]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/char/tty_io.c
f40298e9873a0f274a8563181efa394d0e04bf50
[linux-2.6-omap-h63xx.git] / drivers / char / tty_io.c
1 /*
2  *  linux/drivers/char/tty_io.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9  * or rs-channels. It also implements echoing, cooked mode etc.
10  *
11  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12  *
13  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14  * tty_struct and tty_queue structures.  Previously there was an array
15  * of 256 tty_struct's which was statically allocated, and the
16  * tty_queue structures were allocated at boot time.  Both are now
17  * dynamically allocated only when the tty is open.
18  *
19  * Also restructured routines so that there is more of a separation
20  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21  * the low-level tty routines (serial.c, pty.c, console.c).  This
22  * makes for cleaner and more compact code.  -TYT, 9/17/92
23  *
24  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25  * which can be dynamically activated and de-activated by the line
26  * discipline handling modules (like SLIP).
27  *
28  * NOTE: pay no attention to the line discipline code (yet); its
29  * interface is still subject to change in this version...
30  * -- TYT, 1/31/92
31  *
32  * Added functionality to the OPOST tty handling.  No delays, but all
33  * other bits should be there.
34  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35  *
36  * Rewrote canonical mode and added more termios flags.
37  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38  *
39  * Reorganized FASYNC support so mouse code can share it.
40  *      -- ctm@ardi.com, 9Sep95
41  *
42  * New TIOCLINUX variants added.
43  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
44  *
45  * Restrict vt switching via ioctl()
46  *      -- grif@cs.ucr.edu, 5-Dec-95
47  *
48  * Move console and virtual terminal code to more appropriate files,
49  * implement CONFIG_VT and generalize console device interface.
50  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51  *
52  * Rewrote init_dev and release_dev to eliminate races.
53  *      -- Bill Hawes <whawes@star.net>, June 97
54  *
55  * Added devfs support.
56  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57  *
58  * Added support for a Unix98-style ptmx device.
59  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60  *
61  * Reduced memory usage for older ARM systems
62  *      -- Russell King <rmk@arm.linux.org.uk>
63  *
64  * Move do_SAK() into process context.  Less stack use in devfs functions.
65  * alloc_tty_struct() always uses kmalloc()
66  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67  */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114
115 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
116         .c_iflag = ICRNL | IXON,
117         .c_oflag = OPOST | ONLCR,
118         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120                    ECHOCTL | ECHOKE | IEXTEN,
121         .c_cc = INIT_C_CC,
122         .c_ispeed = 38400,
123         .c_ospeed = 38400
124 };
125
126 EXPORT_SYMBOL(tty_std_termios);
127
128 /* This list gets poked at by procfs and various bits of boot up code. This
129    could do with some rationalisation such as pulling the tty proc function
130    into this file */
131
132 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
133
134 /* Mutex to protect creating and releasing a tty. This is shared with
135    vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138
139 #ifdef CONFIG_UNIX98_PTYS
140 extern struct tty_driver *ptm_driver;   /* Unix98 pty masters; for /dev/ptmx */
141 static int ptmx_open(struct inode *, struct file *);
142 #endif
143
144 static void initialize_tty_struct(struct tty_struct *tty);
145
146 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
147 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
148 ssize_t redirected_tty_write(struct file *, const char __user *,
149                                                         size_t, loff_t *);
150 static unsigned int tty_poll(struct file *, poll_table *);
151 static int tty_open(struct inode *, struct file *);
152 static int tty_release(struct inode *, struct file *);
153 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
154 #ifdef CONFIG_COMPAT
155 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
156                                 unsigned long arg);
157 #else
158 #define tty_compat_ioctl NULL
159 #endif
160 static int tty_fasync(int fd, struct file *filp, int on);
161 static void release_tty(struct tty_struct *tty, int idx);
162 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
163 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
164
165 /**
166  *      alloc_tty_struct        -       allocate a tty object
167  *
168  *      Return a new empty tty structure. The data fields have not
169  *      been initialized in any way but has been zeroed
170  *
171  *      Locking: none
172  */
173
174 static struct tty_struct *alloc_tty_struct(void)
175 {
176         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
177 }
178
179 /**
180  *      free_tty_struct         -       free a disused tty
181  *      @tty: tty struct to free
182  *
183  *      Free the write buffers, tty queue and tty memory itself.
184  *
185  *      Locking: none. Must be called after tty is definitely unused
186  */
187
188 static inline void free_tty_struct(struct tty_struct *tty)
189 {
190         kfree(tty->write_buf);
191         tty_buffer_free_all(tty);
192         kfree(tty);
193 }
194
195 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
196
197 /**
198  *      tty_name        -       return tty naming
199  *      @tty: tty structure
200  *      @buf: buffer for output
201  *
202  *      Convert a tty structure into a name. The name reflects the kernel
203  *      naming policy and if udev is in use may not reflect user space
204  *
205  *      Locking: none
206  */
207
208 char *tty_name(struct tty_struct *tty, char *buf)
209 {
210         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
211                 strcpy(buf, "NULL tty");
212         else
213                 strcpy(buf, tty->name);
214         return buf;
215 }
216
217 EXPORT_SYMBOL(tty_name);
218
219 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
220                               const char *routine)
221 {
222 #ifdef TTY_PARANOIA_CHECK
223         if (!tty) {
224                 printk(KERN_WARNING
225                         "null TTY for (%d:%d) in %s\n",
226                         imajor(inode), iminor(inode), routine);
227                 return 1;
228         }
229         if (tty->magic != TTY_MAGIC) {
230                 printk(KERN_WARNING
231                         "bad magic number for tty struct (%d:%d) in %s\n",
232                         imajor(inode), iminor(inode), routine);
233                 return 1;
234         }
235 #endif
236         return 0;
237 }
238
239 static int check_tty_count(struct tty_struct *tty, const char *routine)
240 {
241 #ifdef CHECK_TTY_COUNT
242         struct list_head *p;
243         int count = 0;
244
245         file_list_lock();
246         list_for_each(p, &tty->tty_files) {
247                 count++;
248         }
249         file_list_unlock();
250         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
251             tty->driver->subtype == PTY_TYPE_SLAVE &&
252             tty->link && tty->link->count)
253                 count++;
254         if (tty->count != count) {
255                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
256                                     "!= #fd's(%d) in %s\n",
257                        tty->name, tty->count, count, routine);
258                 return count;
259         }
260 #endif
261         return 0;
262 }
263
264 /**
265  *      get_tty_driver          -       find device of a tty
266  *      @dev_t: device identifier
267  *      @index: returns the index of the tty
268  *
269  *      This routine returns a tty driver structure, given a device number
270  *      and also passes back the index number.
271  *
272  *      Locking: caller must hold tty_mutex
273  */
274
275 static struct tty_driver *get_tty_driver(dev_t device, int *index)
276 {
277         struct tty_driver *p;
278
279         list_for_each_entry(p, &tty_drivers, tty_drivers) {
280                 dev_t base = MKDEV(p->major, p->minor_start);
281                 if (device < base || device >= base + p->num)
282                         continue;
283                 *index = device - base;
284                 return p;
285         }
286         return NULL;
287 }
288
289 #ifdef CONFIG_CONSOLE_POLL
290
291 /**
292  *      tty_find_polling_driver -       find device of a polled tty
293  *      @name: name string to match
294  *      @line: pointer to resulting tty line nr
295  *
296  *      This routine returns a tty driver structure, given a name
297  *      and the condition that the tty driver is capable of polled
298  *      operation.
299  */
300 struct tty_driver *tty_find_polling_driver(char *name, int *line)
301 {
302         struct tty_driver *p, *res = NULL;
303         int tty_line = 0;
304         int len;
305         char *str;
306
307         for (str = name; *str; str++)
308                 if ((*str >= '0' && *str <= '9') || *str == ',')
309                         break;
310         if (!*str)
311                 return NULL;
312
313         len = str - name;
314         tty_line = simple_strtoul(str, &str, 10);
315
316         mutex_lock(&tty_mutex);
317         /* Search through the tty devices to look for a match */
318         list_for_each_entry(p, &tty_drivers, tty_drivers) {
319                 if (strncmp(name, p->name, len) != 0)
320                         continue;
321                 if (*str == ',')
322                         str++;
323                 if (*str == '\0')
324                         str = NULL;
325
326                 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
327                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, str)) {
328                         res = p;
329                         *line = tty_line;
330                         break;
331                 }
332         }
333         mutex_unlock(&tty_mutex);
334
335         return res;
336 }
337 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
338 #endif
339
340 /**
341  *      tty_check_change        -       check for POSIX terminal changes
342  *      @tty: tty to check
343  *
344  *      If we try to write to, or set the state of, a terminal and we're
345  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
346  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
347  *
348  *      Locking: ctrl_lock
349  */
350
351 int tty_check_change(struct tty_struct *tty)
352 {
353         unsigned long flags;
354         int ret = 0;
355
356         if (current->signal->tty != tty)
357                 return 0;
358
359         spin_lock_irqsave(&tty->ctrl_lock, flags);
360
361         if (!tty->pgrp) {
362                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
363                 goto out_unlock;
364         }
365         if (task_pgrp(current) == tty->pgrp)
366                 goto out_unlock;
367         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
368         if (is_ignored(SIGTTOU))
369                 goto out;
370         if (is_current_pgrp_orphaned()) {
371                 ret = -EIO;
372                 goto out;
373         }
374         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
375         set_thread_flag(TIF_SIGPENDING);
376         ret = -ERESTARTSYS;
377 out:
378         return ret;
379 out_unlock:
380         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
381         return ret;
382 }
383
384 EXPORT_SYMBOL(tty_check_change);
385
386 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
387                                 size_t count, loff_t *ppos)
388 {
389         return 0;
390 }
391
392 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
393                                  size_t count, loff_t *ppos)
394 {
395         return -EIO;
396 }
397
398 /* No kernel lock held - none needed ;) */
399 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
400 {
401         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
402 }
403
404 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
405                 unsigned long arg)
406 {
407         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
408 }
409
410 static long hung_up_tty_compat_ioctl(struct file *file,
411                                      unsigned int cmd, unsigned long arg)
412 {
413         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
414 }
415
416 static const struct file_operations tty_fops = {
417         .llseek         = no_llseek,
418         .read           = tty_read,
419         .write          = tty_write,
420         .poll           = tty_poll,
421         .unlocked_ioctl = tty_ioctl,
422         .compat_ioctl   = tty_compat_ioctl,
423         .open           = tty_open,
424         .release        = tty_release,
425         .fasync         = tty_fasync,
426 };
427
428 #ifdef CONFIG_UNIX98_PTYS
429 static const struct file_operations ptmx_fops = {
430         .llseek         = no_llseek,
431         .read           = tty_read,
432         .write          = tty_write,
433         .poll           = tty_poll,
434         .unlocked_ioctl = tty_ioctl,
435         .compat_ioctl   = tty_compat_ioctl,
436         .open           = ptmx_open,
437         .release        = tty_release,
438         .fasync         = tty_fasync,
439 };
440 #endif
441
442 static const struct file_operations console_fops = {
443         .llseek         = no_llseek,
444         .read           = tty_read,
445         .write          = redirected_tty_write,
446         .poll           = tty_poll,
447         .unlocked_ioctl = tty_ioctl,
448         .compat_ioctl   = tty_compat_ioctl,
449         .open           = tty_open,
450         .release        = tty_release,
451         .fasync         = tty_fasync,
452 };
453
454 static const struct file_operations hung_up_tty_fops = {
455         .llseek         = no_llseek,
456         .read           = hung_up_tty_read,
457         .write          = hung_up_tty_write,
458         .poll           = hung_up_tty_poll,
459         .unlocked_ioctl = hung_up_tty_ioctl,
460         .compat_ioctl   = hung_up_tty_compat_ioctl,
461         .release        = tty_release,
462 };
463
464 static DEFINE_SPINLOCK(redirect_lock);
465 static struct file *redirect;
466
467 /**
468  *      tty_wakeup      -       request more data
469  *      @tty: terminal
470  *
471  *      Internal and external helper for wakeups of tty. This function
472  *      informs the line discipline if present that the driver is ready
473  *      to receive more output data.
474  */
475
476 void tty_wakeup(struct tty_struct *tty)
477 {
478         struct tty_ldisc *ld;
479
480         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
481                 ld = tty_ldisc_ref(tty);
482                 if (ld) {
483                         if (ld->ops->write_wakeup)
484                                 ld->ops->write_wakeup(tty);
485                         tty_ldisc_deref(ld);
486                 }
487         }
488         wake_up_interruptible(&tty->write_wait);
489 }
490
491 EXPORT_SYMBOL_GPL(tty_wakeup);
492
493 /**
494  *      tty_ldisc_flush -       flush line discipline queue
495  *      @tty: tty
496  *
497  *      Flush the line discipline queue (if any) for this tty. If there
498  *      is no line discipline active this is a no-op.
