]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/dma/mv_xor.c
f0c123ce8ae0a003c1abccd9d5d662d1c8903e40
[linux-2.6-omap-h63xx.git] / drivers / dma / mv_xor.c
1 /*
2  * offload engine driver for the Marvell XOR engine
3  * Copyright (C) 2007, 2008, Marvell International Ltd.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/async_tx.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/platform_device.h>
27 #include <linux/memory.h>
28 #include <asm/plat-orion/mv_xor.h>
29 #include "mv_xor.h"
30
31 static void mv_xor_issue_pending(struct dma_chan *chan);
32
33 #define to_mv_xor_chan(chan)            \
34         container_of(chan, struct mv_xor_chan, common)
35
36 #define to_mv_xor_device(dev)           \
37         container_of(dev, struct mv_xor_device, common)
38
39 #define to_mv_xor_slot(tx)              \
40         container_of(tx, struct mv_xor_desc_slot, async_tx)
41
42 static void mv_desc_init(struct mv_xor_desc_slot *desc, unsigned long flags)
43 {
44         struct mv_xor_desc *hw_desc = desc->hw_desc;
45
46         hw_desc->status = (1 << 31);
47         hw_desc->phy_next_desc = 0;
48         hw_desc->desc_command = (1 << 31);
49 }
50
51 static u32 mv_desc_get_dest_addr(struct mv_xor_desc_slot *desc)
52 {
53         struct mv_xor_desc *hw_desc = desc->hw_desc;
54         return hw_desc->phy_dest_addr;
55 }
56
57 static u32 mv_desc_get_src_addr(struct mv_xor_desc_slot *desc,
58                                 int src_idx)
59 {
60         struct mv_xor_desc *hw_desc = desc->hw_desc;
61         return hw_desc->phy_src_addr[src_idx];
62 }
63
64
65 static void mv_desc_set_byte_count(struct mv_xor_desc_slot *desc,
66                                    u32 byte_count)
67 {
68         struct mv_xor_desc *hw_desc = desc->hw_desc;
69         hw_desc->byte_count = byte_count;
70 }
71
72 static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc,
73                                   u32 next_desc_addr)
74 {
75         struct mv_xor_desc *hw_desc = desc->hw_desc;
76         BUG_ON(hw_desc->phy_next_desc);
77         hw_desc->phy_next_desc = next_desc_addr;
78 }
79
80 static void mv_desc_clear_next_desc(struct mv_xor_desc_slot *desc)
81 {
82         struct mv_xor_desc *hw_desc = desc->hw_desc;
83         hw_desc->phy_next_desc = 0;
84 }
85
86 static void mv_desc_set_block_fill_val(struct mv_xor_desc_slot *desc, u32 val)
87 {
88         desc->value = val;
89 }
90
91 static void mv_desc_set_dest_addr(struct mv_xor_desc_slot *desc,
92                                   dma_addr_t addr)
93 {
94         struct mv_xor_desc *hw_desc = desc->hw_desc;
95         hw_desc->phy_dest_addr = addr;
96 }
97
98 static int mv_chan_memset_slot_count(size_t len)
99 {
100         return 1;
101 }
102
103 #define mv_chan_memcpy_slot_count(c) mv_chan_memset_slot_count(c)
104
105 static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc,
106                                  int index, dma_addr_t addr)
107 {
108         struct mv_xor_desc *hw_desc = desc->hw_desc;
109         hw_desc->phy_src_addr[index] = addr;
110         if (desc->type == DMA_XOR)
111                 hw_desc->desc_command |= (1 << index);
112 }
113
114 static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan)
115 {
116         return __raw_readl(XOR_CURR_DESC(chan));
117 }
118
119 static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan,
120                                         u32 next_desc_addr)
121 {
122         __raw_writel(next_desc_addr, XOR_NEXT_DESC(chan));
123 }
124
125 static void mv_chan_set_dest_pointer(struct mv_xor_chan *chan, u32 desc_addr)
126 {
127         __raw_writel(desc_addr, XOR_DEST_POINTER(chan));
128 }
129
130 static void mv_chan_set_block_size(struct mv_xor_chan *chan, u32 block_size)
131 {
132         __raw_writel(block_size, XOR_BLOCK_SIZE(chan));
133 }
134
135 static void mv_chan_set_value(struct mv_xor_chan *chan, u32 value)
136 {
137         __raw_writel(value, XOR_INIT_VALUE_LOW(chan));
138         __raw_writel(value, XOR_INIT_VALUE_HIGH(chan));
139 }
140
141 static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan)
142 {
143         u32 val = __raw_readl(XOR_INTR_MASK(chan));
144         val |= XOR_INTR_MASK_VALUE << (chan->idx * 16);
145         __raw_writel(val, XOR_INTR_MASK(chan));
146 }
147
148 static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan)
149 {
150         u32 intr_cause = __raw_readl(XOR_INTR_CAUSE(chan));
151         intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF;
152         return intr_cause;
153 }
154
155 static int mv_is_err_intr(u32 intr_cause)
156 {
157         if (intr_cause & ((1<<4)|(1<<5)|(1<<6)|(1<<7)|(1<<8)|(1<<9)))
158                 return 1;
159
160         return 0;
161 }
162
163 static void mv_xor_device_clear_eoc_cause(struct mv_xor_chan *chan)
164 {
165         u32 val = (1 << (1 + (chan->idx * 16)));
