]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/char/tty_io.c
tty: extract the pty init time special cases
[linux-2.6-omap-h63xx.git] / drivers / char / tty_io.c
1 /*
2  *  linux/drivers/char/tty_io.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9  * or rs-channels. It also implements echoing, cooked mode etc.
10  *
11  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12  *
13  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14  * tty_struct and tty_queue structures.  Previously there was an array
15  * of 256 tty_struct's which was statically allocated, and the
16  * tty_queue structures were allocated at boot time.  Both are now
17  * dynamically allocated only when the tty is open.
18  *
19  * Also restructured routines so that there is more of a separation
20  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21  * the low-level tty routines (serial.c, pty.c, console.c).  This
22  * makes for cleaner and more compact code.  -TYT, 9/17/92
23  *
24  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25  * which can be dynamically activated and de-activated by the line
26  * discipline handling modules (like SLIP).
27  *
28  * NOTE: pay no attention to the line discipline code (yet); its
29  * interface is still subject to change in this version...
30  * -- TYT, 1/31/92
31  *
32  * Added functionality to the OPOST tty handling.  No delays, but all
33  * other bits should be there.
34  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35  *
36  * Rewrote canonical mode and added more termios flags.
37  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38  *
39  * Reorganized FASYNC support so mouse code can share it.
40  *      -- ctm@ardi.com, 9Sep95
41  *
42  * New TIOCLINUX variants added.
43  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
44  *
45  * Restrict vt switching via ioctl()
46  *      -- grif@cs.ucr.edu, 5-Dec-95
47  *
48  * Move console and virtual terminal code to more appropriate files,
49  * implement CONFIG_VT and generalize console device interface.
50  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51  *
52  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53  *      -- Bill Hawes <whawes@star.net>, June 97
54  *
55  * Added devfs support.
56  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57  *
58  * Added support for a Unix98-style ptmx device.
59  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60  *
61  * Reduced memory usage for older ARM systems
62  *      -- Russell King <rmk@arm.linux.org.uk>
63  *
64  * Move do_SAK() into process context.  Less stack use in devfs functions.
65  * alloc_tty_struct() always uses kmalloc()
66  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67  */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114
115 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
116         .c_iflag = ICRNL | IXON,
117         .c_oflag = OPOST | ONLCR,
118         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120                    ECHOCTL | ECHOKE | IEXTEN,
121         .c_cc = INIT_C_CC,
122         .c_ispeed = 38400,
123         .c_ospeed = 38400
124 };
125
126 EXPORT_SYMBOL(tty_std_termios);
127
128 /* This list gets poked at by procfs and various bits of boot up code. This
129    could do with some rationalisation such as pulling the tty proc function
130    into this file */
131
132 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
133
134 /* Mutex to protect creating and releasing a tty. This is shared with
135    vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138
139 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
140 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
141 ssize_t redirected_tty_write(struct file *, const char __user *,
142                                                         size_t, loff_t *);
143 static unsigned int tty_poll(struct file *, poll_table *);
144 static int tty_open(struct inode *, struct file *);
145 static int tty_release(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int tty_fasync(int fd, struct file *filp, int on);
154 static void release_tty(struct tty_struct *tty, int idx);
155 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
156 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157
158 /**
159  *      alloc_tty_struct        -       allocate a tty object
160  *
161  *      Return a new empty tty structure. The data fields have not
162  *      been initialized in any way but has been zeroed
163  *
164  *      Locking: none
165  */
166
167 struct tty_struct *alloc_tty_struct(void)
168 {
169         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
170 }
171
172 /**
173  *      free_tty_struct         -       free a disused tty
174  *      @tty: tty struct to free
175  *
176  *      Free the write buffers, tty queue and tty memory itself.