499  */
500
501 void tty_ldisc_flush(struct tty_struct *tty)
502 {
503         struct tty_ldisc *ld = tty_ldisc_ref(tty);
504         if (ld) {
505                 if (ld->ops->flush_buffer)
506                         ld->ops->flush_buffer(tty);
507                 tty_ldisc_deref(ld);
508         }
509         tty_buffer_flush(tty);
510 }
511
512 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
513
514 /**
515  *      tty_reset_termios       -       reset terminal state
516  *      @tty: tty to reset
517  *
518  *      Restore a terminal to the driver default state
519  */
520
521 static void tty_reset_termios(struct tty_struct *tty)
522 {
523         mutex_lock(&tty->termios_mutex);
524         *tty->termios = tty->driver->init_termios;
525         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
526         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
527         mutex_unlock(&tty->termios_mutex);
528 }
529
530 /**
531  *      do_tty_hangup           -       actual handler for hangup events
532  *      @work: tty device
533  *
534  *      This can be called by the "eventd" kernel thread.  That is process
535  *      synchronous but doesn't hold any locks, so we need to make sure we
536  *      have the appropriate locks for what we're doing.
537  *
538  *      The hangup event clears any pending redirections onto the hung up
539  *      device. It ensures future writes will error and it does the needed
540  *      line discipline hangup and signal delivery. The tty object itself
541  *      remains intact.
542  *
543  *      Locking:
544  *              BKL
545  *                redirect lock for undoing redirection
546  *                file list lock for manipulating list of ttys
547  *                tty_ldisc_lock from called functions
548  *                termios_mutex resetting termios data
549  *                tasklist_lock to walk task list for hangup event
550  *                  ->siglock to protect ->signal/->sighand
551  */
552 static void do_tty_hangup(struct work_struct *work)
553 {
554         struct tty_struct *tty =
555                 container_of(work, struct tty_struct, hangup_work);
556         struct file *cons_filp = NULL;
557         struct file *filp, *f = NULL;
558         struct task_struct *p;
559         struct tty_ldisc *ld;
560         int    closecount = 0, n;
561         unsigned long flags;
562         int refs = 0;
563
564         if (!tty)
565                 return;
566
567         /* inuse_filps is protected by the single kernel lock */
568         lock_kernel();
569
570         spin_lock(&redirect_lock);
571         if (redirect && redirect->private_data == tty) {
572                 f = redirect;
573                 redirect = NULL;
574         }
575         spin_unlock(&redirect_lock);
576
577         check_tty_count(tty, "do_tty_hangup");
578         file_list_lock();
579         /* This breaks for file handles being sent over AF_UNIX sockets ? */
580         list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
581                 if (filp->f_op->write == redirected_tty_write)
582                         cons_filp = filp;
583                 if (filp->f_op->write != tty_write)
584                         continue;
585                 closecount++;
586                 tty_fasync(-1, filp, 0);        /* can't block */
587                 filp->f_op = &hung_up_tty_fops;
588         }
589         file_list_unlock();
590         /*
591          * FIXME! What are the locking issues here? This may me overdoing
592          * things... This question is especially important now that we've
593          * removed the irqlock.
594          */
595         ld = tty_ldisc_ref(tty);
596         if (ld != NULL) {
597                 /* We may have no line discipline at this point */
598                 if (ld->ops->flush_buffer)
599                         ld->ops->flush_buffer(tty);
600                 tty_driver_flush_buffer(tty);
601                 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
602                     ld->ops->write_wakeup)
603                         ld->ops->write_wakeup(tty);
604                 if (ld->ops->hangup)
605                         ld->ops->hangup(tty);
606         }
607         /*
608          * FIXME: Once we trust the LDISC code better we can wait here for
609          * ldisc completion and fix the driver call race
610          */
611         wake_up_interruptible(&tty->write_wait);
612         wake_up_interruptible(&tty->read_wait);
613         /*
614          * Shutdown the current line discipline, and reset it to
615          * N_TTY.
616          */
617         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
618                 tty_reset_termios(tty);
619         /* Defer ldisc switch */
620         /* tty_deferred_ldisc_switch(N_TTY);
621
622           This should get done automatically when the port closes and
623           tty_release is called */
624
625         read_lock(&tasklist_lock);
626         if (tty->session) {
627                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
628                         spin_lock_irq(&p->sighand->siglock);
629                         if (p->signal->tty == tty) {
630                                 p->signal->tty = NULL;
631                                 /* We defer the dereferences outside fo
632                                    the tasklist lock */
633                                 refs++;
634                         }
635                         if (!p->signal->leader) {
636                                 spin_unlock_irq(&p->sighand->siglock);
637                                 continue;
638                         }
639                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
640                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
641                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
642                         spin_lock_irqsave(&tty->ctrl_lock, flags);
643                         if (tty->pgrp)
644                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
645                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
646                         spin_unlock_irq(&p->sighand->siglock);
647                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
648         }
649         read_unlock(&tasklist_lock);
650
651         spin_lock_irqsave(&tty->ctrl_lock, flags);
652         tty->flags = 0;
653         put_pid(tty->session);
654         put_pid(tty->pgrp);
655         tty->session = NULL;
656         tty->pgrp = NULL;
657         tty->ctrl_status = 0;
658         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
659
660         /* Account for the p->signal references we killed */
661         while (refs--)
662                 tty_kref_put(tty);
663
664         /*
665          * If one of the devices matches a console pointer, we
666          * cannot just call hangup() because that will cause
667          * tty->count and state->count to go out of sync.
668          * So we just call close() the right number of times.
669          */
670         if (cons_filp) {
671                 if (tty->ops->close)
672                         for (n = 0; n < closecount; n++)
673                                 tty->ops->close(tty, cons_filp);
674         } else if (tty->ops->hangup)
675                 (tty->ops->hangup)(tty);
676         /*
677          * We don't want to have driver/ldisc interactions beyond
678          * the ones we did here. The driver layer expects no
679          * calls after ->hangup() from the ldisc side. However we
680          * can't yet guarantee all that.
681          */
682         set_bit(TTY_HUPPED, &tty->flags);
683         if (ld) {
684                 tty_ldisc_enable(tty);
685                 tty_ldisc_deref(ld);
686         }
687         unlock_kernel();
688         if (f)
689                 fput(f);
690 }
691
692 /**
693  *      tty_hangup              -       trigger a hangup event
694  *      @tty: tty to hangup
695  *
696  *      A carrier loss (virtual or otherwise) has occurred on this like
697  *      schedule a hangup sequence to run after this event.
698  */
699
700 void tty_hangup(struct tty_struct *tty)
701 {
702 #ifdef TTY_DEBUG_HANGUP
703         char    buf[64];
704         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
705 #endif
706         schedule_work(&tty->hangup_work);
707 }
708
709 EXPORT_SYMBOL(tty_hangup);
710
711 /**
712  *      tty_vhangup             -       process vhangup
713  *      @tty: tty to hangup
714  *
715  *      The user has asked via system call for the terminal to be hung up.
716  *      We do this synchronously so that when the syscall returns the process
717  *      is complete. That guarantee is necessary for security reasons.
718  */
719
720 void tty_vhangup(struct tty_struct *tty)
721 {
722 #ifdef TTY_DEBUG_HANGUP
723         char    buf[64];
724
725         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
726 #endif
727         do_tty_hangup(&tty->hangup_work);
728 }
729
730 EXPORT_SYMBOL(tty_vhangup);
731
732 /**
733  *      tty_vhangup_self        -       process vhangup for own ctty
734  *
735  *      Perform a vhangup on the current controlling tty
736  */
737
738 void tty_vhangup_self(void)
739 {
740         struct tty_struct *tty;
741
742         tty = get_current_tty();
743         if (tty) {
744                 tty_vhangup(tty);
745                 tty_kref_put(tty);
746         }
747 }
748
749 /**
750  *      tty_hung_up_p           -       was tty hung up
751  *      @filp: file pointer of tty
752  *
753  *      Return true if the tty has been subject to a vhangup or a carrier
754  *      loss
755  */
756
757 int tty_hung_up_p(struct file *filp)
758 {
759         return (filp->f_op == &hung_up_tty_fops);
760 }
761
762 EXPORT_SYMBOL(tty_hung_up_p);
763
764 static void session_clear_tty(struct pid *session)
765 {
766         struct task_struct *p;
767         do_each_pid_task(session, PIDTYPE_SID, p) {
768                 proc_clear_tty(p);
769         } while_each_pid_task(session, PIDTYPE_SID, p);
770 }
771
772 /**
773  *      disassociate_ctty       -       disconnect controlling tty
774  *      @on_exit: true if exiting so need to "hang up" the session
775  *
776  *      This function is typically called only by the session leader, when
777  *      it wants to disassociate itself from its controlling tty.
778  *
779  *      It performs the following functions:
780  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
781  *      (2)  Clears the tty from being controlling the session
782  *      (3)  Clears the controlling tty for all processes in the
783  *              session group.
784  *
785  *      The argument on_exit is set to 1 if called when a process is
786  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
787  *
788  *      Locking:
789  *              BKL is taken for hysterical raisins
790  *                tty_mutex is taken to protect tty
791  *                ->siglock is taken to protect ->signal/->sighand
792  *                tasklist_lock is taken to walk process list for sessions
793  *                  ->siglock is taken to protect ->signal/->sighand
794  */
795
796 void disassociate_ctty(int on_exit)
797 {
798         struct tty_struct *tty;
799         struct pid *tty_pgrp = NULL;
800
801
802         tty = get_current_tty();
803         if (tty) {
804                 tty_pgrp = get_pid(tty->pgrp);
805                 lock_kernel();
806                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
807                         tty_vhangup(tty);
808                 unlock_kernel();
809                 tty_kref_put(tty);
810         } else if (on_exit) {
811                 struct pid *old_pgrp;
812                 spin_lock_irq(&current->sighand->siglock);
813                 old_pgrp = current->signal->tty_old_pgrp;
814                 current->signal->tty_old_pgrp = NULL;
815                 spin_unlock_irq(&current->sighand->siglock);
816                 if (old_pgrp) {
817                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
818                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
819                         put_pid(old_pgrp);
820                 }
821                 return;
822         }
823         if (tty_pgrp) {
824                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
825                 if (!on_exit)
826                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
827                 put_pid(tty_pgrp);
828         }
829
830         spin_lock_irq(&current->sighand->siglock);
831         put_pid(current->signal->tty_old_pgrp);
832         current->signal->tty_old_pgrp = NULL;
833         spin_unlock_irq(&current->sighand->siglock);
834
835         tty = get_current_tty();
836         if (tty) {
837                 unsigned long flags;
838                 spin_lock_irqsave(&tty->ctrl_lock, flags);
839                 put_pid(tty->session);
840                 put_pid(tty->pgrp);
841                 tty->session = NULL;
842                 tty->pgrp = NULL;
843                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
844                 tty_kref_put(tty);
845         } else {
846 #ifdef TTY_DEBUG_HANGUP
847                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
848                        " = NULL", tty);
849 #endif
850         }
851
852         /* Now clear signal->tty under the lock */
853         read_lock(&tasklist_lock);
854         session_clear_tty(task_session(current));
855         read_unlock(&tasklist_lock);
856 }
857
858 /**
859  *
860  *      no_tty  - Ensure the current process does not have a controlling tty
861  */
862 void no_tty(void)
863 {
864         struct task_struct *tsk = current;
865         lock_kernel();
866         if (tsk->signal->leader)
867                 disassociate_ctty(0);
868         unlock_kernel();
869         proc_clear_tty(tsk);
870 }
871
872
873 /**
874  *      stop_tty        -       propagate flow control
875  *      @tty: tty to stop
876  *
877  *      Perform flow control to the driver. For PTY/TTY pairs we
878  *      must also propagate the TIOCKPKT status. May be called
879  *      on an already stopped device and will not re-call the driver
880  *      method.
881  *
882  *      This functionality is used by both the line disciplines for
883  *      halting incoming flow and by the driver. It may therefore be
884  *      called from any context, may be under the tty atomic_write_lock
885  *      but not always.
