]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/firewire/fw-ohci.c
firewire: fw-ohci: conditionally log busReset interrupts
[linux-2.6-omap-h63xx.git] / drivers / firewire / fw-ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33
34 #include <asm/page.h>
35 #include <asm/system.h>
36
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40
41 #include "fw-ohci.h"
42 #include "fw-transaction.h"
43
44 #define DESCRIPTOR_OUTPUT_MORE          0
45 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
46 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
47 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
48 #define DESCRIPTOR_STATUS               (1 << 11)
49 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
50 #define DESCRIPTOR_PING                 (1 << 7)
51 #define DESCRIPTOR_YY                   (1 << 6)
52 #define DESCRIPTOR_NO_IRQ               (0 << 4)
53 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
54 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
55 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
56 #define DESCRIPTOR_WAIT                 (3 << 0)
57
58 struct descriptor {
59         __le16 req_count;
60         __le16 control;
61         __le32 data_address;
62         __le32 branch_address;
63         __le16 res_count;
64         __le16 transfer_status;
65 } __attribute__((aligned(16)));
66
67 struct db_descriptor {
68         __le16 first_size;
69         __le16 control;
70         __le16 second_req_count;
71         __le16 first_req_count;
72         __le32 branch_address;
73         __le16 second_res_count;
74         __le16 first_res_count;
75         __le32 reserved0;
76         __le32 first_buffer;
77         __le32 second_buffer;
78         __le32 reserved1;
79 } __attribute__((aligned(16)));
80
81 #define CONTROL_SET(regs)       (regs)
82 #define CONTROL_CLEAR(regs)     ((regs) + 4)
83 #define COMMAND_PTR(regs)       ((regs) + 12)
84 #define CONTEXT_MATCH(regs)     ((regs) + 16)
85
86 struct ar_buffer {
87         struct descriptor descriptor;
88         struct ar_buffer *next;
89         __le32 data[0];
90 };
91
92 struct ar_context {
93         struct fw_ohci *ohci;
94         struct ar_buffer *current_buffer;
95         struct ar_buffer *last_buffer;
96         void *pointer;
97         u32 regs;
98         struct tasklet_struct tasklet;
99 };
100
101 struct context;
102
103 typedef int (*descriptor_callback_t)(struct context *ctx,
104                                      struct descriptor *d,
105                                      struct descriptor *last);
106
107 /*
108  * A buffer that contains a block of DMA-able coherent memory used for
109  * storing a portion of a DMA descriptor program.
110  */
111 struct descriptor_buffer {
112         struct list_head list;
113         dma_addr_t buffer_bus;
114         size_t buffer_size;
115         size_t used;
116         struct descriptor buffer[0];
117 };
118
119 struct context {
120         struct fw_ohci *ohci;
121         u32 regs;
122         int total_allocation;
123
124         /*
125          * List of page-sized buffers for storing DMA descriptors.
126          * Head of list contains buffers in use and tail of list contains
127          * free buffers.
128          */
129         struct list_head buffer_list;
130
131         /*
132          * Pointer to a buffer inside buffer_list that contains the tail
133          * end of the current DMA program.
134          */
135         struct descriptor_buffer *buffer_tail;
136
137         /*
138          * The descriptor containing the branch address of the first
139          * descriptor that has not yet been filled by the device.
140          */
141         struct descriptor *last;
142
143         /*
144          * The last descriptor in the DMA program.  It contains the branch
145          * address that must be updated upon appending a new descriptor.
146          */
147         struct descriptor *prev;
148
149         descriptor_callback_t callback;
150
151         struct tasklet_struct tasklet;
152 };
153
154 #define IT_HEADER_SY(v)          ((v) <<  0)
155 #define IT_HEADER_TCODE(v)       ((v) <<  4)
156 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
157 #define IT_HEADER_TAG(v)         ((v) << 14)
158 #define IT_HEADER_SPEED(v)       ((v) << 16)
159 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
160
161 struct iso_context {
162         struct fw_iso_context base;
163         struct context context;
164         int excess_bytes;
165         void *header;
166         size_t header_length;
167 };
168
169 #define CONFIG_ROM_SIZE 1024
170
171 struct fw_ohci {
172         struct fw_card card;
173
174         u32 version;
175         __iomem char *registers;
176         dma_addr_t self_id_bus;
177         __le32 *self_id_cpu;
178         struct tasklet_struct bus_reset_tasklet;
179         int node_id;
180         int generation;
181         int request_generation;
182         u32 bus_seconds;
183         bool old_uninorth;
184
185         /*
186          * Spinlock for accessing fw_ohci data.  Never call out of
187          * this driver with this lock held.
188          */
189         spinlock_t lock;
190         u32 self_id_buffer[512];
191
192         /* Config rom buffers */
193         __be32 *config_rom;
194         dma_addr_t config_rom_bus;
195         __be32 *next_config_rom;
196         dma_addr_t next_config_rom_bus;
197         u32 next_header;
198
199         struct ar_context ar_request_ctx;
200         struct ar_context ar_response_ctx;
201         struct context at_request_ctx;
202         struct context at_response_ctx;
203
204         u32 it_context_mask;
205         struct iso_context *it_context_list;
206         u32 ir_context_mask;
207         struct iso_context *ir_context_list;
208 };
209
210 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
211 {
212         return container_of(card, struct fw_ohci, card);
213 }
214
215 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
216 #define IR_CONTEXT_BUFFER_FILL          0x80000000
217 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
218 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
219 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
220 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
221
222 #define CONTEXT_RUN     0x8000
223 #define CONTEXT_WAKE    0x1000
224 #define CONTEXT_DEAD    0x0800
225 #define CONTEXT_ACTIVE  0x0400
226
227 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
228 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
229 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
230
231 #define FW_OHCI_MAJOR                   240
232 #define OHCI1394_REGISTER_SIZE          0x800
233 #define OHCI_LOOP_COUNT                 500
234 #define OHCI1394_PCI_HCI_Control        0x40
235 #define SELF_ID_BUF_SIZE                0x800
236 #define OHCI_TCODE_PHY_PACKET           0x0e
237 #define OHCI_VERSION_1_1                0x010010
238
239 static char ohci_driver_name[] = KBUILD_MODNAME;
240
241 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
242
243 #define OHCI_PARAM_DEBUG_AT_AR          1
244 #define OHCI_PARAM_DEBUG_SELFIDS        2
245 #define OHCI_PARAM_DEBUG_IRQS           4
246 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
247
248 static int param_debug;
249 module_param_named(debug, param_debug, int, 0644);
250 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
251         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
252         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
253         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
254         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
255         ", or a combination, or all = -1)");
256
257 static void log_irqs(u32 evt)
258 {
259         if (likely(!(param_debug &
260                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
261                 return;
262
263         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
264             !(evt & OHCI1394_busReset))
265                 return;
266
267         printk(KERN_DEBUG KBUILD_MODNAME ": IRQ "
268                "%08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
269                evt,
270                evt & OHCI1394_selfIDComplete    ? " selfID"             : "",
271                evt & OHCI1394_RQPkt             ? " AR_req"             : "",
272                evt & OHCI1394_RSPkt             ? " AR_resp"            : "",
273                evt & OHCI1394_reqTxComplete     ? " AT_req"             : "",
274                evt & OHCI1394_respTxComplete    ? " AT_resp"            : "",
275                evt & OHCI1394_isochRx           ? " IR"                 : "",
276                evt & OHCI1394_isochTx           ? " IT"                 : "",
277                evt & OHCI1394_postedWriteErr    ? " postedWriteErr"     : "",
278                evt & OHCI1394_cycleTooLong      ? " cycleTooLong"       : "",
279                evt & OHCI1394_cycle64Seconds    ? " cycle64Seconds"     : "",
280                evt & OHCI1394_regAccessFail     ? " regAccessFail"      : "",
281                evt & OHCI1394_busReset          ? " busReset"           : "",
282                evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
283                        OHCI1394_RSPkt | OHCI1394_reqTxComplete |
284                        OHCI1394_respTxComplete | OHCI1394_isochRx |
285                        OHCI1394_isochTx | OHCI1394_postedWriteErr |
286                        OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
287                        OHCI1394_regAccessFail | OHCI1394_busReset)
288                                                 ? " ?"                  : "");
289 }
290
291 static const char *speed[] = {
292         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
293 };
294 static const char *power[] = {
295         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
296         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
297 };
298 static const char port[] = { '.', '-', 'p', 'c', };
299
300 static char _p(u32 *s, int shift)
301 {
302         return port[*s >> shift & 3];
303 }
304
305 static void log_selfids(int generation, int self_id_count, u32 *s)
306 {
307         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
308                 return;
309
310         printk(KERN_DEBUG KBUILD_MODNAME ": %d selfIDs, generation %d\n",
311                self_id_count, generation);
312
313         for (; self_id_count--; ++s)
314                 if ((*s & 1 << 23) == 0)
315                         printk(KERN_DEBUG "selfID 0: %08x, phy %d [%c%c%c] "
316                                "%s gc=%d %s %s%s%s\n",
317                                *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
318                                speed[*s >> 14 & 3], *s >> 16 & 63,
319                                power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
320                                *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
321                 else