166         dev_dbg(chan->device->common.dev, "%s, val 0x%08x\n", __func__, val);
167         __raw_writel(val, XOR_INTR_CAUSE(chan));
168 }
169
170 static void mv_xor_device_clear_err_status(struct mv_xor_chan *chan)
171 {
172         u32 val = 0xFFFF0000 >> (chan->idx * 16);
173         __raw_writel(val, XOR_INTR_CAUSE(chan));
174 }
175
176 static int mv_can_chain(struct mv_xor_desc_slot *desc)
177 {
178         struct mv_xor_desc_slot *chain_old_tail = list_entry(
179                 desc->chain_node.prev, struct mv_xor_desc_slot, chain_node);
180
181         if (chain_old_tail->type != desc->type)
182                 return 0;
183         if (desc->type == DMA_MEMSET)
184                 return 0;
185
186         return 1;
187 }
188
189 static void mv_set_mode(struct mv_xor_chan *chan,
190                                enum dma_transaction_type type)
191 {
192         u32 op_mode;
193         u32 config = __raw_readl(XOR_CONFIG(chan));
194
195         switch (type) {
196         case DMA_XOR:
197                 op_mode = XOR_OPERATION_MODE_XOR;
198                 break;
199         case DMA_MEMCPY:
200                 op_mode = XOR_OPERATION_MODE_MEMCPY;
201                 break;
202         case DMA_MEMSET:
203                 op_mode = XOR_OPERATION_MODE_MEMSET;
204                 break;
205         default:
206                 dev_printk(KERN_ERR, chan->device->common.dev,
207                            "error: unsupported operation %d.\n",
208                            type);
209                 BUG();
210                 return;
211         }
212
213         config &= ~0x7;
214         config |= op_mode;
215         __raw_writel(config, XOR_CONFIG(chan));
216         chan->current_type = type;
217 }
218
219 static void mv_chan_activate(struct mv_xor_chan *chan)
220 {
221         u32 activation;
222
223         dev_dbg(chan->device->common.dev, " activate chan.\n");
224         activation = __raw_readl(XOR_ACTIVATION(chan));
225         activation |= 0x1;
226         __raw_writel(activation, XOR_ACTIVATION(chan));
227 }
228
229 static char mv_chan_is_busy(struct mv_xor_chan *chan)
230 {
231         u32 state = __raw_readl(XOR_ACTIVATION(chan));
232
233         state = (state >> 4) & 0x3;
234
235         return (state == 1) ? 1 : 0;
236 }
237
238 static int mv_chan_xor_slot_count(size_t len, int src_cnt)
239 {
240         return 1;
241 }
242
243 /**
244  * mv_xor_free_slots - flags descriptor slots for reuse
245  * @slot: Slot to free
246  * Caller must hold &mv_chan->lock while calling this function
247  */
248 static void mv_xor_free_slots(struct mv_xor_chan *mv_chan,
249                               struct mv_xor_desc_slot *slot)
250 {
251         dev_dbg(mv_chan->device->common.dev, "%s %d slot %p\n",
252                 __func__, __LINE__, slot);
253
254         slot->slots_per_op = 0;
255
256 }
257
258 /*
259  * mv_xor_start_new_chain - program the engine to operate on new chain headed by
260  * sw_desc
261  * Caller must hold &mv_chan->lock while calling this function
262  */
263 static void mv_xor_start_new_chain(struct mv_xor_chan *mv_chan,
264                                    struct mv_xor_desc_slot *sw_desc)
265 {
266         dev_dbg(mv_chan->device->common.dev, "%s %d: sw_desc %p\n",
267                 __func__, __LINE__, sw_desc);
268         if (sw_desc->type != mv_chan->current_type)
269                 mv_set_mode(mv_chan, sw_desc->type);
270
271         if (sw_desc->type == DMA_MEMSET) {
272                 /* for memset requests we need to program the engine, no
273                  * descriptors used.
274                  */
275                 struct mv_xor_desc *hw_desc = sw_desc->hw_desc;
276                 mv_chan_set_dest_pointer(mv_chan, hw_desc->phy_dest_addr);
277                 mv_chan_set_block_size(mv_chan, sw_desc->unmap_len);
278                 mv_chan_set_value(mv_chan, sw_desc->value);
279         } else {
280                 /* set the hardware chain */
281                 mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys);
282         }
283         mv_chan->pending += sw_desc->slot_cnt;
284         mv_xor_issue_pending(&mv_chan->common);
285 }
286
287 static dma_cookie_t
288 mv_xor_run_tx_complete_actions(struct mv_xor_desc_slot *desc,
289         struct mv_xor_chan *mv_chan, dma_cookie_t cookie)
290 {
291         BUG_ON(desc->async_tx.cookie < 0);
292
293         if (desc->async_tx.cookie > 0) {
294                 cookie = desc->async_tx.cookie;
295
296                 /* call the callback (must not sleep or submit new
297                  * operations to this channel)
298                  */
299                 if (desc->async_tx.callback)
300                         desc->async_tx.callback(
301                                 desc->async_tx.callback_param);
302
303                 /* unmap dma addresses
304                  * (unmap_single vs unmap_page?)