886  *
887  *      Locking:
888  *              Uses the tty control lock internally
889  */
890
891 void stop_tty(struct tty_struct *tty)
892 {
893         unsigned long flags;
894         spin_lock_irqsave(&tty->ctrl_lock, flags);
895         if (tty->stopped) {
896                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
897                 return;
898         }
899         tty->stopped = 1;
900         if (tty->link && tty->link->packet) {
901                 tty->ctrl_status &= ~TIOCPKT_START;
902                 tty->ctrl_status |= TIOCPKT_STOP;
903                 wake_up_interruptible(&tty->link->read_wait);
904         }
905         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
906         if (tty->ops->stop)
907                 (tty->ops->stop)(tty);
908 }
909
910 EXPORT_SYMBOL(stop_tty);
911
912 /**
913  *      start_tty       -       propagate flow control
914  *      @tty: tty to start
915  *
916  *      Start a tty that has been stopped if at all possible. Perform
917  *      any necessary wakeups and propagate the TIOCPKT status. If this
918  *      is the tty was previous stopped and is being started then the
919  *      driver start method is invoked and the line discipline woken.
920  *
921  *      Locking:
922  *              ctrl_lock
923  */
924
925 void start_tty(struct tty_struct *tty)
926 {
927         unsigned long flags;
928         spin_lock_irqsave(&tty->ctrl_lock, flags);
929         if (!tty->stopped || tty->flow_stopped) {
930                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
931                 return;
932         }
933         tty->stopped = 0;
934         if (tty->link && tty->link->packet) {
935                 tty->ctrl_status &= ~TIOCPKT_STOP;
936                 tty->ctrl_status |= TIOCPKT_START;
937                 wake_up_interruptible(&tty->link->read_wait);
938         }
939         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
940         if (tty->ops->start)
941                 (tty->ops->start)(tty);
942         /* If we have a running line discipline it may need kicking */
943         tty_wakeup(tty);
944 }
945
946 EXPORT_SYMBOL(start_tty);
947
948 /**
949  *      tty_read        -       read method for tty device files
950  *      @file: pointer to tty file
951  *      @buf: user buffer
952  *      @count: size of user buffer
953  *      @ppos: unused
954  *
955  *      Perform the read system call function on this terminal device. Checks
956  *      for hung up devices before calling the line discipline method.
957  *
958  *      Locking:
959  *              Locks the line discipline internally while needed. Multiple
960  *      read calls may be outstanding in parallel.
961  */
962
963 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
964                         loff_t *ppos)
965 {
966         int i;
967         struct tty_struct *tty;
968         struct inode *inode;
969         struct tty_ldisc *ld;
970
971         tty = (struct tty_struct *)file->private_data;
972         inode = file->f_path.dentry->d_inode;
973         if (tty_paranoia_check(tty, inode, "tty_read"))
974                 return -EIO;
975         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
976                 return -EIO;
977
978         /* We want to wait for the line discipline to sort out in this
979            situation */
980         ld = tty_ldisc_ref_wait(tty);
981         if (ld->ops->read)
982                 i = (ld->ops->read)(tty, file, buf, count);
983         else
984                 i = -EIO;
985         tty_ldisc_deref(ld);
986         if (i > 0)
987                 inode->i_atime = current_fs_time(inode->i_sb);
988         return i;
989 }
990
991 void tty_write_unlock(struct tty_struct *tty)
992 {
993         mutex_unlock(&tty->atomic_write_lock);
994         wake_up_interruptible(&tty->write_wait);
995 }
996
997 int tty_write_lock(struct tty_struct *tty, int ndelay)
998 {
999         if (!mutex_trylock(&tty->atomic_write_lock)) {
1000                 if (ndelay)
1001                         return -EAGAIN;
1002                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1003                         return -ERESTARTSYS;
1004         }
1005         return 0;
1006 }
1007
1008 /*
1009  * Split writes up in sane blocksizes to avoid
1010  * denial-of-service type attacks
1011  */
1012 static inline ssize_t do_tty_write(
1013         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1014         struct tty_struct *tty,
1015         struct file *file,
1016         const char __user *buf,
1017         size_t count)
1018 {
1019         ssize_t ret, written = 0;
1020         unsigned int chunk;
1021
1022         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1023         if (ret < 0)
1024                 return ret;
1025
1026         /*
1027          * We chunk up writes into a temporary buffer. This
1028          * simplifies low-level drivers immensely, since they
1029          * don't have locking issues and user mode accesses.
1030          *
1031          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1032          * big chunk-size..
1033          *
1034          * The default chunk-size is 2kB, because the NTTY
1035          * layer has problems with bigger chunks. It will
1036          * claim to be able to handle more characters than
1037          * it actually does.
1038          *
1039          * FIXME: This can probably go away now except that 64K chunks
1040          * are too likely to fail unless switched to vmalloc...
1041          */
1042         chunk = 2048;
1043         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1044                 chunk = 65536;
1045         if (count < chunk)
1046                 chunk = count;
1047
1048         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1049         if (tty->write_cnt < chunk) {
1050                 unsigned char *buf;
1051
1052                 if (chunk < 1024)
1053                         chunk = 1024;
1054
1055                 buf = kmalloc(chunk, GFP_KERNEL);
1056                 if (!buf) {
1057                         ret = -ENOMEM;
1058                         goto out;
1059                 }
1060                 kfree(tty->write_buf);
1061                 tty->write_cnt = chunk;
1062                 tty->write_buf = buf;
1063         }
1064
1065         /* Do the write .. */
1066         for (;;) {
1067                 size_t size = count;
1068                 if (size > chunk)
1069                         size = chunk;
1070                 ret = -EFAULT;
1071                 if (copy_from_user(tty->write_buf, buf, size))
1072                         break;
1073                 ret = write(tty, file, tty->write_buf, size);
1074                 if (ret <= 0)
1075                         break;
1076                 written += ret;
1077                 buf += ret;
1078                 count -= ret;
1079                 if (!count)
1080                         break;
1081                 ret = -ERESTARTSYS;
1082                 if (signal_pending(current))
1083                         break;
1084                 cond_resched();
1085         }
1086         if (written) {
1087                 struct inode *inode = file->f_path.dentry->d_inode;
1088                 inode->i_mtime = current_fs_time(inode->i_sb);
1089                 ret = written;
1090         }
1091 out:
1092         tty_write_unlock(tty);
1093         return ret;
1094 }
1095
1096 /**
1097  * tty_write_message - write a message to a certain tty, not just the console.
1098  * @tty: the destination tty_struct
1099  * @msg: the message to write
1100  *
1101  * This is used for messages that need to be redirected to a specific tty.
1102  * We don't put it into the syslog queue right now maybe in the future if
1103  * really needed.
1104  *
1105  * We must still hold the BKL and test the CLOSING flag for the moment.
1106  */
1107
1108 void tty_write_message(struct tty_struct *tty, char *msg)
1109 {
1110         lock_kernel();
1111         if (tty) {
1112                 mutex_lock(&tty->atomic_write_lock);
1113                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags))
1114                         tty->ops->write(tty, msg, strlen(msg));
1115                 tty_write_unlock(tty);
1116         }
1117         unlock_kernel();
1118         return;
1119 }
1120
1121
1122 /**
1123  *      tty_write               -       write method for tty device file
1124  *      @file: tty file pointer
1125  *      @buf: user data to write
1126  *      @count: bytes to write
1127  *      @ppos: unused
1128  *
1129  *      Write data to a tty device via the line discipline.
1130  *
1131  *      Locking:
1132  *              Locks the line discipline as required
1133  *              Writes to the tty driver are serialized by the atomic_write_lock
1134  *      and are then processed in chunks to the device. The line discipline
1135  *      write method will not be involked in parallel for each device
1136  *              The line discipline write method is called under the big
1137  *      kernel lock for historical reasons. New code should not rely on this.
1138  */
1139
1140 static ssize_t tty_write(struct file *file, const char __user *buf,
1141                                                 size_t count, loff_t *ppos)
1142 {
1143         struct tty_struct *tty;
1144         struct inode *inode = file->f_path.dentry->d_inode;
1145         ssize_t ret;
1146         struct tty_ldisc *ld;
1147
1148         tty = (struct tty_struct *)file->private_data;
1149         if (tty_paranoia_check(tty, inode, "tty_write"))
1150                 return -EIO;
1151         if (!tty || !tty->ops->write ||
1152                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1153                         return -EIO;
1154         /* Short term debug to catch buggy drivers */
1155         if (tty->ops->write_room == NULL)
1156                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1157                         tty->driver->name);
1158         ld = tty_ldisc_ref_wait(tty);
1159         if (!ld->ops->write)
1160                 ret = -EIO;
1161         else
1162                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1163         tty_ldisc_deref(ld);
1164         return ret;
1165 }
1166
1167 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1168                                                 size_t count, loff_t *ppos)
1169 {
1170         struct file *p = NULL;
1171
1172         spin_lock(&redirect_lock);
1173         if (redirect) {
1174                 get_file(redirect);
1175                 p = redirect;
1176         }
1177         spin_unlock(&redirect_lock);
1178
1179         if (p) {
1180                 ssize_t res;
1181                 res = vfs_write(p, buf, count, &p->f_pos);
1182                 fput(p);
1183                 return res;
1184         }
1185         return tty_write(file, buf, count, ppos);
1186 }
1187
1188 static char ptychar[] = "pqrstuvwxyzabcde";
1189
1190 /**
1191  *      pty_line_name   -       generate name for a pty
1192  *      @driver: the tty driver in use
1193  *      @index: the minor number
1194  *      @p: output buffer of at least 6 bytes
1195  *
1196  *      Generate a name from a driver reference and write it to the output
1197  *      buffer.
1198  *
1199  *      Locking: None
1200  */
1201 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1202 {
1203         int i = index + driver->name_base;
1204         /* ->name is initialized to "ttyp", but "tty" is expected */
1205         sprintf(p, "%s%c%x",
1206                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1207                 ptychar[i >> 4 & 0xf], i & 0xf);
1208 }
1209
1210 /**
1211  *      pty_line_name   -       generate name for a tty
1212  *      @driver: the tty driver in use
1213  *      @index: the minor number
1214  *      @p: output buffer of at least 7 bytes
1215  *
1216  *      Generate a name from a driver reference and write it to the output
1217  *      buffer.
1218  *
1219  *      Locking: None
1220  */
1221 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1222 {
1223         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1224 }
1225
1226 /**
1227  *      init_dev                -       initialise a tty device
1228  *      @driver: tty driver we are opening a device on
1229  *      @idx: device index
1230  *      @tty: returned tty structure
1231  *
1232  *      Prepare a tty device. This may not be a "new" clean device but
1233  *      could also be an active device. The pty drivers require special
1234  *      handling because of this.
1235  *
1236  *      Locking:
1237  *              The function is called under the tty_mutex, which
1238  *      protects us from the tty struct or driver itself going away.
1239  *
1240  *      On exit the tty device has the line discipline attached and
1241  *      a reference count of 1. If a pair was created for pty/tty use
1242  *      and the other was a pty master then it too has a reference count of 1.
1243  *
1244  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1245  * failed open.  The new code protects the open with a mutex, so it's
1246  * really quite straightforward.  The mutex locking can probably be
1247  * relaxed for the (most common) case of reopening a tty.
1248  */
1249
1250 static int init_dev(struct tty_driver *driver, int idx,
1251         struct tty_struct **ret_tty)
1252 {
1253         struct tty_struct *tty, *o_tty;
1254         struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
1255         struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1256         int retval = 0;
1257
1258         /* check whether we're reopening an existing tty */
1259         if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1260                 tty = devpts_get_tty(idx);
1261                 /*
1262                  * If we don't have a tty here on a slave open, it's because
1263                  * the master already started the close process and there's
1264                  * no relation between devpts file and tty anymore.
1265                  */
1266                 if (!tty && driver->subtype == PTY_TYPE_SLAVE) {
1267                         retval = -EIO;
1268                         goto end_init;
1269                 }
1270                 /*
1271                  * It's safe from now on because init_dev() is called with
1272                  * tty_mutex held and release_dev() won't change tty->count
1273                  * or tty->flags without having to grab tty_mutex
1274                  */
1275                 if (tty && driver->subtype == PTY_TYPE_MASTER)
1276                         tty = tty->link;
1277         } else {
1278                 tty = driver->ttys[idx];
1279         }
1280         if (tty) goto fast_track;
1281
1282         /*
1283          * First time open is complex, especially for PTY devices.
1284          * This code guarantees that either everything succeeds and the
1285          * TTY is ready for operation, or else the table slots are vacated
1286          * and the allocated memory released.  (Except that the termios
1287          * and locked termios may be retained.)