322                         printk(KERN_DEBUG "selfID n: %08x, phy %d "
323                                "[%c%c%c%c%c%c%c%c]\n",
324                                *s, *s >> 24 & 63,
325                                _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
326                                _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
327 }
328
329 static const char *evts[] = {
330         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
331         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
332         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
333         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
334         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
335         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
336         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
337         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
338         [0x10] = "-reserved-",          [0x11] = "ack_complete",
339         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
340         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
341         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
342         [0x18] = "-reserved-",          [0x19] = "-reserved-",
343         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
344         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
345         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
346         [0x20] = "pending/cancelled",
347 };
348 static const char *tcodes[] = {
349         [0x0] = "QW req",               [0x1] = "BW req",
350         [0x2] = "W resp",               [0x3] = "-reserved-",
351         [0x4] = "QR req",               [0x5] = "BR req",
352         [0x6] = "QR resp",              [0x7] = "BR resp",
353         [0x8] = "cycle start",          [0x9] = "Lk req",
354         [0xa] = "async stream packet",  [0xb] = "Lk resp",
355         [0xc] = "-reserved-",           [0xd] = "-reserved-",
356         [0xe] = "link internal",        [0xf] = "-reserved-",
357 };
358 static const char *phys[] = {
359         [0x0] = "phy config packet",    [0x1] = "link-on packet",
360         [0x2] = "self-id packet",       [0x3] = "-reserved-",
361 };
362
363 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
364 {
365         int tcode = header[0] >> 4 & 0xf;
366         char specific[12];
367
368         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
369                 return;
370
371         if (unlikely(evt >= ARRAY_SIZE(evts)))
372                         evt = 0x1f;
373
374         if (header[0] == ~header[1]) {
375                 printk(KERN_DEBUG "A%c %s, %s, %08x\n",
376                        dir, evts[evt], phys[header[0] >> 30 & 0x3],
377                        header[0]);
378                 return;
379         }
380
381         switch (tcode) {
382         case 0x0: case 0x6: case 0x8:
383                 snprintf(specific, sizeof(specific), " = %08x",
384                          be32_to_cpu((__force __be32)header[3]));
385                 break;
386         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
387                 snprintf(specific, sizeof(specific), " %x,%x",
388                          header[3] >> 16, header[3] & 0xffff);
389                 break;
390         default:
391                 specific[0] = '\0';
392         }
393
394         switch (tcode) {
395         case 0xe: case 0xa:
396                 printk(KERN_DEBUG "A%c %s, %s\n",
397                        dir, evts[evt], tcodes[tcode]);
398                 break;
399         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
400                 printk(KERN_DEBUG "A%c spd %x tl %02x, "
401                        "%04x -> %04x, %s, "
402                        "%s, %04x%08x%s\n",
403                        dir, speed, header[0] >> 10 & 0x3f,
404                        header[1] >> 16, header[0] >> 16, evts[evt],
405                        tcodes[tcode], header[1] & 0xffff, header[2], specific);
406                 break;
407         default:
408                 printk(KERN_DEBUG "A%c spd %x tl %02x, "
409                        "%04x -> %04x, %s, "
410                        "%s%s\n",
411                        dir, speed, header[0] >> 10 & 0x3f,
412                        header[1] >> 16, header[0] >> 16, evts[evt],
413                        tcodes[tcode], specific);
414         }
415 }
416
417 #else
418
419 #define log_irqs(evt)
420 #define log_selfids(generation, self_id_count, sid)
421 #define log_ar_at_event(dir, speed, header, evt)
422
423 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
424
425 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
426 {
427         writel(data, ohci->registers + offset);
428 }
429
430 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
431 {
432         return readl(ohci->registers + offset);
433 }
434
435 static inline void flush_writes(const struct fw_ohci *ohci)
436 {
437         /* Do a dummy read to flush writes. */
438         reg_read(ohci, OHCI1394_Version);
439 }
440
441 static int
442 ohci_update_phy_reg(struct fw_card *card, int addr,
443                     int clear_bits, int set_bits)
444 {
445         struct fw_ohci *ohci = fw_ohci(card);
446         u32 val, old;
447
448         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
449         flush_writes(ohci);
450         msleep(2);
451         val = reg_read(ohci, OHCI1394_PhyControl);
452         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
453                 fw_error("failed to set phy reg bits.\n");
454                 return -EBUSY;
455         }
456
457         old = OHCI1394_PhyControl_ReadData(val);
458         old = (old & ~clear_bits) | set_bits;
459         reg_write(ohci, OHCI1394_PhyControl,
460                   OHCI1394_PhyControl_Write(addr, old));
461
462         return 0;
463 }
464
465 static int ar_context_add_page(struct ar_context *ctx)
466 {
467         struct device *dev = ctx->ohci->card.device;
468         struct ar_buffer *ab;
469         dma_addr_t uninitialized_var(ab_bus);
470         size_t offset;
471
472         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
473         if (ab == NULL)
474                 return -ENOMEM;
475
476         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
477         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
478                                                     DESCRIPTOR_STATUS |
479                                                     DESCRIPTOR_BRANCH_ALWAYS);
480         offset = offsetof(struct ar_buffer, data);
481         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
482         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
483         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
484         ab->descriptor.branch_address = 0;
485
486         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
487         ctx->last_buffer->next = ab;
488         ctx->last_buffer = ab;
489
490         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
491         flush_writes(ctx->ohci);
492
493         return 0;
494 }
495
496 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
497 #define cond_le32_to_cpu(v) \
498         (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
499 #else
500 #define cond_le32_to_cpu(v) le32_to_cpu(v)
501 #endif
502
503 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
504 {
505         struct fw_ohci *ohci = ctx->ohci;
506         struct fw_packet p;
507         u32 status, length, tcode;
508         int evt;
509
510         p.header[0] = cond_le32_to_cpu(buffer[0]);
511         p.header[1] = cond_le32_to_cpu(buffer[1]);
512         p.header[2] = cond_le32_to_cpu(buffer[2]);
513
514         tcode = (p.header[0] >> 4) & 0x0f;
515         switch (tcode) {
516         case TCODE_WRITE_QUADLET_REQUEST:
517         case TCODE_READ_QUADLET_RESPONSE:
518                 p.header[3] = (__force __u32) buffer[3];
519                 p.header_length = 16;
520                 p.payload_length = 0;
521                 break;
522
523         case TCODE_READ_BLOCK_REQUEST :
524                 p.header[3] = cond_le32_to_cpu(buffer[3]);
525                 p.header_length = 16;
526                 p.payload_length = 0;
527                 break;
528
529         case TCODE_WRITE_BLOCK_REQUEST:
530         case TCODE_READ_BLOCK_RESPONSE:
531         case TCODE_LOCK_REQUEST:
532         case TCODE_LOCK_RESPONSE:
533                 p.header[3] = cond_le32_to_cpu(buffer[3]);
534                 p.header_length = 16;
535                 p.payload_length = p.header[3] >> 16;
536                 break;
537
538         case TCODE_WRITE_RESPONSE:
539         case TCODE_READ_QUADLET_REQUEST:
540         case OHCI_TCODE_PHY_PACKET:
541                 p.header_length = 12;
542                 p.payload_length = 0;
543                 break;
544         }
545
546         p.payload = (void *) buffer + p.header_length;
547
548         /* FIXME: What to do about evt_* errors? */
549         length = (p.header_length + p.payload_length + 3) / 4;
550         status = cond_le32_to_cpu(buffer[length]);
551         evt    = (status >> 16) & 0x1f;
552
553         p.ack        = evt - 16;
554         p.speed      = (status >> 21) & 0x7;
555         p.timestamp  = status & 0xffff;
556         p.generation = ohci->request_generation;
557
558         log_ar_at_event('R', p.speed, p.header, evt);
559
560         /*
561          * The OHCI bus reset handler synthesizes a phy packet with
562          * the new generation number when a bus reset happens (see
563          * section 8.4.2.3).  This helps us determine when a request
564          * was received and make sure we send the response in the same
565          * generation.  We only need this for requests; for responses
566          * we use the unique tlabel for finding the matching
567          * request.
568          */
569
570         if (evt == OHCI1394_evt_bus_reset)
571                 ohci->request_generation = (p.header[2] >> 16) & 0xff;
572         else if (ctx == &ohci->ar_request_ctx)
573                 fw_core_handle_request(&ohci->card, &p);
574         else
575                 fw_core_handle_response(&ohci->card, &p);
576
577         return buffer + length + 1;
578 }
579
580 static void ar_context_tasklet(unsigned long data)
581 {
582         struct ar_context *ctx = (struct ar_context *)data;
583         struct fw_ohci *ohci = ctx->ohci;
584         struct ar_buffer *ab;
585         struct descriptor *d;
586         void *buffer, *end;
587
588         ab = ctx->current_buffer;
589         d = &ab->descriptor;
590
591         if (d->res_count == 0) {
592                 size_t size, rest, offset;
593                 dma_addr_t start_bus;
594                 void *start;
595
596                 /*
597                  * This descriptor is finished and we may have a
598                  * packet split across this and the next buffer. We
599                  * reuse the page for reassembling the split packet.
