_request(&ctx->ohci->card, packet);
1186                 else
1187                         fw_core_handle_response(&ctx->ohci->card, packet);
1188                 break;
1189         }
1190
1191         if (ctx == &ctx->ohci->at_response_ctx) {
1192                 packet->ack = ACK_COMPLETE;
1193                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1194         }
1195 }
1196
1197 static void
1198 at_context_transmit(struct context *ctx, struct fw_packet *packet)
1199 {
1200         unsigned long flags;
1201         int retval;
1202
1203         spin_lock_irqsave(&ctx->ohci->lock, flags);
1204
1205         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1206             ctx->ohci->generation == packet->generation) {
1207                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1208                 handle_local_request(ctx, packet);
1209                 return;
1210         }
1211
1212         retval = at_context_queue_packet(ctx, packet);
1213         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1214
1215         if (retval < 0)
1216                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1217
1218 }
1219
1220 static void bus_reset_tasklet(unsigned long data)
1221 {
1222         struct fw_ohci *ohci = (struct fw_ohci *)data;
1223         int self_id_count, i, j, reg;
1224         int generation, new_generation;
1225         unsigned long flags;
1226         void *free_rom = NULL;
1227         dma_addr_t free_rom_bus = 0;
1228
1229         reg = reg_read(ohci, OHCI1394_NodeID);
1230         if (!(reg & OHCI1394_NodeID_idValid)) {
1231                 fw_notify("node ID not valid, new bus reset in progress\n");
1232                 return;
1233         }
1234         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1235                 fw_notify("malconfigured bus\n");
1236                 return;
1237         }
1238         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1239                                OHCI1394_NodeID_nodeNumber);
1240
1241         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1242         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1243                 fw_notify("inconsistent self IDs\n");
1244                 return;
1245         }
1246         /*
1247          * The count in the SelfIDCount register is the number of
1248          * bytes in the self ID receive buffer.  Since we also receive
1249          * the inverted quadlets and a header quadlet, we shift one
1250          * bit extra to get the actual number of self IDs.
1251          */
1252         self_id_count = (reg >> 3) & 0x3ff;
1253         if (self_id_count == 0) {
1254                 fw_notify("inconsistent self IDs\n");
1255                 return;
1256         }
1257         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1258         rmb();
1259
1260         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1261                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1262                         fw_notify("inconsistent self IDs\n");
1263                         return;
1264                 }
1265                 ohci->self_id_buffer[j] =
1266                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1267         }
1268         rmb();
1269
1270         /*
1271          * Check the consistency of the self IDs we just read.  The
1272          * problem we face is that a new bus reset can start while we
1273          * read out the self IDs from the DMA buffer. If this happens,
1274          * the DMA buffer will be overwritten with new self IDs and we
1275          * will read out inconsistent data.  The OHCI specification
1276          * (section 11.2) recommends a technique similar to
1277          * linux/seqlock.h, where we remember the generation of the
1278          * self IDs in the buffer before reading them out and compare
1279          * it to the current generation after reading them out.  If
1280          * the two generations match we know we have a consistent set
1281          * of self IDs.
1282          */
1283
1284         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1285         if (new_generation != generation) {
1286                 fw_notify("recursive bus reset detected, "
1287                           "discarding self ids\n");
1288                 return;
1289         }
1290
1291         /* FIXME: Document how the locking works. */
1292         spin_lock_irqsave(&ohci->lock, flags);
1293
1294         ohci->generation = generation;
1295         context_stop(&ohci->at_request_ctx);
1296         context_stop(&ohci->at_response_ctx);
1297         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1298
1299         if (ohci->bus_reset_packet_quirk)
1300                 ohci->request_generation = generation;
1301
1302         /*
1303          * This next bit is unrelated to the AT context stuff but we
1304          * have to do it under the spinlock also.  If a new config rom
1305          * was set up before this reset, the old one is now no longer
1306          * in use and we can free it. Update the config rom pointers
1307          * to point to the current config rom and clear the
1308          * next_config_rom pointer so a new udpate can take place.
1309          */
1310
1311         if (ohci->next_config_rom != NULL) {
1312                 if (ohci->next_config_rom != ohci->config_rom) {
1313                         free_rom      = ohci->config_rom;
1314                         free_rom_bus  = ohci->config_rom_bus;
1315                 }
1316                 ohci->config_rom      = ohci->next_config_rom;
1317                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1318                 ohci->next_config_rom = NULL;
1319
1320                 /*
1321                  * Restore config_rom image and manually update
1322                  * config_rom registers.  Writing the header quadlet
1323                  * will indicate that the config rom is ready, so we
1324                  * do that last.
