]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/cpufreq/cpufreq.c
6bbe5825765a759d5286c30fd75e8eb392620c08
[linux-2.6-omap-h63xx.git] / drivers / cpufreq / cpufreq.c
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *
7  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8  *                      Added handling for CPU hotplug
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  */
15
16 #include <linux/config.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/notifier.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/interrupt.h>
24 #include <linux/spinlock.h>
25 #include <linux/device.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/completion.h>
29 #include <linux/mutex.h>
30
31 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, "cpufreq-core", msg)
32
33 /**
34  * The "cpufreq driver" - the arch- or hardware-dependend low
35  * level driver of CPUFreq support, and its spinlock. This lock
36  * also protects the cpufreq_cpu_data array.
37  */
38 static struct cpufreq_driver    *cpufreq_driver;
39 static struct cpufreq_policy    *cpufreq_cpu_data[NR_CPUS];
40 static DEFINE_SPINLOCK(cpufreq_driver_lock);
41
42 /* internal prototypes */
43 static int __cpufreq_governor(struct cpufreq_policy *policy, unsigned int event);
44 static void handle_update(void *data);
45
46 /**
47  * Two notifier lists: the "policy" list is involved in the 
48  * validation process for a new CPU frequency policy; the 
49  * "transition" list for kernel code that needs to handle
50  * changes to devices when the CPU clock speed changes.
51  * The mutex locks both lists.
52  */
53 static struct notifier_block    *cpufreq_policy_notifier_list;
54 static struct notifier_block    *cpufreq_transition_notifier_list;
55 static DECLARE_RWSEM            (cpufreq_notifier_rwsem);
56
57
58 static LIST_HEAD(cpufreq_governor_list);
59 static DEFINE_MUTEX             (cpufreq_governor_mutex);
60
61 struct cpufreq_policy * cpufreq_cpu_get(unsigned int cpu)
62 {
63         struct cpufreq_policy *data;
64         unsigned long flags;
65
66         if (cpu >= NR_CPUS)
67                 goto err_out;
68
69         /* get the cpufreq driver */
70         spin_lock_irqsave(&cpufreq_driver_lock, flags);
71
72         if (!cpufreq_driver)
73                 goto err_out_unlock;
74
75         if (!try_module_get(cpufreq_driver->owner))
76                 goto err_out_unlock;
77
78
79         /* get the CPU */
80         data = cpufreq_cpu_data[cpu];
81
82         if (!data)
83                 goto err_out_put_module;
84
85         if (!kobject_get(&data->kobj))
86                 goto err_out_put_module;
87
88
89         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
90
91         return data;
92
93  err_out_put_module:
94         module_put(cpufreq_driver->owner);
95  err_out_unlock:
96         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
97  err_out:
98         return NULL;
99 }
100 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
101
102 void cpufreq_cpu_put(struct cpufreq_policy *data)
103 {
104         kobject_put(&data->kobj);
105         module_put(cpufreq_driver->owner);
106 }
107 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
108
109
110 /*********************************************************************
111  *                     UNIFIED DEBUG HELPERS                         *
112  *********************************************************************/
113 #ifdef CONFIG_CPU_FREQ_DEBUG
114
115 /* what part(s) of the CPUfreq subsystem are debugged? */
116 static unsigned int debug;
117
118 /* is the debug output ratelimit'ed using printk_ratelimit? User can
119  * set or modify this value.
120  */
121 static unsigned int debug_ratelimit = 1;
122
123 /* is the printk_ratelimit'ing enabled? It's enabled after a successful
124  * loading of a cpufreq driver, temporarily disabled when a new policy
125  * is set, and disabled upon cpufreq driver removal
126  */
127 static unsigned int disable_ratelimit = 1;
128 static DEFINE_SPINLOCK(disable_ratelimit_lock);
129
130 static void cpufreq_debug_enable_ratelimit(void)
131 {
132         unsigned long flags;
133
134         spin_lock_irqsave(&disable_ratelimit_lock, flags);
135         if (disable_ratelimit)
136                 disable_ratelimit--;
137         spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
138 }
139
140 static void cpufreq_debug_disable_ratelimit(void)
141 {
142         unsigned long flags;
143
144         spin_lock_irqsave(&disable_ratelimit_lock, flags);
145         disable_ratelimit++;
146         spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
147 }
148
149 void cpufreq_debug_printk(unsigned int type, const char *prefix, const char *fmt, ...)
150 {
151         char s[256];
152         va_list args;
153         unsigned int len;
154         unsigned long flags;
155         
156         WARN_ON(!prefix);
157         if (type & debug) {
158                 spin_lock_irqsave(&disable_ratelimit_lock, flags);
159                 if (!disable_ratelimit && debug_ratelimit && !printk_ratelimit()) {
160                         spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
161                         return;
162                 }
163                 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
164
165                 len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix);
166
167                 va_start(args, fmt);
168                 len += vsnprintf(&s[len], (256 - len), fmt, args);
169                 va_end(args);
170
171                 printk(s);
172
173                 WARN_ON(len < 5);
174         }
175 }
176 EXPORT_SYMBOL(cpufreq_debug_printk);
177
178
179 module_param(debug, uint, 0644);
180 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core, 2 to debug drivers, and 4 to debug governors.");
181
182 module_param(debug_ratelimit, uint, 0644);
183 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging: set to 0 to disable ratelimiting.");
184
185 #else /* !CONFIG_CPU_FREQ_DEBUG */
186
187 static inline void cpufreq_debug_enable_ratelimit(void) { return; }
188 static inline void cpufreq_debug_disable_ratelimit(void) { return; }
189
190 #endif /* CONFIG_CPU_FREQ_DEBUG */
191
192
193 /*********************************************************************
194  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
195  *********************************************************************/
196
197 /**
198  * adjust_jiffies - adjust the system "loops_per_jiffy"
199  *
200  * This function alters the system "loops_per_jiffy" for the clock
201  * speed change. Note that loops_per_jiffy cannot be updated on SMP
202  * systems as each CPU might be scaled differently. So, use the arch 
203  * per-CPU loops_per_jiffy value wherever possible.