305                  */
306                 if (desc->group_head && desc->unmap_len) {
307                         struct mv_xor_desc_slot *unmap = desc->group_head;
308                         struct device *dev =
309                                 &mv_chan->device->pdev->dev;
310                         u32 len = unmap->unmap_len;
311                         u32 src_cnt = unmap->unmap_src_cnt;
312                         dma_addr_t addr = mv_desc_get_dest_addr(unmap);
313
314                         dma_unmap_page(dev, addr, len, DMA_FROM_DEVICE);
315                         while (src_cnt--) {
316                                 addr = mv_desc_get_src_addr(unmap, src_cnt);
317                                 dma_unmap_page(dev, addr, len, DMA_TO_DEVICE);
318                         }
319                         desc->group_head = NULL;
320                 }
321         }
322
323         /* run dependent operations */
324         async_tx_run_dependencies(&desc->async_tx);
325
326         return cookie;
327 }
328
329 static int
330 mv_xor_clean_completed_slots(struct mv_xor_chan *mv_chan)
331 {
332         struct mv_xor_desc_slot *iter, *_iter;
333
334         dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
335         list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
336                                  completed_node) {
337
338                 if (async_tx_test_ack(&iter->async_tx)) {
339                         list_del(&iter->completed_node);
340                         mv_xor_free_slots(mv_chan, iter);
341                 }
342         }
343         return 0;
344 }
345
346 static int
347 mv_xor_clean_slot(struct mv_xor_desc_slot *desc,
348         struct mv_xor_chan *mv_chan)
349 {
350         dev_dbg(mv_chan->device->common.dev, "%s %d: desc %p flags %d\n",
351                 __func__, __LINE__, desc, desc->async_tx.flags);
352         list_del(&desc->chain_node);
353         /* the client is allowed to attach dependent operations
354          * until 'ack' is set
355          */
356         if (!async_tx_test_ack(&desc->async_tx)) {
357                 /* move this slot to the completed_slots */
358                 list_add_tail(&desc->completed_node, &mv_chan->completed_slots);
359                 return 0;
360         }
361
362         mv_xor_free_slots(mv_chan, desc);
363         return 0;
364 }
365
366 static void __mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
367 {
368         struct mv_xor_desc_slot *iter, *_iter;
369         dma_cookie_t cookie = 0;
370         int busy = mv_chan_is_busy(mv_chan);
371         u32 current_desc = mv_chan_get_current_desc(mv_chan);
372         int seen_current = 0;
373
374         dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
375         dev_dbg(mv_chan->device->common.dev, "current_desc %x\n", current_desc);
376         mv_xor_clean_completed_slots(mv_chan);
377
378         /* free completed slots from the chain starting with
379          * the oldest descriptor
380          */
381
382         list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
383                                         chain_node) {
384                 prefetch(_iter);
385                 prefetch(&_iter->async_tx);
386
387                 /* do not advance past the current descriptor loaded into the
388                  * hardware channel, subsequent descriptors are either in
389                  * process or have not been submitted
390                  */
391                 if (seen_current)
392                         break;
393
394                 /* stop the search if we reach the current descriptor and the
395                  * channel is busy
396                  */
397                 if (iter->async_tx.phys == current_desc) {
398                         seen_current = 1;
399                         if (busy)
400                                 break;
401                 }
402
403                 cookie = mv_xor_run_tx_complete_actions(iter, mv_chan, cookie);
404
405                 if (mv_xor_clean_slot(iter, mv_chan))
406                         break;
407         }
408
409         if ((busy == 0) && !list_empty(&mv_chan->chain)) {
410                 struct mv_xor_desc_slot *chain_head;
411                 chain_head = list_entry(mv_chan->chain.next,
412                                         struct mv_xor_desc_slot,
413                                         chain_node);
414
415                 mv_xor_start_new_chain(mv_chan, chain_head);
416         }
417
418         if (cookie > 0)
419                 mv_chan->completed_cookie = cookie;
420 }
421
422 static void
423 mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
424 {
425         spin_lock_bh(&mv_chan->lock);
426         __mv_xor_slot_cleanup(mv_chan);
427         spin_unlock_bh(&mv_chan->lock);
428 }
429
430 static void mv_xor_tasklet(unsigned long data)
431 {
432         struct mv_xor_chan *chan = (struct mv_xor_chan *) data;
433         __mv_xor_slot_cleanup(chan);
434 }
435
436 static struct mv_xor_desc_slot *
437 mv_xor_alloc_slots(struct mv_xor_chan *mv_chan, int num_slots,
438                     int slots_per_op)
439 {
440         struct mv_xor_desc_slot *iter, *_iter, *alloc_start = NULL;
441         LIST_HEAD(chain);
442         int slots_found, retry = 0;
443
444         /* start search from the last allocated descrtiptor
445          * if a contiguous allocation can not be found start searching
446          * from the beginning of the list
447          */
448 retry:
449         slots_found = 0;
450         if (retry == 0)
451                 iter = mv_chan->last_used;
452         else
453                 iter = list_entry(&mv_chan->all_slots,
454                         struct mv_xor_desc_slot,
455                         slot_node);
456
457         list_for_each_entry_safe_continue(
458                 iter, _iter, &mv_chan->all_slots, slot_node) {
459                 prefetch(_iter);
460                 prefetch(&_iter->async_tx);
461                 if (iter->slots_per_op) {
462                         /* give up after finding the first busy slot
463                          * on the second pass through the list
464                          */
465                         if (retry)
466                                 break;
467
468                         slots_found = 0;
469                         continue;
470                 }
471
472                 /* start the allocation if the slot is correctly aligned */
473                 if (!slots_found++)
474                         alloc_start = iter;
475
476                 if (slots_found == num_slots) {
477                         struct mv_xor_desc_slot *alloc_tail = NULL;
478                         struct mv_xor_desc_slot *last_used = NULL;
479                         iter = alloc_start;
480                         while (num_slots) {
481                                 int i;
482
483                                 /* pre-ack all but the last descriptor */