1288          */
1289
1290         if (!try_module_get(driver->owner)) {
1291                 retval = -ENODEV;
1292                 goto end_init;
1293         }
1294
1295         o_tty = NULL;
1296         tp = o_tp = NULL;
1297         ltp = o_ltp = NULL;
1298
1299         tty = alloc_tty_struct();
1300         if (!tty)
1301                 goto fail_no_mem;
1302         initialize_tty_struct(tty);
1303         tty->driver = driver;
1304         tty->ops = driver->ops;
1305         tty->index = idx;
1306         tty_line_name(driver, idx, tty->name);
1307
1308         if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1309                 tp_loc = &tty->termios;
1310                 ltp_loc = &tty->termios_locked;
1311         } else {
1312                 tp_loc = &driver->termios[idx];
1313                 ltp_loc = &driver->termios_locked[idx];
1314         }
1315
1316         if (!*tp_loc) {
1317                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1318                 if (!tp)
1319                         goto free_mem_out;
1320                 *tp = driver->init_termios;
1321         }
1322
1323         if (!*ltp_loc) {
1324                 ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
1325                 if (!ltp)
1326                         goto free_mem_out;
1327         }
1328
1329         if (driver->type == TTY_DRIVER_TYPE_PTY) {
1330                 o_tty = alloc_tty_struct();
1331                 if (!o_tty)
1332                         goto free_mem_out;
1333                 if (!try_module_get(driver->other->owner)) {
1334                         /* This cannot in fact currently happen */
1335                         free_tty_struct(o_tty);
1336                         o_tty = NULL;
1337                         goto free_mem_out;
1338                 }
1339                 initialize_tty_struct(o_tty);
1340                 o_tty->driver = driver->other;
1341                 o_tty->ops = driver->ops;
1342                 o_tty->index = idx;
1343                 tty_line_name(driver->other, idx, o_tty->name);
1344
1345                 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1346                         o_tp_loc = &o_tty->termios;
1347                         o_ltp_loc = &o_tty->termios_locked;
1348                 } else {
1349                         o_tp_loc = &driver->other->termios[idx];
1350                         o_ltp_loc = &driver->other->termios_locked[idx];
1351                 }
1352
1353                 if (!*o_tp_loc) {
1354                         o_tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1355                         if (!o_tp)
1356                                 goto free_mem_out;
1357                         *o_tp = driver->other->init_termios;
1358                 }
1359
1360                 if (!*o_ltp_loc) {
1361                         o_ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
1362                         if (!o_ltp)
1363                                 goto free_mem_out;
1364                 }
1365
1366                 /*
1367                  * Everything allocated ... set up the o_tty structure.
1368                  */
1369                 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM))
1370                         driver->other->ttys[idx] = o_tty;
1371                 if (!*o_tp_loc)
1372                         *o_tp_loc = o_tp;
1373                 if (!*o_ltp_loc)
1374                         *o_ltp_loc = o_ltp;
1375                 o_tty->termios = *o_tp_loc;
1376                 o_tty->termios_locked = *o_ltp_loc;
1377                 driver->other->refcount++;
1378                 if (driver->subtype == PTY_TYPE_MASTER)
1379                         o_tty->count++;
1380
1381                 /* Establish the links in both directions */
1382                 tty->link   = o_tty;
1383                 o_tty->link = tty;
1384         }
1385
1386         /*
1387          * All structures have been allocated, so now we install them.
1388          * Failures after this point use release_tty to clean up, so
1389          * there's no need to null out the local pointers.
1390          */
1391         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM))
1392                 driver->ttys[idx] = tty;
1393
1394         if (!*tp_loc)
1395                 *tp_loc = tp;
1396         if (!*ltp_loc)
1397                 *ltp_loc = ltp;
1398         tty->termios = *tp_loc;
1399         tty->termios_locked = *ltp_loc;
1400         /* Compatibility until drivers always set this */
1401         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1402         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1403         driver->refcount++;
1404         tty->count++;
1405
1406         /*
1407          * Structures all installed ... call the ldisc open routines.
1408          * If we fail here just call release_tty to clean up.  No need
1409          * to decrement the use counts, as release_tty doesn't care.
1410          */
1411
1412         retval = tty_ldisc_setup(tty, o_tty);
1413
1414         if (retval)
1415                 goto release_mem_out;
1416          goto success;
1417
1418         /*
1419          * This fast open can be used if the tty is already open.
1420          * No memory is allocated, and the only failures are from
1421          * attempting to open a closing tty or attempting multiple
1422          * opens on a pty master.
1423          */
1424 fast_track:
1425         if (test_bit(TTY_CLOSING, &tty->flags)) {
1426                 retval = -EIO;
1427                 goto end_init;
1428         }
1429         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1430             driver->subtype == PTY_TYPE_MASTER) {
1431                 /*
1432                  * special case for PTY masters: only one open permitted,
1433                  * and the slave side open count is incremented as well.
1434                  */
1435                 if (tty->count) {
1436                         retval = -EIO;
1437                         goto end_init;
1438                 }
1439                 tty->link->count++;
1440         }
1441         tty->count++;
1442         tty->driver = driver; /* N.B. why do this every time?? */
1443
1444         /* FIXME */
1445         if (!test_bit(TTY_LDISC, &tty->flags))
1446                 printk(KERN_ERR "init_dev but no ldisc\n");
1447 success:
1448         *ret_tty = tty;
1449
1450         /* All paths come through here to release the mutex */
1451 end_init:
1452         return retval;
1453
1454         /* Release locally allocated memory ... nothing placed in slots */
1455 free_mem_out:
1456         kfree(o_tp);
1457         if (o_tty) {
1458                 module_put(o_tty->driver->owner);
1459                 free_tty_struct(o_tty);
1460         }
1461         kfree(ltp);
1462         kfree(tp);
1463         free_tty_struct(tty);
1464
1465 fail_no_mem:
1466         module_put(driver->owner);
1467         retval = -ENOMEM;
1468         goto end_init;
1469
1470         /* call the tty release_tty routine to clean out this slot */
1471 release_mem_out:
1472         if (printk_ratelimit())
1473                 printk(KERN_INFO "init_dev: ldisc open failed, "
1474                                  "clearing slot %d\n", idx);
1475         release_tty(tty, idx);
1476         goto end_init;
1477 }
1478
1479 /**
1480  *      release_one_tty         -       release tty structure memory
1481  *      @kref: kref of tty we are obliterating
1482  *
1483  *      Releases memory associated with a tty structure, and clears out the
1484  *      driver table slots. This function is called when a device is no longer
1485  *      in use. It also gets called when setup of a device fails.
1486  *
1487  *      Locking:
1488  *              tty_mutex - sometimes only
1489  *              takes the file list lock internally when working on the list
1490  *      of ttys that the driver keeps.
1491  */
1492 static void release_one_tty(struct kref *kref)
1493 {
1494         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1495         struct tty_driver *driver = tty->driver;
1496         int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
1497         struct ktermios *tp;
1498         int idx = tty->index;
1499
1500         if (!devpts)
1501                 tty->driver->ttys[idx] = NULL;
1502
1503         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1504                 /* FIXME: Locking on ->termios array */
1505                 tp = tty->termios;
1506                 if (!devpts)
1507                         tty->driver->termios[idx] = NULL;
1508                 kfree(tp);
1509
1510                 tp = tty->termios_locked;
1511                 if (!devpts)
1512                         tty->driver->termios_locked[idx] = NULL;
1513                 kfree(tp);
1514         }
1515
1516
1517         tty->magic = 0;
1518         /* FIXME: locking on tty->driver->refcount */
1519         tty->driver->refcount--;
1520         module_put(driver->owner);
1521
1522         file_list_lock();
1523         list_del_init(&tty->tty_files);
1524         file_list_unlock();
1525
1526         free_tty_struct(tty);
1527 }
1528
1529 /**
1530  *      tty_kref_put            -       release a tty kref
1531  *      @tty: tty device
1532  *
1533  *      Release a reference to a tty device and if need be let the kref
1534  *      layer destruct the object for us
1535  */
1536
1537 void tty_kref_put(struct tty_struct *tty)
1538 {
1539         if (tty)
1540                 kref_put(&tty->kref, release_one_tty);
1541 }
1542 EXPORT_SYMBOL(tty_kref_put);
1543
1544 /**
1545  *      release_tty             -       release tty structure memory
1546  *
1547  *      Release both @tty and a possible linked partner (think pty pair),
1548  *      and decrement the refcount of the backing module.
1549  *
1550  *      Locking:
1551  *              tty_mutex - sometimes only
1552  *              takes the file list lock internally when working on the list
1553  *      of ttys that the driver keeps.
1554  *              FIXME: should we require tty_mutex is held here ??
1555  *
1556  */
1557 static void release_tty(struct tty_struct *tty, int idx)
1558 {
1559         /* This should always be true but check for the moment */
1560         WARN_ON(tty->index != idx);
1561
1562         if (tty->link)
1563                 tty_kref_put(tty->link);
1564         tty_kref_put(tty);
1565 }
1566
1567 /*
1568  * Even releasing the tty structures is a tricky business.. We have
1569  * to be very careful that the structures are all released at the
1570  * same time, as interrupts might otherwise get the wrong pointers.
1571  *
1572  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1573  * lead to double frees or releasing memory still in use.
1574  */
1575 static void release_dev(struct file *filp)
1576 {
1577         struct tty_struct *tty, *o_tty;
1578         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1579         int     devpts;
1580         int     idx;
1581         char    buf[64];
1582
1583         tty = (struct tty_struct *)filp->private_data;
1584         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode,
1585                                                         "release_dev"))
1586                 return;
1587
1588         check_tty_count(tty, "release_dev");
1589
1590         tty_fasync(-1, filp, 0);
1591
1592         idx = tty->index;
1593         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1594                       tty->driver->subtype == PTY_TYPE_MASTER);
1595         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1596         o_tty = tty->link;
1597
1598 #ifdef TTY_PARANOIA_CHECK
1599         if (idx < 0 || idx >= tty->driver->num) {
1600                 printk(KERN_DEBUG "release_dev: bad idx when trying to "
1601                                   "free (%s)\n", tty->name);
1602                 return;
1603         }
1604         if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1605                 if (tty != tty->driver->ttys[idx]) {
1606                         printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
1607                                "for (%s)\n", idx, tty->name);
1608                         return;
1609                 }
1610                 if (tty->termios != tty->driver->termios[idx]) {
1611                         printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
1612                                "for (%s)\n",
1613                                idx, tty->name);
1614                         return;
1615                 }
1616                 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
1617                         printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
1618                                "termios_locked for (%s)\n",
1619                                idx, tty->name);
1620                         return;
1621                 }
1622         }
1623 #endif
1624
1625 #ifdef TTY_DEBUG_HANGUP
1626         printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
1627                tty_name(tty, buf), tty->count);
1628 #endif
1629
1630 #ifdef TTY_PARANOIA_CHECK
1631         if (tty->driver->other &&
1632              !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1633                 if (o_tty != tty->driver->other->ttys[idx]) {
1634                         printk(KERN_DEBUG "release_dev: other->table[%d] "
1635                                           "not o_tty for (%s)\n",
1636                                idx, tty->name);
1637                         return;
1638                 }
1639                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1640                         printk(KERN_DEBUG "release_dev: other->termios[%d] "
1641                                           "not o_termios for (%s)\n",
1642                                idx, tty->name);
1643                         return;
1644                 }
1645                 if (o_tty->termios_locked !=
1646                       tty->driver->other->termios_locked[idx]) {
1647                         printk(KERN_DEBUG "release_dev: other->termios_locked["
1648                                           "%d] not o_termios_locked for (%s)\n",
1649                                idx, tty->name);
1650                         return;
1651                 }
1652                 if (o_tty->link != tty) {
1653                         printk(KERN_DEBUG "release_dev: bad pty pointers\n");
1654                         return;
1655                 }
1656         }
1657 #endif
1658         if (tty->ops->close)
1659                 tty->ops->close(tty, filp);
1660
1661         /*
1662          * Sanity check: if tty->count is going to zero, there shouldn't be
1663          * any waiters on tty->read_wait or tty->write_wait.  We test the
1664          * wait queues and kick everyone out _before_ actually starting to
1665          * close.  This ensures that we won't block while releasing the tty
1666          * structure.
1667          *
1668          * The test for the o_tty closing is necessary, since the master and
1669          * slave sides may close in any order.  If the slave side closes out
1670          * first, its count will be one, since the master side holds an open.
1671          * Thus this test wouldn't be triggered at the time the slave closes,
1672          * so we do it now.
1673          *
1674          * Note that it's possible for the tty to be opened again while we're
1675          * flushing out waiters.  By recalculating the closing flags before
1676          * each iteration we avoid any problems.