1325                  */
1326                 reg_write(ohci, OHCI1394_BusOptions,
1327                           be32_to_cpu(ohci->config_rom[2]));
1328                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1329                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1330         }
1331
1332 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1333         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1334         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1335 #endif
1336
1337         spin_unlock_irqrestore(&ohci->lock, flags);
1338
1339         if (free_rom)
1340                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1341                                   free_rom, free_rom_bus);
1342
1343         log_selfids(ohci->node_id, generation,
1344                     self_id_count, ohci->self_id_buffer);
1345
1346         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1347                                  self_id_count, ohci->self_id_buffer);
1348 }
1349
1350 static irqreturn_t irq_handler(int irq, void *data)
1351 {
1352         struct fw_ohci *ohci = data;
1353         u32 event, iso_event, cycle_time;
1354         int i;
1355
1356         event = reg_read(ohci, OHCI1394_IntEventClear);
1357
1358         if (!event || !~event)
1359                 return IRQ_NONE;
1360
1361         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1362         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1363         log_irqs(event);
1364
1365         if (event & OHCI1394_selfIDComplete)
1366                 tasklet_schedule(&ohci->bus_reset_tasklet);
1367
1368         if (event & OHCI1394_RQPkt)
1369                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1370
1371         if (event & OHCI1394_RSPkt)
1372                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1373
1374         if (event & OHCI1394_reqTxComplete)
1375                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1376
1377         if (event & OHCI1394_respTxComplete)
1378                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1379
1380         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1381         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1382
1383         while (iso_event) {
1384                 i = ffs(iso_event) - 1;
1385                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1386                 iso_event &= ~(1 << i);
1387         }
1388
1389         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1390         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1391
1392         while (iso_event) {
1393                 i = ffs(iso_event) - 1;
1394                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1395                 iso_event &= ~(1 << i);
1396         }
1397
1398         if (unlikely(event & OHCI1394_regAccessFail))
1399                 fw_error("Register access failure - "
1400                          "please notify linux1394-devel@lists.sf.net\n");
1401
1402         if (unlikely(event & OHCI1394_postedWriteErr))
1403                 fw_error("PCI posted write error\n");
1404
1405         if (unlikely(event & OHCI1394_cycleTooLong)) {
1406                 if (printk_ratelimit())
1407                         fw_notify("isochronous cycle too long\n");
1408                 reg_write(ohci, OHCI1394_LinkControlSet,
1409                           OHCI1394_LinkControl_cycleMaster);
1410         }
1411
1412         if (event & OHCI1394_cycle64Seconds) {
1413                 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1414                 if ((cycle_time & 0x80000000) == 0)
1415                         ohci->bus_seconds++;
1416         }
1417
1418         return IRQ_HANDLED;
1419 }
1420
1421 static int software_reset(struct fw_ohci *ohci)
1422 {
1423         int i;
1424
1425         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1426
1427         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1428                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1429                      OHCI1394_HCControl_softReset) == 0)
1430                         return 0;
1431                 msleep(1);
1432         }
1433
1434         return -EBUSY;
1435 }
1436
1437 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1438 {
1439         struct fw_ohci *ohci = fw_ohci(card);
1440         struct pci_dev *dev = to_pci_dev(card->device);
1441         u32 lps;
1442         int i;
1443
1444         if (software_reset(ohci)) {
1445                 fw_error("Failed to reset ohci card.\n");
1446                 return -EBUSY;
1447         }
1448
1449         /*
1450          * Now enable LPS, which we need in order to start accessing
1451          * most of the registers.  In fact, on some cards (ALI M5251),
1452          * accessing registers in the SClk domain without LPS enabled
1453          * will lock up the machine.  Wait 50msec to make sure we have
1454          * full link enabled.  However, with some cards (well, at least
1455          * a JMicron PCIe card), we have to try again sometimes.
1456          */
1457         reg_write(ohci, OHCI1394_HCControlSet,
1458                   OHCI1394_HCControl_LPS |
1459                   OHCI1394_HCControl_postedWriteEnable);
1460         flush_writes(ohci);
1461
1462         for (lps = 0, i = 0; !lps && i < 3; i++) {
1463                 msleep(50);
1464                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1465                       OHCI1394_HCControl_LPS;
1466         }
1467
1468         if (!lps) {
1469                 fw_error("Failed to set Link Power Status\n");
1470                 return -EIO;
1471         }
1472
1473         reg_write(ohci, OHCI1394_HCControlClear,
1474                   OHCI1394_HCControl_noByteSwapData);
1475
1476         reg_write(ohci, OHCI1394_LinkControlSet,
1477                   OHCI1394_LinkControl_rcvSelfID |
1478                   OHCI1394_LinkControl_cycleTimerEnable |
1479                   OHCI1394_LinkControl_cycleMaster);
1480
1481         reg_write(ohci, OHCI1394_ATRetries,
1482                   OHCI1394_MAX_AT_REQ_RETRIES |
1483                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1484                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1485
1486         ar_context_run(&ohci->ar_request_ctx);
1487         ar_context_run(&ohci->ar_response_ctx);
1488
1489         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1490         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1491         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1492         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1493         reg_write(ohci, OHCI1394_IntMaskSet,
1494                   OHCI1394_selfIDComplete |
1495                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1496                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1497                   OHCI1394_isochRx | OHCI1394_isochTx |
1498                   OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1499                   OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
1500                   OHCI1394_masterIntEnable);
1501         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1502                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1503
1504         /* Activate link_on bit and contender bit in our self ID packets.*/
1505         if (ohci_update_phy_reg(card, 4, 0,
1506                                 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1507                 return -EIO;
1508
1509         /*
1510          * When the link is not yet enabled, the atomic config rom
1511          * update mechanism described below in ohci_set_config_rom()
1512          * is not active.  We have to update ConfigRomHeader and
1513          * BusOptions manually, and the write to ConfigROMmap takes
1514          * effect immediately.  We tie this to the enabling of the
1515          * link, so we have a valid config rom before enabling - the
1516          * OHCI requires that ConfigROMhdr and BusOptions have valid
1517          * values before enabling.
1518          *
1519          * However, when the ConfigROMmap is written, some controllers
1520          * always read back quadlets 0 and 2 from the config rom to
1521          * the ConfigRomHeader and BusOptions registers on bus reset.
1522          * They shouldn't do that in this initial case where the link
1523          * isn't enabled.  This means we have to use the same
1524          * workaround here, setting the bus header to 0 and then write
1525          * the right values in the bus reset tasklet.