484                                 async_tx_ack(&iter->async_tx);
485
486                                 list_add_tail(&iter->chain_node, &chain);
487                                 alloc_tail = iter;
488                                 iter->async_tx.cookie = 0;
489                                 iter->slot_cnt = num_slots;
490                                 iter->xor_check_result = NULL;
491                                 for (i = 0; i < slots_per_op; i++) {
492                                         iter->slots_per_op = slots_per_op - i;
493                                         last_used = iter;
494                                         iter = list_entry(iter->slot_node.next,
495                                                 struct mv_xor_desc_slot,
496                                                 slot_node);
497                                 }
498                                 num_slots -= slots_per_op;
499                         }
500                         alloc_tail->group_head = alloc_start;
501                         alloc_tail->async_tx.cookie = -EBUSY;
502                         list_splice(&chain, &alloc_tail->async_tx.tx_list);
503                         mv_chan->last_used = last_used;
504                         mv_desc_clear_next_desc(alloc_start);
505                         mv_desc_clear_next_desc(alloc_tail);
506                         return alloc_tail;
507                 }
508         }
509         if (!retry++)
510                 goto retry;
511
512         /* try to free some slots if the allocation fails */
513         tasklet_schedule(&mv_chan->irq_tasklet);
514
515         return NULL;
516 }
517
518 static dma_cookie_t
519 mv_desc_assign_cookie(struct mv_xor_chan *mv_chan,
520                       struct mv_xor_desc_slot *desc)
521 {
522         dma_cookie_t cookie = mv_chan->common.cookie;
523
524         if (++cookie < 0)
525                 cookie = 1;
526         mv_chan->common.cookie = desc->async_tx.cookie = cookie;
527         return cookie;
528 }
529
530 /************************ DMA engine API functions ****************************/
531 static dma_cookie_t
532 mv_xor_tx_submit(struct dma_async_tx_descriptor *tx)
533 {
534         struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx);
535         struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan);
536         struct mv_xor_desc_slot *grp_start, *old_chain_tail;
537         dma_cookie_t cookie;
538         int new_hw_chain = 1;
539
540         dev_dbg(mv_chan->device->common.dev,
541                 "%s sw_desc %p: async_tx %p\n",
542                 __func__, sw_desc, &sw_desc->async_tx);
543
544         grp_start = sw_desc->group_head;
545
546         spin_lock_bh(&mv_chan->lock);
547         cookie = mv_desc_assign_cookie(mv_chan, sw_desc);
548
549         if (list_empty(&mv_chan->chain))
550                 list_splice_init(&sw_desc->async_tx.tx_list, &mv_chan->chain);
551         else {
552                 new_hw_chain = 0;
553
554                 old_chain_tail = list_entry(mv_chan->chain.prev,
555                                             struct mv_xor_desc_slot,
556                                             chain_node);
557                 list_splice_init(&grp_start->async_tx.tx_list,
558                                  &old_chain_tail->chain_node);
559
560                 if (!mv_can_chain(grp_start))
561                         goto submit_done;
562
563                 dev_dbg(mv_chan->device->common.dev, "Append to last desc %x\n",
564                         old_chain_tail->async_tx.phys);
565
566                 /* fix up the hardware chain */
567                 mv_desc_set_next_desc(old_chain_tail, grp_start->async_tx.phys);
568
569                 /* if the channel is not busy */
570                 if (!mv_chan_is_busy(mv_chan)) {
571                         u32 current_desc = mv_chan_get_current_desc(mv_chan);
572                         /*
573                          * and the curren desc is the end of the chain before
574                          * the append, then we need to start the channel
575                          */
576                         if (current_desc == old_chain_tail->async_tx.phys)
577                                 new_hw_chain = 1;
578                 }
579         }
580
581         if (new_hw_chain)
582                 mv_xor_start_new_chain(mv_chan, grp_start);
583
584 submit_done:
585         spin_unlock_bh(&mv_chan->lock);
586
587         return cookie;
588 }
589
590 /* returns the number of allocated descriptors */
591 static int mv_xor_alloc_chan_resources(struct dma_chan *chan)
592 {
593         char *hw_desc;
594         int idx;
595         struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
596         struct mv_xor_desc_slot *slot = NULL;
597         struct mv_xor_platform_data *plat_data =
598                 mv_chan->device->pdev->dev.platform_data;
599         int num_descs_in_pool = plat_data->pool_size/MV_XOR_SLOT_SIZE;
600
601         /* Allocate descriptor slots */
602         idx = mv_chan->slots_allocated;
603         while (idx < num_descs_in_pool) {
604                 slot = kzalloc(sizeof(*slot), GFP_KERNEL);
605                 if (!slot) {
606                         printk(KERN_INFO "MV XOR Channel only initialized"
607                                 " %d descriptor slots", idx);
608                         break;
609                 }
610                 hw_desc = (char *) mv_chan->device->dma_desc_pool_virt;
611                 slot->hw_desc = (void *) &hw_desc[idx * MV_XOR_SLOT_SIZE];
612
613                 dma_async_tx_descriptor_init(&slot->async_tx, chan);
614                 slot->async_tx.tx_submit = mv_xor_tx_submit;
615                 INIT_LIST_HEAD(&slot->chain_node);
616                 INIT_LIST_HEAD(&slot->slot_node);
617                 INIT_LIST_HEAD(&slot->async_tx.tx_list);
618                 hw_desc = (char *) mv_chan->device->dma_desc_pool;
619                 slot->async_tx.phys =
620                         (dma_addr_t) &hw_desc[idx * MV_XOR_SLOT_SIZE];
621                 slot->idx = idx++;
622
623                 spin_lock_bh(&mv_chan->lock);
624                 mv_chan->slots_allocated = idx;
625                 list_add_tail(&slot->slot_node, &mv_chan->all_slots);
626                 spin_unlock_bh(&mv_chan->lock);
627         }
628
629         if (mv_chan->slots_allocated && !mv_chan->last_used)
630                 mv_chan->last_used = list_entry(mv_chan->all_slots.next,
631                                         struct mv_xor_desc_slot,
632                                         slot_node);
633
634         dev_dbg(mv_chan->device->common.dev,
635                 "allocated %d descriptor slots last_used: %p\n",
636                 mv_chan->slots_allocated, mv_chan->last_used);
637
638         return mv_chan->slots_allocated ? : -ENOMEM;
639 }
640
641 static struct dma_async_tx_descriptor *
642 mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