204  */
205 #ifndef CONFIG_SMP
206 static unsigned long l_p_j_ref;
207 static unsigned int  l_p_j_ref_freq;
208
209 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
210 {
211         if (ci->flags & CPUFREQ_CONST_LOOPS)
212                 return;
213
214         if (!l_p_j_ref_freq) {
215                 l_p_j_ref = loops_per_jiffy;
216                 l_p_j_ref_freq = ci->old;
217                 dprintk("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
218         }
219         if ((val == CPUFREQ_PRECHANGE  && ci->old < ci->new) ||
220             (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
221             (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
222                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, ci->new);
223                 dprintk("scaling loops_per_jiffy to %lu for frequency %u kHz\n", loops_per_jiffy, ci->new);
224         }
225 }
226 #else
227 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) { return; }
228 #endif
229
230
231 /**
232  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
233  * on frequency transition.
234  *
235  * This function calls the transition notifiers and the "adjust_jiffies"
236  * function. It is called twice on all CPU frequency changes that have
237  * external effects. 
238  */
239 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
240 {
241         struct cpufreq_policy *policy;
242
243         BUG_ON(irqs_disabled());
244
245         freqs->flags = cpufreq_driver->flags;
246         dprintk("notification %u of frequency transition to %u kHz\n",
247                 state, freqs->new);
248
249         down_read(&cpufreq_notifier_rwsem);
250
251         policy = cpufreq_cpu_data[freqs->cpu];
252         switch (state) {
253
254         case CPUFREQ_PRECHANGE:
255                 /* detect if the driver reported a value as "old frequency" 
256                  * which is not equal to what the cpufreq core thinks is
257                  * "old frequency".
258                  */
259                 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
260                         if ((policy) && (policy->cpu == freqs->cpu) &&
261                             (policy->cur) && (policy->cur != freqs->old)) {
262                                 dprintk(KERN_WARNING "Warning: CPU frequency is"
263                                         " %u, cpufreq assumed %u kHz.\n",
264                                         freqs->old, policy->cur);
265                                 freqs->old = policy->cur;
266                         }
267                 }
268                 notifier_call_chain(&cpufreq_transition_notifier_list,
269                                         CPUFREQ_PRECHANGE, freqs);
270                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
271                 break;
272
273         case CPUFREQ_POSTCHANGE:
274                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
275                 notifier_call_chain(&cpufreq_transition_notifier_list,
276                                         CPUFREQ_POSTCHANGE, freqs);
277                 if (likely(policy) && likely(policy->cpu == freqs->cpu))
278                         policy->cur = freqs->new;
279                 break;
280         }
281         up_read(&cpufreq_notifier_rwsem);
282 }
283 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
284
285
286
287 /*********************************************************************
288  *                          SYSFS INTERFACE                          *
289  *********************************************************************/
290
291 /**
292  * cpufreq_parse_governor - parse a governor string
293  */
294 static int cpufreq_parse_governor (char *str_governor, unsigned int *policy,
295                                 struct cpufreq_governor **governor)
296 {
297         if (!cpufreq_driver)
298                 return -EINVAL;
299         if (cpufreq_driver->setpolicy) {
300                 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
301                         *policy = CPUFREQ_POLICY_PERFORMANCE;
302                         return 0;
303                 } else if (!strnicmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
304                         *policy = CPUFREQ_POLICY_POWERSAVE;
305                         return 0;
306                 }
307                 return -EINVAL;
308         } else {
309                 struct cpufreq_governor *t;
310                 mutex_lock(&cpufreq_governor_mutex);
311                 if (!cpufreq_driver || !cpufreq_driver->target)
312                         goto out;
313                 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
314                         if (!strnicmp(str_governor,t->name,CPUFREQ_NAME_LEN)) {
315                                 *governor = t;
316                                 mutex_unlock(&cpufreq_governor_mutex);
317                                 return 0;
318                         }
319                 }
320         out:
321                 mutex_unlock(&cpufreq_governor_mutex);
322         }
323         return -EINVAL;
324 }
325 EXPORT_SYMBOL_GPL(cpufreq_parse_governor);
326
327
328 /* drivers/base/cpu.c */
329 extern struct sysdev_class cpu_sysdev_class;
330
331
332 /**
333  * cpufreq_per_cpu_attr_read() / show_##file_name() - print out cpufreq information
334  *
335  * Write out information from cpufreq_driver->policy[cpu]; object must be
336  * "unsigned int".
337  */
338
339 #define show_one(file_name, object)                                     \
340 static ssize_t show_##file_name                                         \
341 (struct cpufreq_policy * policy, char *buf)                             \
342 {                                                                       \
343         return sprintf (buf, "%u\n", policy->object);                   \
344 }
345
346 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
347 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
348 show_one(scaling_min_freq, min);
349 show_one(scaling_max_freq, max);
350 show_one(scaling_cur_freq, cur);
351
352 /**
353  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
354  */
355 #define store_one(file_name, object)                    \
356 static ssize_t store_##file_name                                        \
357 (struct cpufreq_policy * policy, const char *buf, size_t count)         \
358 {                                                                       \
359         unsigned int ret = -EINVAL;                                     \
360         struct cpufreq_policy new_policy;                               \
361                                                                         \
362         ret = cpufreq_get_policy(&new_policy, policy->cpu);             \
363         if (ret)                                                        \
364                 return -EINVAL;                                         \
365                                                                         \