1677          */
1678         while (1) {
1679                 /* Guard against races with tty->count changes elsewhere and
1680                    opens on /dev/tty */
1681
1682                 mutex_lock(&tty_mutex);
1683                 tty_closing = tty->count <= 1;
1684                 o_tty_closing = o_tty &&
1685                         (o_tty->count <= (pty_master ? 1 : 0));
1686                 do_sleep = 0;
1687
1688                 if (tty_closing) {
1689                         if (waitqueue_active(&tty->read_wait)) {
1690                                 wake_up(&tty->read_wait);
1691                                 do_sleep++;
1692                         }
1693                         if (waitqueue_active(&tty->write_wait)) {
1694                                 wake_up(&tty->write_wait);
1695                                 do_sleep++;
1696                         }
1697                 }
1698                 if (o_tty_closing) {
1699                         if (waitqueue_active(&o_tty->read_wait)) {
1700                                 wake_up(&o_tty->read_wait);
1701                                 do_sleep++;
1702                         }
1703                         if (waitqueue_active(&o_tty->write_wait)) {
1704                                 wake_up(&o_tty->write_wait);
1705                                 do_sleep++;
1706                         }
1707                 }
1708                 if (!do_sleep)
1709                         break;
1710
1711                 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
1712                                     "active!\n", tty_name(tty, buf));
1713                 mutex_unlock(&tty_mutex);
1714                 schedule();
1715         }
1716
1717         /*
1718          * The closing flags are now consistent with the open counts on
1719          * both sides, and we've completed the last operation that could
1720          * block, so it's safe to proceed with closing.
1721          */
1722         if (pty_master) {
1723                 if (--o_tty->count < 0) {
1724                         printk(KERN_WARNING "release_dev: bad pty slave count "
1725                                             "(%d) for %s\n",
1726                                o_tty->count, tty_name(o_tty, buf));
1727                         o_tty->count = 0;
1728                 }
1729         }
1730         if (--tty->count < 0) {
1731                 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
1732                        tty->count, tty_name(tty, buf));
1733                 tty->count = 0;
1734         }
1735
1736         /*
1737          * We've decremented tty->count, so we need to remove this file
1738          * descriptor off the tty->tty_files list; this serves two
1739          * purposes:
1740          *  - check_tty_count sees the correct number of file descriptors
1741          *    associated with this tty.
1742          *  - do_tty_hangup no longer sees this file descriptor as
1743          *    something that needs to be handled for hangups.
1744          */
1745         file_kill(filp);
1746         filp->private_data = NULL;
1747
1748         /*
1749          * Perform some housekeeping before deciding whether to return.
1750          *
1751          * Set the TTY_CLOSING flag if this was the last open.  In the
1752          * case of a pty we may have to wait around for the other side
1753          * to close, and TTY_CLOSING makes sure we can't be reopened.
1754          */
1755         if (tty_closing)
1756                 set_bit(TTY_CLOSING, &tty->flags);
1757         if (o_tty_closing)
1758                 set_bit(TTY_CLOSING, &o_tty->flags);
1759
1760         /*
1761          * If _either_ side is closing, make sure there aren't any
1762          * processes that still think tty or o_tty is their controlling
1763          * tty.
1764          */
1765         if (tty_closing || o_tty_closing) {
1766                 read_lock(&tasklist_lock);
1767                 session_clear_tty(tty->session);
1768                 if (o_tty)
1769                         session_clear_tty(o_tty->session);
1770                 read_unlock(&tasklist_lock);
1771         }
1772
1773         mutex_unlock(&tty_mutex);
1774
1775         /* check whether both sides are closing ... */
1776         if (!tty_closing || (o_tty && !o_tty_closing))
1777                 return;
1778
1779 #ifdef TTY_DEBUG_HANGUP
1780         printk(KERN_DEBUG "freeing tty structure...");
1781 #endif
1782         /*
1783          * Ask the line discipline code to release its structures
1784          */
1785         tty_ldisc_release(tty, o_tty);
1786         /*
1787          * The release_tty function takes care of the details of clearing
1788          * the slots and preserving the termios structure.
1789          */
1790         release_tty(tty, idx);
1791
1792         /* Make this pty number available for reallocation */
1793         if (devpts)
1794                 devpts_kill_index(idx);
1795 }
1796
1797 /**
1798  *      tty_open                -       open a tty device
1799  *      @inode: inode of device file
1800  *      @filp: file pointer to tty
1801  *
1802  *      tty_open and tty_release keep up the tty count that contains the
1803  *      number of opens done on a tty. We cannot use the inode-count, as
1804  *      different inodes might point to the same tty.
1805  *
1806  *      Open-counting is needed for pty masters, as well as for keeping
1807  *      track of serial lines: DTR is dropped when the last close happens.
1808  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1809  *
1810  *      The termios state of a pty is reset on first open so that
1811  *      settings don't persist across reuse.
1812  *
1813  *      Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
1814  *               tty->count should protect the rest.
1815  *               ->siglock protects ->signal/->sighand
1816  */
1817
1818 static int __tty_open(struct inode *inode, struct file *filp)
1819 {
1820         struct tty_struct *tty;
1821         int noctty, retval;
1822         struct tty_driver *driver;
1823         int index;
1824         dev_t device = inode->i_rdev;
1825         unsigned short saved_flags = filp->f_flags;
1826
1827         nonseekable_open(inode, filp);
1828
1829 retry_open:
1830         noctty = filp->f_flags & O_NOCTTY;
1831         index  = -1;
1832         retval = 0;
1833
1834         mutex_lock(&tty_mutex);
1835
1836         if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1837                 tty = get_current_tty();
1838                 if (!tty) {
1839                         mutex_unlock(&tty_mutex);
1840                         return -ENXIO;
1841                 }
1842                 driver = tty->driver;
1843                 index = tty->index;
1844                 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1845                 /* noctty = 1; */
1846                 /* FIXME: Should we take a driver reference ? */
1847                 tty_kref_put(tty);
1848                 goto got_driver;
1849         }
1850 #ifdef CONFIG_VT
1851         if (device == MKDEV(TTY_MAJOR, 0)) {
1852                 extern struct tty_driver *console_driver;
1853                 driver = console_driver;
1854                 index = fg_console;
1855                 noctty = 1;
1856                 goto got_driver;
1857         }
1858 #endif
1859         if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1860                 driver = console_device(&index);
1861                 if (driver) {
1862                         /* Don't let /dev/console block */
1863                         filp->f_flags |= O_NONBLOCK;
1864                         noctty = 1;
1865                         goto got_driver;
1866                 }
1867                 mutex_unlock(&tty_mutex);
1868                 return -ENODEV;
1869         }
1870
1871         driver = get_tty_driver(device, &index);
1872         if (!driver) {
1873                 mutex_unlock(&tty_mutex);
1874                 return -ENODEV;
1875         }
1876 got_driver:
1877         retval = init_dev(driver, index, &tty);
1878         mutex_unlock(&tty_mutex);
1879         if (retval)
1880                 return retval;
1881
1882         filp->private_data = tty;
1883         file_move(filp, &tty->tty_files);
1884         check_tty_count(tty, "tty_open");
1885         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1886             tty->driver->subtype == PTY_TYPE_MASTER)
1887                 noctty = 1;
1888 #ifdef TTY_DEBUG_HANGUP
1889         printk(KERN_DEBUG "opening %s...", tty->name);
1890 #endif
1891         if (!retval) {
1892                 if (tty->ops->open)
1893                         retval = tty->ops->open(tty, filp);
1894                 else
1895                         retval = -ENODEV;
1896         }
1897         filp->f_flags = saved_flags;
1898
1899         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1900                                                 !capable(CAP_SYS_ADMIN))
1901                 retval = -EBUSY;
1902
1903         if (retval) {
1904 #ifdef TTY_DEBUG_HANGUP
1905                 printk(KERN_DEBUG "error %d in opening %s...", retval,
1906                        tty->name);
1907 #endif
1908                 release_dev(filp);
1909                 if (retval != -ERESTARTSYS)
1910                         return retval;
1911                 if (signal_pending(current))
1912                         return retval;
1913                 schedule();
1914                 /*
1915                  * Need to reset f_op in case a hangup happened.
1916                  */
1917                 if (filp->f_op == &hung_up_tty_fops)
1918                         filp->f_op = &tty_fops;
1919                 goto retry_open;
1920         }
1921
1922         mutex_lock(&tty_mutex);
1923         spin_lock_irq(&current->sighand->siglock);
1924         if (!noctty &&
1925             current->signal->leader &&
1926             !current->signal->tty &&
1927             tty->session == NULL)
1928                 __proc_set_tty(current, tty);
1929         spin_unlock_irq(&current->sighand->siglock);
1930         mutex_unlock(&tty_mutex);
1931         return 0;
1932 }
1933
1934 /* BKL pushdown: scary code avoidance wrapper */
1935 static int tty_open(struct inode *inode, struct file *filp)
1936 {
1937         int ret;
1938
1939         lock_kernel();
1940         ret = __tty_open(inode, filp);
1941         unlock_kernel();
1942         return ret;
1943 }
1944
1945
1946
1947 #ifdef CONFIG_UNIX98_PTYS
1948 /**
1949  *      ptmx_open               -       open a unix 98 pty master
1950  *      @inode: inode of device file
1951  *      @filp: file pointer to tty
1952  *
1953  *      Allocate a unix98 pty master device from the ptmx driver.
1954  *
1955  *      Locking: tty_mutex protects theinit_dev work. tty->count should
1956  *              protect the rest.
1957  *              allocated_ptys_lock handles the list of free pty numbers
1958  */
1959
1960 static int __ptmx_open(struct inode *inode, struct file *filp)
1961 {
1962         struct tty_struct *tty;
1963         int retval;
1964         int index;
1965
1966         nonseekable_open(inode, filp);
1967
1968         /* find a device that is not in use. */
1969         index = devpts_new_index();
1970         if (index < 0)
1971                 return index;
1972
1973         mutex_lock(&tty_mutex);
1974         retval = init_dev(ptm_driver, index, &tty);
1975         mutex_unlock(&tty_mutex);
1976
1977         if (retval)
1978                 goto out;
1979
1980         set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
1981         filp->private_data = tty;
1982         file_move(filp, &tty->tty_files);
1983
1984         retval = devpts_pty_new(tty->link);
1985         if (retval)
1986                 goto out1;
1987
1988         check_tty_count(tty, "ptmx_open");
1989         retval = ptm_driver->ops->open(tty, filp);
1990         if (!retval)
1991                 return 0;
1992 out1:
1993         release_dev(filp);
1994         return retval;
1995 out:
1996         devpts_kill_index(index);
1997         return retval;
1998 }
1999
2000 static int ptmx_open(struct inode *inode, struct file *filp)
2001 {
2002         int ret;
2003
2004         lock_kernel();
2005         ret = __ptmx_open(inode, filp);
2006         unlock_kernel();
2007         return ret;
2008 }
2009 #endif
2010
2011 /**
2012  *      tty_release             -       vfs callback for close
2013  *      @inode: inode of tty
2014  *      @filp: file pointer for handle to tty
2015  *
2016  *      Called the last time each file handle is closed that references
2017  *      this tty. There may however be several such references.
2018  *
2019  *      Locking:
2020  *              Takes bkl. See release_dev
2021  */
2022
2023 static int tty_release(struct inode *inode, struct file *filp)
2024 {
2025         lock_kernel();
2026         release_dev(filp);
2027         unlock_kernel();
2028         return 0;
2029 }
2030
2031 /**
2032  *      tty_poll        -       check tty status
2033  *      @filp: file being polled
2034  *      @wait: poll wait structures to update
2035  *
2036  *      Call the line discipline polling method to obtain the poll
2037  *      status of the device.
2038  *
2039  *      Locking: locks called line discipline but ldisc poll method
2040  *      may be re-entered freely by other callers.
2041  */
2042
2043 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2044 {
2045         struct tty_struct *tty;
2046         struct tty_ldisc *ld;
2047         int ret = 0;
2048
2049         tty = (struct tty_struct *)filp->private_data;
2050         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2051                 return 0;
2052
2053         ld = tty_ldisc_ref_wait(tty);
2054         if (ld->ops->poll)
2055                 ret = (ld->ops->poll)(tty, filp, wait);
2056         tty_ldisc_deref(ld);
2057         return ret;
2058 }
2059
2060 static int tty_fasync(int fd, struct file *filp, int on)
2061 {
2062         struct tty_struct *tty;
2063         unsigned long flags;
2064         int retval = 0;
2065
2066         lock_kernel();
2067         tty = (struct tty_struct *)filp->private_data;
2068         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2069                 goto out;
2070
2071         retval = fasync_helper(fd, filp, on, &tty->fasync);
2072         if (retval <= 0)
2073                 goto out;
2074
2075         if (on) {
2076                 enum pid_type type;
2077                 struct pid *pid;
2078                 if (!waitqueue_active(&tty->read_wait))
2079                         tty->minimum_to_wake = 1;
2080                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2081                 if (tty->pgrp) {
2082                         pid = tty->pgrp;
2083                         type = PIDTYPE_PGID;
2084                 } else {
2085                         pid = task_pid(current);
2086                         type = PIDTYPE_PID;
2087                 }
2088                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2089                 retval = __f_setown(filp, pid, type, 0);
2090                 if (retval)
2091                         goto out;
2092         } else {
2093                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2094                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2095         }
2096         retval = 0;
2097 out:
2098         unlock_kernel();
2099         return retval;
2100 }
2101
2102 /**
2103  *      tiocsti                 -       fake input character
2104  *      @tty: tty to fake input into
2105  *      @p: pointer to character
2106  *
2107  *      Fake input to a tty device. Does the necessary locking and
2108  *      input management.
