]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/cpufreq/cpufreq.c
[CPUFREQ] If max_freq got reduced (e.g. by _PPC) a write to sysfs scaling_governor...
[linux-2.6-omap-h63xx.git] / drivers / cpufreq / cpufreq.c
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *
7  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8  *      Added handling for CPU hotplug
9  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
10  *      Fix handling for CPU hotplug -- affected CPUs
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  */
17
18 #include <linux/config.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/init.h>
22 #include <linux/notifier.h>
23 #include <linux/cpufreq.h>
24 #include <linux/delay.h>
25 #include <linux/interrupt.h>
26 #include <linux/spinlock.h>
27 #include <linux/device.h>
28 #include <linux/slab.h>
29 #include <linux/cpu.h>
30 #include <linux/completion.h>
31 #include <linux/mutex.h>
32
33 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, "cpufreq-core", msg)
34
35 /**
36  * The "cpufreq driver" - the arch- or hardware-dependend low
37  * level driver of CPUFreq support, and its spinlock. This lock
38  * also protects the cpufreq_cpu_data array.
39  */
40 static struct cpufreq_driver *cpufreq_driver;
41 static struct cpufreq_policy *cpufreq_cpu_data[NR_CPUS];
42 static DEFINE_SPINLOCK(cpufreq_driver_lock);
43
44 /* internal prototypes */
45 static int __cpufreq_governor(struct cpufreq_policy *policy, unsigned int event);
46 static void handle_update(void *data);
47
48 /**
49  * Two notifier lists: the "policy" list is involved in the
50  * validation process for a new CPU frequency policy; the
51  * "transition" list for kernel code that needs to handle
52  * changes to devices when the CPU clock speed changes.
53  * The mutex locks both lists.
54  */
55 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
56 static BLOCKING_NOTIFIER_HEAD(cpufreq_transition_notifier_list);
57
58
59 static LIST_HEAD(cpufreq_governor_list);
60 static DEFINE_MUTEX (cpufreq_governor_mutex);
61
62 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
63 {
64         struct cpufreq_policy *data;
65         unsigned long flags;
66
67         if (cpu >= NR_CPUS)
68                 goto err_out;
69
70         /* get the cpufreq driver */
71         spin_lock_irqsave(&cpufreq_driver_lock, flags);
72
73         if (!cpufreq_driver)
74                 goto err_out_unlock;
75
76         if (!try_module_get(cpufreq_driver->owner))
77                 goto err_out_unlock;
78
79
80         /* get the CPU */
81         data = cpufreq_cpu_data[cpu];
82
83         if (!data)
84                 goto err_out_put_module;
85
86         if (!kobject_get(&data->kobj))
87                 goto err_out_put_module;
88
89         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
90         return data;
91
92 err_out_put_module:
93         module_put(cpufreq_driver->owner);
94 err_out_unlock:
95         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
96 err_out:
97         return NULL;
98 }
99 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
100
101
102 void cpufreq_cpu_put(struct cpufreq_policy *data)
103 {
104         kobject_put(&data->kobj);
105         module_put(cpufreq_driver->owner);
106 }
107 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
108
109
110 /*********************************************************************
111  *                     UNIFIED DEBUG HELPERS                         *
112  *********************************************************************/
113 #ifdef CONFIG_CPU_FREQ_DEBUG
114
115 /* what part(s) of the CPUfreq subsystem are debugged? */
116 static unsigned int debug;
117
118 /* is the debug output ratelimit'ed using printk_ratelimit? User can
119  * set or modify this value.
120  */
121 static unsigned int debug_ratelimit = 1;
122
123 /* is the printk_ratelimit'ing enabled? It's enabled after a successful
124  * loading of a cpufreq driver, temporarily disabled when a new policy
125  * is set, and disabled upon cpufreq driver removal
126  */
127 static unsigned int disable_ratelimit = 1;
128 static DEFINE_SPINLOCK(disable_ratelimit_lock);
129
130 static void cpufreq_debug_enable_ratelimit(void)
131 {
132         unsigned long flags;
133
134         spin_lock_irqsave(&disable_ratelimit_lock, flags);
135         if (disable_ratelimit)
136                 disable_ratelimit--;
137         spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
138 }
139
140 static void cpufreq_debug_disable_ratelimit(void)
141 {
142         unsigned long flags;
143
144         spin_lock_irqsave(&disable_ratelimit_lock, flags);
145         disable_ratelimit++;
146         spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
147 }
148
149 void cpufreq_debug_printk(unsigned int type, const char *prefix, const char *fmt, ...)
150 {
151         char s[256];
152         va_list args;
153         unsigned int len;
154         unsigned long flags;
155
156         WARN_ON(!prefix);
157         if (type & debug) {
158                 spin_lock_irqsave(&disable_ratelimit_lock, flags);
159                 if (!disable_ratelimit && debug_ratelimit && !printk_ratelimit()) {
160                         spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
161                         return;
162                 }
163                 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
164
165                 len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix);
166
167                 va_start(args, fmt);
168                 len += vsnprintf(&s[len], (256 - len), fmt, args);
169                 va_end(args);
170
171                 printk(s);
172
173                 WARN_ON(len < 5);
174         }
175 }
176 EXPORT_SYMBOL(cpufreq_debug_printk);
177
178
179 module_param(debug, uint, 0644);
180 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core, 2 to debug drivers, and 4 to debug governors.");
181
182 module_param(debug_ratelimit, uint, 0644);
183 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging: set to 0 to disable ratelimiting.");
184
185 #else /* !CONFIG_CPU_FREQ_DEBUG */
186
187 static inline void cpufreq_debug_enable_ratelimit(void) { return; }
188 static inline void cpufreq_debug_disable_ratelimit(void) { return; }
189
190 #endif /* CONFIG_CPU_FREQ_DEBUG */
191
192
193 /*********************************************************************
194  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
195  *********************************************************************/
196
197 /**
198  * adjust_jiffies - adjust the system "loops_per_jiffy"
199  *
200  * This function alters the system "loops_per_jiffy" for the clock
201  * speed change. Note that loops_per_jiffy cannot be updated on SMP
202  * systems as each CPU might be scaled differently. So, use the arch
203  * per-CPU loops_per_jiffy value wherever possible.