366         ret = sscanf (buf, "%u", &new_policy.object);                   \
367         if (ret != 1)                                                   \
368                 return -EINVAL;                                         \
369                                                                         \
370         ret = cpufreq_set_policy(&new_policy);                          \
371                                                                         \
372         return ret ? ret : count;                                       \
373 }
374
375 store_one(scaling_min_freq,min);
376 store_one(scaling_max_freq,max);
377
378 /**
379  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
380  */
381 static ssize_t show_cpuinfo_cur_freq (struct cpufreq_policy * policy, char *buf)
382 {
383         unsigned int cur_freq = cpufreq_get(policy->cpu);
384         if (!cur_freq)
385                 return sprintf(buf, "<unknown>");
386         return sprintf(buf, "%u\n", cur_freq);
387 }
388
389
390 /**
391  * show_scaling_governor - show the current policy for the specified CPU
392  */
393 static ssize_t show_scaling_governor (struct cpufreq_policy * policy, char *buf)
394 {
395         if(policy->policy == CPUFREQ_POLICY_POWERSAVE)
396                 return sprintf(buf, "powersave\n");
397         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
398                 return sprintf(buf, "performance\n");
399         else if (policy->governor)
400                 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", policy->governor->name);
401         return -EINVAL;
402 }
403
404
405 /**
406  * store_scaling_governor - store policy for the specified CPU
407  */
408 static ssize_t store_scaling_governor (struct cpufreq_policy * policy, 
409                                        const char *buf, size_t count) 
410 {
411         unsigned int ret = -EINVAL;
412         char    str_governor[16];
413         struct cpufreq_policy new_policy;
414
415         ret = cpufreq_get_policy(&new_policy, policy->cpu);
416         if (ret)
417                 return ret;
418
419         ret = sscanf (buf, "%15s", str_governor);
420         if (ret != 1)
421                 return -EINVAL;
422
423         if (cpufreq_parse_governor(str_governor, &new_policy.policy, &new_policy.governor))
424                 return -EINVAL;
425
426         ret = cpufreq_set_policy(&new_policy);
427
428         return ret ? ret : count;
429 }
430
431 /**
432  * show_scaling_driver - show the cpufreq driver currently loaded
433  */
434 static ssize_t show_scaling_driver (struct cpufreq_policy * policy, char *buf)
435 {
436         return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
437 }
438
439 /**
440  * show_scaling_available_governors - show the available CPUfreq governors
441  */
442 static ssize_t show_scaling_available_governors (struct cpufreq_policy * policy,
443                                 char *buf)
444 {
445         ssize_t i = 0;
446         struct cpufreq_governor *t;
447
448         if (!cpufreq_driver->target) {
449                 i += sprintf(buf, "performance powersave");
450                 goto out;
451         }
452
453         list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
454                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) - (CPUFREQ_NAME_LEN + 2)))
455                         goto out;
456                 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
457         }
458  out:
459         i += sprintf(&buf[i], "\n");
460         return i;
461 }
462 /**
463  * show_affected_cpus - show the CPUs affected by each transition
464  */
465 static ssize_t show_affected_cpus (struct cpufreq_policy * policy, char *buf)
466 {
467         ssize_t i = 0;
468         unsigned int cpu;
469
470         for_each_cpu_mask(cpu, policy->cpus) {
471                 if (i)
472                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
473                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
474                 if (i >= (PAGE_SIZE - 5))
475                     break;
476         }
477         i += sprintf(&buf[i], "\n");
478         return i;
479 }
480
481
482 #define define_one_ro(_name) \
483 static struct freq_attr _name = \
484 __ATTR(_name, 0444, show_##_name, NULL)
485
486 #define define_one_ro0400(_name) \
487 static struct freq_attr _name = \
488 __ATTR(_name, 0400, show_##_name, NULL)
489
490 #define define_one_rw(_name) \
491 static struct freq_attr _name = \
492 __ATTR(_name, 0644, show_##_name, store_##_name)
493
494 define_one_ro0400(cpuinfo_cur_freq);
495 define_one_ro(cpuinfo_min_freq);
496 define_one_ro(cpuinfo_max_freq);
497 define_one_ro(scaling_available_governors);
498 define_one_ro(scaling_driver);
499 define_one_ro(scaling_cur_freq);
500 define_one_ro(affected_cpus);
501 define_one_rw(scaling_min_freq);
502 define_one_rw(scaling_max_freq);
503 define_one_rw(scaling_governor);
504
505 static struct attribute * default_attrs[] = {
506         &cpuinfo_min_freq.attr,
507         &cpuinfo_max_freq.attr,
508         &scaling_min_freq.attr,
509         &scaling_max_freq.attr,
510         &affected_cpus.attr,
511         &scaling_governor.attr,
512         &scaling_driver.attr,
513         &scaling_available_governors.attr,
514         NULL
515 };
516
517 #define to_policy(k) container_of(k,struct cpufreq_policy,kobj)
518 #define to_attr(a) container_of(a,struct freq_attr,attr)
519
520 static ssize_t show(struct kobject * kobj, struct attribute * attr ,char * buf)
521 {
522         struct cpufreq_policy * policy = to_policy(kobj);
523         struct freq_attr * fattr = to_attr(attr);
524         ssize_t ret;
525         policy = cpufreq_cpu_get(policy->cpu);
526         if (!policy)
527                 return -EINVAL;
528         ret = fattr->show ? fattr->show(policy,buf) : -EIO;
529         cpufreq_cpu_put(policy);
530         return ret;
531 }
532
533 static ssize_t store(struct kobject * kobj, struct attribute * attr, 
534                      const char * buf, size_t count)
535 {
536         struct cpufreq_policy * policy = to_policy(kobj);
537         struct freq_attr * fattr = to_attr(attr);
538         ssize_t ret;
539         policy = cpufreq_cpu_get(policy->cpu);
540         if (!policy)
541                 return -EINVAL;
542         ret = fattr->store ? fattr->store(policy,buf,count) : -EIO;
543         cpufreq_cpu_put(policy);
544         return ret;
545 }
546
547 static void cpufreq_sysfs_release(struct kobject * kobj)
548 {
549         struct cpufreq_policy * policy = to_policy(kobj);
550         dprintk("last reference is dropped\n");
551         complete(&policy->kobj_unregister);
552 }
553
554 static struct sysfs_ops sysfs_ops = {
555         .show   = show,
556         .store  = store,
557 };
558
559 static struct kobj_type ktype_cpufreq = {
560         .sysfs_ops      = &sysfs_ops,
561         .default_attrs  = default_attrs,
562         .release        = cpufreq_sysfs_release,
563 };
564
565
566 /**
567  * cpufreq_add_dev - add a CPU device
568  *
569  * Adds the cpufreq interface for a CPU device. 