1526          */
1527
1528         if (config_rom) {
1529                 ohci->next_config_rom =
1530                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1531                                            &ohci->next_config_rom_bus,
1532                                            GFP_KERNEL);
1533                 if (ohci->next_config_rom == NULL)
1534                         return -ENOMEM;
1535
1536                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1537                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1538         } else {
1539                 /*
1540                  * In the suspend case, config_rom is NULL, which
1541                  * means that we just reuse the old config rom.
1542                  */
1543                 ohci->next_config_rom = ohci->config_rom;
1544                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1545         }
1546
1547         ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1548         ohci->next_config_rom[0] = 0;
1549         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1550         reg_write(ohci, OHCI1394_BusOptions,
1551                   be32_to_cpu(ohci->next_config_rom[2]));
1552         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1553
1554         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1555
1556         if (request_irq(dev->irq, irq_handler,
1557                         IRQF_SHARED, ohci_driver_name, ohci)) {
1558                 fw_error("Failed to allocate shared interrupt %d.\n",
1559                          dev->irq);
1560                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1561                                   ohci->config_rom, ohci->config_rom_bus);
1562                 return -EIO;
1563         }
1564
1565         reg_write(ohci, OHCI1394_HCControlSet,
1566                   OHCI1394_HCControl_linkEnable |
1567                   OHCI1394_HCControl_BIBimageValid);
1568         flush_writes(ohci);
1569
1570         /*
1571          * We are ready to go, initiate bus reset to finish the
1572          * initialization.
1573          */
1574
1575         fw_core_initiate_bus_reset(&ohci->card, 1);
1576
1577         return 0;
1578 }
1579
1580 static int
1581 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1582 {
1583         struct fw_ohci *ohci;
1584         unsigned long flags;
1585         int retval = -EBUSY;
1586         __be32 *next_config_rom;
1587         dma_addr_t uninitialized_var(next_config_rom_bus);
1588
1589         ohci = fw_ohci(card);
1590
1591         /*
1592          * When the OHCI controller is enabled, the config rom update
1593          * mechanism is a bit tricky, but easy enough to use.  See
1594          * section 5.5.6 in the OHCI specification.
1595          *
1596          * The OHCI controller caches the new config rom address in a
1597          * shadow register (ConfigROMmapNext) and needs a bus reset
1598          * for the changes to take place.  When the bus reset is
1599          * detected, the controller loads the new values for the
1600          * ConfigRomHeader and BusOptions registers from the specified
1601          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1602          * shadow register. All automatically and atomically.
1603          *
1604          * Now, there's a twist to this story.  The automatic load of
1605          * ConfigRomHeader and BusOptions doesn't honor the
1606          * noByteSwapData bit, so with a be32 config rom, the
1607          * controller will load be32 values in to these registers
1608          * during the atomic update, even on litte endian
1609          * architectures.  The workaround we use is to put a 0 in the
1610          * header quadlet; 0 is endian agnostic and means that the
1611          * config rom isn't ready yet.  In the bus reset tasklet we
1612          * then set up the real values for the two registers.
1613          *
1614          * We use ohci->lock to avoid racing with the code that sets
1615          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1616          */
1617
1618         next_config_rom =
1619                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1620                                    &next_config_rom_bus, GFP_KERNEL);
1621         if (next_config_rom == NULL)
1622                 return -ENOMEM;
1623
1624         spin_lock_irqsave(&ohci->lock, flags);
1625
1626         if (ohci->next_config_rom == NULL) {
1627                 ohci->next_config_rom = next_config_rom;
1628                 ohci->next_config_rom_bus = next_config_rom_bus;
1629
1630                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1631                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1632                                   length * 4);
1633
1634                 ohci->next_header = config_rom[0];
1635                 ohci->next_config_rom[0] = 0;
1636
1637                 reg_write(ohci, OHCI1394_ConfigROMmap,
1638                           ohci->next_config_rom_bus);
1639                 retval = 0;
1640         }
1641
1642         spin_unlock_irqrestore(&ohci->lock, flags);
1643
1644         /*
1645          * Now initiate a bus reset to have the changes take
1646          * effect. We clean up the old config rom memory and DMA
1647          * mappings in the bus reset tasklet, since the OHCI
1648          * controller could need to access it before the bus reset
1649          * takes effect.
1650          */
1651         if (retval == 0)
1652                 fw_core_initiate_bus_reset(&ohci->card, 1);
1653         else
1654                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1655                                   next_config_rom, next_config_rom_bus);
1656
1657         return retval;
1658 }
1659
1660 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1661 {
1662         struct fw_ohci *ohci = fw_ohci(card);
1663
1664         at_context_transmit(&ohci->at_request_ctx, packet);
1665 }
1666
1667 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1668 {
1669         struct fw_ohci *ohci = fw_ohci(card);
1670
1671         at_context_transmit(&ohci->at_response_ctx, packet);
1672 }
1673
1674 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1675 {
1676         struct fw_ohci *ohci = fw_ohci(card);
1677         struct context *ctx = &ohci->at_request_ctx;
1678         struct driver_data *driver_data = packet->driver_data;
1679         int retval = -ENOENT;
1680
1681         tasklet_disable(&ctx->tasklet);
1682
1683         if (packet->ack != 0)
1684                 goto out;
1685
1686         log_ar_at_event('T', packet->speed, packet->header, 0x20);
1687         driver_data->packet = NULL;
1688         packet->ack = RCODE_CANCELLED;
1689         packet->callback(packet, &ohci->card, packet->ack);
1690         retval = 0;
1691
1692  out:
1693         tasklet_enable(&ctx->tasklet);
1694
1695         return retval;
1696 }
1697
1698 static int
1699 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1700 {
1701 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1702         return 0;
1703 #else
1704         struct fw_ohci *ohci = fw_ohci(card);
1705         unsigned long flags;
1706         int n, retval = 0;
1707
1708         /*
1709          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1710          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1711          */
1712
1713         spin_lock_irqsave(&ohci->lock, flags);
1714
1715         if (ohci->generation != generation) {
1716                 retval = -ESTALE;
1717                 goto out;
1718         }
1719
1720         /*
1721          * Note, if the node ID contains a non-local bus ID, physical DMA is
1722          * enabled for _all_ nodes on remote buses.