177  *
178  *      Locking: none. Must be called after tty is definitely unused
179  */
180
181 void free_tty_struct(struct tty_struct *tty)
182 {
183         kfree(tty->write_buf);
184         tty_buffer_free_all(tty);
185         kfree(tty);
186 }
187
188 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
189
190 /**
191  *      tty_name        -       return tty naming
192  *      @tty: tty structure
193  *      @buf: buffer for output
194  *
195  *      Convert a tty structure into a name. The name reflects the kernel
196  *      naming policy and if udev is in use may not reflect user space
197  *
198  *      Locking: none
199  */
200
201 char *tty_name(struct tty_struct *tty, char *buf)
202 {
203         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
204                 strcpy(buf, "NULL tty");
205         else
206                 strcpy(buf, tty->name);
207         return buf;
208 }
209
210 EXPORT_SYMBOL(tty_name);
211
212 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
213                               const char *routine)
214 {
215 #ifdef TTY_PARANOIA_CHECK
216         if (!tty) {
217                 printk(KERN_WARNING
218                         "null TTY for (%d:%d) in %s\n",
219                         imajor(inode), iminor(inode), routine);
220                 return 1;
221         }
222         if (tty->magic != TTY_MAGIC) {
223                 printk(KERN_WARNING
224                         "bad magic number for tty struct (%d:%d) in %s\n",
225                         imajor(inode), iminor(inode), routine);
226                 return 1;
227         }
228 #endif
229         return 0;
230 }
231
232 static int check_tty_count(struct tty_struct *tty, const char *routine)
233 {
234 #ifdef CHECK_TTY_COUNT
235         struct list_head *p;
236         int count = 0;
237
238         file_list_lock();
239         list_for_each(p, &tty->tty_files) {
240                 count++;
241         }
242         file_list_unlock();
243         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
244             tty->driver->subtype == PTY_TYPE_SLAVE &&
245             tty->link && tty->link->count)
246                 count++;
247         if (tty->count != count) {
248                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
249                                     "!= #fd's(%d) in %s\n",
250                        tty->name, tty->count, count, routine);
251                 return count;
252         }
253 #endif
254         return 0;
255 }
256
257 /**
258  *      get_tty_driver          -       find device of a tty
259  *      @dev_t: device identifier
260  *      @index: returns the index of the tty
261  *
262  *      This routine returns a tty driver structure, given a device number
263  *      and also passes back the index number.
264  *
265  *      Locking: caller must hold tty_mutex
266  */
267
268 static struct tty_driver *get_tty_driver(dev_t device, int *index)
269 {
270         struct tty_driver *p;
271
272         list_for_each_entry(p, &tty_drivers, tty_drivers) {
273                 dev_t base = MKDEV(p->major, p->minor_start);
274                 if (device < base || device >= base + p->num)
275                         continue;
276                 *index = device - base;
277                 return tty_driver_kref_get(p);
278         }
279         return NULL;
280 }
281
282 #ifdef CONFIG_CONSOLE_POLL
283
284 /**
285  *      tty_find_polling_driver -       find device of a polled tty
286  *      @name: name string to match
287  *      @line: pointer to resulting tty line nr
288  *
289  *      This routine returns a tty driver structure, given a name
290  *      and the condition that the tty driver is capable of polled
291  *      operation.