570  */
571 static int cpufreq_add_dev (struct sys_device * sys_dev)
572 {
573         unsigned int cpu = sys_dev->id;
574         int ret = 0;
575         struct cpufreq_policy new_policy;
576         struct cpufreq_policy *policy;
577         struct freq_attr **drv_attr;
578         unsigned long flags;
579         unsigned int j;
580
581         if (cpu_is_offline(cpu))
582                 return 0;
583
584         cpufreq_debug_disable_ratelimit();
585         dprintk("adding CPU %u\n", cpu);
586
587 #ifdef CONFIG_SMP
588         /* check whether a different CPU already registered this
589          * CPU because it is in the same boat. */
590         policy = cpufreq_cpu_get(cpu);
591         if (unlikely(policy)) {
592                 dprintk("CPU already managed, adding link\n");
593                 sysfs_create_link(&sys_dev->kobj, &policy->kobj, "cpufreq");
594                 cpufreq_debug_enable_ratelimit();
595                 return 0;
596         }
597 #endif
598
599         if (!try_module_get(cpufreq_driver->owner)) {
600                 ret = -EINVAL;
601                 goto module_out;
602         }
603
604         policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
605         if (!policy) {
606                 ret = -ENOMEM;
607                 goto nomem_out;
608         }
609
610         policy->cpu = cpu;
611         policy->cpus = cpumask_of_cpu(cpu);
612
613         mutex_init(&policy->lock);
614         mutex_lock(&policy->lock);
615         init_completion(&policy->kobj_unregister);
616         INIT_WORK(&policy->update, handle_update, (void *)(long)cpu);
617
618         /* call driver. From then on the cpufreq must be able
619          * to accept all calls to ->verify and ->setpolicy for this CPU
620          */
621         ret = cpufreq_driver->init(policy);
622         if (ret) {
623                 dprintk("initialization failed\n");
624                 mutex_unlock(&policy->lock);
625                 goto err_out;
626         }
627
628         memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
629
630         /* prepare interface data */
631         policy->kobj.parent = &sys_dev->kobj;
632         policy->kobj.ktype = &ktype_cpufreq;
633         strlcpy(policy->kobj.name, "cpufreq", KOBJ_NAME_LEN);
634
635         ret = kobject_register(&policy->kobj);
636         if (ret) {
637                 mutex_unlock(&policy->lock);
638                 goto err_out_driver_exit;
639         }
640         /* set up files for this cpu device */
641         drv_attr = cpufreq_driver->attr;
642         while ((drv_attr) && (*drv_attr)) {
643                 sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
644                 drv_attr++;
645         }
646         if (cpufreq_driver->get)
647                 sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
648         if (cpufreq_driver->target)
649                 sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
650
651         spin_lock_irqsave(&cpufreq_driver_lock, flags);
652         for_each_cpu_mask(j, policy->cpus)
653                 cpufreq_cpu_data[j] = policy;
654         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
655         policy->governor = NULL; /* to assure that the starting sequence is
656                                   * run in cpufreq_set_policy */
657         mutex_unlock(&policy->lock);
658         
659         /* set default policy */
660         
661         ret = cpufreq_set_policy(&new_policy);
662         if (ret) {
663                 dprintk("setting policy failed\n");
664                 goto err_out_unregister;
665         }
666
667         module_put(cpufreq_driver->owner);
668         dprintk("initialization complete\n");
669         cpufreq_debug_enable_ratelimit();
670         
671         return 0;
672
673
674 err_out_unregister:
675         spin_lock_irqsave(&cpufreq_driver_lock, flags);
676         for_each_cpu_mask(j, policy->cpus)
677                 cpufreq_cpu_data[j] = NULL;
678         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
679
680         kobject_unregister(&policy->kobj);
681         wait_for_completion(&policy->kobj_unregister);
682
683 err_out_driver_exit:
684         if (cpufreq_driver->exit)
685                 cpufreq_driver->exit(policy);
686
687 err_out:
688         kfree(policy);
689
690 nomem_out:
691         module_put(cpufreq_driver->owner);
692 module_out:
693         cpufreq_debug_enable_ratelimit();
694         return ret;
695 }
696
697
698 /**
699  * cpufreq_remove_dev - remove a CPU device
700  *
701  * Removes the cpufreq interface for a CPU device.
702  */
703 static int cpufreq_remove_dev (struct sys_device * sys_dev)
704 {
705         unsigned int cpu = sys_dev->id;
706         unsigned long flags;
707         struct cpufreq_policy *data;
708 #ifdef CONFIG_SMP
709         struct sys_device *cpu_sys_dev;
710         unsigned int j;
711 #endif
712
713         cpufreq_debug_disable_ratelimit();
714         dprintk("unregistering CPU %u\n", cpu);
715
716         spin_lock_irqsave(&cpufreq_driver_lock, flags);
717         data = cpufreq_cpu_data[cpu];
718
719         if (!data) {
720                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
721                 cpufreq_debug_enable_ratelimit();
722                 return -EINVAL;
723         }
724         cpufreq_cpu_data[cpu] = NULL;
725
726
727 #ifdef CONFIG_SMP
728         /* if this isn't the CPU which is the parent of the kobj, we
729          * only need to unlink, put and exit 
730          */
731         if (unlikely(cpu != data->cpu)) {
732                 dprintk("removing link\n");
733                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
734                 sysfs_remove_link(&sys_dev->kobj, "cpufreq");
735                 cpufreq_cpu_put(data);
736                 cpufreq_debug_enable_ratelimit();
737                 return 0;
738         }
739 #endif
740
741
742         if (!kobject_get(&data->kobj)) {
743                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
744                 cpufreq_debug_enable_ratelimit();
745                 return -EFAULT;
746         }
747
748 #ifdef CONFIG_SMP
749         /* if we have other CPUs still registered, we need to unlink them,
750          * or else wait_for_completion below will lock up. Clean the
751          * cpufreq_cpu_data[] while holding the lock, and remove the sysfs
752          * links afterwards.
753          */
754         if (unlikely(cpus_weight(data->cpus) > 1)) {
755                 for_each_cpu_mask(j, data->cpus) {
756                         if (j == cpu)
757                                 continue;
758                         cpufreq_cpu_data[j] = NULL;
759                 }
760         }
761
762         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
763
764         if (unlikely(cpus_weight(data->cpus) > 1)) {
765                 for_each_cpu_mask(j, data->cpus) {
766                         if (j == cpu)
767                                 continue;
768                         dprintk("removing link for cpu %u\n", j);
769                         cpu_sys_dev = get_cpu_sysdev(j);
770                         sysfs_remove_link(&cpu_sys_dev->kobj, "cpufreq");
771                         cpufreq_cpu_put(data);
772                 }
773         }
774 #else
775         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
776 #endif
777
778         mutex_lock(&data->lock);
779         if (cpufreq_driver->target)
780                 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
781         mutex_unlock(&data->lock);
782
783         kobject_unregister(&data->kobj);
784
785         kobject_put(&data->kobj);
786
787         /* we need to make sure that the underlying kobj is actually
788          * not referenced anymore by anybody before we proceed with 
789          * unloading.