1723          */
1724
1725         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1726         if (n < 32)
1727                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1728         else
1729                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1730
1731         flush_writes(ohci);
1732  out:
1733         spin_unlock_irqrestore(&ohci->lock, flags);
1734         return retval;
1735 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1736 }
1737
1738 static u64
1739 ohci_get_bus_time(struct fw_card *card)
1740 {
1741         struct fw_ohci *ohci = fw_ohci(card);
1742         u32 cycle_time;
1743         u64 bus_time;
1744
1745         cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1746         bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1747
1748         return bus_time;
1749 }
1750
1751 static int handle_ir_dualbuffer_packet(struct context *context,
1752                                        struct descriptor *d,
1753                                        struct descriptor *last)
1754 {
1755         struct iso_context *ctx =
1756                 container_of(context, struct iso_context, context);
1757         struct db_descriptor *db = (struct db_descriptor *) d;
1758         __le32 *ir_header;
1759         size_t header_length;
1760         void *p, *end;
1761         int i;
1762
1763         if (db->first_res_count != 0 && db->second_res_count != 0) {
1764                 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1765                         /* This descriptor isn't done yet, stop iteration. */
1766                         return 0;
1767                 }
1768                 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1769         }
1770
1771         header_length = le16_to_cpu(db->first_req_count) -
1772                 le16_to_cpu(db->first_res_count);
1773
1774         i = ctx->header_length;
1775         p = db + 1;
1776         end = p + header_length;
1777         while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1778                 /*
1779                  * The iso header is byteswapped to little endian by
1780                  * the controller, but the remaining header quadlets
1781                  * are big endian.  We want to present all the headers
1782                  * as big endian, so we have to swap the first
1783                  * quadlet.
1784                  */
1785                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1786                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1787                 i += ctx->base.header_size;
1788                 ctx->excess_bytes +=
1789                         (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1790                 p += ctx->base.header_size + 4;
1791         }
1792         ctx->header_length = i;
1793
1794         ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1795                 le16_to_cpu(db->second_res_count);
1796
1797         if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1798                 ir_header = (__le32 *) (db + 1);
1799                 ctx->base.callback(&ctx->base,
1800                                    le32_to_cpu(ir_header[0]) & 0xffff,
1801                                    ctx->header_length, ctx->header,
1802                                    ctx->base.callback_data);
1803                 ctx->header_length = 0;
1804         }
1805
1806         return 1;
1807 }
1808
1809 static int handle_ir_packet_per_buffer(struct context *context,
1810                                        struct descriptor *d,
1811                                        struct descriptor *last)
1812 {
1813         struct iso_context *ctx =
1814                 container_of(context, struct iso_context, context);
1815         struct descriptor *pd;
1816         __le32 *ir_header;
1817         void *p;
1818         int i;
1819
1820         for (pd = d; pd <= last; pd++) {
1821                 if (pd->transfer_status)
1822                         break;
1823         }
1824         if (pd > last)
1825                 /* Descriptor(s) not done yet, stop iteration */
1826                 return 0;
1827
1828         i   = ctx->header_length;
1829         p   = last + 1;
1830
1831         if (ctx->base.header_size > 0 &&
1832                         i + ctx->base.header_size <= PAGE_SIZE) {
1833                 /*
1834                  * The iso header is byteswapped to little endian by
1835                  * the controller, but the remaining header quadlets
1836                  * are big endian.  We want to present all the headers
1837                  * as big endian, so we have to swap the first quadlet.