204  */
205 #ifndef CONFIG_SMP
206 static unsigned long l_p_j_ref;
207 static unsigned int  l_p_j_ref_freq;
208
209 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
210 {
211         if (ci->flags & CPUFREQ_CONST_LOOPS)
212                 return;
213
214         if (!l_p_j_ref_freq) {
215                 l_p_j_ref = loops_per_jiffy;
216                 l_p_j_ref_freq = ci->old;
217                 dprintk("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
218         }
219         if ((val == CPUFREQ_PRECHANGE  && ci->old < ci->new) ||
220             (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
221             (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
222                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, ci->new);
223                 dprintk("scaling loops_per_jiffy to %lu for frequency %u kHz\n", loops_per_jiffy, ci->new);
224         }
225 }
226 #else
227 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) { return; }
228 #endif
229
230
231 /**
232  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
233  * on frequency transition.
234  *
235  * This function calls the transition notifiers and the "adjust_jiffies"
236  * function. It is called twice on all CPU frequency changes that have
237  * external effects.
238  */
239 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
240 {
241         struct cpufreq_policy *policy;
242
243         BUG_ON(irqs_disabled());
244
245         freqs->flags = cpufreq_driver->flags;
246         dprintk("notification %u of frequency transition to %u kHz\n",
247                 state, freqs->new);
248
249         policy = cpufreq_cpu_data[freqs->cpu];
250         switch (state) {
251
252         case CPUFREQ_PRECHANGE:
253                 /* detect if the driver reported a value as "old frequency"
254                  * which is not equal to what the cpufreq core thinks is
255                  * "old frequency".
256                  */
257                 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
258                         if ((policy) && (policy->cpu == freqs->cpu) &&
259                             (policy->cur) && (policy->cur != freqs->old)) {
260                                 dprintk(KERN_WARNING "Warning: CPU frequency is"
261                                         " %u, cpufreq assumed %u kHz.\n",
262                                         freqs->old, policy->cur);
263                                 freqs->old = policy->cur;
264                         }
265                 }
266                 blocking_notifier_call_chain(&cpufreq_transition_notifier_list,
267                                 CPUFREQ_PRECHANGE, freqs);
268                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
269                 break;
270
271         case CPUFREQ_POSTCHANGE:
272                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
273                 blocking_notifier_call_chain(&cpufreq_transition_notifier_list,
274                                 CPUFREQ_POSTCHANGE, freqs);
275                 if (likely(policy) && likely(policy->cpu == freqs->cpu))
276                         policy->cur = freqs->new;
277                 break;
278         }
279 }
280 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
281
282
283
284 /*********************************************************************
285  *                          SYSFS INTERFACE                          *
286  *********************************************************************/
287
288 /**
289  * cpufreq_parse_governor - parse a governor string
290  */
291 static int cpufreq_parse_governor (char *str_governor, unsigned int *policy,
292                                 struct cpufreq_governor **governor)
293 {
294         if (!cpufreq_driver)
295                 return -EINVAL;
296         if (cpufreq_driver->setpolicy) {
297                 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
298                         *policy = CPUFREQ_POLICY_PERFORMANCE;
299                         return 0;
300                 } else if (!strnicmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
301                         *policy = CPUFREQ_POLICY_POWERSAVE;
302                         return 0;
303                 }
304                 return -EINVAL;
305         } else {
306                 struct cpufreq_governor *t;
307                 mutex_lock(&cpufreq_governor_mutex);
308                 if (!cpufreq_driver || !cpufreq_driver->target)
309                         goto out;
310                 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
311                         if (!strnicmp(str_governor,t->name,CPUFREQ_NAME_LEN)) {
312                                 *governor = t;
313                                 mutex_unlock(&cpufreq_governor_mutex);
314                                 return 0;
315                         }
316                 }
317 out:
318                 mutex_unlock(&cpufreq_governor_mutex);
319         }
320         return -EINVAL;
321 }
322 EXPORT_SYMBOL_GPL(cpufreq_parse_governor);
323
324
325 /* drivers/base/cpu.c */
326 extern struct sysdev_class cpu_sysdev_class;
327
328
329 /**
330  * cpufreq_per_cpu_attr_read() / show_##file_name() - print out cpufreq information
331  *
332  * Write out information from cpufreq_driver->policy[cpu]; object must be
333  * "unsigned int".
334  */
335
336 #define show_one(file_name, object)                     \
337 static ssize_t show_##file_name                         \
338 (struct cpufreq_policy * policy, char *buf)             \
339 {                                                       \
340         return sprintf (buf, "%u\n", policy->object);   \
341 }
342
343 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
344 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
345 show_one(scaling_min_freq, min);
346 show_one(scaling_max_freq, max);
347 show_one(scaling_cur_freq, cur);
348
349 static int __cpufreq_set_policy(struct cpufreq_policy *data, struct cpufreq_policy *policy);
350
351 /**
352  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
353  */
354 #define store_one(file_name, object)                    \
355 static ssize_t store_##file_name                                        \
356 (struct cpufreq_policy * policy, const char *buf, size_t count)         \
357 {                                                                       \
358         unsigned int ret = -EINVAL;                                     \
359         struct cpufreq_policy new_policy;                               \
360                                                                         \
361         ret = cpufreq_get_policy(&new_policy, policy->cpu);             \
362         if (ret)                                                        \
363                 return -EINVAL;                                         \
364                                                                         \
365         ret = sscanf (buf, "%u", &new_policy.object);                   \
366         if (ret != 1)                                                   \
367                 return -EINVAL;                                         \
368                                                                         \
369         mutex_lock(&policy->lock);                                      \