790          */
791         dprintk("waiting for dropping of refcount\n");
792         wait_for_completion(&data->kobj_unregister);
793         dprintk("wait complete\n");
794
795         if (cpufreq_driver->exit)
796                 cpufreq_driver->exit(data);
797
798         kfree(data);
799
800         cpufreq_debug_enable_ratelimit();
801
802         return 0;
803 }
804
805
806 static void handle_update(void *data)
807 {
808         unsigned int cpu = (unsigned int)(long)data;
809         dprintk("handle_update for cpu %u called\n", cpu);
810         cpufreq_update_policy(cpu);
811 }
812
813 /**
814  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
815  *      @cpu: cpu number
816  *      @old_freq: CPU frequency the kernel thinks the CPU runs at
817  *      @new_freq: CPU frequency the CPU actually runs at
818  *
819  *      We adjust to current frequency first, and need to clean up later. So either call
820  *      to cpufreq_update_policy() or schedule handle_update()).
821  */
822 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, unsigned int new_freq)
823 {
824         struct cpufreq_freqs freqs;
825
826         dprintk(KERN_WARNING "Warning: CPU frequency out of sync: cpufreq and timing "
827                "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
828
829         freqs.cpu = cpu;
830         freqs.old = old_freq;
831         freqs.new = new_freq;
832         cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
833         cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
834 }
835
836
837 /** 
838  * cpufreq_quick_get - get the CPU frequency (in kHz) frpm policy->cur
839  * @cpu: CPU number
840  *
841  * This is the last known freq, without actually getting it from the driver.
842  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
843  */
844 unsigned int cpufreq_quick_get(unsigned int cpu)
845 {
846         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
847         unsigned int ret = 0;
848
849         if (policy) {
850                 mutex_lock(&policy->lock);
851                 ret = policy->cur;
852                 mutex_unlock(&policy->lock);
853                 cpufreq_cpu_put(policy);
854         }
855
856         return (ret);
857 }
858 EXPORT_SYMBOL(cpufreq_quick_get);
859
860
861 /** 
862  * cpufreq_get - get the current CPU frequency (in kHz)
863  * @cpu: CPU number
864  *
865  * Get the CPU current (static) CPU frequency
866  */
867 unsigned int cpufreq_get(unsigned int cpu)
868 {
869         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
870         unsigned int ret = 0;
871
872         if (!policy)
873                 return 0;
874
875         if (!cpufreq_driver->get)
876                 goto out;
877
878         mutex_lock(&policy->lock);
879
880         ret = cpufreq_driver->get(cpu);
881
882         if (ret && policy->cur && !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) 
883         {
884                 /* verify no discrepancy between actual and saved value exists */
885                 if (unlikely(ret != policy->cur)) {
886                         cpufreq_out_of_sync(cpu, policy->cur, ret);
887                         schedule_work(&policy->update);
888                 }
889         }
890
891         mutex_unlock(&policy->lock);
892
893  out:
894         cpufreq_cpu_put(policy);
895
896         return (ret);
897 }
898 EXPORT_SYMBOL(cpufreq_get);
899
900
901 /**
902  *      cpufreq_suspend - let the low level driver prepare for suspend
903  */
904
905 static int cpufreq_suspend(struct sys_device * sysdev, pm_message_t pmsg)
906 {
907         int cpu = sysdev->id;
908         unsigned int ret = 0;
909         unsigned int cur_freq = 0;
910         struct cpufreq_policy *cpu_policy;
911
912         dprintk("resuming cpu %u\n", cpu);
913
914         if (!cpu_online(cpu))
915                 return 0;
916
917         /* we may be lax here as interrupts are off. Nonetheless
918          * we need to grab the correct cpu policy, as to check
919          * whether we really run on this CPU.
920          */
921
922         cpu_policy = cpufreq_cpu_get(cpu);
923         if (!cpu_policy)
924                 return -EINVAL;
925
926         /* only handle each CPU group once */
927         if (unlikely(cpu_policy->cpu != cpu)) {
928                 cpufreq_cpu_put(cpu_policy);
929                 return 0;
930         }
931
932         if (cpufreq_driver->suspend) {
933                 ret = cpufreq_driver->suspend(cpu_policy, pmsg);
934                 if (ret) {
935                         printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
936                                         "step on CPU %u\n", cpu_policy->cpu);
937                         cpufreq_cpu_put(cpu_policy);
938                         return ret;
939                 }
940         }
941
942
943         if (cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)
944                 goto out;
945
946         if (cpufreq_driver->get)
947                 cur_freq = cpufreq_driver->get(cpu_policy->cpu);
948
949         if (!cur_freq || !cpu_policy->cur) {
950                 printk(KERN_ERR "cpufreq: suspend failed to assert current "
951                        "frequency is what timing core thinks it is.\n");
952                 goto out;
953         }
954
955         if (unlikely(cur_freq != cpu_policy->cur)) {
956                 struct cpufreq_freqs freqs;
957
958                 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
959                         dprintk(KERN_DEBUG "Warning: CPU frequency is %u, "
960                                "cpufreq assumed %u kHz.\n",
961                                cur_freq, cpu_policy->cur);
962
963                 freqs.cpu = cpu;
964                 freqs.old = cpu_policy->cur;
965                 freqs.new = cur_freq;
966
967                 notifier_call_chain(&cpufreq_transition_notifier_list,
968                                     CPUFREQ_SUSPENDCHANGE, &freqs);
969                 adjust_jiffies(CPUFREQ_SUSPENDCHANGE, &freqs);
970
971                 cpu_policy->cur = cur_freq;
972         }
973
974  out:
975         cpufreq_cpu_put(cpu_policy);
976         return 0;
977 }
978
979 /**
980  *      cpufreq_resume -  restore proper CPU frequency handling after resume
981  *
982  *      1.) resume CPUfreq hardware support (cpufreq_driver->resume())
983  *      2.) if ->target and !CPUFREQ_CONST_LOOPS: verify we're in sync
984  *      3.) schedule call cpufreq_update_policy() ASAP as interrupts are
985  *          restored.
986  */
987 static int cpufreq_resume(struct sys_device * sysdev)
988 {
989         int cpu = sysdev->id;
990         unsigned int ret = 0;
991         struct cpufreq_policy *cpu_policy;
992
993         dprintk("resuming cpu %u\n", cpu);
994
995         if (!cpu_online(cpu))
996                 return 0;
997
998         /* we may be lax here as interrupts are off. Nonetheless
999          * we need to grab the correct cpu policy, as to check
1000          * whether we really run on this CPU.