1838                  */
1839                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1840                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1841                 ctx->header_length += ctx->base.header_size;
1842         }
1843
1844         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1845                 ir_header = (__le32 *) p;
1846                 ctx->base.callback(&ctx->base,
1847                                    le32_to_cpu(ir_header[0]) & 0xffff,
1848                                    ctx->header_length, ctx->header,
1849                                    ctx->base.callback_data);
1850                 ctx->header_length = 0;
1851         }
1852
1853         return 1;
1854 }
1855
1856 static int handle_it_packet(struct context *context,
1857                             struct descriptor *d,
1858                             struct descriptor *last)
1859 {
1860         struct iso_context *ctx =
1861                 container_of(context, struct iso_context, context);
1862
1863         if (last->transfer_status == 0)
1864                 /* This descriptor isn't done yet, stop iteration. */
1865                 return 0;
1866
1867         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1868                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1869                                    0, NULL, ctx->base.callback_data);
1870
1871         return 1;
1872 }
1873
1874 static struct fw_iso_context *
1875 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1876 {
1877         struct fw_ohci *ohci = fw_ohci(card);
1878         struct iso_context *ctx, *list;
1879         descriptor_callback_t callback;
1880         u32 *mask, regs;
1881         unsigned long flags;
1882         int index, retval = -ENOMEM;
1883
1884         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1885                 mask = &ohci->it_context_mask;
1886                 list = ohci->it_context_list;
1887                 callback = handle_it_packet;
1888         } else {
1889                 mask = &ohci->ir_context_mask;
1890                 list = ohci->ir_context_list;
1891                 if (ohci->version >= OHCI_VERSION_1_1)
1892                         callback = handle_ir_dualbuffer_packet;
1893                 else
1894                         callback = handle_ir_packet_per_buffer;
1895         }
1896
1897         spin_lock_irqsave(&ohci->lock, flags);
1898         index = ffs(*mask) - 1;
1899         if (index >= 0)
1900                 *mask &= ~(1 << index);
1901         spin_unlock_irqrestore(&ohci->lock, flags);
1902
1903         if (index < 0)
1904                 return ERR_PTR(-EBUSY);
1905
1906         if (type == FW_ISO_CONTEXT_TRANSMIT)
1907                 regs = OHCI1394_IsoXmitContextBase(index);
1908         else
1909                 regs = OHCI1394_IsoRcvContextBase(index);
1910
1911         ctx = &list[index];
1912         memset(ctx, 0, sizeof(*ctx));
1913         ctx->header_length = 0;
1914         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1915         if (ctx->header == NULL)
1916                 goto out;
1917
1918         retval = context_init(&ctx->context, ohci, regs, callback);
1919         if (retval < 0)
1920                 goto out_with_header;
1921
1922         return &ctx->base;
1923
1924  out_with_header:
1925         free_page((unsigned long)ctx->header);
1926  out:
1927         spin_lock_irqsave(&ohci->lock, flags);
1928         *mask |= 1 << index;
1929         spin_unlock_irqrestore(&ohci->lock, flags);
1930
1931         return ERR_PTR(retval);
1932 }
1933
1934 static int ohci_start_iso(struct fw_iso_context *base,
1935                           s32 cycle, u32 sync, u32 tags)
1936 {
1937         struct iso_context *ctx = container_of(base, struct iso_context, base);
1938         struct fw_ohci *ohci = ctx->context.ohci;
1939         u32 control, match;
1940         int index;
1941
1942         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1943                 index = ctx - ohci->it_context_list;
1944                 match = 0;
1945                 if (cycle >= 0)
1946                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1947                                 (cycle & 0x7fff) << 16;
1948
1949                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1950                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1951                 context_run(&ctx->context, match);
1952         } else {
1953                 index = ctx - ohci->ir_context_list;
1954                 control = IR_CONTEXT_ISOCH_HEADER;
1955                 if (ohci->version >= OHCI_VERSION_1_1)
1956                         control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1957                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1958                 if (cycle >= 0) {
1959                         match |= (cycle & 0x07fff) << 12;
1960                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1961                 }
1962
1963                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1964                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1965                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1966                 context_run(&ctx->context, control);
1967         }
1968
1969         return 0;
1970 }
1971
1972 static int ohci_stop_iso(struct fw_iso_context *base)
1973 {
1974         struct fw_ohci *ohci = fw_ohci(base->card);
1975         struct iso_context *ctx = container_of(base, struct iso_context, base);
1976         int index;
1977
1978         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1979                 index = ctx - ohci->it_context_list;
1980                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1981         } else {
1982                 index = ctx - ohci->ir_context_list;
1983                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1984         }
1985         flush_writes(ohci);
1986         context_stop(&ctx->context);
1987
1988         return 0;
1989 }
1990
1991 static void ohci_free_iso_context(struct fw_iso_context *base)
1992 {
1993         struct fw_ohci *ohci = fw_ohci(base->card);
1994         struct iso_context *ctx = container_of(base, struct iso_context, base);
1995         unsigned long flags;
1996         int index;
1997
1998         ohci_stop_iso(base);
1999         context_release(&ctx->context);
2000         free_page((unsigned long)ctx->header);
2001
2002         spin_lock_irqsave(&ohci->lock, flags);
2003
2004         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2005                 index = ctx - ohci->it_context_list;
2006                 ohci->it_context_mask |= 1 << index;
2007         } else {
2008                 index = ctx - ohci->ir_context_list;
2009                 ohci->ir_context_mask |= 1 << index;
2010         }
2011
2012         spin_unlock_irqrestore(&ohci->lock, flags);
2013 }
2014
2015 static int
2016 ohci_queue_iso_transmit(struct fw_iso_context *base,
2017                         struct fw_iso_packet *packet,
2018                         struct fw_iso_buffer *buffer,
2019                         unsigned long payload)
2020 {
2021         struct iso_context *ctx = container_of(base, struct iso_context, base);
2022         struct descriptor *d, *last, *pd;
2023         struct fw_iso_packet *p;
2024         __le32 *header;
2025         dma_addr_t d_bus, page_bus;
2026         u32 z, header_z, payload_z, irq;
2027         u32 payload_index, payload_end_index, next_page_index;
2028         int page, end_page, i, length, offset;
2029
2030         /*
2031          * FIXME: Cycle lost behavior should be configurable: lose
2032          * packet, retransmit or terminate..