643                 size_t len, unsigned long flags)
644 {
645         struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
646         struct mv_xor_desc_slot *sw_desc, *grp_start;
647         int slot_cnt;
648
649         dev_dbg(mv_chan->device->common.dev,
650                 "%s dest: %x src %x len: %u flags: %ld\n",
651                 __func__, dest, src, len, flags);
652         if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
653                 return NULL;
654
655         BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
656
657         spin_lock_bh(&mv_chan->lock);
658         slot_cnt = mv_chan_memcpy_slot_count(len);
659         sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
660         if (sw_desc) {
661                 sw_desc->type = DMA_MEMCPY;
662                 sw_desc->async_tx.flags = flags;
663                 grp_start = sw_desc->group_head;
664                 mv_desc_init(grp_start, flags);
665                 mv_desc_set_byte_count(grp_start, len);
666                 mv_desc_set_dest_addr(sw_desc->group_head, dest);
667                 mv_desc_set_src_addr(grp_start, 0, src);
668                 sw_desc->unmap_src_cnt = 1;
669                 sw_desc->unmap_len = len;
670         }
671         spin_unlock_bh(&mv_chan->lock);
672
673         dev_dbg(mv_chan->device->common.dev,
674                 "%s sw_desc %p async_tx %p\n",
675                 __func__, sw_desc, sw_desc ? &sw_desc->async_tx : 0);
676
677         return sw_desc ? &sw_desc->async_tx : NULL;
678 }
679
680 static struct dma_async_tx_descriptor *
681 mv_xor_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
682                        size_t len, unsigned long flags)
683 {
684         struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
685         struct mv_xor_desc_slot *sw_desc, *grp_start;
686         int slot_cnt;
687
688         dev_dbg(mv_chan->device->common.dev,
689                 "%s dest: %x len: %u flags: %ld\n",
690                 __func__, dest, len, flags);
691         if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
692                 return NULL;
693
694         BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
695
696         spin_lock_bh(&mv_chan->lock);
697         slot_cnt = mv_chan_memset_slot_count(len);
698         sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
699         if (sw_desc) {
700                 sw_desc->type = DMA_MEMSET;
701                 sw_desc->async_tx.flags = flags;
702                 grp_start = sw_desc->group_head;
703                 mv_desc_init(grp_start, flags);
704                 mv_desc_set_byte_count(grp_start, len);
705                 mv_desc_set_dest_addr(sw_desc->group_head, dest);
706                 mv_desc_set_block_fill_val(grp_start, value);
707                 sw_desc->unmap_src_cnt = 1;
708                 sw_desc->unmap_len = len;
709         }
710         spin_unlock_bh(&mv_chan->lock);
711         dev_dbg(mv_chan->device->common.dev,
712                 "%s sw_desc %p async_tx %p \n",
713                 __func__, sw_desc, &sw_desc->async_tx);
714         return sw_desc ? &sw_desc->async_tx : NULL;
715 }
716
717 static struct dma_async_tx_descriptor *
718 mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
719                     unsigned int src_cnt, size_t len, unsigned long flags)
720 {
721         struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
722         struct mv_xor_desc_slot *sw_desc, *grp_start;
723         int slot_cnt;
724
725         if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
726                 return NULL;
727
728         BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
729
730         dev_dbg(mv_chan->device->common.dev,
731                 "%s src_cnt: %d len: dest %x %u flags: %ld\n",
732                 __func__, src_cnt, len, dest, flags);
733
734         spin_lock_bh(&mv_chan->lock);
735         slot_cnt = mv_chan_xor_slot_count(len, src_cnt);
736         sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
737         if (sw_desc) {
738                 sw_desc->type = DMA_XOR;
739                 sw_desc->async_tx.flags = flags;
740                 grp_start = sw_desc->group_head;
741                 mv_desc_init(grp_start, flags);
742                 /* the byte count field is the same as in memcpy desc*/
743                 mv_desc_set_byte_count(grp_start, len);
744                 mv_desc_set_dest_addr(sw_desc->group_head, dest);
745                 sw_desc->unmap_src_cnt = src_cnt;
746                 sw_desc->unmap_len = len;
747                 while (src_cnt--)
748                         mv_desc_set_src_addr(grp_start, src_cnt, src[src_cnt]);
749         }
750         spin_unlock_bh(&mv_chan->lock);
751         dev_dbg(mv_chan->device->common.dev,
752                 "%s sw_desc %p async_tx %p \n",
753                 __func__, sw_desc, &sw_desc->async_tx);
754         return sw_desc ? &sw_desc->async_tx : NULL;
755 }
756
757 static void mv_xor_free_chan_resources(struct dma_chan *chan)
758 {
759         struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
760         struct mv_xor_desc_slot *iter, *_iter;
761         int in_use_descs = 0;
762
763         mv_xor_slot_cleanup(mv_chan);
764
765         spin_lock_bh(&mv_chan->lock);
766         list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
767                                         chain_node) {
768                 in_use_descs++;
769                 list_del(&iter->chain_node);
770         }
771         list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
772                                  completed_node) {
773                 in_use_descs++;
774                 list_del(&iter->completed_node);
775         }
776         list_for_each_entry_safe_reverse(
777                 iter, _iter, &mv_chan->all_slots, slot_node) {
778                 list_del(&iter->slot_node);
779                 kfree(iter);
780                 mv_chan->slots_allocated--;
781         }
782         mv_chan->last_used = NULL;
783
784         dev_dbg(mv_chan->device->common.dev, "%s slots_allocated %d\n",
785                 __func__, mv_chan->slots_allocated);
786         spin_unlock_bh(&mv_chan->lock);
787
788         if (in_use_descs)
789                 dev_err(mv_chan->device->common.dev,
790                         "freeing %d in use descriptors!\n", in_use_descs);
791 }
792
793 /**
794  * mv_xor_is_complete - poll the status of an XOR transaction
795  * @chan: XOR channel handle
796  * @cookie: XOR transaction identifier
797  */
798 static enum dma_status mv_xor_is_complete(struct dma_chan *chan,
799                                           dma_cookie_t cookie,
800                                           dma_cookie_t *done,
801                                           dma_cookie_t *used)
802 {
803         struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
804         dma_cookie_t last_used;
805         dma_cookie_t last_complete;