600                  */
601
602                 offset = offsetof(struct ar_buffer, data);
603                 start = buffer = ab;
604                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
605
606                 ab = ab->next;
607                 d = &ab->descriptor;
608                 size = buffer + PAGE_SIZE - ctx->pointer;
609                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
610                 memmove(buffer, ctx->pointer, size);
611                 memcpy(buffer + size, ab->data, rest);
612                 ctx->current_buffer = ab;
613                 ctx->pointer = (void *) ab->data + rest;
614                 end = buffer + size + rest;
615
616                 while (buffer < end)
617                         buffer = handle_ar_packet(ctx, buffer);
618
619                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
620                                   start, start_bus);
621                 ar_context_add_page(ctx);
622         } else {
623                 buffer = ctx->pointer;
624                 ctx->pointer = end =
625                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
626
627                 while (buffer < end)
628                         buffer = handle_ar_packet(ctx, buffer);
629         }
630 }
631
632 static int
633 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
634 {
635         struct ar_buffer ab;
636
637         ctx->regs        = regs;
638         ctx->ohci        = ohci;
639         ctx->last_buffer = &ab;
640         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
641
642         ar_context_add_page(ctx);
643         ar_context_add_page(ctx);
644         ctx->current_buffer = ab.next;
645         ctx->pointer = ctx->current_buffer->data;
646
647         return 0;
648 }
649
650 static void ar_context_run(struct ar_context *ctx)
651 {
652         struct ar_buffer *ab = ctx->current_buffer;
653         dma_addr_t ab_bus;
654         size_t offset;
655
656         offset = offsetof(struct ar_buffer, data);
657         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
658
659         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
660         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
661         flush_writes(ctx->ohci);
662 }
663
664 static struct descriptor *
665 find_branch_descriptor(struct descriptor *d, int z)
666 {
667         int b, key;
668
669         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
670         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
671
672         /* figure out which descriptor the branch address goes in */
673         if (z == 2 && (b == 3 || key == 2))
674                 return d;
675         else
676                 return d + z - 1;
677 }
678
679 static void context_tasklet(unsigned long data)
680 {
681         struct context *ctx = (struct context *) data;
682         struct descriptor *d, *last;
683         u32 address;
684         int z;
685         struct descriptor_buffer *desc;
686
687         desc = list_entry(ctx->buffer_list.next,
688                         struct descriptor_buffer, list);
689         last = ctx->last;
690         while (last->branch_address != 0) {
691                 struct descriptor_buffer *old_desc = desc;
692                 address = le32_to_cpu(last->branch_address);
693                 z = address & 0xf;
694                 address &= ~0xf;
695
696                 /* If the branch address points to a buffer outside of the
697                  * current buffer, advance to the next buffer. */
698                 if (address < desc->buffer_bus ||
699                                 address >= desc->buffer_bus + desc->used)
700                         desc = list_entry(desc->list.next,
701                                         struct descriptor_buffer, list);
702                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
703                 last = find_branch_descriptor(d, z);
704
705                 if (!ctx->callback(ctx, d, last))
706                         break;
707
708                 if (old_desc != desc) {
709                         /* If we've advanced to the next buffer, move the
710                          * previous buffer to the free list. */
711                         unsigned long flags;
712                         old_desc->used = 0;
713                         spin_lock_irqsave(&ctx->ohci->lock, flags);
714                         list_move_tail(&old_desc->list, &ctx->buffer_list);
715                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
716                 }
717                 ctx->last = last;
718         }
719 }
720
721 /*
722  * Allocate a new buffer and add it to the list of free buffers for this
723  * context.  Must be called with ohci->lock held.
724  */
725 static int
726 context_add_buffer(struct context *ctx)
727 {
728         struct descriptor_buffer *desc;
729         dma_addr_t uninitialized_var(bus_addr);
730         int offset;
731
732         /*
733          * 16MB of descriptors should be far more than enough for any DMA
734          * program.  This will catch run-away userspace or DoS attacks.
735          */
736         if (ctx->total_allocation >= 16*1024*1024)
737                 return -ENOMEM;
738
739         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
740                         &bus_addr, GFP_ATOMIC);
741         if (!desc)
742                 return -ENOMEM;
743
744         offset = (void *)&desc->buffer - (void *)desc;
745         desc->buffer_size = PAGE_SIZE - offset;
746         desc->buffer_bus = bus_addr + offset;
747         desc->used = 0;
748
749         list_add_tail(&desc->list, &ctx->buffer_list);
750         ctx->total_allocation += PAGE_SIZE;
751
752         return 0;
753 }
754
755 static int
756 context_init(struct context *ctx, struct fw_ohci *ohci,
757              u32 regs, descriptor_callback_t callback)
758 {
759         ctx->ohci = ohci;
760         ctx->regs = regs;
761         ctx->total_allocation = 0;
762
763         INIT_LIST_HEAD(&ctx->buffer_list);
764         if (context_add_buffer(ctx) < 0)
765                 return -ENOMEM;
766
767         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
768                         struct descriptor_buffer, list);
769
770         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
771         ctx->callback = callback;
772
773         /*
774          * We put a dummy descriptor in the buffer that has a NULL
775          * branch address and looks like it's been sent.  That way we
776          * have a descriptor to append DMA programs to.
777          */
778         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
779         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
780         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
781         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
782         ctx->last = ctx->buffer_tail->buffer;
783         ctx->prev = ctx->buffer_tail->buffer;
784
785         return 0;
786 }
787
788 static void
789 context_release(struct context *ctx)
790 {
791         struct fw_card *card = &ctx->ohci->card;
792         struct descriptor_buffer *desc, *tmp;
793
794         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
795                 dma_free_coherent(card->device, PAGE_SIZE, desc,
796                         desc->buffer_bus -
797                         ((void *)&desc->buffer - (void *)desc));
798 }
799
800 /* Must be called with ohci->lock held */
801 static struct descriptor *
802 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
803 {
804         struct descriptor *d = NULL;
805         struct descriptor_buffer *desc = ctx->buffer_tail;
806
807         if (z * sizeof(*d) > desc->buffer_size)
808                 return NULL;
809
810         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
811                 /* No room for the descriptor in this buffer, so advance to the
812                  * next one. */
813
814                 if (desc->list.next == &ctx->buffer_list) {
815                         /* If there is no free buffer next in the list,
816                          * allocate one. */
817                         if (context_add_buffer(ctx) < 0)
818                                 return NULL;
819                 }
820                 desc = list_entry(desc->list.next,
821                                 struct descriptor_buffer, list);
822                 ctx->buffer_tail = desc;
823         }
824
825         d = desc->buffer + desc->used / sizeof(*d);
826         memset(d, 0, z * sizeof(*d));
827         *d_bus = desc->buffer_bus + desc->used;
828
829         return d;
830 }
831
832 static void context_run(struct context *ctx, u32 extra)
833 {
834         struct fw_ohci *ohci = ctx->ohci;
835
836         reg_write(ohci, COMMAND_PTR(ctx->regs),
837                   le32_to_cpu(ctx->last->branch_address));
838         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
839         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
840         flush_writes(ohci);
841 }
842
843 static void context_append(struct context *ctx,
844                            struct descriptor *d, int z, int extra)
845 {
846         dma_addr_t d_bus;
847         struct descriptor_buffer *desc = ctx->buffer_tail;
848
849         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
850
851         desc->used += (z + extra) * sizeof(*d);
852         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
853         ctx->prev = find_branch_descriptor(d, z);
854
855         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
856         flush_writes(ctx->ohci);
857 }
858
859 static void context_stop(struct context *ctx)
860 {
861         u32 reg;
862         int i;
863
864         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
865         flush_writes(ctx->ohci);
866
867         for (i = 0; i < 10; i++) {
868                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
869                 if ((reg & CONTEXT_ACTIVE) == 0)
870                         break;
871
872                 fw_notify("context_stop: still active (0x%08x)\n", reg);
873                 mdelay(1);
874         }
875 }
876
877 struct driver_data {
878         struct fw_packet *packet;
879 };
880
881 /*
882  * This function apppends a packet to the DMA queue for transmission.
883  * Must always be called with the ochi->lock held to ensure proper
884  * generation handling and locking around packet queue manipulation.
885  */
886 static int
887 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
888 {
889         struct fw_ohci *ohci = ctx->ohci;
890         dma_addr_t d_bus, uninitialized_var(payload_bus);
891         struct driver_data *driver_data;
892         struct descriptor *d, *last;
893         __le32 *header;
894         int z, tcode;
895         u32 reg;
896
897         d = context_get_descriptors(ctx, 4, &d_bus);
898         if (d == NULL) {
899                 packet->ack = RCODE_SEND_ERROR;
900                 return -1;
901         }
902
903         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
904         d[0].res_count = cpu_to_le16(packet->timestamp);
905
906         /*
907          * The DMA format for asyncronous link packets is different
908          * from the IEEE1394 layout, so shift the fields around
909          * accordingly.  If header_length is 8, it's a PHY packet, to
910          * which we need to prepend an extra quadlet.
911          */
912
913         header = (__le32 *) &d[1];
914         if (packet->header_length > 8) {
915                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
916                                         (packet->speed << 16));
917                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
918                                         (packet->header[0] & 0xffff0000));
919                 header[2] = cpu_to_le32(packet->header[2]);
920
921                 tcode = (packet->header[0] >> 4) & 0x0f;
922                 if (TCODE_IS_BLOCK_PACKET(tcode))
923                         header[3] = cpu_to_le32(packet->header[3]);
924                 else
925                         header[3] = (__force __le32) packet->header[3];
926
927                 d[0].req_count = cpu_to_le16(packet->header_length);
928         } else {
929                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
930                                         (packet->speed << 16));
931                 header[1] = cpu_to_le32(packet->header[0]);
932                 header[2] = cpu_to_le32(packet->header[1]);
933                 d[0].req_count = cpu_to_le16(12);
934         }
935
936         driver_data = (struct driver_data *) &d[3];
937         driver_data->packet = packet;
938         packet->driver_data = driver_data;
939
940         if (packet->payload_length > 0) {
941                 payload_bus =
942                         dma_map_single(ohci->card.device, packet->payload,
943                                        packet->payload_length, DMA_TO_DEVICE);
944                 if (dma_mapping_error(payload_bus)) {
945                         packet->ack = RCODE_SEND_ERROR;
946                         return -1;
947                 }
948
949                 d[2].req_count    = cpu_to_le16(packet->payload_length);
950                 d[2].data_address = cpu_to_le32(payload_bus);
951                 last = &d[2];
952                 z = 3;
953         } else {
954                 last = &d[0];
955                 z = 2;
956         }
957
958         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
959                                      DESCRIPTOR_IRQ_ALWAYS |
960                                      DESCRIPTOR_BRANCH_ALWAYS);
961
962         /*
963          * If the controller and packet generations don't match, we need to
964          * bail out and try again.  If IntEvent.busReset is set, the AT context
965          * is halted, so appending to the context and trying to run it is
966          * futile.  Most controllers do the right thing and just flush the AT
967          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
968          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
969          * up stalling out.  So we just bail out in software and try again
970          * later, and everyone is happy.
971          * FIXME: Document how the locking works.