370         ret = __cpufreq_set_policy(policy, &new_policy);                \
371         policy->user_policy.object = policy->object;                    \
372         mutex_unlock(&policy->lock);                                    \
373                                                                         \
374         return ret ? ret : count;                                       \
375 }
376
377 store_one(scaling_min_freq,min);
378 store_one(scaling_max_freq,max);
379
380 /**
381  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
382  */
383 static ssize_t show_cpuinfo_cur_freq (struct cpufreq_policy * policy, char *buf)
384 {
385         unsigned int cur_freq = cpufreq_get(policy->cpu);
386         if (!cur_freq)
387                 return sprintf(buf, "<unknown>");
388         return sprintf(buf, "%u\n", cur_freq);
389 }
390
391
392 /**
393  * show_scaling_governor - show the current policy for the specified CPU
394  */
395 static ssize_t show_scaling_governor (struct cpufreq_policy * policy, char *buf)
396 {
397         if(policy->policy == CPUFREQ_POLICY_POWERSAVE)
398                 return sprintf(buf, "powersave\n");
399         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
400                 return sprintf(buf, "performance\n");
401         else if (policy->governor)
402                 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", policy->governor->name);
403         return -EINVAL;
404 }
405
406
407 /**
408  * store_scaling_governor - store policy for the specified CPU
409  */
410 static ssize_t store_scaling_governor (struct cpufreq_policy * policy,
411                                        const char *buf, size_t count)
412 {
413         unsigned int ret = -EINVAL;
414         char    str_governor[16];
415         struct cpufreq_policy new_policy;
416
417         ret = cpufreq_get_policy(&new_policy, policy->cpu);
418         if (ret)
419                 return ret;
420
421         ret = sscanf (buf, "%15s", str_governor);
422         if (ret != 1)
423                 return -EINVAL;
424
425         if (cpufreq_parse_governor(str_governor, &new_policy.policy, &new_policy.governor))
426                 return -EINVAL;
427
428         /* Do not use cpufreq_set_policy here or the user_policy.max
429            will be wrongly overridden */
430         mutex_lock(&policy->lock);
431         ret = __cpufreq_set_policy(policy, &new_policy);
432
433         policy->user_policy.policy = policy->policy;
434         policy->user_policy.governor = policy->governor;
435         mutex_unlock(&policy->lock);
436
437         return ret ? ret : count;
438 }
439
440 /**
441  * show_scaling_driver - show the cpufreq driver currently loaded
442  */
443 static ssize_t show_scaling_driver (struct cpufreq_policy * policy, char *buf)
444 {
445         return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
446 }
447
448 /**
449  * show_scaling_available_governors - show the available CPUfreq governors
450  */
451 static ssize_t show_scaling_available_governors (struct cpufreq_policy * policy,
452                                 char *buf)
453 {
454         ssize_t i = 0;
455         struct cpufreq_governor *t;
456
457         if (!cpufreq_driver->target) {
458                 i += sprintf(buf, "performance powersave");
459                 goto out;
460         }
461
462         list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
463                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) - (CPUFREQ_NAME_LEN + 2)))
464                         goto out;
465                 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
466         }
467 out:
468         i += sprintf(&buf[i], "\n");
469         return i;
470 }
471 /**
472  * show_affected_cpus - show the CPUs affected by each transition
473  */
474 static ssize_t show_affected_cpus (struct cpufreq_policy * policy, char *buf)
475 {
476         ssize_t i = 0;
477         unsigned int cpu;
478
479         for_each_cpu_mask(cpu, policy->cpus) {
480                 if (i)
481                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
482                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
483                 if (i >= (PAGE_SIZE - 5))
484                     break;
485         }
486         i += sprintf(&buf[i], "\n");
487         return i;
488 }
489
490
491 #define define_one_ro(_name) \
492 static struct freq_attr _name = \
493 __ATTR(_name, 0444, show_##_name, NULL)
494
495 #define define_one_ro0400(_name) \
496 static struct freq_attr _name = \
497 __ATTR(_name, 0400, show_##_name, NULL)
498
499 #define define_one_rw(_name) \
500 static struct freq_attr _name = \
501 __ATTR(_name, 0644, show_##_name, store_##_name)
502
503 define_one_ro0400(cpuinfo_cur_freq);
504 define_one_ro(cpuinfo_min_freq);
505 define_one_ro(cpuinfo_max_freq);
506 define_one_ro(scaling_available_governors);
507 define_one_ro(scaling_driver);
508 define_one_ro(scaling_cur_freq);
509 define_one_ro(affected_cpus);
510 define_one_rw(scaling_min_freq);
511 define_one_rw(scaling_max_freq);
512 define_one_rw(scaling_governor);
513
514 static struct attribute * default_attrs[] = {
515         &cpuinfo_min_freq.attr,
516         &cpuinfo_max_freq.attr,
517         &scaling_min_freq.attr,
518         &scaling_max_freq.attr,
519         &affected_cpus.attr,
520         &scaling_governor.attr,
521         &scaling_driver.attr,
522         &scaling_available_governors.attr,
523         NULL
524 };
525
526 #define to_policy(k) container_of(k,struct cpufreq_policy,kobj)
527 #define to_attr(a) container_of(a,struct freq_attr,attr)
528
529 static ssize_t show(struct kobject * kobj, struct attribute * attr ,char * buf)
530 {
531         struct cpufreq_policy * policy = to_policy(kobj);
532         struct freq_attr * fattr = to_attr(attr);
533         ssize_t ret;
534         policy = cpufreq_cpu_get(policy->cpu);
535         if (!policy)
536                 return -EINVAL;
537         ret = fattr->show ? fattr->show(policy,buf) : -EIO;
538         cpufreq_cpu_put(policy);
539         return ret;
540 }
541
542 static ssize_t store(struct kobject * kobj, struct attribute * attr,
543                      const char * buf, size_t count)
544 {
545         struct cpufreq_policy * policy = to_policy(kobj);
546         struct freq_attr * fattr = to_attr(attr);
547         ssize_t ret;
548         policy = cpufreq_cpu_get(policy->cpu);
549         if (!policy)
550                 return -EINVAL;
551         ret = fattr->store ? fattr->store(policy,buf,count) : -EIO;
552         cpufreq_cpu_put(policy);
553         return ret;
554 }
555
556 static void cpufreq_sysfs_release(struct kobject * kobj)
557 {
558         struct cpufreq_policy * policy = to_policy(kobj);
559         dprintk("last reference is dropped\n");
560         complete(&policy->kobj_unregister);
561 }
562
563 static struct sysfs_ops sysfs_ops = {
564         .show   = show,
565         .store  = store,
566 };
567
568 static struct kobj_type ktype_cpufreq = {
569         .sysfs_ops      = &sysfs_ops,
570         .default_attrs  = default_attrs,
571         .release        = cpufreq_sysfs_release,
572 };
573
574
575 /**
576  * cpufreq_add_dev - add a CPU device
577  *
578  * Adds the cpufreq interface for a CPU device.