292  */
293 struct tty_driver *tty_find_polling_driver(char *name, int *line)
294 {
295         struct tty_driver *p, *res = NULL;
296         int tty_line = 0;
297         int len;
298         char *str;
299
300         for (str = name; *str; str++)
301                 if ((*str >= '0' && *str <= '9') || *str == ',')
302                         break;
303         if (!*str)
304                 return NULL;
305
306         len = str - name;
307         tty_line = simple_strtoul(str, &str, 10);
308
309         mutex_lock(&tty_mutex);
310         /* Search through the tty devices to look for a match */
311         list_for_each_entry(p, &tty_drivers, tty_drivers) {
312                 if (strncmp(name, p->name, len) != 0)
313                         continue;
314                 if (*str == ',')
315                         str++;
316                 if (*str == '\0')
317                         str = NULL;
318
319                 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
320                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, str)) {
321                         res = tty_driver_kref_get(p);
322                         *line = tty_line;
323                         break;
324                 }
325         }
326         mutex_unlock(&tty_mutex);
327
328         return res;
329 }
330 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
331 #endif
332
333 /**
334  *      tty_check_change        -       check for POSIX terminal changes
335  *      @tty: tty to check
336  *
337  *      If we try to write to, or set the state of, a terminal and we're
338  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
339  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
340  *
341  *      Locking: ctrl_lock
342  */
343
344 int tty_check_change(struct tty_struct *tty)
345 {
346         unsigned long flags;
347         int ret = 0;
348
349         if (current->signal->tty != tty)
350                 return 0;
351
352         spin_lock_irqsave(&tty->ctrl_lock, flags);
353
354         if (!tty->pgrp) {
355                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
356                 goto out_unlock;
357         }
358         if (task_pgrp(current) == tty->pgrp)
359                 goto out_unlock;
360         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
361         if (is_ignored(SIGTTOU))
362                 goto out;
363         if (is_current_pgrp_orphaned()) {
364                 ret = -EIO;
365                 goto out;
366         }
367         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
368         set_thread_flag(TIF_SIGPENDING);
369         ret = -ERESTARTSYS;
370 out:
371         return ret;
372 out_unlock:
373         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
374         return ret;
375 }
376
377 EXPORT_SYMBOL(tty_check_change);
378
379 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
380                                 size_t count, loff_t *ppos)
381 {
382         return 0;
383 }
384
385 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
386                                  size_t count, loff_t *ppos)
387 {
388         return -EIO;
389 }
390
391 /* No kernel lock held - none needed ;) */
392 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
393 {
394         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
395 }
396
397 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
398                 unsigned long arg)
399 {
400         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
401 }
402
403 static long hung_up_tty_compat_ioctl(struct file *file,
404                                      unsigned int cmd, unsigned long arg)
405 {
406         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
407 }
408
409 static const struct file_operations tty_fops = {
410         .llseek         = no_llseek,
411         .read           = tty_read,
412         .write          = tty_write,
413         .poll           = tty_poll,
414         .unlocked_ioctl = tty_ioctl,
415         .compat_ioctl   = tty_compat_ioctl,
416         .open           = tty_open,
417         .release        = tty_release,
418         .fasync         = tty_fasync,
419 };
420
421 static const struct file_operations console_fops = {
422         .llseek         = no_llseek,
423         .read           = tty_read,
424         .write          = redirected_tty_write,
425         .poll           = tty_poll,
426         .unlocked_ioctl = tty_ioctl,
427         .compat_ioctl   = tty_compat_ioctl,
428         .open           = tty_open,
429         .release        = tty_release,
430         .fasync         = tty_fasync,
431 };
432
433 static const struct file_operations hung_up_tty_fops = {
434         .llseek         = no_llseek,
435         .read           = hung_up_tty_read,
436         .write          = hung_up_tty_write,
437         .poll           = hung_up_tty_poll,
438         .unlocked_ioctl = hung_up_tty_ioctl,
439         .compat_ioctl   = hung_up_tty_compat_ioctl,
440         .release        = tty_release,
441 };
442
443 static DEFINE_SPINLOCK(redirect_lock);
444 static struct file *redirect;
445
446 /**
447  *      tty_wakeup      -       request more data
448  *      @tty: terminal
449  *
450  *      Internal and external helper for wakeups of tty. This function
451  *      informs the line discipline if present that the driver is ready
452  *      to receive more output data.