1001          */
1002
1003         cpu_policy = cpufreq_cpu_get(cpu);
1004         if (!cpu_policy)
1005                 return -EINVAL;
1006
1007         /* only handle each CPU group once */
1008         if (unlikely(cpu_policy->cpu != cpu)) {
1009                 cpufreq_cpu_put(cpu_policy);
1010                 return 0;
1011         }
1012
1013         if (cpufreq_driver->resume) {
1014                 ret = cpufreq_driver->resume(cpu_policy);
1015                 if (ret) {
1016                         printk(KERN_ERR "cpufreq: resume failed in ->resume "
1017                                         "step on CPU %u\n", cpu_policy->cpu);
1018                         cpufreq_cpu_put(cpu_policy);
1019                         return ret;
1020                 }
1021         }
1022
1023         if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1024                 unsigned int cur_freq = 0;
1025
1026                 if (cpufreq_driver->get)
1027                         cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1028
1029                 if (!cur_freq || !cpu_policy->cur) {
1030                         printk(KERN_ERR "cpufreq: resume failed to assert "
1031                                         "current frequency is what timing core "
1032                                         "thinks it is.\n");
1033                         goto out;
1034                 }
1035
1036                 if (unlikely(cur_freq != cpu_policy->cur)) {
1037                         struct cpufreq_freqs freqs;
1038
1039                         if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1040                                 dprintk(KERN_WARNING "Warning: CPU frequency"
1041                                        "is %u, cpufreq assumed %u kHz.\n",
1042                                        cur_freq, cpu_policy->cur);
1043
1044                         freqs.cpu = cpu;
1045                         freqs.old = cpu_policy->cur;
1046                         freqs.new = cur_freq;
1047
1048                         notifier_call_chain(&cpufreq_transition_notifier_list,
1049                                         CPUFREQ_RESUMECHANGE, &freqs);
1050                         adjust_jiffies(CPUFREQ_RESUMECHANGE, &freqs);
1051
1052                         cpu_policy->cur = cur_freq;
1053                 }
1054         }
1055
1056 out:
1057         schedule_work(&cpu_policy->update);
1058         cpufreq_cpu_put(cpu_policy);
1059         return ret;
1060 }
1061
1062 static struct sysdev_driver cpufreq_sysdev_driver = {
1063         .add            = cpufreq_add_dev,
1064         .remove         = cpufreq_remove_dev,
1065         .suspend        = cpufreq_suspend,
1066         .resume         = cpufreq_resume,
1067 };
1068
1069
1070 /*********************************************************************
1071  *                     NOTIFIER LISTS INTERFACE                      *
1072  *********************************************************************/
1073
1074 /**
1075  *      cpufreq_register_notifier - register a driver with cpufreq
1076  *      @nb: notifier function to register
1077  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1078  *
1079  *      Add a driver to one of two lists: either a list of drivers that 
1080  *      are notified about clock rate changes (once before and once after
1081  *      the transition), or a list of drivers that are notified about
1082  *      changes in cpufreq policy.
1083  *
1084  *      This function may sleep, and has the same return conditions as
1085  *      notifier_chain_register.
1086  */
1087 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1088 {
1089         int ret;
1090
1091         down_write(&cpufreq_notifier_rwsem);
1092         switch (list) {
1093         case CPUFREQ_TRANSITION_NOTIFIER:
1094                 ret = notifier_chain_register(&cpufreq_transition_notifier_list, nb);
1095                 break;
1096         case CPUFREQ_POLICY_NOTIFIER:
1097                 ret = notifier_chain_register(&cpufreq_policy_notifier_list, nb);
1098                 break;
1099         default:
1100                 ret = -EINVAL;
1101         }
1102         up_write(&cpufreq_notifier_rwsem);
1103
1104         return ret;
1105 }
1106 EXPORT_SYMBOL(cpufreq_register_notifier);
1107
1108
1109 /**
1110  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1111  *      @nb: notifier block to be unregistered
1112  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1113  *
1114  *      Remove a driver from the CPU frequency notifier list.
1115  *
1116  *      This function may sleep, and has the same return conditions as
1117  *      notifier_chain_unregister.
1118  */
1119 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1120 {
1121         int ret;
1122
1123         down_write(&cpufreq_notifier_rwsem);
1124         switch (list) {
1125         case CPUFREQ_TRANSITION_NOTIFIER:
1126                 ret = notifier_chain_unregister(&cpufreq_transition_notifier_list, nb);
1127                 break;
1128         case CPUFREQ_POLICY_NOTIFIER:
1129                 ret = notifier_chain_unregister(&cpufreq_policy_notifier_list, nb);
1130                 break;
1131         default:
1132                 ret = -EINVAL;
1133         }
1134         up_write(&cpufreq_notifier_rwsem);
1135
1136         return ret;
1137 }
1138 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1139
1140
1141 /*********************************************************************
1142  *                              GOVERNORS                            *
1143  *********************************************************************/
1144
1145
1146 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1147                             unsigned int target_freq,
1148                             unsigned int relation)
1149 {
1150         int retval = -EINVAL;
1151
1152         lock_cpu_hotplug();
1153         dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1154                 target_freq, relation);
1155         if (cpu_online(policy->cpu) && cpufreq_driver->target)
1156                 retval = cpufreq_driver->target(policy, target_freq, relation);
1157
1158         unlock_cpu_hotplug();
1159
1160         return retval;
1161 }
1162 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1163
1164 int cpufreq_driver_target(struct cpufreq_policy *policy,
1165                           unsigned int target_freq,
1166                           unsigned int relation)
1167 {
1168         int ret;
1169
1170         policy = cpufreq_cpu_get(policy->cpu);
1171         if (!policy)
1172                 return -EINVAL;
1173
1174         mutex_lock(&policy->lock);
1175
1176         ret = __cpufreq_driver_target(policy, target_freq, relation);
1177
1178         mutex_unlock(&policy->lock);
1179
1180         cpufreq_cpu_put(policy);
1181
1182         return ret;
1183 }
1184 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1185
1186
1187 static int __cpufreq_governor(struct cpufreq_policy *policy, unsigned int event)
1188 {
1189         int ret;
1190