579  */
580 static int cpufreq_add_dev (struct sys_device * sys_dev)
581 {
582         unsigned int cpu = sys_dev->id;
583         int ret = 0;
584         struct cpufreq_policy new_policy;
585         struct cpufreq_policy *policy;
586         struct freq_attr **drv_attr;
587         struct sys_device *cpu_sys_dev;
588         unsigned long flags;
589         unsigned int j;
590 #ifdef CONFIG_SMP
591         struct cpufreq_policy *managed_policy;
592 #endif
593
594         if (cpu_is_offline(cpu))
595                 return 0;
596
597         cpufreq_debug_disable_ratelimit();
598         dprintk("adding CPU %u\n", cpu);
599
600 #ifdef CONFIG_SMP
601         /* check whether a different CPU already registered this
602          * CPU because it is in the same boat. */
603         policy = cpufreq_cpu_get(cpu);
604         if (unlikely(policy)) {
605                 cpufreq_cpu_put(policy);
606                 cpufreq_debug_enable_ratelimit();
607                 return 0;
608         }
609 #endif
610
611         if (!try_module_get(cpufreq_driver->owner)) {
612                 ret = -EINVAL;
613                 goto module_out;
614         }
615
616         policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
617         if (!policy) {
618                 ret = -ENOMEM;
619                 goto nomem_out;
620         }
621
622         policy->cpu = cpu;
623         policy->cpus = cpumask_of_cpu(cpu);
624
625         mutex_init(&policy->lock);
626         mutex_lock(&policy->lock);
627         init_completion(&policy->kobj_unregister);
628         INIT_WORK(&policy->update, handle_update, (void *)(long)cpu);
629
630         /* call driver. From then on the cpufreq must be able
631          * to accept all calls to ->verify and ->setpolicy for this CPU
632          */
633         ret = cpufreq_driver->init(policy);
634         if (ret) {
635                 dprintk("initialization failed\n");
636                 mutex_unlock(&policy->lock);
637                 goto err_out;
638         }
639
640 #ifdef CONFIG_SMP
641         for_each_cpu_mask(j, policy->cpus) {
642                 if (cpu == j)
643                         continue;
644
645                 /* check for existing affected CPUs.  They may not be aware
646                  * of it due to CPU Hotplug.
647                  */
648                 managed_policy = cpufreq_cpu_get(j);
649                 if (unlikely(managed_policy)) {
650                         spin_lock_irqsave(&cpufreq_driver_lock, flags);
651                         managed_policy->cpus = policy->cpus;
652                         cpufreq_cpu_data[cpu] = managed_policy;
653                         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
654
655                         dprintk("CPU already managed, adding link\n");
656                         sysfs_create_link(&sys_dev->kobj,
657                                           &managed_policy->kobj, "cpufreq");
658
659                         cpufreq_debug_enable_ratelimit();
660                         mutex_unlock(&policy->lock);
661                         ret = 0;
662                         goto err_out_driver_exit; /* call driver->exit() */
663                 }
664         }
665 #endif
666         memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
667
668         /* prepare interface data */
669         policy->kobj.parent = &sys_dev->kobj;
670         policy->kobj.ktype = &ktype_cpufreq;
671         strlcpy(policy->kobj.name, "cpufreq", KOBJ_NAME_LEN);
672
673         ret = kobject_register(&policy->kobj);
674         if (ret) {
675                 mutex_unlock(&policy->lock);
676                 goto err_out_driver_exit;
677         }
678         /* set up files for this cpu device */
679         drv_attr = cpufreq_driver->attr;
680         while ((drv_attr) && (*drv_attr)) {
681                 sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
682                 drv_attr++;
683         }
684         if (cpufreq_driver->get)
685                 sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
686         if (cpufreq_driver->target)
687                 sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
688
689         spin_lock_irqsave(&cpufreq_driver_lock, flags);
690         for_each_cpu_mask(j, policy->cpus)
691                 cpufreq_cpu_data[j] = policy;
692         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
693
694         /* symlink affected CPUs */
695         for_each_cpu_mask(j, policy->cpus) {
696                 if (j == cpu)
697                         continue;
698                 if (!cpu_online(j))
699                         continue;
700
701                 dprintk("CPU %u already managed, adding link\n", j);
702                 cpufreq_cpu_get(cpu);
703                 cpu_sys_dev = get_cpu_sysdev(j);
704                 sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
705                                   "cpufreq");
706         }
707
708         policy->governor = NULL; /* to assure that the starting sequence is
709                                   * run in cpufreq_set_policy */
710         mutex_unlock(&policy->lock);
711
712         /* set default policy */
713         ret = cpufreq_set_policy(&new_policy);
714         if (ret) {
715                 dprintk("setting policy failed\n");
716                 goto err_out_unregister;
717         }
718
719         module_put(cpufreq_driver->owner);
720         dprintk("initialization complete\n");
721         cpufreq_debug_enable_ratelimit();
722
723         return 0;
724
725
726 err_out_unregister:
727         spin_lock_irqsave(&cpufreq_driver_lock, flags);
728         for_each_cpu_mask(j, policy->cpus)
729                 cpufreq_cpu_data[j] = NULL;
730         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
731
732         kobject_unregister(&policy->kobj);
733         wait_for_completion(&policy->kobj_unregister);
734
735 err_out_driver_exit:
736         if (cpufreq_driver->exit)
737                 cpufreq_driver->exit(policy);
738
739 err_out:
740         kfree(policy);
741
742 nomem_out:
743         module_put(cpufreq_driver->owner);
744 module_out:
745         cpufreq_debug_enable_ratelimit();
746         return ret;
747 }
748
749
750 /**
751  * cpufreq_remove_dev - remove a CPU device
752  *
753  * Removes the cpufreq interface for a CPU device.
754  */
755 static int cpufreq_remove_dev (struct sys_device * sys_dev)
756 {
757         unsigned int cpu = sys_dev->id;
758         unsigned long flags;
759         struct cpufreq_policy *data;
760 #ifdef CONFIG_SMP
761         struct sys_device *cpu_sys_dev;
762         unsigned int j;
763 #endif
764
765         cpufreq_debug_disable_ratelimit();
766         dprintk("unregistering CPU %u\n", cpu);
767
768         spin_lock_irqsave(&cpufreq_driver_lock, flags);
769         data = cpufreq_cpu_data[cpu];
770
771         if (!data) {
772                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
773                 cpufreq_debug_enable_ratelimit();
774                 return -EINVAL;
775         }
776         cpufreq_cpu_data[cpu] = NULL;
777
778
779 #ifdef CONFIG_SMP
780         /* if this isn't the CPU which is the parent of the kobj, we
781          * only need to unlink, put and exit
782          */
783         if (unlikely(cpu != data->cpu)) {
784                 dprintk("removing link\n");
785                 cpu_clear(cpu, data->cpus);
786                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
787                 sysfs_remove_link(&sys_dev->kobj, "cpufreq");
788                 cpufreq_cpu_put(data);
789                 cpufreq_debug_enable_ratelimit();
790                 return 0;
791         }
792 #endif
793
794
795         if (!kobject_get(&data->kobj)) {
796                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
797                 cpufreq_debug_enable_ratelimit();
798                 return -EFAULT;
799         }
800
801 #ifdef CONFIG_SMP
802         /* if we have other CPUs still registered, we need to unlink them,
803          * or else wait_for_completion below will lock up. Clean the
804          * cpufreq_cpu_data[] while holding the lock, and remove the sysfs
805          * links afterwards.