2033          */
2034
2035         p = packet;
2036         payload_index = payload;
2037
2038         if (p->skip)
2039                 z = 1;
2040         else
2041                 z = 2;
2042         if (p->header_length > 0)
2043                 z++;
2044
2045         /* Determine the first page the payload isn't contained in. */
2046         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2047         if (p->payload_length > 0)
2048                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2049         else
2050                 payload_z = 0;
2051
2052         z += payload_z;
2053
2054         /* Get header size in number of descriptors. */
2055         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2056
2057         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2058         if (d == NULL)
2059                 return -ENOMEM;
2060
2061         if (!p->skip) {
2062                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2063                 d[0].req_count = cpu_to_le16(8);
2064
2065                 header = (__le32 *) &d[1];
2066                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2067                                         IT_HEADER_TAG(p->tag) |
2068                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2069                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2070                                         IT_HEADER_SPEED(ctx->base.speed));
2071                 header[1] =
2072                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2073                                                           p->payload_length));
2074         }
2075
2076         if (p->header_length > 0) {
2077                 d[2].req_count    = cpu_to_le16(p->header_length);
2078                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2079                 memcpy(&d[z], p->header, p->header_length);
2080         }
2081
2082         pd = d + z - payload_z;
2083         payload_end_index = payload_index + p->payload_length;
2084         for (i = 0; i < payload_z; i++) {
2085                 page               = payload_index >> PAGE_SHIFT;
2086                 offset             = payload_index & ~PAGE_MASK;
2087                 next_page_index    = (page + 1) << PAGE_SHIFT;
2088                 length             =
2089                         min(next_page_index, payload_end_index) - payload_index;
2090                 pd[i].req_count    = cpu_to_le16(length);
2091
2092                 page_bus = page_private(buffer->pages[page]);
2093                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2094
2095                 payload_index += length;
2096         }
2097
2098         if (p->interrupt)
2099                 irq = DESCRIPTOR_IRQ_ALWAYS;
2100         else
2101                 irq = DESCRIPTOR_NO_IRQ;
2102
2103         last = z == 2 ? d : d + z - 1;
2104         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2105                                      DESCRIPTOR_STATUS |
2106                                      DESCRIPTOR_BRANCH_ALWAYS |
2107                                      irq);
2108
2109         context_append(&ctx->context, d, z, header_z);
2110
2111         return 0;
2112 }
2113
2114 static int
2115 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
2116                                   struct fw_iso_packet *packet,
2117                                   struct fw_iso_buffer *buffer,
2118                                   unsigned long payload)
2119 {
2120         struct iso_context *ctx = container_of(base, struct iso_context, base);
2121         struct db_descriptor *db = NULL;
2122         struct descriptor *d;
2123         struct fw_iso_packet *p;
2124         dma_addr_t d_bus, page_bus;
2125         u32 z, header_z, length, rest;
2126         int page, offset, packet_count, header_size;
2127
2128         /*
2129          * FIXME: Cycle lost behavior should be configurable: lose
2130          * packet, retransmit or terminate..
2131          */
2132
2133         p = packet;
2134         z = 2;
2135
2136         /*
2137          * The OHCI controller puts the status word in the header
2138          * buffer too, so we need 4 extra bytes per packet.
2139          */
2140         packet_count = p->header_length / ctx->base.header_size;
2141         header_size = packet_count * (ctx->base.header_size + 4);
2142
2143         /* Get header size in number of descriptors. */
2144         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2145         page     = payload >> PAGE_SHIFT;
2146         offset   = payload & ~PAGE_MASK;
2147         rest     = p->payload_length;
2148
2149         /* FIXME: make packet-per-buffer/dual-buffer a context option */
2150         while (rest > 0) {
2151                 d = context_get_descriptors(&ctx->context,
2152                                             z + header_z, &d_bus);
2153                 if (d == NULL)
2154                         return -ENOMEM;
2155
2156                 db = (struct db_descriptor *) d;
2157                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
2158                                           DESCRIPTOR_BRANCH_ALWAYS);
2159                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
2160                 if (p->skip && rest == p->payload_length) {
2161                         db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2162                         db->first_req_count = db->first_size;
2163                 } else {
2164                         db->first_req_count = cpu_to_le16(header_size);
2165                 }
2166                 db->first_res_count = db->first_req_count;
2167                 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
2168
2169                 if (p->skip && rest == p->payload_length)
2170                         length = 4;
2171                 else if (offset + rest < PAGE_SIZE)
2172                         length = rest;
2173                 else
2174                         length = PAGE_SIZE - offset;
2175
2176                 db->second_req_count = cpu_to_le16(length);
2177                 db->second_res_count = db->second_req_count;
2178                 page_bus = page_private(buffer->pages[page]);
2179                 db->second_buffer = cpu_to_le32(page_bus + offset);
2180
2181                 if (p->interrupt && length == rest)
2182                         db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2183
2184                 context_append(&ctx->context, d, z, header_z);
2185                 offset = (offset + length) & ~PAGE_MASK;
2186                 rest -= length;
2187                 if (offset == 0)
2188                         page++;
2189         }
2190
2191         return 0;
2192 }
2193
2194 static int
2195 ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2196                                          struct fw_iso_packet *packet,
2197                                          struct fw_iso_buffer *buffer,
2198                                          unsigned long payload)
2199 {
2200         struct iso_context *ctx = container_of(base, struct iso_context, base);
2201         struct descriptor *d = NULL, *pd = NULL;
2202         struct fw_iso_packet *p = packet;
2203         dma_addr_t d_bus, page_bus;
2204         u32 z, header_z, rest;
2205         int i, j, length;
2206         int page, offset, packet_count, header_size, payload_per_buffer;
2207
2208         /*
2209          * The OHCI controller puts the status word in the
2210          * buffer too, so we need 4 extra bytes per packet.