806         enum dma_status ret;
807
808         last_used = chan->cookie;
809         last_complete = mv_chan->completed_cookie;
810         mv_chan->is_complete_cookie = cookie;
811         if (done)
812                 *done = last_complete;
813         if (used)
814                 *used = last_used;
815
816         ret = dma_async_is_complete(cookie, last_complete, last_used);
817         if (ret == DMA_SUCCESS) {
818                 mv_xor_clean_completed_slots(mv_chan);
819                 return ret;
820         }
821         mv_xor_slot_cleanup(mv_chan);
822
823         last_used = chan->cookie;
824         last_complete = mv_chan->completed_cookie;
825
826         if (done)
827                 *done = last_complete;
828         if (used)
829                 *used = last_used;
830
831         return dma_async_is_complete(cookie, last_complete, last_used);
832 }
833
834 static void mv_dump_xor_regs(struct mv_xor_chan *chan)
835 {
836         u32 val;
837
838         val = __raw_readl(XOR_CONFIG(chan));
839         dev_printk(KERN_ERR, chan->device->common.dev,
840                    "config       0x%08x.\n", val);
841
842         val = __raw_readl(XOR_ACTIVATION(chan));
843         dev_printk(KERN_ERR, chan->device->common.dev,
844                    "activation   0x%08x.\n", val);
845
846         val = __raw_readl(XOR_INTR_CAUSE(chan));
847         dev_printk(KERN_ERR, chan->device->common.dev,
848                    "intr cause   0x%08x.\n", val);
849
850         val = __raw_readl(XOR_INTR_MASK(chan));
851         dev_printk(KERN_ERR, chan->device->common.dev,
852                    "intr mask    0x%08x.\n", val);
853
854         val = __raw_readl(XOR_ERROR_CAUSE(chan));
855         dev_printk(KERN_ERR, chan->device->common.dev,
856                    "error cause  0x%08x.\n", val);
857
858         val = __raw_readl(XOR_ERROR_ADDR(chan));
859         dev_printk(KERN_ERR, chan->device->common.dev,
860                    "error addr   0x%08x.\n", val);
861 }
862
863 static void mv_xor_err_interrupt_handler(struct mv_xor_chan *chan,
864                                          u32 intr_cause)
865 {
866         if (intr_cause & (1 << 4)) {
867              dev_dbg(chan->device->common.dev,
868                      "ignore this error\n");
869              return;
870         }
871
872         dev_printk(KERN_ERR, chan->device->common.dev,
873                    "error on chan %d. intr cause 0x%08x.\n",
874                    chan->idx, intr_cause);
875
876         mv_dump_xor_regs(chan);
877         BUG();
878 }
879
880 static irqreturn_t mv_xor_interrupt_handler(int irq, void *data)
881 {
882         struct mv_xor_chan *chan = data;
883         u32 intr_cause = mv_chan_get_intr_cause(chan);
884
885         dev_dbg(chan->device->common.dev, "intr cause %x\n", intr_cause);
886
887         if (mv_is_err_intr(intr_cause))
888                 mv_xor_err_interrupt_handler(chan, intr_cause);
889
890         tasklet_schedule(&chan->irq_tasklet);
891
892         mv_xor_device_clear_eoc_cause(chan);
893
894         return IRQ_HANDLED;
895 }
896
897 static void mv_xor_issue_pending(struct dma_chan *chan)
898 {
899         struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
900
901         if (mv_chan->pending >= MV_XOR_THRESHOLD) {
902                 mv_chan->pending = 0;
903                 mv_chan_activate(mv_chan);
904         }
905 }
906
907 /*
908  * Perform a transaction to verify the HW works.
909  */
910 #define MV_XOR_TEST_SIZE 2000
911
912 static int __devinit mv_xor_memcpy_self_test(struct mv_xor_device *device)
913 {
914         int i;
915         void *src, *dest;
916         dma_addr_t src_dma, dest_dma;
917         struct dma_chan *dma_chan;
918         dma_cookie_t cookie;
919         struct dma_async_tx_descriptor *tx;
920         int err = 0;
921         struct mv_xor_chan *mv_chan;
922
923         src = kmalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
924         if (!src)
925                 return -ENOMEM;
926
927         dest = kzalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
928         if (!dest) {
929                 kfree(src);
930                 return -ENOMEM;
931         }
932
933         /* Fill in src buffer */
934         for (i = 0; i < MV_XOR_TEST_SIZE; i++)
935                 ((u8 *) src)[i] = (u8)i;
936
937         /* Start copy, using first DMA channel */
938         dma_chan = container_of(device->common.channels.next,
939                                 struct dma_chan,
940                                 device_node);
941         if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
942                 err = -ENODEV;
943                 goto out;
944         }
945
946         dest_dma = dma_map_single(dma_chan->device->dev, dest,
947                                   MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
948
949         src_dma = dma_map_single(dma_chan->device->dev, src,
950                                  MV_XOR_TEST_SIZE, DMA_TO_DEVICE);
951
952         tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
953                                     MV_XOR_TEST_SIZE, 0);
954         cookie = mv_xor_tx_submit(tx);
955         mv_xor_issue_pending(dma_chan);
956         async_tx_ack(tx);
957         msleep(1);
958
959         if (mv_xor_is_complete(dma_chan, cookie, NULL, NULL) !=
960             DMA_SUCCESS) {
961                 dev_printk(KERN_ERR, dma_chan->device->dev,
962                            "Self-test copy timed out, disabling\n");
963                 err = -ENODEV;
964                 goto free_resources;
965         }
966
967         mv_chan = to_mv_xor_chan(dma_chan);
968         dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
969                                 MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
970         if (memcmp(src, dest, MV_XOR_TEST_SIZE)) {
971                 dev_printk(KERN_ERR, dma_chan->device->dev,
972                            "Self-test copy failed compare, disabling\n");
973                 err = -ENODEV;
974                 goto free_resources;
975         }
976
977 free_resources:
978         mv_xor_free_chan_resources(dma_chan);
979 out:
980         kfree(src);
981         kfree(dest);
982         return err;
983 }
984
985 #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
986 static int __devinit
987 mv_xor_xor_self_test(struct mv_xor_device *device)
988 {
989         int i, src_idx;
990         struct page *dest;
991         struct page *xor_srcs[MV_XOR_NUM_SRC_TEST];
992         dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST];
993         dma_addr_t dest_dma;
994         struct dma_async_tx_descriptor *tx;
995         struct dma_chan *dma_chan;
996         dma_cookie_t cookie;
997         u8 cmp_byte = 0;
998         u32 cmp_word;
999         int err = 0;
1000         struct mv_xor_chan *mv_chan;
1001
1002         for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