806          */
807         if (unlikely(cpus_weight(data->cpus) > 1)) {
808                 for_each_cpu_mask(j, data->cpus) {
809                         if (j == cpu)
810                                 continue;
811                         cpufreq_cpu_data[j] = NULL;
812                 }
813         }
814
815         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
816
817         if (unlikely(cpus_weight(data->cpus) > 1)) {
818                 for_each_cpu_mask(j, data->cpus) {
819                         if (j == cpu)
820                                 continue;
821                         dprintk("removing link for cpu %u\n", j);
822                         cpu_sys_dev = get_cpu_sysdev(j);
823                         sysfs_remove_link(&cpu_sys_dev->kobj, "cpufreq");
824                         cpufreq_cpu_put(data);
825                 }
826         }
827 #else
828         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
829 #endif
830
831         mutex_lock(&data->lock);
832         if (cpufreq_driver->target)
833                 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
834         mutex_unlock(&data->lock);
835
836         kobject_unregister(&data->kobj);
837
838         kobject_put(&data->kobj);
839
840         /* we need to make sure that the underlying kobj is actually
841          * not referenced anymore by anybody before we proceed with
842          * unloading.
843          */
844         dprintk("waiting for dropping of refcount\n");
845         wait_for_completion(&data->kobj_unregister);
846         dprintk("wait complete\n");
847
848         if (cpufreq_driver->exit)
849                 cpufreq_driver->exit(data);
850
851         kfree(data);
852
853         cpufreq_debug_enable_ratelimit();
854         return 0;
855 }
856
857
858 static void handle_update(void *data)
859 {
860         unsigned int cpu = (unsigned int)(long)data;
861         dprintk("handle_update for cpu %u called\n", cpu);
862         cpufreq_update_policy(cpu);
863 }
864
865 /**
866  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
867  *      @cpu: cpu number
868  *      @old_freq: CPU frequency the kernel thinks the CPU runs at
869  *      @new_freq: CPU frequency the CPU actually runs at
870  *
871  *      We adjust to current frequency first, and need to clean up later. So either call
872  *      to cpufreq_update_policy() or schedule handle_update()).
873  */
874 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, unsigned int new_freq)
875 {
876         struct cpufreq_freqs freqs;
877
878         dprintk(KERN_WARNING "Warning: CPU frequency out of sync: cpufreq and timing "
879                "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
880
881         freqs.cpu = cpu;
882         freqs.old = old_freq;
883         freqs.new = new_freq;
884         cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
885         cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
886 }
887
888
889 /**
890  * cpufreq_quick_get - get the CPU frequency (in kHz) frpm policy->cur
891  * @cpu: CPU number
892  *
893  * This is the last known freq, without actually getting it from the driver.
894  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
895  */
896 unsigned int cpufreq_quick_get(unsigned int cpu)
897 {
898         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
899         unsigned int ret = 0;
900
901         if (policy) {
902                 mutex_lock(&policy->lock);
903                 ret = policy->cur;
904                 mutex_unlock(&policy->lock);
905                 cpufreq_cpu_put(policy);
906         }
907
908         return (ret);
909 }
910 EXPORT_SYMBOL(cpufreq_quick_get);
911
912
913 /**
914  * cpufreq_get - get the current CPU frequency (in kHz)
915  * @cpu: CPU number
916  *
917  * Get the CPU current (static) CPU frequency
918  */
919 unsigned int cpufreq_get(unsigned int cpu)
920 {
921         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
922         unsigned int ret = 0;
923
924         if (!policy)
925                 return 0;
926
927         if (!cpufreq_driver->get)
928                 goto out;
929
930         mutex_lock(&policy->lock);
931
932         ret = cpufreq_driver->get(cpu);
933
934         if (ret && policy->cur && !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
935                 /* verify no discrepancy between actual and saved value exists */
936                 if (unlikely(ret != policy->cur)) {
937                         cpufreq_out_of_sync(cpu, policy->cur, ret);
938                         schedule_work(&policy->update);
939                 }
940         }
941
942         mutex_unlock(&policy->lock);
943
944 out:
945         cpufreq_cpu_put(policy);
946
947         return (ret);
948 }
949 EXPORT_SYMBOL(cpufreq_get);
950
951
952 /**
953  *      cpufreq_suspend - let the low level driver prepare for suspend
954  */
955
956 static int cpufreq_suspend(struct sys_device * sysdev, pm_message_t pmsg)
957 {
958         int cpu = sysdev->id;
959         unsigned int ret = 0;
960         unsigned int cur_freq = 0;
961         struct cpufreq_policy *cpu_policy;
962
963         dprintk("resuming cpu %u\n", cpu);
964
965         if (!cpu_online(cpu))
966                 return 0;
967
968         /* we may be lax here as interrupts are off. Nonetheless
969          * we need to grab the correct cpu policy, as to check
970          * whether we really run on this CPU.
971          */
972
973         cpu_policy = cpufreq_cpu_get(cpu);
974         if (!cpu_policy)
975                 return -EINVAL;
976
977         /* only handle each CPU group once */
978         if (unlikely(cpu_policy->cpu != cpu)) {
979                 cpufreq_cpu_put(cpu_policy);
980                 return 0;
981         }
982
983         if (cpufreq_driver->suspend) {
984                 ret = cpufreq_driver->suspend(cpu_policy, pmsg);
985                 if (ret) {
986                         printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
987                                         "step on CPU %u\n", cpu_policy->cpu);
988                         cpufreq_cpu_put(cpu_policy);
989                         return ret;
990                 }
991         }
992
993
994         if (cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)
995                 goto out;
996
997         if (cpufreq_driver->get)
998                 cur_freq = cpufreq_driver->get(cpu_policy->cpu);
999
1000         if (!cur_freq || !cpu_policy->cur) {
1001                 printk(KERN_ERR "cpufreq: suspend failed to assert current "
1002                        "frequency is what timing core thinks it is.\n");
1003                 goto out;
1004         }
1005
1006         if (unlikely(cur_freq != cpu_policy->cur)) {
1007                 struct cpufreq_freqs freqs;
1008
1009                 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1010                         dprintk(KERN_DEBUG "Warning: CPU frequency is %u, "
1011                                "cpufreq assumed %u kHz.\n",
1012                                cur_freq, cpu_policy->cur);
1013
1014                 freqs.cpu = cpu;
1015                 freqs.old = cpu_policy->cur;
1016                 freqs.new = cur_freq;
1017
1018                 blocking_notifier_call_chain(&cpufreq_transition_notifier_list,
1019                                     CPUFREQ_SUSPENDCHANGE, &freqs);
1020                 adjust_jiffies(CPUFREQ_SUSPENDCHANGE, &freqs);
1021
1022                 cpu_policy->cur = cur_freq;
1023         }
1024
1025 out:
1026         cpufreq_cpu_put(cpu_policy);
1027         return 0;
1028 }
1029
1030 /**
1031  *      cpufreq_resume -  restore proper CPU frequency handling after resume
1032  *
1033  *      1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1034  *      2.) if ->target and !CPUFREQ_CONST_LOOPS: verify we're in sync
1035  *      3.) schedule call cpufreq_update_policy() ASAP as interrupts are
1036  *          restored.