2109  *
2110  *      FIXME: does not honour flow control ??
2111  *
2112  *      Locking:
2113  *              Called functions take tty_ldisc_lock
2114  *              current->signal->tty check is safe without locks
2115  *
2116  *      FIXME: may race normal receive processing
2117  */
2118
2119 static int tiocsti(struct tty_struct *tty, char __user *p)
2120 {
2121         char ch, mbz = 0;
2122         struct tty_ldisc *ld;
2123
2124         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2125                 return -EPERM;
2126         if (get_user(ch, p))
2127                 return -EFAULT;
2128         ld = tty_ldisc_ref_wait(tty);
2129         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2130         tty_ldisc_deref(ld);
2131         return 0;
2132 }
2133
2134 /**
2135  *      tiocgwinsz              -       implement window query ioctl
2136  *      @tty; tty
2137  *      @arg: user buffer for result
2138  *
2139  *      Copies the kernel idea of the window size into the user buffer.
2140  *
2141  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2142  *              is consistent.
2143  */
2144
2145 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2146 {
2147         int err;
2148
2149         mutex_lock(&tty->termios_mutex);
2150         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2151         mutex_unlock(&tty->termios_mutex);
2152
2153         return err ? -EFAULT: 0;
2154 }
2155
2156 /**
2157  *      tty_do_resize           -       resize event
2158  *      @tty: tty being resized
2159  *      @real_tty: real tty (not the same as tty if using a pty/tty pair)
2160  *      @rows: rows (character)
2161  *      @cols: cols (character)
2162  *
2163  *      Update the termios variables and send the neccessary signals to
2164  *      peform a terminal resize correctly
2165  */
2166
2167 int tty_do_resize(struct tty_struct *tty, struct tty_struct *real_tty,
2168                                         struct winsize *ws)
2169 {
2170         struct pid *pgrp, *rpgrp;
2171         unsigned long flags;
2172
2173         /* For a PTY we need to lock the tty side */
2174         mutex_lock(&real_tty->termios_mutex);
2175         if (!memcmp(ws, &real_tty->winsize, sizeof(*ws)))
2176                 goto done;
2177         /* Get the PID values and reference them so we can
2178            avoid holding the tty ctrl lock while sending signals */
2179         spin_lock_irqsave(&tty->ctrl_lock, flags);
2180         pgrp = get_pid(tty->pgrp);
2181         rpgrp = get_pid(real_tty->pgrp);
2182         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2183
2184         if (pgrp)
2185                 kill_pgrp(pgrp, SIGWINCH, 1);
2186         if (rpgrp != pgrp && rpgrp)
2187                 kill_pgrp(rpgrp, SIGWINCH, 1);
2188
2189         put_pid(pgrp);
2190         put_pid(rpgrp);
2191
2192         tty->winsize = *ws;
2193         real_tty->winsize = *ws;
2194 done:
2195         mutex_unlock(&real_tty->termios_mutex);
2196         return 0;
2197 }
2198
2199 /**
2200  *      tiocswinsz              -       implement window size set ioctl
2201  *      @tty; tty
2202  *      @arg: user buffer for result
2203  *
2204  *      Copies the user idea of the window size to the kernel. Traditionally
2205  *      this is just advisory information but for the Linux console it
2206  *      actually has driver level meaning and triggers a VC resize.
2207  *
2208  *      Locking:
2209  *              Driver dependant. The default do_resize method takes the
2210  *      tty termios mutex and ctrl_lock. The console takes its own lock
2211  *      then calls into the default method.
2212  */
2213
2214 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2215         struct winsize __user *arg)
2216 {
2217         struct winsize tmp_ws;
2218         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2219                 return -EFAULT;
2220
2221         if (tty->ops->resize)
2222                 return tty->ops->resize(tty, real_tty, &tmp_ws);
2223         else
2224                 return tty_do_resize(tty, real_tty, &tmp_ws);
2225 }
2226
2227 /**
2228  *      tioccons        -       allow admin to move logical console
2229  *      @file: the file to become console
2230  *
2231  *      Allow the adminstrator to move the redirected console device
2232  *
2233  *      Locking: uses redirect_lock to guard the redirect information
2234  */
2235
2236 static int tioccons(struct file *file)
2237 {
2238         if (!capable(CAP_SYS_ADMIN))
2239                 return -EPERM;
2240         if (file->f_op->write == redirected_tty_write) {
2241                 struct file *f;
2242                 spin_lock(&redirect_lock);
2243                 f = redirect;
2244                 redirect = NULL;
2245                 spin_unlock(&redirect_lock);
2246                 if (f)
2247                         fput(f);
2248                 return 0;
2249         }
2250         spin_lock(&redirect_lock);
2251         if (redirect) {
2252                 spin_unlock(&redirect_lock);
2253                 return -EBUSY;
2254         }
2255         get_file(file);
2256         redirect = file;
2257         spin_unlock(&redirect_lock);
2258         return 0;
2259 }
2260
2261 /**
2262  *      fionbio         -       non blocking ioctl
2263  *      @file: file to set blocking value
2264  *      @p: user parameter
2265  *
2266  *      Historical tty interfaces had a blocking control ioctl before
2267  *      the generic functionality existed. This piece of history is preserved
2268  *      in the expected tty API of posix OS's.
2269  *
2270  *      Locking: none, the open fle handle ensures it won't go away.
2271  */
2272
2273 static int fionbio(struct file *file, int __user *p)
2274 {
2275         int nonblock;
2276
2277         if (get_user(nonblock, p))
2278                 return -EFAULT;
2279
2280         /* file->f_flags is still BKL protected in the fs layer - vomit */
2281         lock_kernel();
2282         if (nonblock)
2283                 file->f_flags |= O_NONBLOCK;
2284         else
2285                 file->f_flags &= ~O_NONBLOCK;
2286         unlock_kernel();
2287         return 0;
2288 }
2289
2290 /**
2291  *      tiocsctty       -       set controlling tty
2292  *      @tty: tty structure
2293  *      @arg: user argument
2294  *
2295  *      This ioctl is used to manage job control. It permits a session
2296  *      leader to set this tty as the controlling tty for the session.
2297  *
2298  *      Locking:
2299  *              Takes tty_mutex() to protect tty instance
2300  *              Takes tasklist_lock internally to walk sessions
2301  *              Takes ->siglock() when updating signal->tty
2302  */
2303
2304 static int tiocsctty(struct tty_struct *tty, int arg)
2305 {
2306         int ret = 0;
2307         if (current->signal->leader && (task_session(current) == tty->session))
2308                 return ret;
2309
2310         mutex_lock(&tty_mutex);
2311         /*
2312          * The process must be a session leader and
2313          * not have a controlling tty already.
2314          */
2315         if (!current->signal->leader || current->signal->tty) {
2316                 ret = -EPERM;
2317                 goto unlock;
2318         }
2319
2320         if (tty->session) {
2321                 /*
2322                  * This tty is already the controlling
2323                  * tty for another session group!
2324                  */
2325                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2326                         /*
2327                          * Steal it away
2328                          */
2329                         read_lock(&tasklist_lock);
2330                         session_clear_tty(tty->session);
2331                         read_unlock(&tasklist_lock);
2332                 } else {
2333                         ret = -EPERM;
2334                         goto unlock;
2335                 }
2336         }
2337         proc_set_tty(current, tty);
2338 unlock:
2339         mutex_unlock(&tty_mutex);
2340         return ret;
2341 }
2342
2343 /**
2344  *      tty_get_pgrp    -       return a ref counted pgrp pid
2345  *      @tty: tty to read
2346  *
2347  *      Returns a refcounted instance of the pid struct for the process
2348  *      group controlling the tty.
2349  */
2350
2351 struct pid *tty_get_pgrp(struct tty_struct *tty)
2352 {
2353         unsigned long flags;
2354         struct pid *pgrp;
2355
2356         spin_lock_irqsave(&tty->ctrl_lock, flags);
2357         pgrp = get_pid(tty->pgrp);
2358         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2359
2360         return pgrp;
2361 }
2362 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2363
2364 /**
2365  *      tiocgpgrp               -       get process group
2366  *      @tty: tty passed by user
2367  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2368  *      @p: returned pid
2369  *
2370  *      Obtain the process group of the tty. If there is no process group
2371  *      return an error.
2372  *
2373  *      Locking: none. Reference to current->signal->tty is safe.
2374  */
2375
2376 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2377 {
2378         struct pid *pid;
2379         int ret;
2380         /*
2381          * (tty == real_tty) is a cheap way of
2382          * testing if the tty is NOT a master pty.
2383          */
2384         if (tty == real_tty && current->signal->tty != real_tty)
2385                 return -ENOTTY;
2386         pid = tty_get_pgrp(real_tty);
2387         ret =  put_user(pid_vnr(pid), p);
2388         put_pid(pid);
2389         return ret;
2390 }
2391
2392 /**
2393  *      tiocspgrp               -       attempt to set process group
2394  *      @tty: tty passed by user
2395  *      @real_tty: tty side device matching tty passed by user
2396  *      @p: pid pointer
2397  *
2398  *      Set the process group of the tty to the session passed. Only
2399  *      permitted where the tty session is our session.
2400  *
2401  *      Locking: RCU, ctrl lock
2402  */
2403
2404 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2405 {
2406         struct pid *pgrp;
2407         pid_t pgrp_nr;
2408         int retval = tty_check_change(real_tty);
2409         unsigned long flags;
2410
2411         if (retval == -EIO)
2412                 return -ENOTTY;
2413         if (retval)
2414                 return retval;
2415         if (!current->signal->tty ||
2416             (current->signal->tty != real_tty) ||
2417             (real_tty->session != task_session(current)))
2418                 return -ENOTTY;
2419         if (get_user(pgrp_nr, p))
2420                 return -EFAULT;
2421         if (pgrp_nr < 0)
2422                 return -EINVAL;
2423         rcu_read_lock();
2424         pgrp = find_vpid(pgrp_nr);
2425         retval = -ESRCH;
2426         if (!pgrp)
2427                 goto out_unlock;
2428         retval = -EPERM;
2429         if (session_of_pgrp(pgrp) != task_session(current))
2430                 goto out_unlock;
2431         retval = 0;
2432         spin_lock_irqsave(&tty->ctrl_lock, flags);
2433         put_pid(real_tty->pgrp);
2434         real_tty->pgrp = get_pid(pgrp);
2435         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2436 out_unlock:
2437         rcu_read_unlock();
2438         return retval;
2439 }
2440
2441 /**
2442  *      tiocgsid                -       get session id
2443  *      @tty: tty passed by user
2444  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2445  *      @p: pointer to returned session id
2446  *
2447  *      Obtain the session id of the tty. If there is no session
2448  *      return an error.
2449  *
2450  *      Locking: none. Reference to current->signal->tty is safe.
2451  */
2452
2453 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2454 {
2455         /*
2456          * (tty == real_tty) is a cheap way of
2457          * testing if the tty is NOT a master pty.
2458         */
2459         if (tty == real_tty && current->signal->tty != real_tty)
2460                 return -ENOTTY;
2461         if (!real_tty->session)
2462                 return -ENOTTY;
2463         return put_user(pid_vnr(real_tty->session), p);
2464 }
2465
2466 /**
2467  *      tiocsetd        -       set line discipline
2468  *      @tty: tty device
2469  *      @p: pointer to user data
2470  *
2471  *      Set the line discipline according to user request.
2472  *
2473  *      Locking: see tty_set_ldisc, this function is just a helper
2474  */
2475
2476 static int tiocsetd(struct tty_struct *tty, int __user *p)
2477 {
2478         int ldisc;
2479         int ret;
2480
2481         if (get_user(ldisc, p))
2482                 return -EFAULT;
2483
2484         lock_kernel();
2485         ret = tty_set_ldisc(tty, ldisc);
2486         unlock_kernel();
2487
2488         return ret;
2489 }
2490
2491 /**
2492  *      send_break      -       performed time break
2493  *      @tty: device to break on
2494  *      @duration: timeout in mS
2495  *
2496  *      Perform a timed break on hardware that lacks its own driver level
2497  *      timed break functionality.