1003                 xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
1004                 if (!xor_srcs[src_idx])
1005                         while (src_idx--) {
1006                                 __free_page(xor_srcs[src_idx]);
1007                                 return -ENOMEM;
1008                         }
1009         }
1010
1011         dest = alloc_page(GFP_KERNEL);
1012         if (!dest)
1013                 while (src_idx--) {
1014                         __free_page(xor_srcs[src_idx]);
1015                         return -ENOMEM;
1016                 }
1017
1018         /* Fill in src buffers */
1019         for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
1020                 u8 *ptr = page_address(xor_srcs[src_idx]);
1021                 for (i = 0; i < PAGE_SIZE; i++)
1022                         ptr[i] = (1 << src_idx);
1023         }
1024
1025         for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++)
1026                 cmp_byte ^= (u8) (1 << src_idx);
1027
1028         cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
1029                 (cmp_byte << 8) | cmp_byte;
1030
1031         memset(page_address(dest), 0, PAGE_SIZE);
1032
1033         dma_chan = container_of(device->common.channels.next,
1034                                 struct dma_chan,
1035                                 device_node);
1036         if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
1037                 err = -ENODEV;
1038                 goto out;
1039         }
1040
1041         /* test xor */
1042         dest_dma = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE,
1043                                 DMA_FROM_DEVICE);
1044
1045         for (i = 0; i < MV_XOR_NUM_SRC_TEST; i++)
1046                 dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
1047                                            0, PAGE_SIZE, DMA_TO_DEVICE);
1048
1049         tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
1050                                  MV_XOR_NUM_SRC_TEST, PAGE_SIZE, 0);
1051
1052         cookie = mv_xor_tx_submit(tx);
1053         mv_xor_issue_pending(dma_chan);
1054         async_tx_ack(tx);
1055         msleep(8);
1056
1057         if (mv_xor_is_complete(dma_chan, cookie, NULL, NULL) !=
1058             DMA_SUCCESS) {
1059                 dev_printk(KERN_ERR, dma_chan->device->dev,
1060                            "Self-test xor timed out, disabling\n");
1061                 err = -ENODEV;
1062                 goto free_resources;
1063         }
1064
1065         mv_chan = to_mv_xor_chan(dma_chan);
1066         dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
1067                                 PAGE_SIZE, DMA_FROM_DEVICE);
1068         for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
1069                 u32 *ptr = page_address(dest);
1070                 if (ptr[i] != cmp_word) {
1071                         dev_printk(KERN_ERR, dma_chan->device->dev,
1072                                    "Self-test xor failed compare, disabling."
1073                                    " index %d, data %x, expected %x\n", i,
1074                                    ptr[i], cmp_word);
1075                         err = -ENODEV;
1076                         goto free_resources;
1077                 }
1078         }
1079
1080 free_resources:
1081         mv_xor_free_chan_resources(dma_chan);
1082 out:
1083         src_idx = MV_XOR_NUM_SRC_TEST;
1084         while (src_idx--)
1085                 __free_page(xor_srcs[src_idx]);
1086         __free_page(dest);
1087         return err;
1088 }
1089
1090 static int __devexit mv_xor_remove(struct platform_device *dev)
1091 {
1092         struct mv_xor_device *device = platform_get_drvdata(dev);
1093         struct dma_chan *chan, *_chan;
1094         struct mv_xor_chan *mv_chan;
1095         struct mv_xor_platform_data *plat_data = dev->dev.platform_data;
1096
1097         dma_async_device_unregister(&device->common);
1098
1099         dma_free_coherent(&dev->dev, plat_data->pool_size,
1100                         device->dma_desc_pool_virt, device->dma_desc_pool);
1101
1102         list_for_each_entry_safe(chan, _chan, &device->common.channels,
1103                                 device_node) {
1104                 mv_chan = to_mv_xor_chan(chan);
1105                 list_del(&chan->device_node);
1106         }
1107
1108         return 0;
1109 }
1110
1111 static int __devinit mv_xor_probe(struct platform_device *pdev)
1112 {
1113         int ret = 0;
1114         int irq;
1115         struct mv_xor_device *adev;
1116         struct mv_xor_chan *mv_chan;
1117         struct dma_device *dma_dev;
1118         struct mv_xor_platform_data *plat_data = pdev->dev.platform_data;
1119
1120
1121         adev = devm_kzalloc(&pdev->dev, sizeof(*adev), GFP_KERNEL);
1122         if (!adev)
1123                 return -ENOMEM;
1124
1125         dma_dev = &adev->common;
1126
1127         /* allocate coherent memory for hardware descriptors
1128          * note: writecombine gives slightly better performance, but
1129          * requires that we explicitly flush the writes
1130          */
1131         adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev,
1132                                                           plat_data->pool_size,
1133                                                           &adev->dma_desc_pool,
1134                                                           GFP_KERNEL);
1135         if (!adev->dma_desc_pool_virt)
1136                 return -ENOMEM;
1137
1138         adev->id = plat_data->hw_id;
1139
1140         /* discover transaction capabilites from the platform data */
1141         dma_dev->cap_mask = plat_data->cap_mask;
1142         adev->pdev = pdev;
1143         platform_set_drvdata(pdev, adev);
1144
1145         adev->shared = platform_get_drvdata(plat_data->shared);
1146
1147         INIT_LIST_HEAD(&dma_dev->channels);
1148
1149         /* set base routines */
1150         dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources;
1151         dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
1152         dma_dev->device_is_tx_complete = mv_xor_is_complete;
1153         dma_dev->device_issue_pending = mv_xor_issue_pending;
1154         dma_dev->dev = &pdev->dev;
1155
1156         /* set prep routines based on capability */
1157         if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
1158                 dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy;
1159         if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask))
1160                 dma_dev->device_prep_dma_memset = mv_xor_prep_dma_memset;
1161         if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1162                 dma_dev->max_xor = 8;                  ;
1163                 dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor;
1164         }
1165
1166         mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL);
1167         if (!mv_chan) {
1168                 ret = -ENOMEM;