1037  */
1038 static int cpufreq_resume(struct sys_device * sysdev)
1039 {
1040         int cpu = sysdev->id;
1041         unsigned int ret = 0;
1042         struct cpufreq_policy *cpu_policy;
1043
1044         dprintk("resuming cpu %u\n", cpu);
1045
1046         if (!cpu_online(cpu))
1047                 return 0;
1048
1049         /* we may be lax here as interrupts are off. Nonetheless
1050          * we need to grab the correct cpu policy, as to check
1051          * whether we really run on this CPU.
1052          */
1053
1054         cpu_policy = cpufreq_cpu_get(cpu);
1055         if (!cpu_policy)
1056                 return -EINVAL;
1057
1058         /* only handle each CPU group once */
1059         if (unlikely(cpu_policy->cpu != cpu)) {
1060                 cpufreq_cpu_put(cpu_policy);
1061                 return 0;
1062         }
1063
1064         if (cpufreq_driver->resume) {
1065                 ret = cpufreq_driver->resume(cpu_policy);
1066                 if (ret) {
1067                         printk(KERN_ERR "cpufreq: resume failed in ->resume "
1068                                         "step on CPU %u\n", cpu_policy->cpu);
1069                         cpufreq_cpu_put(cpu_policy);
1070                         return ret;
1071                 }
1072         }
1073
1074         if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1075                 unsigned int cur_freq = 0;
1076
1077                 if (cpufreq_driver->get)
1078                         cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1079
1080                 if (!cur_freq || !cpu_policy->cur) {
1081                         printk(KERN_ERR "cpufreq: resume failed to assert "
1082                                         "current frequency is what timing core "
1083                                         "thinks it is.\n");
1084                         goto out;
1085                 }
1086
1087                 if (unlikely(cur_freq != cpu_policy->cur)) {
1088                         struct cpufreq_freqs freqs;
1089
1090                         if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1091                                 dprintk(KERN_WARNING "Warning: CPU frequency"
1092                                        "is %u, cpufreq assumed %u kHz.\n",
1093                                        cur_freq, cpu_policy->cur);
1094
1095                         freqs.cpu = cpu;
1096                         freqs.old = cpu_policy->cur;
1097                         freqs.new = cur_freq;
1098
1099                         blocking_notifier_call_chain(
1100                                         &cpufreq_transition_notifier_list,
1101                                         CPUFREQ_RESUMECHANGE, &freqs);
1102                         adjust_jiffies(CPUFREQ_RESUMECHANGE, &freqs);
1103
1104                         cpu_policy->cur = cur_freq;
1105                 }
1106         }
1107
1108 out:
1109         schedule_work(&cpu_policy->update);
1110         cpufreq_cpu_put(cpu_policy);
1111         return ret;
1112 }
1113
1114 static struct sysdev_driver cpufreq_sysdev_driver = {
1115         .add            = cpufreq_add_dev,
1116         .remove         = cpufreq_remove_dev,
1117         .suspend        = cpufreq_suspend,
1118         .resume         = cpufreq_resume,
1119 };
1120
1121
1122 /*********************************************************************
1123  *                     NOTIFIER LISTS INTERFACE                      *
1124  *********************************************************************/
1125
1126 /**
1127  *      cpufreq_register_notifier - register a driver with cpufreq
1128  *      @nb: notifier function to register
1129  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1130  *
1131  *      Add a driver to one of two lists: either a list of drivers that
1132  *      are notified about clock rate changes (once before and once after
1133  *      the transition), or a list of drivers that are notified about
1134  *      changes in cpufreq policy.
1135  *
1136  *      This function may sleep, and has the same return conditions as
1137  *      blocking_notifier_chain_register.
1138  */
1139 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1140 {
1141         int ret;
1142
1143         switch (list) {
1144         case CPUFREQ_TRANSITION_NOTIFIER:
1145                 ret = blocking_notifier_chain_register(
1146                                 &cpufreq_transition_notifier_list, nb);
1147                 break;
1148         case CPUFREQ_POLICY_NOTIFIER:
1149                 ret = blocking_notifier_chain_register(
1150                                 &cpufreq_policy_notifier_list, nb);
1151                 break;
1152         default:
1153                 ret = -EINVAL;
1154         }
1155
1156         return ret;
1157 }
1158 EXPORT_SYMBOL(cpufreq_register_notifier);
1159
1160
1161 /**
1162  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1163  *      @nb: notifier block to be unregistered
1164  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1165  *
1166  *      Remove a driver from the CPU frequency notifier list.
1167  *
1168  *      This function may sleep, and has the same return conditions as
1169  *      blocking_notifier_chain_unregister.