2498  *
2499  *      Locking:
2500  *              atomic_write_lock serializes
2501  *
2502  */
2503
2504 static int send_break(struct tty_struct *tty, unsigned int duration)
2505 {
2506         int retval;
2507
2508         if (tty->ops->break_ctl == NULL)
2509                 return 0;
2510
2511         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2512                 retval = tty->ops->break_ctl(tty, duration);
2513         else {
2514                 /* Do the work ourselves */
2515                 if (tty_write_lock(tty, 0) < 0)
2516                         return -EINTR;
2517                 retval = tty->ops->break_ctl(tty, -1);
2518                 if (retval)
2519                         goto out;
2520                 if (!signal_pending(current))
2521                         msleep_interruptible(duration);
2522                 retval = tty->ops->break_ctl(tty, 0);
2523 out:
2524                 tty_write_unlock(tty);
2525                 if (signal_pending(current))
2526                         retval = -EINTR;
2527         }
2528         return retval;
2529 }
2530
2531 /**
2532  *      tty_tiocmget            -       get modem status
2533  *      @tty: tty device
2534  *      @file: user file pointer
2535  *      @p: pointer to result
2536  *
2537  *      Obtain the modem status bits from the tty driver if the feature
2538  *      is supported. Return -EINVAL if it is not available.
2539  *
2540  *      Locking: none (up to the driver)
2541  */
2542
2543 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2544 {
2545         int retval = -EINVAL;
2546
2547         if (tty->ops->tiocmget) {
2548                 retval = tty->ops->tiocmget(tty, file);
2549
2550                 if (retval >= 0)
2551                         retval = put_user(retval, p);
2552         }
2553         return retval;
2554 }
2555
2556 /**
2557  *      tty_tiocmset            -       set modem status
2558  *      @tty: tty device
2559  *      @file: user file pointer
2560  *      @cmd: command - clear bits, set bits or set all
2561  *      @p: pointer to desired bits
2562  *
2563  *      Set the modem status bits from the tty driver if the feature
2564  *      is supported. Return -EINVAL if it is not available.
2565  *
2566  *      Locking: none (up to the driver)
2567  */
2568
2569 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2570              unsigned __user *p)
2571 {
2572         int retval;
2573         unsigned int set, clear, val;
2574
2575         if (tty->ops->tiocmset == NULL)
2576                 return -EINVAL;
2577
2578         retval = get_user(val, p);
2579         if (retval)
2580                 return retval;
2581         set = clear = 0;
2582         switch (cmd) {
2583         case TIOCMBIS:
2584                 set = val;
2585                 break;
2586         case TIOCMBIC:
2587                 clear = val;
2588                 break;
2589         case TIOCMSET:
2590                 set = val;
2591                 clear = ~val;
2592                 break;
2593         }
2594         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2595         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2596         return tty->ops->tiocmset(tty, file, set, clear);
2597 }
2598
2599 /*
2600  * Split this up, as gcc can choke on it otherwise..
2601  */
2602 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2603 {
2604         struct tty_struct *tty, *real_tty;
2605         void __user *p = (void __user *)arg;
2606         int retval;
2607         struct tty_ldisc *ld;
2608         struct inode *inode = file->f_dentry->d_inode;
2609
2610         tty = (struct tty_struct *)file->private_data;
2611         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2612                 return -EINVAL;
2613
2614         real_tty = tty;
2615         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2616             tty->driver->subtype == PTY_TYPE_MASTER)
2617                 real_tty = tty->link;
2618
2619
2620         /*
2621          * Factor out some common prep work
2622          */
2623         switch (cmd) {
2624         case TIOCSETD:
2625         case TIOCSBRK:
2626         case TIOCCBRK:
2627         case TCSBRK:
2628         case TCSBRKP:
2629                 retval = tty_check_change(tty);
2630                 if (retval)
2631                         return retval;
2632                 if (cmd != TIOCCBRK) {
2633                         tty_wait_until_sent(tty, 0);
2634                         if (signal_pending(current))
2635                                 return -EINTR;
2636                 }
2637                 break;
2638         }
2639
2640         /*
2641          *      Now do the stuff.
2642          */
2643         switch (cmd) {
2644         case TIOCSTI:
2645                 return tiocsti(tty, p);
2646         case TIOCGWINSZ:
2647                 return tiocgwinsz(real_tty, p);
2648         case TIOCSWINSZ:
2649                 return tiocswinsz(tty, real_tty, p);
2650         case TIOCCONS:
2651                 return real_tty != tty ? -EINVAL : tioccons(file);
2652         case FIONBIO:
2653                 return fionbio(file, p);
2654         case TIOCEXCL:
2655                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2656                 return 0;
2657         case TIOCNXCL:
2658                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2659                 return 0;
2660         case TIOCNOTTY:
2661                 if (current->signal->tty != tty)
2662                         return -ENOTTY;
2663                 no_tty();
2664                 return 0;
2665         case TIOCSCTTY:
2666                 return tiocsctty(tty, arg);
2667         case TIOCGPGRP:
2668                 return tiocgpgrp(tty, real_tty, p);
2669         case TIOCSPGRP:
2670                 return tiocspgrp(tty, real_tty, p);
2671         case TIOCGSID:
2672                 return tiocgsid(tty, real_tty, p);
2673         case TIOCGETD:
2674                 return put_user(tty->ldisc.ops->num, (int __user *)p);
2675         case TIOCSETD:
2676                 return tiocsetd(tty, p);
2677         /*
2678          * Break handling
2679          */
2680         case TIOCSBRK:  /* Turn break on, unconditionally */
2681                 if (tty->ops->break_ctl)
2682                         return tty->ops->break_ctl(tty, -1);
2683                 return 0;
2684         case TIOCCBRK:  /* Turn break off, unconditionally */
2685                 if (tty->ops->break_ctl)
2686                         return tty->ops->break_ctl(tty, 0);
2687                 return 0;
2688         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2689                 /* non-zero arg means wait for all output data
2690                  * to be sent (performed above) but don't send break.
2691                  * This is used by the tcdrain() termios function.
2692                  */
2693                 if (!arg)
2694                         return send_break(tty, 250);
2695                 return 0;
2696         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2697                 return send_break(tty, arg ? arg*100 : 250);
2698
2699         case TIOCMGET:
2700                 return tty_tiocmget(tty, file, p);
2701         case TIOCMSET:
2702         case TIOCMBIC:
2703         case TIOCMBIS:
2704                 return tty_tiocmset(tty, file, cmd, p);
2705         case TCFLSH:
2706                 switch (arg) {
2707                 case TCIFLUSH:
2708                 case TCIOFLUSH:
2709                 /* flush tty buffer and allow ldisc to process ioctl */
2710                         tty_buffer_flush(tty);
2711                         break;
2712                 }
2713                 break;
2714         }
2715         if (tty->ops->ioctl) {
2716                 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2717                 if (retval != -ENOIOCTLCMD)
2718                         return retval;
2719         }
2720         ld = tty_ldisc_ref_wait(tty);
2721         retval = -EINVAL;
2722         if (ld->ops->ioctl) {
2723                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2724                 if (retval == -ENOIOCTLCMD)
2725                         retval = -EINVAL;
2726         }
2727         tty_ldisc_deref(ld);
2728         return retval;
2729 }
2730
2731 #ifdef CONFIG_COMPAT
2732 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2733                                 unsigned long arg)
2734 {
2735         struct inode *inode = file->f_dentry->d_inode;
2736         struct tty_struct *tty = file->private_data;
2737         struct tty_ldisc *ld;
2738         int retval = -ENOIOCTLCMD;
2739
2740         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2741                 return -EINVAL;
2742
2743         if (tty->ops->compat_ioctl) {
2744                 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2745                 if (retval != -ENOIOCTLCMD)
2746                         return retval;
2747         }
2748
2749         ld = tty_ldisc_ref_wait(tty);
2750         if (ld->ops->compat_ioctl)
2751                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2752         tty_ldisc_deref(ld);
2753
2754         return retval;
2755 }
2756 #endif
2757
2758 /*
2759  * This implements the "Secure Attention Key" ---  the idea is to
2760  * prevent trojan horses by killing all processes associated with this
2761  * tty when the user hits the "Secure Attention Key".  Required for
2762  * super-paranoid applications --- see the Orange Book for more details.
2763  *
2764  * This code could be nicer; ideally it should send a HUP, wait a few
2765  * seconds, then send a INT, and then a KILL signal.  But you then
2766  * have to coordinate with the init process, since all processes associated
2767  * with the current tty must be dead before the new getty is allowed
2768  * to spawn.
2769  *
2770  * Now, if it would be correct ;-/ The current code has a nasty hole -
2771  * it doesn't catch files in flight. We may send the descriptor to ourselves
2772  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2773  *
2774  * Nasty bug: do_SAK is being called in interrupt context.  This can
2775  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2776  */
2777 void __do_SAK(struct tty_struct *tty)
2778 {
2779 #ifdef TTY_SOFT_SAK
2780         tty_hangup(tty);
2781 #else
2782         struct task_struct *g, *p;
2783         struct pid *session;
2784         int             i;
2785         struct file     *filp;
2786         struct fdtable *fdt;
2787
2788         if (!tty)
2789                 return;
2790         session = tty->session;
2791
2792         tty_ldisc_flush(tty);
2793
2794         tty_driver_flush_buffer(tty);
2795
2796         read_lock(&tasklist_lock);
2797         /* Kill the entire session */
2798         do_each_pid_task(session, PIDTYPE_SID, p) {
2799                 printk(KERN_NOTICE "SAK: killed process %d"
2800                         " (%s): task_session_nr(p)==tty->session\n",
2801                         task_pid_nr(p), p->comm);
2802                 send_sig(SIGKILL, p, 1);
2803         } while_each_pid_task(session, PIDTYPE_SID, p);
2804         /* Now kill any processes that happen to have the
2805          * tty open.
2806          */
2807         do_each_thread(g, p) {
2808                 if (p->signal->tty == tty) {
2809                         printk(KERN_NOTICE "SAK: killed process %d"
2810                             " (%s): task_session_nr(p)==tty->session\n",
2811                             task_pid_nr(p), p->comm);
2812                         send_sig(SIGKILL, p, 1);
2813                         continue;
2814                 }
2815                 task_lock(p);
2816                 if (p->files) {
2817                         /*
2818                          * We don't take a ref to the file, so we must
2819                          * hold ->file_lock instead.
2820                          */
2821                         spin_lock(&p->files->file_lock);
2822                         fdt = files_fdtable(p->files);
2823                         for (i = 0; i < fdt->max_fds; i++) {
2824                                 filp = fcheck_files(p->files, i);
2825                                 if (!filp)
2826                                         continue;
2827                                 if (filp->f_op->read == tty_read &&
2828                                     filp->private_data == tty) {
2829                                         printk(KERN_NOTICE "SAK: killed process %d"
2830                                             " (%s): fd#%d opened to the tty\n",
2831                                             task_pid_nr(p), p->comm, i);
2832                                         force_sig(SIGKILL, p);
2833                                         break;
2834                                 }
2835                         }
2836                         spin_unlock(&p->files->file_lock);
2837                 }
2838                 task_unlock(p);
2839         } while_each_thread(g, p);
2840         read_unlock(&tasklist_lock);
2841 #endif
2842 }
2843
2844 static void do_SAK_work(struct work_struct *work)
2845 {
2846         struct tty_struct *tty =
2847                 container_of(work, struct tty_struct, SAK_work);
2848         __do_SAK(tty);
2849 }
2850
2851 /*
2852  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2853  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2854  * the values which we write to it will be identical to the values which it
2855  * already has. --akpm
2856  */
2857 void do_SAK(struct tty_struct *tty)
2858 {
2859         if (!tty)
2860                 return;
2861         schedule_work(&tty->SAK_work);
2862 }
2863
2864 EXPORT_SYMBOL(do_SAK);
2865
2866 /**
2867  *      initialize_tty_struct
2868  *      @tty: tty to initialize
2869  *
2870  *      This subroutine initializes a tty structure that has been newly
2871  *      allocated.