2211          */
2212         packet_count = p->header_length / ctx->base.header_size;
2213         header_size  = ctx->base.header_size + 4;
2214
2215         /* Get header size in number of descriptors. */
2216         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2217         page     = payload >> PAGE_SHIFT;
2218         offset   = payload & ~PAGE_MASK;
2219         payload_per_buffer = p->payload_length / packet_count;
2220
2221         for (i = 0; i < packet_count; i++) {
2222                 /* d points to the header descriptor */
2223                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2224                 d = context_get_descriptors(&ctx->context,
2225                                 z + header_z, &d_bus);
2226                 if (d == NULL)
2227                         return -ENOMEM;
2228
2229                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2230                                               DESCRIPTOR_INPUT_MORE);
2231                 if (p->skip && i == 0)
2232                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2233                 d->req_count    = cpu_to_le16(header_size);
2234                 d->res_count    = d->req_count;
2235                 d->transfer_status = 0;
2236                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2237
2238                 rest = payload_per_buffer;
2239                 for (j = 1; j < z; j++) {
2240                         pd = d + j;
2241                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2242                                                   DESCRIPTOR_INPUT_MORE);
2243
2244                         if (offset + rest < PAGE_SIZE)
2245                                 length = rest;
2246                         else
2247                                 length = PAGE_SIZE - offset;
2248                         pd->req_count = cpu_to_le16(length);
2249                         pd->res_count = pd->req_count;
2250                         pd->transfer_status = 0;
2251
2252                         page_bus = page_private(buffer->pages[page]);
2253                         pd->data_address = cpu_to_le32(page_bus + offset);
2254
2255                         offset = (offset + length) & ~PAGE_MASK;
2256                         rest -= length;
2257                         if (offset == 0)
2258                                 page++;
2259                 }
2260                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2261                                           DESCRIPTOR_INPUT_LAST |
2262                                           DESCRIPTOR_BRANCH_ALWAYS);
2263                 if (p->interrupt && i == packet_count - 1)
2264                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2265
2266                 context_append(&ctx->context, d, z, header_z);
2267         }
2268
2269         return 0;
2270 }
2271
2272 static int
2273 ohci_queue_iso(struct fw_iso_context *base,
2274                struct fw_iso_packet *packet,
2275                struct fw_iso_buffer *buffer,
2276                unsigned long payload)
2277 {
2278         struct iso_context *ctx = container_of(base, struct iso_context, base);
2279         unsigned long flags;
2280         int retval;
2281
2282         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2283         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2284                 retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
2285         else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
2286                 retval = ohci_queue_iso_receive_dualbuffer(base, packet,
2287                                                          buffer, payload);
2288         else
2289                 retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2290                                                                 buffer,
2291                                                                 payload);
2292         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2293
2294         return retval;
2295 }
2296
2297 static const struct fw_card_driver ohci_driver = {
2298         .name                   = ohci_driver_name,
2299         .enable                 = ohci_enable,
2300         .update_phy_reg         = ohci_update_phy_reg,
2301         .set_config_rom         = ohci_set_config_rom,
2302         .send_request           = ohci_send_request,
2303         .send_response          = ohci_send_response,
2304         .cancel_packet          = ohci_cancel_packet,
2305         .enable_phys_dma        = ohci_enable_phys_dma,
2306         .get_bus_time           = ohci_get_bus_time,
2307
2308         .allocate_iso_context   = ohci_allocate_iso_context,
2309         .free_iso_context       = ohci_free_iso_context,
2310         .queue_iso              = ohci_queue_iso,
2311         .start_iso              = ohci_start_iso,
2312         .stop_iso               = ohci_stop_iso,
2313 };
2314
2315 #ifdef CONFIG_PPC_PMAC
2316 static void ohci_pmac_on(struct pci_dev *dev)
2317 {
2318         if (machine_is(powermac)) {
2319                 struct device_node *ofn = pci_device_to_OF_node(dev);
2320
2321                 if (ofn) {
2322                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2323                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2324                 }
2325         }
2326 }
2327
2328 static void ohci_pmac_off(struct pci_dev *dev)
2329 {
2330         if (machine_is(powermac)) {
2331                 struct device_node *ofn = pci_device_to_OF_node(dev);
2332
2333                 if (ofn) {
2334                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2335                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2336                 }
2337         }
2338 }
2339 #else
2340 #define ohci_pmac_on(dev)
2341 #define ohci_pmac_off(dev)
2342 #endif /* CONFIG_PPC_PMAC */
2343
2344 static int __devinit
2345 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
2346 {
2347         struct fw_ohci *ohci;
2348         u32 bus_options, max_receive, link_speed;
2349         u64 guid;
2350         int err;
2351         size_t size;
2352
2353         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2354         if (ohci == NULL) {
2355                 fw_error("Could not malloc fw_ohci data.\n");
2356                 return -ENOMEM;
2357         }
2358
2359         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2360
2361         ohci_pmac_on(dev);
2362
2363         err = pci_enable_device(dev);
2364         if (err) {
2365                 fw_error("Failed to enable OHCI hardware.\n");
2366                 goto fail_free;
2367         }
2368
2369         pci_set_master(dev);
2370         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2371         pci_set_drvdata(dev, ohci);
2372
2373 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2374         ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2375                              dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2376 #endif
2377         ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;
2378
2379         spin_lock_init(&ohci->lock);