1170  */
1171 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1172 {
1173         int ret;
1174
1175         switch (list) {
1176         case CPUFREQ_TRANSITION_NOTIFIER:
1177                 ret = blocking_notifier_chain_unregister(
1178                                 &cpufreq_transition_notifier_list, nb);
1179                 break;
1180         case CPUFREQ_POLICY_NOTIFIER:
1181                 ret = blocking_notifier_chain_unregister(
1182                                 &cpufreq_policy_notifier_list, nb);
1183                 break;
1184         default:
1185                 ret = -EINVAL;
1186         }
1187
1188         return ret;
1189 }
1190 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1191
1192
1193 /*********************************************************************
1194  *                              GOVERNORS                            *
1195  *********************************************************************/
1196
1197
1198 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1199                             unsigned int target_freq,
1200                             unsigned int relation)
1201 {
1202         int retval = -EINVAL;
1203
1204         lock_cpu_hotplug();
1205         dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1206                 target_freq, relation);
1207         if (cpu_online(policy->cpu) && cpufreq_driver->target)
1208                 retval = cpufreq_driver->target(policy, target_freq, relation);
1209
1210         unlock_cpu_hotplug();
1211
1212         return retval;
1213 }
1214 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1215
1216 int cpufreq_driver_target(struct cpufreq_policy *policy,
1217                           unsigned int target_freq,
1218                           unsigned int relation)
1219 {
1220         int ret;
1221
1222         policy = cpufreq_cpu_get(policy->cpu);
1223         if (!policy)
1224                 return -EINVAL;
1225
1226         mutex_lock(&policy->lock);
1227
1228         ret = __cpufreq_driver_target(policy, target_freq, relation);
1229
1230         mutex_unlock(&policy->lock);
1231
1232         cpufreq_cpu_put(policy);
1233         return ret;
1234 }
1235 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1236
1237
1238 static int __cpufreq_governor(struct cpufreq_policy *policy, unsigned int event)
1239 {
1240         int ret;
1241
1242         if (!try_module_get(policy->governor->owner))
1243                 return -EINVAL;
1244
1245         dprintk("__cpufreq_governor for CPU %u, event %u\n", policy->cpu, event);
1246         ret = policy->governor->governor(policy, event);
1247
1248         /* we keep one module reference alive for each CPU governed by this CPU */
1249         if ((event != CPUFREQ_GOV_START) || ret)
1250                 module_put(policy->governor->owner);
1251         if ((event == CPUFREQ_GOV_STOP) && !ret)
1252                 module_put(policy->governor->owner);
1253
1254         return ret;
1255 }
1256
1257
1258 int cpufreq_governor(unsigned int cpu, unsigned int event)
1259 {
1260         int ret = 0;
1261         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1262
1263         if (!policy)
1264                 return -EINVAL;
1265
1266         mutex_lock(&policy->lock);
1267         ret = __cpufreq_governor(policy, event);
1268         mutex_unlock(&policy->lock);
1269
1270         cpufreq_cpu_put(policy);
1271         return ret;
1272 }
1273 EXPORT_SYMBOL_GPL(cpufreq_governor);
1274
1275
1276 int cpufreq_register_governor(struct cpufreq_governor *governor)
1277 {
1278         struct cpufreq_governor *t;
1279
1280         if (!governor)
1281                 return -EINVAL;
1282
1283         mutex_lock(&cpufreq_governor_mutex);
1284
1285         list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
1286                 if (!strnicmp(governor->name,t->name,CPUFREQ_NAME_LEN)) {
1287                         mutex_unlock(&cpufreq_governor_mutex);
1288                         return -EBUSY;
1289                 }
1290         }
1291         list_add(&governor->governor_list, &cpufreq_governor_list);
1292
1293         mutex_unlock(&cpufreq_governor_mutex);
1294         return 0;
1295 }
1296 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1297
1298
1299 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1300 {
1301         if (!governor)
1302                 return;
1303
1304         mutex_lock(&cpufreq_governor_mutex);
1305         list_del(&governor->governor_list);
1306         mutex_unlock(&cpufreq_governor_mutex);
1307         return;
1308 }
1309 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1310
1311
1312
1313 /*********************************************************************
1314  *                          POLICY INTERFACE                         *
1315  *********************************************************************/
1316
1317 /**
1318  * cpufreq_get_policy - get the current cpufreq_policy
1319  * @policy: struct cpufreq_policy into which the current cpufreq_policy is written
1320  *
1321  * Reads the current cpufreq policy.
1322  */
1323 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1324 {
1325         struct cpufreq_policy *cpu_policy;
1326         if (!policy)
1327                 return -EINVAL;
1328
1329         cpu_policy = cpufreq_cpu_get(cpu);
1330         if (!cpu_policy)
1331                 return -EINVAL;
1332
1333         mutex_lock(&cpu_policy->lock);
1334         memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1335         mutex_unlock(&cpu_policy->lock);
1336
1337         cpufreq_cpu_put(cpu_policy);
1338         return 0;
1339 }
1340 EXPORT_SYMBOL(cpufreq_get_policy);
1341
1342
1343 static int __cpufreq_set_policy(struct cpufreq_policy *data, struct cpufreq_policy *policy)
1344 {
1345         int ret = 0;
1346
1347         cpufreq_debug_disable_ratelimit();
1348         dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1349                 policy->min, policy->max);
1350
1351         memcpy(&policy->cpuinfo, &data->cpuinfo, sizeof(struct cpufreq_cpuinfo));
1352
1353         /* verify the cpu speed can be set within this limit */
1354         ret = cpufreq_driver->verify(policy);
1355         if (ret)
1356                 goto error_out;
1357
1358         /* adjust if necessary - all reasons */
1359         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1360                         CPUFREQ_ADJUST, policy);
1361
1362         /* adjust if necessary - hardware incompatibility*/
1363         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1364                         CPUFREQ_INCOMPATIBLE, policy);
1365
1366         /* verify the cpu speed can be set within this limit,
1367            which might be different to the first one */
1368         ret = cpufreq_driver->verify(policy);
1369         if (ret)
1370                 goto error_out;
1371
1372         /* notification of the new policy */
1373         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1374                         CPUFREQ_NOTIFY, policy);
1375
1376         data->min = policy->min;
1377         data->max = policy->max;
1378
1379         dprintk("new min and max freqs are %u - %u kHz\n", data->min, data->max);
1380
1381         if (cpufreq_driver->setpolicy) {
1382                 data->policy = policy->policy;
1383                 dprintk("setting range\n");
1384                 ret = cpufreq_driver->setpolicy(policy);
1385         } else {
1386                 if (policy->governor != data->governor) {
1387                         /* save old, working values */
1388                         struct cpufreq_governor *old_gov = data->governor;
1389
1390                         dprintk("governor switch\n");
1391
1392                         /* end old governor */
1393                         if (data->governor)
1394                                 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1395
1396                         /* start new governor */
1397                         data->governor = policy->governor;
1398                         if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1399                                 /* new governor failed, so re-start old one */
1400                                 dprintk("starting governor %s failed\n", data->governor->name);
1401                                 if (old_gov) {
1402                                         data->governor = old_gov;
1403                                         __cpufreq_governor(data, CPUFREQ_GOV_START);
1404                                 }
1405                                 ret = -EINVAL;
1406                                 goto error_out;
1407                         }
1408                         /* might be a policy change, too, so fall through */
1409                 }
1410                 dprintk("governor: change or update limits\n");
1411                 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1412         }
1413
1414 error_out:
1415         cpufreq_debug_enable_ratelimit();
1416         return ret;
1417 }
1418
1419 /**
1420  *      cpufreq_set_policy - set a new CPUFreq policy
1421  *      @policy: policy to be set.
1422  *
1423  *      Sets a new CPU frequency and voltage scaling policy.