2872  *
2873  *      Locking: none - tty in question must not be exposed at this point
2874  */
2875
2876 static void initialize_tty_struct(struct tty_struct *tty)
2877 {
2878         memset(tty, 0, sizeof(struct tty_struct));
2879         kref_init(&tty->kref);
2880         tty->magic = TTY_MAGIC;
2881         tty_ldisc_init(tty);
2882         tty->session = NULL;
2883         tty->pgrp = NULL;
2884         tty->overrun_time = jiffies;
2885         tty->buf.head = tty->buf.tail = NULL;
2886         tty_buffer_init(tty);
2887         mutex_init(&tty->termios_mutex);
2888         init_waitqueue_head(&tty->write_wait);
2889         init_waitqueue_head(&tty->read_wait);
2890         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2891         mutex_init(&tty->atomic_read_lock);
2892         mutex_init(&tty->atomic_write_lock);
2893         spin_lock_init(&tty->read_lock);
2894         spin_lock_init(&tty->ctrl_lock);
2895         INIT_LIST_HEAD(&tty->tty_files);
2896         INIT_WORK(&tty->SAK_work, do_SAK_work);
2897 }
2898
2899 /**
2900  *      tty_put_char    -       write one character to a tty
2901  *      @tty: tty
2902  *      @ch: character
2903  *
2904  *      Write one byte to the tty using the provided put_char method
2905  *      if present. Returns the number of characters successfully output.
2906  *
2907  *      Note: the specific put_char operation in the driver layer may go
2908  *      away soon. Don't call it directly, use this method
2909  */
2910
2911 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2912 {
2913         if (tty->ops->put_char)
2914                 return tty->ops->put_char(tty, ch);
2915         return tty->ops->write(tty, &ch, 1);
2916 }
2917
2918 EXPORT_SYMBOL_GPL(tty_put_char);
2919
2920 static struct class *tty_class;
2921
2922 /**
2923  *      tty_register_device - register a tty device
2924  *      @driver: the tty driver that describes the tty device
2925  *      @index: the index in the tty driver for this tty device
2926  *      @device: a struct device that is associated with this tty device.
2927  *              This field is optional, if there is no known struct device
2928  *              for this tty device it can be set to NULL safely.
2929  *
2930  *      Returns a pointer to the struct device for this tty device
2931  *      (or ERR_PTR(-EFOO) on error).
2932  *
2933  *      This call is required to be made to register an individual tty device
2934  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2935  *      that bit is not set, this function should not be called by a tty
2936  *      driver.
2937  *
2938  *      Locking: ??
2939  */
2940
2941 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2942                                    struct device *device)
2943 {
2944         char name[64];
2945         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2946
2947         if (index >= driver->num) {
2948                 printk(KERN_ERR "Attempt to register invalid tty line number "
2949                        " (%d).\n", index);
2950                 return ERR_PTR(-EINVAL);
2951         }
2952
2953         if (driver->type == TTY_DRIVER_TYPE_PTY)
2954                 pty_line_name(driver, index, name);
2955         else
2956                 tty_line_name(driver, index, name);
2957
2958         return device_create_drvdata(tty_class, device, dev, NULL, name);
2959 }
2960
2961 /**
2962  *      tty_unregister_device - unregister a tty device
2963  *      @driver: the tty driver that describes the tty device
2964  *      @index: the index in the tty driver for this tty device
2965  *
2966  *      If a tty device is registered with a call to tty_register_device() then
2967  *      this function must be called when the tty device is gone.
2968  *
2969  *      Locking: ??
2970  */
2971
2972 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2973 {
2974         device_destroy(tty_class,
2975                 MKDEV(driver->major, driver->minor_start) + index);
2976 }
2977
2978 EXPORT_SYMBOL(tty_register_device);
2979 EXPORT_SYMBOL(tty_unregister_device);
2980
2981 struct tty_driver *alloc_tty_driver(int lines)
2982 {
2983         struct tty_driver *driver;
2984
2985         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2986         if (driver) {
2987                 driver->magic = TTY_DRIVER_MAGIC;
2988                 driver->num = lines;
2989                 /* later we'll move allocation of tables here */
2990         }
2991         return driver;
2992 }
2993
2994 void put_tty_driver(struct tty_driver *driver)
2995 {
2996         kfree(driver);
2997 }
2998
2999 void tty_set_operations(struct tty_driver *driver,
3000                         const struct tty_operations *op)
3001 {
3002         driver->ops = op;
3003 };
3004
3005 EXPORT_SYMBOL(alloc_tty_driver);
3006 EXPORT_SYMBOL(put_tty_driver);
3007 EXPORT_SYMBOL(tty_set_operations);
3008
3009 /*
3010  * Called by a tty driver to register itself.
3011  */
3012 int tty_register_driver(struct tty_driver *driver)
3013 {
3014         int error;
3015         int i;
3016         dev_t dev;
3017         void **p = NULL;
3018
3019         if (driver->flags & TTY_DRIVER_INSTALLED)
3020                 return 0;
3021
3022         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3023                 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3024                 if (!p)
3025                         return -ENOMEM;
3026         }
3027
3028         if (!driver->major) {
3029                 error = alloc_chrdev_region(&dev, driver->minor_start,
3030                                                 driver->num, driver->name);
3031                 if (!error) {
3032                         driver->major = MAJOR(dev);
3033                         driver->minor_start = MINOR(dev);
3034                 }
3035         } else {
3036                 dev = MKDEV(driver->major, driver->minor_start);
3037                 error = register_chrdev_region(dev, driver->num, driver->name);
3038         }
3039         if (error < 0) {
3040                 kfree(p);
3041                 return error;
3042         }
3043
3044         if (p) {
3045                 driver->ttys = (struct tty_struct **)p;
3046                 driver->termios = (struct ktermios **)(p + driver->num);
3047                 driver->termios_locked = (struct ktermios **)
3048                                                         (p + driver->num * 2);
3049         } else {
3050                 driver->ttys = NULL;
3051                 driver->termios = NULL;
3052                 driver->termios_locked = NULL;
3053         }
3054
3055         cdev_init(&driver->cdev, &tty_fops);
3056         driver->cdev.owner = driver->owner;
3057         error = cdev_add(&driver->cdev, dev, driver->num);
3058         if (error) {
3059                 unregister_chrdev_region(dev, driver->num);
3060                 driver->ttys = NULL;
3061                 driver->termios = driver->termios_locked = NULL;
3062                 kfree(p);
3063                 return error;
3064         }
3065
3066         mutex_lock(&tty_mutex);
3067         list_add(&driver->tty_drivers, &tty_drivers);
3068         mutex_unlock(&tty_mutex);
3069
3070         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3071                 for (i = 0; i < driver->num; i++)
3072                     tty_register_device(driver, i, NULL);
3073         }
3074         proc_tty_register_driver(driver);
3075         return 0;
3076 }
3077
3078 EXPORT_SYMBOL(tty_register_driver);
3079
3080 /*
3081  * Called by a tty driver to unregister itself.
3082  */
3083 int tty_unregister_driver(struct tty_driver *driver)
3084 {
3085         int i;
3086         struct ktermios *tp;
3087         void *p;
3088
3089         if (driver->refcount)
3090                 return -EBUSY;
3091
3092         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3093                                 driver->num);
3094         mutex_lock(&tty_mutex);
3095         list_del(&driver->tty_drivers);
3096         mutex_unlock(&tty_mutex);
3097
3098         /*
3099          * Free the termios and termios_locked structures because
3100          * we don't want to get memory leaks when modular tty
3101          * drivers are removed from the kernel.
3102          */
3103         for (i = 0; i < driver->num; i++) {
3104                 tp = driver->termios[i];
3105                 if (tp) {
3106                         driver->termios[i] = NULL;
3107                         kfree(tp);
3108                 }
3109                 tp = driver->termios_locked[i];
3110                 if (tp) {
3111                         driver->termios_locked[i] = NULL;
3112                         kfree(tp);
3113                 }
3114                 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3115                         tty_unregister_device(driver, i);
3116         }
3117         p = driver->ttys;
3118         proc_tty_unregister_driver(driver);
3119         driver->ttys = NULL;
3120         driver->termios = driver->termios_locked = NULL;
3121         kfree(p);
3122         cdev_del(&driver->cdev);
3123         return 0;
3124 }
3125 EXPORT_SYMBOL(tty_unregister_driver);
3126
3127 dev_t tty_devnum(struct tty_struct *tty)
3128 {
3129         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3130 }
3131 EXPORT_SYMBOL(tty_devnum);
3132
3133 void proc_clear_tty(struct task_struct *p)
3134 {
3135         struct tty_struct *tty;
3136         spin_lock_irq(&p->sighand->siglock);
3137         tty = p->signal->tty;
3138         p->signal->tty = NULL;
3139         spin_unlock_irq(&p->sighand->siglock);
3140         tty_kref_put(tty);
3141 }
3142
3143 /* Called under the sighand lock */
3144
3145 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3146 {
3147         if (tty) {
3148                 unsigned long flags;
3149                 /* We should not have a session or pgrp to put here but.... */
3150                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3151                 put_pid(tty->session);
3152                 put_pid(tty->pgrp);
3153                 tty->pgrp = get_pid(task_pgrp(tsk));
3154                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3155                 tty->session = get_pid(task_session(tsk));
3156                 if (tsk->signal->tty) {
3157                         printk(KERN_DEBUG "tty not NULL!!\n");
3158                         tty_kref_put(tsk->signal->tty);
3159                 }
3160         }
3161         put_pid(tsk->signal->tty_old_pgrp);
3162         tsk->signal->tty = tty_kref_get(tty);
3163         tsk->signal->tty_old_pgrp = NULL;
3164 }
3165
3166 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3167 {
3168         spin_lock_irq(&tsk->sighand->siglock);
3169         __proc_set_tty(tsk, tty);
3170         spin_unlock_irq(&tsk->sighand->siglock);
3171 }
3172
3173 struct tty_struct *get_current_tty(void)
3174 {
3175         struct tty_struct *tty;
3176         unsigned long flags;
3177
3178         spin_lock_irqsave(&current->sighand->siglock, flags);
3179         tty = tty_kref_get(current->signal->tty);
3180         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3181         return tty;
3182 }
3183 EXPORT_SYMBOL_GPL(get_current_tty);
3184
3185 /*
3186  * Initialize the console device. This is called *early*, so
3187  * we can't necessarily depend on lots of kernel help here.
3188  * Just do some early initializations, and do the complex setup
3189  * later.
3190  */
3191 void __init console_init(void)
3192 {
3193         initcall_t *call;
3194
3195         /* Setup the default TTY line discipline. */
3196         tty_ldisc_begin();
3197
3198         /*
3199          * set up the console device so that later boot sequences can
3200          * inform about problems etc..
3201          */
3202         call = __con_initcall_start;
3203         while (call < __con_initcall_end) {
3204                 (*call)();
3205                 call++;
3206         }
3207 }
3208
3209 static int __init tty_class_init(void)
3210 {
3211         tty_class = class_create(THIS_MODULE, "tty");
3212         if (IS_ERR(tty_class))
3213                 return PTR_ERR(tty_class);
3214         return 0;
3215 }
3216
3217 postcore_initcall(tty_class_init);
3218
3219 /* 3/2004 jmc: why do these devices exist? */
3220
3221 static struct cdev tty_cdev, console_cdev;
3222 #ifdef CONFIG_UNIX98_PTYS
3223 static struct cdev ptmx_cdev;
3224 #endif
3225 #ifdef CONFIG_VT
3226 static struct cdev vc0_cdev;
3227 #endif
3228
3229 /*
3230  * Ok, now we can initialize the rest of the tty devices and can count
3231  * on memory allocations, interrupts etc..
3232  */
3233 static int __init tty_init(void)
3234 {
3235         cdev_init(&tty_cdev, &tty_fops);
3236         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3237             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3238                 panic("Couldn't register /dev/tty driver\n");
3239         device_create_drvdata(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3240                               "tty");
3241
3242         cdev_init(&console_cdev, &console_fops);
3243         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3244             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3245                 panic("Couldn't register /dev/console driver\n");
3246         device_create_drvdata(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3247                               "console");
3248
3249 #ifdef CONFIG_UNIX98_PTYS
3250         cdev_init(&ptmx_cdev, &ptmx_fops);
3251         if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
3252             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
3253                 panic("Couldn't register /dev/ptmx driver\n");
3254         device_create_drvdata(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), NULL, "ptmx");
3255 #endif
3256
3257 #ifdef CONFIG_VT
3258         cdev_init(&vc0_cdev, &console_fops);
3259         if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
3260             register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
3261                 panic("Couldn't register /dev/tty0 driver\n");
3262         device_create_drvdata(tty_class, NULL, MKDEV(TTY_MAJOR, 0), NULL, "tty0");
3263
3264         vty_init();
3265 #endif
3266         return 0;
3267 }
3268 module_init(tty_init);