972          */
973         if (ohci->generation != packet->generation ||
974             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
975                 if (packet->payload_length > 0)
976                         dma_unmap_single(ohci->card.device, payload_bus,
977                                          packet->payload_length, DMA_TO_DEVICE);
978                 packet->ack = RCODE_GENERATION;
979                 return -1;
980         }
981
982         context_append(ctx, d, z, 4 - z);
983
984         /* If the context isn't already running, start it up. */
985         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
986         if ((reg & CONTEXT_RUN) == 0)
987                 context_run(ctx, 0);
988
989         return 0;
990 }
991
992 static int handle_at_packet(struct context *context,
993                             struct descriptor *d,
994                             struct descriptor *last)
995 {
996         struct driver_data *driver_data;
997         struct fw_packet *packet;
998         struct fw_ohci *ohci = context->ohci;
999         dma_addr_t payload_bus;
1000         int evt;
1001
1002         if (last->transfer_status == 0)
1003                 /* This descriptor isn't done yet, stop iteration. */
1004                 return 0;
1005
1006         driver_data = (struct driver_data *) &d[3];
1007         packet = driver_data->packet;
1008         if (packet == NULL)
1009                 /* This packet was cancelled, just continue. */
1010                 return 1;
1011
1012         payload_bus = le32_to_cpu(last->data_address);
1013         if (payload_bus != 0)
1014                 dma_unmap_single(ohci->card.device, payload_bus,
1015                                  packet->payload_length, DMA_TO_DEVICE);
1016
1017         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1018         packet->timestamp = le16_to_cpu(last->res_count);
1019
1020         log_ar_at_event('T', packet->speed, packet->header, evt);
1021
1022         switch (evt) {
1023         case OHCI1394_evt_timeout:
1024                 /* Async response transmit timed out. */
1025                 packet->ack = RCODE_CANCELLED;
1026                 break;
1027
1028         case OHCI1394_evt_flushed:
1029                 /*
1030                  * The packet was flushed should give same error as
1031                  * when we try to use a stale generation count.
1032                  */
1033                 packet->ack = RCODE_GENERATION;
1034                 break;
1035
1036         case OHCI1394_evt_missing_ack:
1037                 /*
1038                  * Using a valid (current) generation count, but the
1039                  * node is not on the bus or not sending acks.
1040                  */
1041                 packet->ack = RCODE_NO_ACK;
1042                 break;
1043
1044         case ACK_COMPLETE + 0x10:
1045         case ACK_PENDING + 0x10:
1046         case ACK_BUSY_X + 0x10:
1047         case ACK_BUSY_A + 0x10:
1048         case ACK_BUSY_B + 0x10:
1049         case ACK_DATA_ERROR + 0x10:
1050         case ACK_TYPE_ERROR + 0x10:
1051                 packet->ack = evt - 0x10;
1052                 break;
1053
1054         default:
1055                 packet->ack = RCODE_SEND_ERROR;
1056                 break;
1057         }
1058
1059         packet->callback(packet, &ohci->card, packet->ack);
1060
1061         return 1;
1062 }
1063
1064 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1065 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1066 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1067 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1068 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1069
1070 static void
1071 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1072 {
1073         struct fw_packet response;
1074         int tcode, length, i;
1075
1076         tcode = HEADER_GET_TCODE(packet->header[0]);
1077         if (TCODE_IS_BLOCK_PACKET(tcode))
1078                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1079         else
1080                 length = 4;
1081
1082         i = csr - CSR_CONFIG_ROM;
1083         if (i + length > CONFIG_ROM_SIZE) {
1084                 fw_fill_response(&response, packet->header,
1085                                  RCODE_ADDRESS_ERROR, NULL, 0);
1086         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1087                 fw_fill_response(&response, packet->header,
1088                                  RCODE_TYPE_ERROR, NULL, 0);
1089         } else {
1090                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1091                                  (void *) ohci->config_rom + i, length);
1092         }
1093
1094         fw_core_handle_response(&ohci->card, &response);
1095 }
1096
1097 static void
1098 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1099 {
1100         struct fw_packet response;
1101         int tcode, length, ext_tcode, sel;
1102         __be32 *payload, lock_old;
1103         u32 lock_arg, lock_data;
1104
1105         tcode = HEADER_GET_TCODE(packet->header[0]);
1106         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1107         payload = packet->payload;
1108         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1109
1110         if (tcode == TCODE_LOCK_REQUEST &&
1111             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1112                 lock_arg = be32_to_cpu(payload[0]);
1113                 lock_data = be32_to_cpu(payload[1]);
1114         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1115                 lock_arg = 0;
1116                 lock_data = 0;
1117         } else {
1118                 fw_fill_response(&response, packet->header,
1119                                  RCODE_TYPE_ERROR, NULL, 0);
1120                 goto out;
1121         }
1122
1123         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1124         reg_write(ohci, OHCI1394_CSRData, lock_data);
1125         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1126         reg_write(ohci, OHCI1394_CSRControl, sel);
1127
1128         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1129                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1130         else
1131                 fw_notify("swap not done yet\n");
1132
1133         fw_fill_response(&response, packet->header,
1134                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1135  out:
1136         fw_core_handle_response(&ohci->card, &response);
1137 }
1138
1139 static void
1140 handle_local_request(struct context *ctx, struct fw_packet *packet)
1141 {
1142         u64 offset;
1143         u32 csr;
1144
1145         if (ctx == &ctx->ohci->at_request_ctx) {
1146                 packet->ack = ACK_PENDING;
1147                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1148         }
1149
1150         offset =
1151                 ((unsigned long long)
1152                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1153                 packet->header[2];
1154         csr = offset - CSR_REGISTER_BASE;
1155
1156         /* Handle config rom reads. */
1157         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1158                 handle_local_rom(ctx->ohci, packet, csr);
1159         else switch (csr) {
1160         case CSR_BUS_MANAGER_ID:
1161         case CSR_BANDWIDTH_AVAILABLE:
1162         case CSR_CHANNELS_AVAILABLE_HI:
1163         case CSR_CHANNELS_AVAILABLE_LO:
1164                 handle_local_lock(ctx->ohci, packet, csr);
1165                 break;
1166         default:
1167                 if (ctx == &ctx->ohci->at_request_ctx)
1168                         fw_core_handle_request(&ctx->ohci->card, packet);
1169                 else
1170                         fw_core_handle_response(&ctx->ohci->card, packet);
1171                 break;
1172         }
1173
1174         if (ctx == &ctx->ohci->at_response_ctx) {
1175                 packet->ack = ACK_COMPLETE;
1176                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1177         }
1178 }
1179
1180 static void
1181 at_context_transmit(struct context *ctx, struct fw_packet *packet)
1182 {
1183         unsigned long flags;
1184         int retval;
1185
1186         spin_lock_irqsave(&ctx->ohci->lock, flags);
1187
1188         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1189             ctx->ohci->generation == packet->generation) {
1190                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1191                 handle_local_request(ctx, packet);
1192                 return;
1193         }
1194
1195         retval = at_context_queue_packet(ctx, packet);
1196         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1197
1198         if (retval < 0)
1199                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1200
1201 }
1202
1203 static void bus_reset_tasklet(unsigned long data)
1204 {
1205         struct fw_ohci *ohci = (struct fw_ohci *)data;
1206         int self_id_count, i, j, reg;
1207         int generation, new_generation;
1208         unsigned long flags;
1209         void *free_rom = NULL;
1210         dma_addr_t free_rom_bus = 0;
1211
1212         reg = reg_read(ohci, OHCI1394_NodeID);
1213         if (!(reg & OHCI1394_NodeID_idValid)) {
1214                 fw_notify("node ID not valid, new bus reset in progress\n");
1215                 return;
1216         }
1217         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1218                 fw_notify("malconfigured bus\n");
1219                 return;
1220         }
1221         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1222                                OHCI1394_NodeID_nodeNumber);
1223
1224         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1225         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1226                 fw_notify("inconsistent self IDs\n");
1227                 return;
1228         }
1229         /*
1230          * The count in the SelfIDCount register is the number of
1231          * bytes in the self ID receive buffer.  Since we also receive
1232          * the inverted quadlets and a header quadlet, we shift one
1233          * bit extra to get the actual number of self IDs.
1234          */
1235         self_id_count = (reg >> 3) & 0x3ff;
1236         if (self_id_count == 0) {
1237                 fw_notify("inconsistent self IDs\n");
1238                 return;
1239         }
1240         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1241         rmb();
1242
1243         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1244                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1245                         fw_notify("inconsistent self IDs\n");
1246                         return;
1247                 }
1248                 ohci->self_id_buffer[j] =
1249                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1250         }
1251         rmb();
1252
1253         /*
1254          * Check the consistency of the self IDs we just read.  The
1255          * problem we face is that a new bus reset can start while we
1256          * read out the self IDs from the DMA buffer. If this happens,
1257          * the DMA buffer will be overwritten with new self IDs and we
1258          * will read out inconsistent data.  The OHCI specification
1259          * (section 11.2) recommends a technique similar to
1260          * linux/seqlock.h, where we remember the generation of the
1261          * self IDs in the buffer before reading them out and compare
1262          * it to the current generation after reading them out.  If
1263          * the two generations match we know we have a consistent set
1264          * of self IDs.
1265          */
1266
1267         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1268         if (new_generation != generation) {
1269                 fw_notify("recursive bus reset detected, "
1270                           "discarding self ids\n");
1271                 return;
1272         }
1273
1274         /* FIXME: Document how the locking works. */
1275         spin_lock_irqsave(&ohci->lock, flags);
1276
1277         ohci->generation = generation;
1278         context_stop(&ohci->at_request_ctx);
1279         context_stop(&ohci->at_response_ctx);
1280         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1281
1282         /*
1283          * This next bit is unrelated to the AT context stuff but we
1284          * have to do it under the spinlock also.  If a new config rom
1285          * was set up before this reset, the old one is now no longer
1286          * in use and we can free it. Update the config rom pointers
1287          * to point to the current config rom and clear the
1288          * next_config_rom pointer so a new udpate can take place.