1191         if (!try_module_get(policy->governor->owner))
1192                 return -EINVAL;
1193
1194         dprintk("__cpufreq_governor for CPU %u, event %u\n", policy->cpu, event);
1195         ret = policy->governor->governor(policy, event);
1196
1197         /* we keep one module reference alive for each CPU governed by this CPU */
1198         if ((event != CPUFREQ_GOV_START) || ret)
1199                 module_put(policy->governor->owner);
1200         if ((event == CPUFREQ_GOV_STOP) && !ret)
1201                 module_put(policy->governor->owner);
1202
1203         return ret;
1204 }
1205
1206
1207 int cpufreq_governor(unsigned int cpu, unsigned int event)
1208 {
1209         int ret = 0;
1210         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1211
1212         if (!policy)
1213                 return -EINVAL;
1214
1215         mutex_lock(&policy->lock);
1216         ret = __cpufreq_governor(policy, event);
1217         mutex_unlock(&policy->lock);
1218
1219         cpufreq_cpu_put(policy);
1220
1221         return ret;
1222 }
1223 EXPORT_SYMBOL_GPL(cpufreq_governor);
1224
1225
1226 int cpufreq_register_governor(struct cpufreq_governor *governor)
1227 {
1228         struct cpufreq_governor *t;
1229
1230         if (!governor)
1231                 return -EINVAL;
1232
1233         mutex_lock(&cpufreq_governor_mutex);
1234         
1235         list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
1236                 if (!strnicmp(governor->name,t->name,CPUFREQ_NAME_LEN)) {
1237                         mutex_unlock(&cpufreq_governor_mutex);
1238                         return -EBUSY;
1239                 }
1240         }
1241         list_add(&governor->governor_list, &cpufreq_governor_list);
1242
1243         mutex_unlock(&cpufreq_governor_mutex);
1244
1245         return 0;
1246 }
1247 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1248
1249
1250 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1251 {
1252         if (!governor)
1253                 return;
1254
1255         mutex_lock(&cpufreq_governor_mutex);
1256         list_del(&governor->governor_list);
1257         mutex_unlock(&cpufreq_governor_mutex);
1258         return;
1259 }
1260 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1261
1262
1263
1264 /*********************************************************************
1265  *                          POLICY INTERFACE                         *
1266  *********************************************************************/
1267
1268 /**
1269  * cpufreq_get_policy - get the current cpufreq_policy
1270  * @policy: struct cpufreq_policy into which the current cpufreq_policy is written
1271  *
1272  * Reads the current cpufreq policy.
1273  */
1274 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1275 {
1276         struct cpufreq_policy *cpu_policy;
1277         if (!policy)
1278                 return -EINVAL;
1279
1280         cpu_policy = cpufreq_cpu_get(cpu);
1281         if (!cpu_policy)
1282                 return -EINVAL;
1283
1284         mutex_lock(&cpu_policy->lock);
1285         memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1286         mutex_unlock(&cpu_policy->lock);
1287
1288         cpufreq_cpu_put(cpu_policy);
1289
1290         return 0;
1291 }
1292 EXPORT_SYMBOL(cpufreq_get_policy);
1293
1294
1295 static int __cpufreq_set_policy(struct cpufreq_policy *data, struct cpufreq_policy *policy)
1296 {
1297         int ret = 0;
1298
1299         cpufreq_debug_disable_ratelimit();
1300         dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1301                 policy->min, policy->max);
1302
1303         memcpy(&policy->cpuinfo, 
1304                &data->cpuinfo, 
1305                sizeof(struct cpufreq_cpuinfo));
1306
1307         /* verify the cpu speed can be set within this limit */
1308         ret = cpufreq_driver->verify(policy);
1309         if (ret)
1310                 goto error_out;
1311
1312         down_read(&cpufreq_notifier_rwsem);
1313
1314         /* adjust if necessary - all reasons */
1315         notifier_call_chain(&cpufreq_policy_notifier_list, CPUFREQ_ADJUST,
1316                             policy);
1317
1318         /* adjust if necessary - hardware incompatibility*/
1319         notifier_call_chain(&cpufreq_policy_notifier_list, CPUFREQ_INCOMPATIBLE,
1320                             policy);
1321
1322         /* verify the cpu speed can be set within this limit,
1323            which might be different to the first one */
1324         ret = cpufreq_driver->verify(policy);
1325         if (ret) {
1326                 up_read(&cpufreq_notifier_rwsem);
1327                 goto error_out;
1328         }
1329
1330         /* notification of the new policy */
1331         notifier_call_chain(&cpufreq_policy_notifier_list, CPUFREQ_NOTIFY,
1332                             policy);
1333
1334         up_read(&cpufreq_notifier_rwsem);
1335
1336         data->min    = policy->min;
1337         data->max    = policy->max;
1338
1339         dprintk("new min and max freqs are %u - %u kHz\n", data->min, data->max);
1340
1341         if (cpufreq_driver->setpolicy) {
1342                 data->policy = policy->policy;
1343                 dprintk("setting range\n");
1344                 ret = cpufreq_driver->setpolicy(policy);
1345         } else {
1346                 if (policy->governor != data->governor) {
1347                         /* save old, working values */
1348                         struct cpufreq_governor *old_gov = data->governor;
1349
1350                         dprintk("governor switch\n");
1351
1352                         /* end old governor */
1353                         if (data->governor)
1354                                 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1355
1356                         /* start new governor */
1357                         data->governor = policy->governor;
1358                         if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1359                                 /* new governor failed, so re-start old one */
1360                                 dprintk("starting governor %s failed\n", data->governor->name);
1361                                 if (old_gov) {
1362                                         data->governor = old_gov;
1363                                         __cpufreq_governor(data, CPUFREQ_GOV_START);
1364                                 }
1365                                 ret = -EINVAL;
1366                                 goto error_out;
1367                         }
1368                         /* might be a policy change, too, so fall through */
1369                 }
1370                 dprintk("governor: change or update limits\n");
1371                 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1372         }
1373
1374  error_out:
1375         cpufreq_debug_enable_ratelimit();
1376         return ret;
1377 }
1378
1379 /**
1380  *      cpufreq_set_policy - set a new CPUFreq policy
1381  *      @policy: policy to be set.
1382  *
1383  *      Sets a new CPU frequency and voltage scaling policy.