1169                 goto err_free_dma;
1170         }
1171         mv_chan->device = adev;
1172         mv_chan->idx = plat_data->hw_id;
1173         mv_chan->mmr_base = adev->shared->xor_base;
1174
1175         if (!mv_chan->mmr_base) {
1176                 ret = -ENOMEM;
1177                 goto err_free_dma;
1178         }
1179         tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long)
1180                      mv_chan);
1181
1182         /* clear errors before enabling interrupts */
1183         mv_xor_device_clear_err_status(mv_chan);
1184
1185         irq = platform_get_irq(pdev, 0);
1186         if (irq < 0) {
1187                 ret = irq;
1188                 goto err_free_dma;
1189         }
1190         ret = devm_request_irq(&pdev->dev, irq,
1191                                mv_xor_interrupt_handler,
1192                                0, dev_name(&pdev->dev), mv_chan);
1193         if (ret)
1194                 goto err_free_dma;
1195
1196         mv_chan_unmask_interrupts(mv_chan);
1197
1198         mv_set_mode(mv_chan, DMA_MEMCPY);
1199
1200         spin_lock_init(&mv_chan->lock);
1201         INIT_LIST_HEAD(&mv_chan->chain);
1202         INIT_LIST_HEAD(&mv_chan->completed_slots);
1203         INIT_LIST_HEAD(&mv_chan->all_slots);
1204         INIT_RCU_HEAD(&mv_chan->common.rcu);
1205         mv_chan->common.device = dma_dev;
1206
1207         list_add_tail(&mv_chan->common.device_node, &dma_dev->channels);
1208
1209         if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
1210                 ret = mv_xor_memcpy_self_test(adev);
1211                 dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
1212                 if (ret)
1213                         goto err_free_dma;
1214         }
1215
1216         if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1217                 ret = mv_xor_xor_self_test(adev);
1218                 dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
1219                 if (ret)
1220                         goto err_free_dma;
1221         }
1222
1223         dev_printk(KERN_INFO, &pdev->dev, "Marvell XOR: "
1224           "( %s%s%s%s)\n",
1225           dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
1226           dma_has_cap(DMA_MEMSET, dma_dev->cap_mask)  ? "fill " : "",
1227           dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
1228           dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
1229
1230         dma_async_device_register(dma_dev);
1231         goto out;
1232
1233  err_free_dma:
1234         dma_free_coherent(&adev->pdev->dev, plat_data->pool_size,
1235                         adev->dma_desc_pool_virt, adev->dma_desc_pool);
1236  out:
1237         return ret;
1238 }
1239
1240 static void
1241 mv_xor_conf_mbus_windows(struct mv_xor_shared_private *msp,
1242                          struct mbus_dram_target_info *dram)
1243 {
1244         void __iomem *base = msp->xor_base;
1245         u32 win_enable = 0;
1246         int i;
1247
1248         for (i = 0; i < 8; i++) {
1249                 writel(0, base + WINDOW_BASE(i));
1250                 writel(0, base + WINDOW_SIZE(i));
1251                 if (i < 4)
1252                         writel(0, base + WINDOW_REMAP_HIGH(i));
1253         }
1254
1255         for (i = 0; i < dram->num_cs; i++) {
1256                 struct mbus_dram_window *cs = dram->cs + i;
1257
1258                 writel((cs->base & 0xffff0000) |
1259                        (cs->mbus_attr << 8) |
1260                        dram->mbus_dram_target_id, base + WINDOW_BASE(i));
1261                 writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));
1262
1263                 win_enable |= (1 << i);
1264                 win_enable |= 3 << (16 + (2 * i));
1265         }
1266
1267         writel(win_enable, base + WINDOW_BAR_ENABLE(0));
1268         writel(win_enable, base + WINDOW_BAR_ENABLE(1));
1269 }
1270
1271 static struct platform_driver mv_xor_driver = {
1272         .probe          = mv_xor_probe,
1273         .remove         = mv_xor_remove,
1274         .driver         = {
1275                 .owner  = THIS_MODULE,
1276                 .name   = MV_XOR_NAME,
1277         },
1278 };
1279
1280 static int mv_xor_shared_probe(struct platform_device *pdev)
1281 {
1282         struct mv_xor_platform_shared_data *msd = pdev->dev.platform_data;
1283         struct mv_xor_shared_private *msp;
1284         struct resource *res;
1285
1286         dev_printk(KERN_NOTICE, &pdev->dev, "Marvell shared XOR driver\n");
1287
1288         msp = devm_kzalloc(&pdev->dev, sizeof(*msp), GFP_KERNEL);
1289         if (!msp)
1290                 return -ENOMEM;
1291
1292         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1293         if (!res)
1294                 return -ENODEV;
1295
1296         msp->xor_base = devm_ioremap(&pdev->dev, res->start,
1297                                      res->end - res->start + 1);
1298         if (!msp->xor_base)
1299                 return -EBUSY;
1300
1301         res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1302         if (!res)
1303                 return -ENODEV;
1304
1305         msp->xor_high_base = devm_ioremap(&pdev->dev, res->start,
1306                                           res->end - res->start + 1);
1307         if (!msp->xor_high_base)
1308                 return -EBUSY;
1309
1310         platform_set_drvdata(pdev, msp);
1311
1312         /*
1313          * (Re-)program MBUS remapping windows if we are asked to.
1314          */
1315         if (msd != NULL && msd->dram != NULL)
1316                 mv_xor_conf_mbus_windows(msp, msd->dram);
1317
1318         return 0;
1319 }
1320
1321 static int mv_xor_shared_remove(struct platform_device *pdev)
1322 {
1323         return 0;
1324 }
1325
1326 static struct platform_driver mv_xor_shared_driver = {
1327         .probe          = mv_xor_shared_probe,
1328         .remove         = mv_xor_shared_remove,
1329         .driver         = {
1330                 .owner  = THIS_MODULE,
1331                 .name   = MV_XOR_SHARED_NAME,
1332         },
1333 };
1334
1335
1336 static int __init mv_xor_init(void)
1337 {
1338         int rc;
1339
1340         rc = platform_driver_register(&mv_xor_shared_driver);
1341         if (!rc) {
1342                 rc = platform_driver_register(&mv_xor_driver);
1343                 if (rc)
1344                         platform_driver_unregister(&mv_xor_shared_driver);
1345         }
1346         return rc;
1347 }
1348 module_init(mv_xor_init);
1349
1350 /* it's currently unsafe to unload this module */
1351 #if 0
1352 static void __exit mv_xor_exit(void)
1353 {
1354         platform_driver_unregister(&mv_xor_driver);
1355         platform_driver_unregister(&mv_xor_shared_driver);
1356         return;
1357 }
1358
1359 module_exit(mv_xor_exit);
1360 #endif
1361
1362 MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
1363 MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
1364 MODULE_LICENSE("GPL");