1289          */
1290
1291         if (ohci->next_config_rom != NULL) {
1292                 if (ohci->next_config_rom != ohci->config_rom) {
1293                         free_rom      = ohci->config_rom;
1294                         free_rom_bus  = ohci->config_rom_bus;
1295                 }
1296                 ohci->config_rom      = ohci->next_config_rom;
1297                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1298                 ohci->next_config_rom = NULL;
1299
1300                 /*
1301                  * Restore config_rom image and manually update
1302                  * config_rom registers.  Writing the header quadlet
1303                  * will indicate that the config rom is ready, so we
1304                  * do that last.
1305                  */
1306                 reg_write(ohci, OHCI1394_BusOptions,
1307                           be32_to_cpu(ohci->config_rom[2]));
1308                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1309                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1310         }
1311
1312 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1313         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1314         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1315 #endif
1316
1317         spin_unlock_irqrestore(&ohci->lock, flags);
1318
1319         if (free_rom)
1320                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1321                                   free_rom, free_rom_bus);
1322
1323         log_selfids(generation, self_id_count, ohci->self_id_buffer);
1324
1325         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1326                                  self_id_count, ohci->self_id_buffer);
1327 }
1328
1329 static irqreturn_t irq_handler(int irq, void *data)
1330 {
1331         struct fw_ohci *ohci = data;
1332         u32 event, iso_event, cycle_time;
1333         int i;
1334
1335         event = reg_read(ohci, OHCI1394_IntEventClear);
1336
1337         if (!event || !~event)
1338                 return IRQ_NONE;
1339
1340         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1341         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1342         log_irqs(event);
1343
1344         if (event & OHCI1394_selfIDComplete)
1345                 tasklet_schedule(&ohci->bus_reset_tasklet);
1346
1347         if (event & OHCI1394_RQPkt)
1348                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1349
1350         if (event & OHCI1394_RSPkt)
1351                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1352
1353         if (event & OHCI1394_reqTxComplete)
1354                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1355
1356         if (event & OHCI1394_respTxComplete)
1357                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1358
1359         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1360         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1361
1362         while (iso_event) {
1363                 i = ffs(iso_event) - 1;
1364                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1365                 iso_event &= ~(1 << i);
1366         }
1367
1368         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1369         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1370
1371         while (iso_event) {
1372                 i = ffs(iso_event) - 1;
1373                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1374                 iso_event &= ~(1 << i);
1375         }
1376
1377         if (unlikely(event & OHCI1394_regAccessFail))
1378                 fw_error("Register access failure - "
1379                          "please notify linux1394-devel@lists.sf.net\n");
1380
1381         if (unlikely(event & OHCI1394_postedWriteErr))
1382                 fw_error("PCI posted write error\n");
1383
1384         if (unlikely(event & OHCI1394_cycleTooLong)) {
1385                 if (printk_ratelimit())
1386                         fw_notify("isochronous cycle too long\n");
1387                 reg_write(ohci, OHCI1394_LinkControlSet,
1388                           OHCI1394_LinkControl_cycleMaster);
1389         }
1390
1391         if (event & OHCI1394_cycle64Seconds) {
1392                 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1393                 if ((cycle_time & 0x80000000) == 0)
1394                         ohci->bus_seconds++;
1395         }
1396
1397         return IRQ_HANDLED;
1398 }
1399
1400 static int software_reset(struct fw_ohci *ohci)
1401 {
1402         int i;
1403
1404         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1405
1406         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1407                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1408                      OHCI1394_HCControl_softReset) == 0)
1409                         return 0;
1410                 msleep(1);
1411         }
1412
1413         return -EBUSY;
1414 }
1415
1416 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1417 {
1418         struct fw_ohci *ohci = fw_ohci(card);
1419         struct pci_dev *dev = to_pci_dev(card->device);
1420         u32 lps;
1421         int i;
1422
1423         if (software_reset(ohci)) {
1424                 fw_error("Failed to reset ohci card.\n");
1425                 return -EBUSY;
1426         }
1427
1428         /*
1429          * Now enable LPS, which we need in order to start accessing
1430          * most of the registers.  In fact, on some cards (ALI M5251),
1431          * accessing registers in the SClk domain without LPS enabled
1432          * will lock up the machine.  Wait 50msec to make sure we have
1433          * full link enabled.  However, with some cards (well, at least
1434          * a JMicron PCIe card), we have to try again sometimes.
1435          */
1436         reg_write(ohci, OHCI1394_HCControlSet,
1437                   OHCI1394_HCControl_LPS |
1438                   OHCI1394_HCControl_postedWriteEnable);
1439         flush_writes(ohci);
1440
1441         for (lps = 0, i = 0; !lps && i < 3; i++) {
1442                 msleep(50);
1443                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1444                       OHCI1394_HCControl_LPS;
1445         }
1446
1447         if (!lps) {
1448                 fw_error("Failed to set Link Power Status\n");
1449                 return -EIO;
1450         }
1451
1452         reg_write(ohci, OHCI1394_HCControlClear,
1453                   OHCI1394_HCControl_noByteSwapData);
1454
1455         reg_write(ohci, OHCI1394_LinkControlSet,
1456                   OHCI1394_LinkControl_rcvSelfID |
1457                   OHCI1394_LinkControl_cycleTimerEnable |
1458                   OHCI1394_LinkControl_cycleMaster);
1459
1460         reg_write(ohci, OHCI1394_ATRetries,
1461                   OHCI1394_MAX_AT_REQ_RETRIES |
1462                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1463                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1464
1465         ar_context_run(&ohci->ar_request_ctx);
1466         ar_context_run(&ohci->ar_response_ctx);
1467
1468         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1469         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1470         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1471         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1472         reg_write(ohci, OHCI1394_IntMaskSet,
1473                   OHCI1394_selfIDComplete |
1474                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1475                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1476                   OHCI1394_isochRx | OHCI1394_isochTx |
1477                   OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1478                   OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
1479                   OHCI1394_masterIntEnable);
1480         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1481                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1482
1483         /* Activate link_on bit and contender bit in our self ID packets.*/
1484         if (ohci_update_phy_reg(card, 4, 0,
1485                                 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1486                 return -EIO;
1487
1488         /*
1489          * When the link is not yet enabled, the atomic config rom
1490          * update mechanism described below in ohci_set_config_rom()
1491          * is not active.  We have to update ConfigRomHeader and
1492          * BusOptions manually, and the write to ConfigROMmap takes
1493          * effect immediately.  We tie this to the enabling of the
1494          * link, so we have a valid config rom before enabling - the
1495          * OHCI requires that ConfigROMhdr and BusOptions have valid
1496          * values before enabling.
1497          *
1498          * However, when the ConfigROMmap is written, some controllers
1499          * always read back quadlets 0 and 2 from the config rom to
1500          * the ConfigRomHeader and BusOptions registers on bus reset.
1501          * They shouldn't do that in this initial case where the link
1502          * isn't enabled.  This means we have to use the same
1503          * workaround here, setting the bus header to 0 and then write
1504          * the right values in the bus reset tasklet.
1505          */
1506
1507         if (config_rom) {
1508                 ohci->next_config_rom =
1509                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1510                                            &ohci->next_config_rom_bus,
1511                                            GFP_KERNEL);
1512                 if (ohci->next_config_rom == NULL)
1513                         return -ENOMEM;
1514
1515                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1516                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1517         } else {
1518                 /*
1519                  * In the suspend case, config_rom is NULL, which
1520                  * means that we just reuse the old config rom.
1521                  */
1522                 ohci->next_config_rom = ohci->config_rom;
1523                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1524         }
1525
1526         ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1527         ohci->next_config_rom[0] = 0;
1528         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1529         reg_write(ohci, OHCI1394_BusOptions,
1530                   be32_to_cpu(ohci->next_config_rom[2]));
1531         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1532
1533         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1534
1535         if (request_irq(dev->irq, irq_handler,
1536                         IRQF_SHARED, ohci_driver_name, ohci)) {
1537                 fw_error("Failed to allocate shared interrupt %d.\n",
1538                          dev->irq);
1539                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1540                                   ohci->config_rom, ohci->config_rom_bus);
1541                 return -EIO;
1542         }
1543
1544         reg_write(ohci, OHCI1394_HCControlSet,
1545                   OHCI1394_HCControl_linkEnable |
1546                   OHCI1394_HCControl_BIBimageValid);
1547         flush_writes(ohci);
1548
1549         /*
1550          * We are ready to go, initiate bus reset to finish the
1551          * initialization.
1552          */
1553
1554         fw_core_initiate_bus_reset(&ohci->card, 1);
1555
1556         return 0;
1557 }
1558
1559 static int
1560 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1561 {
1562         struct fw_ohci *ohci;
1563         unsigned long flags;
1564         int retval = -EBUSY;
1565         __be32 *next_config_rom;
1566         dma_addr_t uninitialized_var(next_config_rom_bus);
1567
1568         ohci = fw_ohci(card);
1569
1570         /*
1571          * When the OHCI controller is enabled, the config rom update
1572          * mechanism is a bit tricky, but easy enough to use.  See
1573          * section 5.5.6 in the OHCI specification.
1574          *
1575          * The OHCI controller caches the new config rom address in a
1576          * shadow register (ConfigROMmapNext) and needs a bus reset
1577          * for the changes to take place.  When the bus reset is
1578          * detected, the controller loads the new values for the
1579          * ConfigRomHeader and BusOptions registers from the specified
1580          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1581          * shadow register. All automatically and atomically.
1582          *
1583          * Now, there's a twist to this story.  The automatic load of
1584          * ConfigRomHeader and BusOptions doesn't honor the
1585          * noByteSwapData bit, so with a be32 config rom, the
1586          * controller will load be32 values in to these registers
1587          * during the atomic update, even on litte endian
1588          * architectures.  The workaround we use is to put a 0 in the
1589          * header quadlet; 0 is endian agnostic and means that the
1590          * config rom isn't ready yet.  In the bus reset tasklet we
1591          * then set up the real values for the two registers.