2380
2381         tasklet_init(&ohci->bus_reset_tasklet,
2382                      bus_reset_tasklet, (unsigned long)ohci);
2383
2384         err = pci_request_region(dev, 0, ohci_driver_name);
2385         if (err) {
2386                 fw_error("MMIO resource unavailable\n");
2387                 goto fail_disable;
2388         }
2389
2390         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2391         if (ohci->registers == NULL) {
2392                 fw_error("Failed to remap registers\n");
2393                 err = -ENXIO;
2394                 goto fail_iomem;
2395         }
2396
2397         ar_context_init(&ohci->ar_request_ctx, ohci,
2398                         OHCI1394_AsReqRcvContextControlSet);
2399
2400         ar_context_init(&ohci->ar_response_ctx, ohci,
2401                         OHCI1394_AsRspRcvContextControlSet);
2402
2403         context_init(&ohci->at_request_ctx, ohci,
2404                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2405
2406         context_init(&ohci->at_response_ctx, ohci,
2407                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2408
2409         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2410         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2411         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2412         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2413         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2414
2415         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2416         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2417         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2418         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2419         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2420
2421         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2422                 fw_error("Out of memory for it/ir contexts.\n");
2423                 err = -ENOMEM;
2424                 goto fail_registers;
2425         }
2426
2427         /* self-id dma buffer allocation */
2428         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2429                                                SELF_ID_BUF_SIZE,
2430                                                &ohci->self_id_bus,
2431                                                GFP_KERNEL);
2432         if (ohci->self_id_cpu == NULL) {
2433                 fw_error("Out of memory for self ID buffer.\n");
2434                 err = -ENOMEM;
2435                 goto fail_registers;
2436         }
2437
2438         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2439         max_receive = (bus_options >> 12) & 0xf;
2440         link_speed = bus_options & 0x7;
2441         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2442                 reg_read(ohci, OHCI1394_GUIDLo);
2443
2444         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2445         if (err < 0)
2446                 goto fail_self_id;
2447
2448         ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2449         fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2450                   dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
2451         return 0;
2452
2453  fail_self_id:
2454         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2455                           ohci->self_id_cpu, ohci->self_id_bus);
2456  fail_registers:
2457         kfree(ohci->it_context_list);
2458         kfree(ohci->ir_context_list);
2459         pci_iounmap(dev, ohci->registers);
2460  fail_iomem:
2461         pci_release_region(dev, 0);
2462  fail_disable:
2463         pci_disable_device(dev);
2464  fail_free:
2465         kfree(&ohci->card);
2466         ohci_pmac_off(dev);
2467
2468         return err;
2469 }
2470
2471 static void pci_remove(struct pci_dev *dev)
2472 {
2473         struct fw_ohci *ohci;
2474
2475         ohci = pci_get_drvdata(dev);
2476         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2477         flush_writes(ohci);
2478         fw_core_remove_card(&ohci->card);
2479
2480         /*
2481          * FIXME: Fail all pending packets here, now that the upper
2482          * layers can't queue any more.
2483          */
2484
2485         software_reset(ohci);
2486         free_irq(dev->irq, ohci);
2487         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2488                           ohci->self_id_cpu, ohci->self_id_bus);
2489         kfree(ohci->it_context_list);
2490         kfree(ohci->ir_context_list);
2491         pci_iounmap(dev, ohci->registers);
2492         pci_release_region(dev, 0);
2493         pci_disable_device(dev);
2494         kfree(&ohci->card);
2495         ohci_pmac_off(dev);
2496
2497         fw_notify("Removed fw-ohci device.\n");
2498 }
2499
2500 #ifdef CONFIG_PM
2501 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2502 {
2503         struct fw_ohci *ohci = pci_get_drvdata(dev);
2504         int err;
2505
2506         software_reset(ohci);
2507         free_irq(dev->irq, ohci);
2508         err = pci_save_state(dev);
2509         if (err) {
2510                 fw_error("pci_save_state failed\n");
2511                 return err;
2512         }
2513         err = pci_set_power_state(dev, pci_choose_state(dev, state));
2514         if (err)
2515                 fw_error("pci_set_power_state failed with %d\n", err);
2516         ohci_pmac_off(dev);
2517
2518         return 0;
2519 }
2520
2521 static int pci_resume(struct pci_dev *dev)
2522 {
2523         struct fw_ohci *ohci = pci_get_drvdata(dev);
2524         int err;
2525
2526         ohci_pmac_on(dev);
2527         pci_set_power_state(dev, PCI_D0);
2528         pci_restore_state(dev);
2529         err = pci_enable_device(dev);
2530         if (err) {
2531                 fw_error("pci_enable_device failed\n");
2532                 return err;
2533         }
2534
2535         return ohci_enable(&ohci->card, NULL, 0);
2536 }
2537 #endif
2538
2539 static struct pci_device_id pci_table[] = {
2540         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2541         { }
2542 };
2543
2544 MODULE_DEVICE_TABLE(pci, pci_table);
2545
2546 static struct pci_driver fw_ohci_pci_driver = {
2547         .name           = ohci_driver_name,
2548         .id_table       = pci_table,
2549         .probe          = pci_probe,
2550         .remove         = pci_remove,
2551 #ifdef CONFIG_PM
2552         .resume         = pci_resume,
2553         .suspend        = pci_suspend,
2554 #endif
2555 };
2556
2557 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2558 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2559 MODULE_LICENSE("GPL");
2560
2561 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2562 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2563 MODULE_ALIAS("ohci1394");
2564 #endif
2565
2566 static int __init fw_ohci_init(void)
2567 {
2568         return pci_register_driver(&fw_ohci_pci_driver);
2569 }
2570
2571 static void __exit fw_ohci_cleanup(void)
2572 {
2573         pci_unregister_driver(&fw_ohci_pci_driver);
2574 }
2575
2576 module_init(fw_ohci_init);
2577 module_exit(fw_ohci_cleanup);