1424  */
1425 int cpufreq_set_policy(struct cpufreq_policy *policy)
1426 {
1427         int ret = 0;
1428         struct cpufreq_policy *data;
1429
1430         if (!policy)
1431                 return -EINVAL;
1432
1433         data = cpufreq_cpu_get(policy->cpu);
1434         if (!data)
1435                 return -EINVAL;
1436
1437         /* lock this CPU */
1438         mutex_lock(&data->lock);
1439
1440         ret = __cpufreq_set_policy(data, policy);
1441         data->user_policy.min = data->min;
1442         data->user_policy.max = data->max;
1443         data->user_policy.policy = data->policy;
1444         data->user_policy.governor = data->governor;
1445
1446         mutex_unlock(&data->lock);
1447         cpufreq_cpu_put(data);
1448
1449         return ret;
1450 }
1451 EXPORT_SYMBOL(cpufreq_set_policy);
1452
1453
1454 /**
1455  *      cpufreq_update_policy - re-evaluate an existing cpufreq policy
1456  *      @cpu: CPU which shall be re-evaluated
1457  *
1458  *      Usefull for policy notifiers which have different necessities
1459  *      at different times.
1460  */
1461 int cpufreq_update_policy(unsigned int cpu)
1462 {
1463         struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1464         struct cpufreq_policy policy;
1465         int ret = 0;
1466
1467         if (!data)
1468                 return -ENODEV;
1469
1470         mutex_lock(&data->lock);
1471
1472         dprintk("updating policy for CPU %u\n", cpu);
1473         memcpy(&policy, data, sizeof(struct cpufreq_policy));
1474         policy.min = data->user_policy.min;
1475         policy.max = data->user_policy.max;
1476         policy.policy = data->user_policy.policy;
1477         policy.governor = data->user_policy.governor;
1478
1479         /* BIOS might change freq behind our back
1480           -> ask driver for current freq and notify governors about a change */
1481         if (cpufreq_driver->get) {
1482                 policy.cur = cpufreq_driver->get(cpu);
1483                 if (!data->cur) {
1484                         dprintk("Driver did not initialize current freq");
1485                         data->cur = policy.cur;
1486                 } else {
1487                         if (data->cur != policy.cur)
1488                                 cpufreq_out_of_sync(cpu, data->cur, policy.cur);
1489                 }
1490         }
1491
1492         ret = __cpufreq_set_policy(data, &policy);
1493
1494         mutex_unlock(&data->lock);
1495
1496         cpufreq_cpu_put(data);
1497         return ret;
1498 }
1499 EXPORT_SYMBOL(cpufreq_update_policy);
1500
1501 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1502                                         unsigned long action, void *hcpu)
1503 {
1504         unsigned int cpu = (unsigned long)hcpu;
1505         struct cpufreq_policy *policy;
1506         struct sys_device *sys_dev;
1507
1508         sys_dev = get_cpu_sysdev(cpu);
1509
1510         if (sys_dev) {
1511                 switch (action) {
1512                 case CPU_ONLINE:
1513                         cpufreq_add_dev(sys_dev);
1514                         break;
1515                 case CPU_DOWN_PREPARE:
1516                         /*
1517                          * We attempt to put this cpu in lowest frequency
1518                          * possible before going down. This will permit
1519                          * hardware-managed P-State to switch other related
1520                          * threads to min or higher speeds if possible.
1521                          */
1522                         policy = cpufreq_cpu_data[cpu];
1523                         if (policy) {
1524                                 cpufreq_driver_target(policy, policy->min,
1525                                                 CPUFREQ_RELATION_H);
1526                         }
1527                         break;
1528                 case CPU_DEAD:
1529                         cpufreq_remove_dev(sys_dev);
1530                         break;
1531                 }
1532         }
1533         return NOTIFY_OK;
1534 }
1535
1536 static struct notifier_block cpufreq_cpu_notifier =
1537 {
1538     .notifier_call = cpufreq_cpu_callback,
1539 };
1540
1541 /*********************************************************************
1542  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
1543  *********************************************************************/
1544
1545 /**
1546  * cpufreq_register_driver - register a CPU Frequency driver
1547  * @driver_data: A struct cpufreq_driver containing the values#
1548  * submitted by the CPU Frequency driver.
1549  *
1550  *   Registers a CPU Frequency driver to this core code. This code
1551  * returns zero on success, -EBUSY when another driver got here first
1552  * (and isn't unregistered in the meantime).
1553  *
1554  */
1555 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1556 {
1557         unsigned long flags;
1558         int ret;
1559
1560         if (!driver_data || !driver_data->verify || !driver_data->init ||
1561             ((!driver_data->setpolicy) && (!driver_data->target)))
1562                 return -EINVAL;
1563
1564         dprintk("trying to register driver %s\n", driver_data->name);
1565
1566         if (driver_data->setpolicy)
1567                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
1568
1569         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1570         if (cpufreq_driver) {
1571                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1572                 return -EBUSY;
1573         }
1574         cpufreq_driver = driver_data;
1575         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1576
1577         ret = sysdev_driver_register(&cpu_sysdev_class,&cpufreq_sysdev_driver);
1578
1579         if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1580                 int i;
1581                 ret = -ENODEV;
1582
1583                 /* check for at least one working CPU */
1584                 for (i=0; i<NR_CPUS; i++)
1585                         if (cpufreq_cpu_data[i])
1586                                 ret = 0;
1587
1588                 /* if all ->init() calls failed, unregister */
1589                 if (ret) {
1590                         dprintk("no CPU initialized for driver %s\n", driver_data->name);
1591                         sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1592
1593                         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1594                         cpufreq_driver = NULL;
1595                         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1596                 }
1597         }
1598
1599         if (!ret) {
1600                 register_cpu_notifier(&cpufreq_cpu_notifier);
1601                 dprintk("driver %s up and running\n", driver_data->name);
1602                 cpufreq_debug_enable_ratelimit();
1603         }
1604
1605         return (ret);
1606 }
1607 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1608
1609
1610 /**
1611  * cpufreq_unregister_driver - unregister the current CPUFreq driver
1612  *
1613  *    Unregister the current CPUFreq driver. Only call this if you have
1614  * the right to do so, i.e. if you have succeeded in initialising before!
1615  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1616  * currently not initialised.
1617  */
1618 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1619 {
1620         unsigned long flags;
1621
1622         cpufreq_debug_disable_ratelimit();
1623
1624         if (!cpufreq_driver || (driver != cpufreq_driver)) {
1625                 cpufreq_debug_enable_ratelimit();
1626                 return -EINVAL;
1627         }
1628
1629         dprintk("unregistering driver %s\n", driver->name);
1630
1631         sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1632         unregister_cpu_notifier(&cpufreq_cpu_notifier);
1633
1634         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1635         cpufreq_driver = NULL;
1636         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1637
1638         return 0;
1639 }
1640 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);