1592          *
1593          * We use ohci->lock to avoid racing with the code that sets
1594          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1595          */
1596
1597         next_config_rom =
1598                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1599                                    &next_config_rom_bus, GFP_KERNEL);
1600         if (next_config_rom == NULL)
1601                 return -ENOMEM;
1602
1603         spin_lock_irqsave(&ohci->lock, flags);
1604
1605         if (ohci->next_config_rom == NULL) {
1606                 ohci->next_config_rom = next_config_rom;
1607                 ohci->next_config_rom_bus = next_config_rom_bus;
1608
1609                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1610                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1611                                   length * 4);
1612
1613                 ohci->next_header = config_rom[0];
1614                 ohci->next_config_rom[0] = 0;
1615
1616                 reg_write(ohci, OHCI1394_ConfigROMmap,
1617                           ohci->next_config_rom_bus);
1618                 retval = 0;
1619         }
1620
1621         spin_unlock_irqrestore(&ohci->lock, flags);
1622
1623         /*
1624          * Now initiate a bus reset to have the changes take
1625          * effect. We clean up the old config rom memory and DMA
1626          * mappings in the bus reset tasklet, since the OHCI
1627          * controller could need to access it before the bus reset
1628          * takes effect.
1629          */
1630         if (retval == 0)
1631                 fw_core_initiate_bus_reset(&ohci->card, 1);
1632         else
1633                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1634                                   next_config_rom, next_config_rom_bus);
1635
1636         return retval;
1637 }
1638
1639 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1640 {
1641         struct fw_ohci *ohci = fw_ohci(card);
1642
1643         at_context_transmit(&ohci->at_request_ctx, packet);
1644 }
1645
1646 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1647 {
1648         struct fw_ohci *ohci = fw_ohci(card);
1649
1650         at_context_transmit(&ohci->at_response_ctx, packet);
1651 }
1652
1653 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1654 {
1655         struct fw_ohci *ohci = fw_ohci(card);
1656         struct context *ctx = &ohci->at_request_ctx;
1657         struct driver_data *driver_data = packet->driver_data;
1658         int retval = -ENOENT;
1659
1660         tasklet_disable(&ctx->tasklet);
1661
1662         if (packet->ack != 0)
1663                 goto out;
1664
1665         log_ar_at_event('T', packet->speed, packet->header, 0x20);
1666         driver_data->packet = NULL;
1667         packet->ack = RCODE_CANCELLED;
1668         packet->callback(packet, &ohci->card, packet->ack);
1669         retval = 0;
1670
1671  out:
1672         tasklet_enable(&ctx->tasklet);
1673
1674         return retval;
1675 }
1676
1677 static int
1678 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1679 {
1680 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1681         return 0;
1682 #else
1683         struct fw_ohci *ohci = fw_ohci(card);
1684         unsigned long flags;
1685         int n, retval = 0;
1686
1687         /*
1688          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1689          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1690          */
1691
1692         spin_lock_irqsave(&ohci->lock, flags);
1693
1694         if (ohci->generation != generation) {
1695                 retval = -ESTALE;
1696                 goto out;
1697         }
1698
1699         /*
1700          * Note, if the node ID contains a non-local bus ID, physical DMA is
1701          * enabled for _all_ nodes on remote buses.
1702          */
1703
1704         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1705         if (n < 32)
1706                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1707         else
1708                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1709
1710         flush_writes(ohci);
1711  out:
1712         spin_unlock_irqrestore(&ohci->lock, flags);
1713         return retval;
1714 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1715 }
1716
1717 static u64
1718 ohci_get_bus_time(struct fw_card *card)
1719 {
1720         struct fw_ohci *ohci = fw_ohci(card);
1721         u32 cycle_time;
1722         u64 bus_time;
1723
1724         cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1725         bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1726
1727         return bus_time;
1728 }
1729
1730 static int handle_ir_dualbuffer_packet(struct context *context,
1731                                        struct descriptor *d,
1732                                        struct descriptor *last)
1733 {
1734         struct iso_context *ctx =
1735                 container_of(context, struct iso_context, context);
1736         struct db_descriptor *db = (struct db_descriptor *) d;
1737         __le32 *ir_header;
1738         size_t header_length;
1739         void *p, *end;
1740         int i;
1741
1742         if (db->first_res_count != 0 && db->second_res_count != 0) {
1743                 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1744                         /* This descriptor isn't done yet, stop iteration. */
1745                         return 0;
1746                 }
1747                 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1748         }
1749
1750         header_length = le16_to_cpu(db->first_req_count) -
1751                 le16_to_cpu(db->first_res_count);
1752
1753         i = ctx->header_length;
1754         p = db + 1;
1755         end = p + header_length;
1756         while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1757                 /*
1758                  * The iso header is byteswapped to little endian by
1759                  * the controller, but the remaining header quadlets
1760                  * are big endian.  We want to present all the headers
1761                  * as big endian, so we have to swap the first
1762                  * quadlet.
1763                  */
1764                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1765                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1766                 i += ctx->base.header_size;
1767                 ctx->excess_bytes +=
1768                         (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1769                 p += ctx->base.header_size + 4;
1770         }
1771         ctx->header_length = i;
1772
1773         ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1774                 le16_to_cpu(db->second_res_count);
1775
1776         if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1777                 ir_header = (__le32 *) (db + 1);
1778                 ctx->base.callback(&ctx->base,
1779                                    le32_to_cpu(ir_header[0]) & 0xffff,
1780                                    ctx->header_length, ctx->header,
1781                                    ctx->base.callback_data);
1782                 ctx->header_length = 0;
1783         }
1784
1785         return 1;
1786 }
1787
1788 static int handle_ir_packet_per_buffer(struct context *context,
1789                                        struct descriptor *d,
1790                                        struct descriptor *last)
1791 {
1792         struct iso_context *ctx =
1793                 container_of(context, struct iso_context, context);
1794         struct descriptor *pd;
1795         __le32 *ir_header;
1796         void *p;
1797         int i;
1798
1799         for (pd = d; pd <= last; pd++) {
1800                 if (pd->transfer_status)
1801                         break;
1802         }
1803         if (pd > last)
1804                 /* Descriptor(s) not done yet, stop iteration */
1805                 return 0;
1806
1807         i   = ctx->header_length;
1808         p   = last + 1;
1809
1810         if (ctx->base.header_size > 0 &&
1811                         i + ctx->base.header_size <= PAGE_SIZE) {
1812                 /*
1813                  * The iso header is byteswapped to little endian by
1814                  * the controller, but the remaining header quadlets
1815                  * are big endian.  We want to present all the headers
1816                  * as big endian, so we have to swap the first quadlet.
1817                  */
1818                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1819                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1820                 ctx->header_length += ctx->base.header_size;
1821         }
1822
1823         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1824                 ir_header = (__le32 *) p;
1825                 ctx->base.callback(&ctx->base,
1826                                    le32_to_cpu(ir_header[0]) & 0xffff,
1827                                    ctx->header_length, ctx->header,
1828                                    ctx->base.callback_data);
1829                 ctx->header_length = 0;
1830         }
1831
1832         return 1;
1833 }
1834
1835 static int handle_it_packet(struct context *context,
1836                             struct descriptor *d,
1837                             struct descriptor *last)
1838 {
1839         struct iso_context *ctx =
1840                 container_of(context, struct iso_context, context);
1841
1842         if (last->transfer_status == 0)
1843                 /* This descriptor isn't done yet, stop iteration. */
1844                 return 0;
1845
1846         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1847                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1848                                    0, NULL, ctx->base.callback_data);
1849
1850         return 1;
1851 }
1852
1853 static struct fw_iso_context *
1854 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1855 {
1856         struct fw_ohci *ohci = fw_ohci(card);
1857         struct iso_context *ctx, *list;
1858         descriptor_callback_t callback;
1859         u32 *mask, regs;
1860         unsigned long flags;
1861         int index, retval = -ENOMEM;
1862
1863         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1864                 mask = &ohci->it_context_mask;
1865                 list = ohci->it_context_list;
1866                 callback = handle_it_packet;
1867         } else {
1868                 mask = &ohci->ir_context_mask;
1869                 list = ohci->ir_context_list;
1870                 if (ohci->version >= OHCI_VERSION_1_1)
1871                         callback = handle_ir_dualbuffer_packet;
1872                 else
1873                         callback = handle_ir_packet_per_buffer;
1874         }
1875
1876         spin_lock_irqsave(&ohci->lock, flags);
1877         index = ffs(*mask) - 1;
1878         if (index >= 0)
1879                 *mask &= ~(1 << index);
1880         spin_unlock_irqrestore(&ohci->lock, flags);
1881
1882         if (index < 0)
1883                 return ERR_PTR(-EBUSY);
1884
1885         if (type == FW_ISO_CONTEXT_TRANSMIT)
1886                 regs = OHCI1394_IsoXmitContextBase(index);
1887         else
1888                 regs = OHCI1394_IsoRcvContextBase(index);
1889
1890         ctx = &list[index];
1891         memset(ctx, 0, sizeof(*ctx));
1892         ctx->header_length = 0;
1893         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1894         if (ctx->header == NULL)
1895                 goto out;
1896
1897         retval = context_init(&ctx->context, ohci, regs, callback);
1898         if (retval < 0)
1899                 goto out_with_header;
1900
1901         return &ctx->base;
1902
1903  out_with_header:
1904         free_page((unsigned long)ctx->header);
1905  out:
1906         spin_lock_irqsave(&ohci->lock, flags);
1907         *mask |= 1 << index;
1908         spin_unlock_irqrestore(&ohci->lock, flags);
1909
1910         return ERR_PTR(retval);
1911 }
1912
1913 static int ohci_start_iso(struct fw_iso_context *base,
1914                           s32 cycle, u32 sync, u32 tags)
1915 {
1916         struct iso_context *ctx = container_of(base, struct iso_context, base);
1917         struct fw_ohci *ohci = ctx->context.ohci;
1918         u32 control, match;
1919         int index;
1920
1921         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1922                 index = ctx - ohci->it_context_list;
1923                 match = 0;
1924                 if (cycle >= 0)
1925                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1926                                 (cycle & 0x7fff) << 16;
1927
1928                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1929                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1930                 context_run(&ctx->context, match);
1931         } else {
1932                 index = ctx - ohci->ir_context_list;
1933                 control = IR_CONTEXT_ISOCH_HEADER;
1934                 if (ohci->version >= OHCI_VERSION_1_1)
1935                         control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1936                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1937                 if (cycle >= 0) {
1938                         match |= (cycle & 0x07fff) << 12;
1939                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1940                 }
1941
1942                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1943                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1944                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1945                 context_run(&ctx->context, control);
1946         }
1947
1948         return 0;
1949 }
1950
1951 static int ohci_stop_iso(struct fw_iso_context *base)
1952 {
1953         struct fw_ohci *ohci = fw_ohci(base->card);
1954         struct iso_context *ctx = container_of(base, struct iso_context, base);
1955         int index;
1956
1957         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1958                 index = ctx - ohci->it_context_list;
1959                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1960         } else {
1961                 index = ctx - ohci->ir_context_list;
1962                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1963         }
1964         flush_writes(ohci);
1965         context_stop(&ctx->context);
1966
1967         return 0;
1968 }
1969
1970 static void ohci_free_iso_context(struct fw_iso_context *base)
1971 {
1972         struct fw_ohci *ohci = fw_ohci(base->card);
1973         struct iso_context *ctx = container_of(base, struct iso_context, base);
1974         unsigned long flags;
1975         int index;
1976
1977         ohci_stop_iso(base);
1978         context_release(&ctx->context);
1979         free_page((unsigned long)ctx->header);
1980
1981         spin_lock_irqsave(&ohci->lock, flags);
1982
1983         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1984                 index = ctx - ohci->it_context_list;
1985                 ohci->it_context_mask |= 1 << index;
1986         } else {
1987                 index = ctx - ohci->ir_context_list;
1988                 ohci->ir_context_mask |= 1 << index;
1989         }
1990
1991         spin_unlock_irqrestore(&ohci->lock, flags);
1992 }
1993
1994 static int
1995 ohci_queue_iso_transmit(struct fw_iso_context *base,
1996                         struct fw_iso_packet *packet,
1997                         struct fw_iso_buffer *buffer,
1998                         unsigned long payload)
1999 {
2000         struct iso_context *ctx = container_of(base, struct iso_context, base);
2001         struct descriptor *d, *last, *pd;
2002         struct fw_iso_packet *p;
2003         __le32 *header;
2004         dma_addr_t d_bus, page_bus;
2005         u32 z, header_z, payload_z, irq;
2006         u32 payload_index, payload_end_index, next_page_index;
2007         int page, end_page, i, length, offset;
2008
2009         /*
2010          * FIXME: Cycle lost behavior should be configurable: lose
2011          * packet, retransmit or terminate..