1384  */
1385 int cpufreq_set_policy(struct cpufreq_policy *policy)
1386 {
1387         int ret = 0;
1388         struct cpufreq_policy *data;
1389
1390         if (!policy)
1391                 return -EINVAL;
1392
1393         data = cpufreq_cpu_get(policy->cpu);
1394         if (!data)
1395                 return -EINVAL;
1396
1397         /* lock this CPU */
1398         mutex_lock(&data->lock);
1399
1400         ret = __cpufreq_set_policy(data, policy);
1401         data->user_policy.min = data->min;
1402         data->user_policy.max = data->max;
1403         data->user_policy.policy = data->policy;
1404         data->user_policy.governor = data->governor;
1405
1406         mutex_unlock(&data->lock);
1407         cpufreq_cpu_put(data);
1408
1409         return ret;
1410 }
1411 EXPORT_SYMBOL(cpufreq_set_policy);
1412
1413
1414 /**
1415  *      cpufreq_update_policy - re-evaluate an existing cpufreq policy
1416  *      @cpu: CPU which shall be re-evaluated
1417  *
1418  *      Usefull for policy notifiers which have different necessities
1419  *      at different times.
1420  */
1421 int cpufreq_update_policy(unsigned int cpu)
1422 {
1423         struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1424         struct cpufreq_policy policy;
1425         int ret = 0;
1426
1427         if (!data)
1428                 return -ENODEV;
1429
1430         mutex_lock(&data->lock);
1431
1432         dprintk("updating policy for CPU %u\n", cpu);
1433         memcpy(&policy, 
1434                data,
1435                sizeof(struct cpufreq_policy));
1436         policy.min = data->user_policy.min;
1437         policy.max = data->user_policy.max;
1438         policy.policy = data->user_policy.policy;
1439         policy.governor = data->user_policy.governor;
1440
1441         /* BIOS might change freq behind our back
1442           -> ask driver for current freq and notify governors about a change */
1443         if (cpufreq_driver->get) {
1444                 policy.cur = cpufreq_driver->get(cpu);
1445                 if (data->cur != policy.cur)
1446                         cpufreq_out_of_sync(cpu, data->cur, policy.cur);
1447         }
1448
1449         ret = __cpufreq_set_policy(data, &policy);
1450
1451         mutex_unlock(&data->lock);
1452
1453         cpufreq_cpu_put(data);
1454         return ret;
1455 }
1456 EXPORT_SYMBOL(cpufreq_update_policy);
1457
1458 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1459                                         unsigned long action, void *hcpu)
1460 {
1461         unsigned int cpu = (unsigned long)hcpu;
1462         struct cpufreq_policy *policy;
1463         struct sys_device *sys_dev;
1464
1465         sys_dev = get_cpu_sysdev(cpu);
1466
1467         if (sys_dev) {
1468                 switch (action) {
1469                 case CPU_ONLINE:
1470                         cpufreq_add_dev(sys_dev);
1471                         break;
1472                 case CPU_DOWN_PREPARE:
1473                         /*
1474                          * We attempt to put this cpu in lowest frequency
1475                          * possible before going down. This will permit
1476                          * hardware-managed P-State to switch other related
1477                          * threads to min or higher speeds if possible.
1478                          */
1479                         policy = cpufreq_cpu_data[cpu];
1480                         if (policy) {
1481                                 cpufreq_driver_target(policy, policy->min,
1482                                                 CPUFREQ_RELATION_H);
1483                         }
1484                         break;
1485                 case CPU_DEAD:
1486                         cpufreq_remove_dev(sys_dev);
1487                         break;
1488                 }
1489         }
1490         return NOTIFY_OK;
1491 }
1492
1493 static struct notifier_block cpufreq_cpu_notifier =
1494 {
1495     .notifier_call = cpufreq_cpu_callback,
1496 };
1497
1498 /*********************************************************************
1499  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
1500  *********************************************************************/
1501
1502 /**
1503  * cpufreq_register_driver - register a CPU Frequency driver
1504  * @driver_data: A struct cpufreq_driver containing the values#
1505  * submitted by the CPU Frequency driver.
1506  *
1507  *   Registers a CPU Frequency driver to this core code. This code 
1508  * returns zero on success, -EBUSY when another driver got here first
1509  * (and isn't unregistered in the meantime). 
1510  *
1511  */
1512 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1513 {
1514         unsigned long flags;
1515         int ret;
1516
1517         if (!driver_data || !driver_data->verify || !driver_data->init ||
1518             ((!driver_data->setpolicy) && (!driver_data->target)))
1519                 return -EINVAL;
1520
1521         dprintk("trying to register driver %s\n", driver_data->name);
1522
1523         if (driver_data->setpolicy)
1524                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
1525
1526         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1527         if (cpufreq_driver) {
1528                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1529                 return -EBUSY;
1530         }
1531         cpufreq_driver = driver_data;
1532         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1533
1534         ret = sysdev_driver_register(&cpu_sysdev_class,&cpufreq_sysdev_driver);
1535
1536         if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1537                 int i;
1538                 ret = -ENODEV;
1539
1540                 /* check for at least one working CPU */
1541                 for (i=0; i<NR_CPUS; i++)
1542                         if (cpufreq_cpu_data[i])
1543                                 ret = 0;
1544
1545                 /* if all ->init() calls failed, unregister */
1546                 if (ret) {
1547                         dprintk("no CPU initialized for driver %s\n", driver_data->name);
1548                         sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1549
1550                         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1551                         cpufreq_driver = NULL;
1552                         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1553                 }
1554         }
1555
1556         if (!ret) {
1557                 register_cpu_notifier(&cpufreq_cpu_notifier);
1558                 dprintk("driver %s up and running\n", driver_data->name);
1559                 cpufreq_debug_enable_ratelimit();
1560         }
1561
1562         return (ret);
1563 }
1564 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1565
1566
1567 /**
1568  * cpufreq_unregister_driver - unregister the current CPUFreq driver
1569  *
1570  *    Unregister the current CPUFreq driver. Only call this if you have 
1571  * the right to do so, i.e. if you have succeeded in initialising before!
1572  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1573  * currently not initialised.
1574  */
1575 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1576 {
1577         unsigned long flags;
1578
1579         cpufreq_debug_disable_ratelimit();
1580
1581         if (!cpufreq_driver || (driver != cpufreq_driver)) {
1582                 cpufreq_debug_enable_ratelimit();
1583                 return -EINVAL;
1584         }
1585
1586         dprintk("unregistering driver %s\n", driver->name);
1587
1588         sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1589         unregister_cpu_notifier(&cpufreq_cpu_notifier);
1590
1591         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1592         cpufreq_driver = NULL;
1593         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1594
1595         return 0;
1596 }
1597 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);