2012          */
2013
2014         p = packet;
2015         payload_index = payload;
2016
2017         if (p->skip)
2018                 z = 1;
2019         else
2020                 z = 2;
2021         if (p->header_length > 0)
2022                 z++;
2023
2024         /* Determine the first page the payload isn't contained in. */
2025         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2026         if (p->payload_length > 0)
2027                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2028         else
2029                 payload_z = 0;
2030
2031         z += payload_z;
2032
2033         /* Get header size in number of descriptors. */
2034         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2035
2036         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2037         if (d == NULL)
2038                 return -ENOMEM;
2039
2040         if (!p->skip) {
2041                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2042                 d[0].req_count = cpu_to_le16(8);
2043
2044                 header = (__le32 *) &d[1];
2045                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2046                                         IT_HEADER_TAG(p->tag) |
2047                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2048                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2049                                         IT_HEADER_SPEED(ctx->base.speed));
2050                 header[1] =
2051                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2052                                                           p->payload_length));
2053         }
2054
2055         if (p->header_length > 0) {
2056                 d[2].req_count    = cpu_to_le16(p->header_length);
2057                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2058                 memcpy(&d[z], p->header, p->header_length);
2059         }
2060
2061         pd = d + z - payload_z;
2062         payload_end_index = payload_index + p->payload_length;
2063         for (i = 0; i < payload_z; i++) {
2064                 page               = payload_index >> PAGE_SHIFT;
2065                 offset             = payload_index & ~PAGE_MASK;
2066                 next_page_index    = (page + 1) << PAGE_SHIFT;
2067                 length             =
2068                         min(next_page_index, payload_end_index) - payload_index;
2069                 pd[i].req_count    = cpu_to_le16(length);
2070
2071                 page_bus = page_private(buffer->pages[page]);
2072                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2073
2074                 payload_index += length;
2075         }
2076
2077         if (p->interrupt)
2078                 irq = DESCRIPTOR_IRQ_ALWAYS;
2079         else
2080                 irq = DESCRIPTOR_NO_IRQ;
2081
2082         last = z == 2 ? d : d + z - 1;
2083         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2084                                      DESCRIPTOR_STATUS |
2085                                      DESCRIPTOR_BRANCH_ALWAYS |
2086                                      irq);
2087
2088         context_append(&ctx->context, d, z, header_z);
2089
2090         return 0;
2091 }
2092
2093 static int
2094 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
2095                                   struct fw_iso_packet *packet,
2096                                   struct fw_iso_buffer *buffer,
2097                                   unsigned long payload)
2098 {
2099         struct iso_context *ctx = container_of(base, struct iso_context, base);
2100         struct db_descriptor *db = NULL;
2101         struct descriptor *d;
2102         struct fw_iso_packet *p;
2103         dma_addr_t d_bus, page_bus;
2104         u32 z, header_z, length, rest;
2105         int page, offset, packet_count, header_size;
2106
2107         /*
2108          * FIXME: Cycle lost behavior should be configurable: lose
2109          * packet, retransmit or terminate..
2110          */
2111
2112         p = packet;
2113         z = 2;
2114
2115         /*
2116          * The OHCI controller puts the status word in the header
2117          * buffer too, so we need 4 extra bytes per packet.
2118          */
2119         packet_count = p->header_length / ctx->base.header_size;
2120         header_size = packet_count * (ctx->base.header_size + 4);
2121
2122         /* Get header size in number of descriptors. */
2123         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2124         page     = payload >> PAGE_SHIFT;
2125         offset   = payload & ~PAGE_MASK;
2126         rest     = p->payload_length;
2127
2128         /* FIXME: make packet-per-buffer/dual-buffer a context option */
2129         while (rest > 0) {
2130                 d = context_get_descriptors(&ctx->context,
2131                                             z + header_z, &d_bus);
2132                 if (d == NULL)
2133                         return -ENOMEM;
2134
2135                 db = (struct db_descriptor *) d;
2136                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
2137                                           DESCRIPTOR_BRANCH_ALWAYS);
2138                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
2139                 if (p->skip && rest == p->payload_length) {
2140                         db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2141                         db->first_req_count = db->first_size;
2142                 } else {
2143                         db->first_req_count = cpu_to_le16(header_size);
2144                 }
2145                 db->first_res_count = db->first_req_count;
2146                 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
2147
2148                 if (p->skip && rest == p->payload_length)
2149                         length = 4;
2150                 else if (offset + rest < PAGE_SIZE)
2151                         length = rest;
2152                 else
2153                         length = PAGE_SIZE - offset;
2154
2155                 db->second_req_count = cpu_to_le16(length);
2156                 db->second_res_count = db->second_req_count;
2157                 page_bus = page_private(buffer->pages[page]);
2158                 db->second_buffer = cpu_to_le32(page_bus + offset);
2159
2160                 if (p->interrupt && length == rest)
2161                         db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2162
2163                 context_append(&ctx->context, d, z, header_z);
2164                 offset = (offset + length) & ~PAGE_MASK;
2165                 rest -= length;
2166                 if (offset == 0)
2167                         page++;
2168         }
2169
2170         return 0;
2171 }
2172
2173 static int
2174 ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2175                                          struct fw_iso_packet *packet,
2176                                          struct fw_iso_buffer *buffer,
2177                                          unsigned long payload)
2178 {
2179         struct iso_context *ctx = container_of(base, struct iso_context, base);
2180         struct descriptor *d = NULL, *pd = NULL;
2181         struct fw_iso_packet *p = packet;
2182         dma_addr_t d_bus, page_bus;
2183         u32 z, header_z, rest;
2184         int i, j, length;
2185         int page, offset, packet_count, header_size, payload_per_buffer;
2186
2187         /*
2188          * The OHCI controller puts the status word in the
2189          * buffer too, so we need 4 extra bytes per packet.
2190          */
2191         packet_count = p->header_length / ctx->base.header_size;
2192         header_size  = ctx->base.header_size + 4;
2193
2194         /* Get header size in number of descriptors. */
2195         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2196         page     = payload >> PAGE_SHIFT;
2197         offset   = payload & ~PAGE_MASK;
2198         payload_per_buffer = p->payload_length / packet_count;
2199
2200         for (i = 0; i < packet_count; i++) {
2201                 /* d points to the header descriptor */
2202                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2203                 d = context_get_descriptors(&ctx->context,
2204                                 z + header_z, &d_bus);
2205                 if (d == NULL)
2206                         return -ENOMEM;
2207
2208                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2209                                               DESCRIPTOR_INPUT_MORE);
2210                 if (p->skip && i == 0)
2211                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2212                 d->req_count    = cpu_to_le16(header_size);
2213                 d->res_count    = d->req_count;
2214                 d->transfer_status = 0;
2215                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2216
2217                 rest = payload_per_buffer;
2218                 for (j = 1; j < z; j++) {
2219                         pd = d + j;
2220                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2221                                                   DESCRIPTOR_INPUT_MORE);
2222
2223                         if (offset + rest < PAGE_SIZE)
2224                                 length = rest;
2225                         else
2226                                 length = PAGE_SIZE - offset;
2227                         pd->req_count = cpu_to_le16(length);
2228                         pd->res_count = pd->req_count;
2229                         pd->transfer_status = 0;
2230
2231                         page_bus = page_private(buffer->pages[page]);
2232                         pd->data_address = cpu_to_le32(page_bus + offset);
2233
2234                         offset = (offset + length) & ~PAGE_MASK;
2235                         rest -= length;
2236                         if (offset == 0)
2237                                 page++;
2238                 }
2239                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2240                                           DESCRIPTOR_INPUT_LAST |
2241                                           DESCRIPTOR_BRANCH_ALWAYS);
2242                 if (p->interrupt && i == packet_count - 1)
2243                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2244
2245                 context_append(&ctx->context, d, z, header_z);
2246         }
2247
2248         return 0;
2249 }
2250
2251 static int
2252 ohci_queue_iso(struct fw_iso_context *base,
2253                struct fw_iso_packet *packet,
2254                struct fw_iso_buffer *buffer,
2255                unsigned long payload)
2256 {
2257         struct iso_context *ctx = container_of(base, struct iso_context, base);
2258         unsigned long flags;
2259         int retval;
2260
2261         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2262         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2263                 retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
2264         else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
2265                 retval = ohci_queue_iso_receive_dualbuffer(base, packet,
2266                                                          buffer, payload);
2267         else
2268                 retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2269                                                                 buffer,
2270                                                                 payload);
2271         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2272
2273         return retval;
2274 }
2275
2276 static const struct fw_card_driver ohci_driver = {
2277         .name                   = ohci_driver_name,
2278         .enable                 = ohci_enable,
2279         .update_phy_reg         = ohci_update_phy_reg,
2280         .set_config_rom         = ohci_set_config_rom,
2281         .send_request           = ohci_send_request,
2282         .send_response          = ohci_send_response,
2283         .cancel_packet          = ohci_cancel_packet,
2284         .enable_phys_dma        = ohci_enable_phys_dma,
2285         .get_bus_time           = ohci_get_bus_time,
2286
2287         .allocate_iso_context   = ohci_allocate_iso_context,
2288         .free_iso_context       = ohci_free_iso_context,
2289         .queue_iso              = ohci_queue_iso,
2290         .start_iso              = ohci_start_iso,
2291         .stop_iso               = ohci_stop_iso,
2292 };
2293
2294 #ifdef CONFIG_PPC_PMAC
2295 static void ohci_pmac_on(struct pci_dev *dev)
2296 {
2297         if (machine_is(powermac)) {
2298                 struct device_node *ofn = pci_device_to_OF_node(dev);
2299
2300                 if (ofn) {
2301                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2302                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2303                 }
2304         }
2305 }
2306
2307 static void ohci_pmac_off(struct pci_dev *dev)
2308 {
2309         if (machine_is(powermac)) {
2310                 struct device_node *ofn = pci_device_to_OF_node(dev);
2311
2312                 if (ofn) {
2313                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2314                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2315                 }
2316         }
2317 }
2318 #else
2319 #define ohci_pmac_on(dev)
2320 #define ohci_pmac_off(dev)
2321 #endif /* CONFIG_PPC_PMAC */
2322
2323 static int __devinit
2324 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
2325 {
2326         struct fw_ohci *ohci;
2327         u32 bus_options, max_receive, link_speed;
2328         u64 guid;
2329         int err;
2330         size_t size;
2331
2332         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2333         if (ohci == NULL) {
2334                 fw_error("Could not malloc fw_ohci data.\n");
2335                 return -ENOMEM;
2336         }
2337
2338         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2339
2340         ohci_pmac_on(dev);
2341
2342         err = pci_enable_device(dev);
2343         if (err) {
2344                 fw_error("Failed to enable OHCI hardware.\n");
2345                 goto fail_free;
2346         }
2347
2348         pci_set_master(dev);
2349         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2350         pci_set_drvdata(dev, ohci);
2351
2352 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2353         ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2354                              dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2355 #endif
2356         spin_lock_init(&ohci->lock);
2357
2358         tasklet_init(&ohci->bus_reset_tasklet,
2359                      bus_reset_tasklet, (unsigned long)ohci);
2360
2361         err = pci_request_region(dev, 0, ohci_driver_name);
2362         if (err) {
2363                 fw_error("MMIO resource unavailable\n");
2364                 goto fail_disable;
2365         }
2366
2367         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2368         if (ohci->registers == NULL) {
2369                 fw_error("Failed to remap registers\n");
2370                 err = -ENXIO;
2371                 goto fail_iomem;
2372         }
2373
2374         ar_context_init(&ohci->ar_request_ctx, ohci,
2375                         OHCI1394_AsReqRcvContextControlSet);
2376
2377         ar_context_init(&ohci->ar_response_ctx, ohci,
2378                         OHCI1394_AsRspRcvContextControlSet);
2379
2380         context_init(&ohci->at_request_ctx, ohci,
2381                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2382
2383         context_init(&ohci->at_response_ctx, ohci,
2384                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2385
2386         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2387         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2388         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2389         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2390         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2391
2392         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2393         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2394         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2395         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2396         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2397
2398         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2399                 fw_error("Out of memory for it/ir contexts.\n");
2400                 err = -ENOMEM;
2401                 goto fail_registers;
2402         }
2403
2404         /* self-id dma buffer allocation */
2405         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2406                                                SELF_ID_BUF_SIZE,
2407                                                &ohci->self_id_bus,
2408                                                GFP_KERNEL);
2409         if (ohci->self_id_cpu == NULL) {
2410                 fw_error("Out of memory for self ID buffer.\n");
2411                 err = -ENOMEM;
2412                 goto fail_registers;
2413         }
2414
2415         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2416         max_receive = (bus_options >> 12) & 0xf;
2417         link_speed = bus_options & 0x7;
2418         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2419                 reg_read(ohci, OHCI1394_GUIDLo);
2420
2421         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2422         if (err < 0)
2423                 goto fail_self_id;
2424
2425         ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2426         fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2427                   dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
2428         return 0;
2429
2430  fail_self_id:
2431         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2432                           ohci->self_id_cpu, ohci->self_id_bus);
2433  fail_registers:
2434         kfree(ohci->it_context_list);
2435         kfree(ohci->ir_context_list);
2436         pci_iounmap(dev, ohci->registers);
2437  fail_iomem:
2438         pci_release_region(dev, 0);
2439  fail_disable:
2440         pci_disable_device(dev);
2441  fail_free:
2442         kfree(&ohci->card);
2443         ohci_pmac_off(dev);
2444
2445         return err;
2446 }
2447
2448 static void pci_remove(struct pci_dev *dev)
2449 {
2450         struct fw_ohci *ohci;
2451
2452         ohci = pci_get_drvdata(dev);
2453         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2454         flush_writes(ohci);
2455         fw_core_remove_card(&ohci->card);
2456
2457         /*
2458          * FIXME: Fail all pending packets here, now that the upper
2459          * layers can't queue any more.
2460          */
2461
2462         software_reset(ohci);
2463         free_irq(dev->irq, ohci);
2464         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2465                           ohci->self_id_cpu, ohci->self_id_bus);
2466         kfree(ohci->it_context_list);
2467         kfree(ohci->ir_context_list);
2468         pci_iounmap(dev, ohci->registers);
2469         pci_release_region(dev, 0);
2470         pci_disable_device(dev);
2471         kfree(&ohci->card);
2472         ohci_pmac_off(dev);
2473
2474         fw_notify("Removed fw-ohci device.\n");
2475 }
2476
2477 #ifdef CONFIG_PM
2478 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2479 {
2480         struct fw_ohci *ohci = pci_get_drvdata(dev);
2481         int err;
2482
2483         software_reset(ohci);
2484         free_irq(dev->irq, ohci);
2485         err = pci_save_state(dev);
2486         if (err) {
2487                 fw_error("pci_save_state failed\n");
2488                 return err;
2489         }
2490         err = pci_set_power_state(dev, pci_choose_state(dev, state));
2491         if (err)
2492                 fw_error("pci_set_power_state failed with %d\n", err);
2493         ohci_pmac_off(dev);
2494
2495         return 0;
2496 }
2497
2498 static int pci_resume(struct pci_dev *dev)
2499 {
2500         struct fw_ohci *ohci = pci_get_drvdata(dev);
2501         int err;
2502
2503         ohci_pmac_on(dev);
2504         pci_set_power_state(dev, PCI_D0);
2505         pci_restore_state(dev);
2506         err = pci_enable_device(dev);
2507         if (err) {
2508                 fw_error("pci_enable_device failed\n");
2509                 return err;
2510         }
2511
2512         return ohci_enable(&ohci->card, NULL, 0);
2513 }
2514 #endif
2515
2516 static struct pci_device_id pci_table[] = {
2517         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2518         { }
2519 };
2520
2521 MODULE_DEVICE_TABLE(pci, pci_table);
2522
2523 static struct pci_driver fw_ohci_pci_driver = {
2524         .name           = ohci_driver_name,
2525         .id_table       = pci_table,
2526         .probe          = pci_probe,
2527         .remove         = pci_remove,
2528 #ifdef CONFIG_PM
2529         .resume         = pci_resume,
2530         .suspend        = pci_suspend,
2531 #endif
2532 };
2533
2534 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2535 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2536 MODULE_LICENSE("GPL");
2537
2538 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2539 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2540 MODULE_ALIAS("ohci1394");
2541 #endif
2542
2543 static int __init fw_ohci_init(void)
2544 {
2545         return pci_register_driver(&fw_ohci_pci_driver);
2546 }
2547
2548 static void __exit fw_ohci_cleanup(void)
2549 {
2550         pci_unregister_driver(&fw_ohci_pci_driver);
2551 }
2552
2553 module_init(fw_ohci_init);
2554 module_exit(fw_ohci_cleanup);