453  */
454
455 void tty_wakeup(struct tty_struct *tty)
456 {
457         struct tty_ldisc *ld;
458
459         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
460                 ld = tty_ldisc_ref(tty);
461                 if (ld) {
462                         if (ld->ops->write_wakeup)
463                                 ld->ops->write_wakeup(tty);
464                         tty_ldisc_deref(ld);
465                 }
466         }
467         wake_up_interruptible(&tty->write_wait);
468 }
469
470 EXPORT_SYMBOL_GPL(tty_wakeup);
471
472 /**
473  *      tty_ldisc_flush -       flush line discipline queue
474  *      @tty: tty
475  *
476  *      Flush the line discipline queue (if any) for this tty. If there
477  *      is no line discipline active this is a no-op.
478  */
479
480 void tty_ldisc_flush(struct tty_struct *tty)
481 {
482         struct tty_ldisc *ld = tty_ldisc_ref(tty);
483         if (ld) {
484                 if (ld->ops->flush_buffer)
485                         ld->ops->flush_buffer(tty);
486                 tty_ldisc_deref(ld);
487         }
488         tty_buffer_flush(tty);
489 }
490
491 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
492
493 /**
494  *      tty_reset_termios       -       reset terminal state
495  *      @tty: tty to reset
496  *
497  *      Restore a terminal to the driver default state
498  */
499
500 static void tty_reset_termios(struct tty_struct *tty)
501 {
502         mutex_lock(&tty->termios_mutex);
503         *tty->termios = tty->driver->init_termios;
504         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
505         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
506         mutex_unlock(&tty->termios_mutex);
507 }
508
509 /**
510  *      do_tty_hangup           -       actual handler for hangup events
511  *      @work: tty device
512  *
513  *      This can be called by the "eventd" kernel thread.  That is process
514  *      synchronous but doesn't hold any locks, so we need to make sure we
515  *      have the appropriate locks for what we're doing.
516  *
517  *      The hangup event clears any pending redirections onto the hung up
518  *      device. It ensures future writes will error and it does the needed
519  *      line discipline hangup and signal delivery. The tty object itself
520  *      remains intact.
521  *
522  *      Locking:
523  *              BKL
524  *                redirect lock for undoing redirection
525  *                file list lock for manipulating list of ttys
526  *                tty_ldisc_lock from called functions
527  *                termios_mutex resetting termios data
528  *                tasklist_lock to walk task list for hangup event
529  *                  ->siglock to protect ->signal/->sighand
530  */
531 static void do_tty_hangup(struct work_struct *work)
532 {
533         struct tty_struct *tty =
534                 container_of(work, struct tty_struct, hangup_work);
535         struct file *cons_filp = NULL;
536         struct file *filp, *f = NULL;
537         struct task_struct *p;
538         struct tty_ldisc *ld;
539         int    closecount = 0, n;
540         unsigned long flags;
541         int refs = 0;
542
543         if (!tty)
544                 return;
545
546         /* inuse_filps is protected by the single kernel lock */
547         lock_kernel();
548
549         spin_lock(&redirect_lock);
550         if (redirect && redirect->private_data == tty) {
551                 f = redirect;
552                 redirect = NULL;
553         }
554         spin_unlock(&redirect_lock);
555
556         check_tty_count(tty, "do_tty_hangup");
557         file_list_lock();
558         /* This breaks for file handles being sent over AF_UNIX sockets ? */
559         list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
560                 if (filp->f_op->write == redirected_tty_write)
561                         cons_filp = filp;
562                 if (filp->f_op->write != tty_write)
563                         continue;
564                 closecount++;
565                 tty_fasync(-1, filp, 0);        /* can't block */
566                 filp->f_op = &hung_up_tty_fops;
567         }
568         file_list_unlock();
569         /*
570          * FIXME! What are the locking issues here? This may me overdoing
571          * things... This question is especially important now that we've
572          * removed the irqlock.
573          */
574         ld = tty_ldisc_ref(tty);
575         if (ld != NULL) {
576                 /* We may have no line discipline at this point */
577                 if (ld->ops->flush_buffer)
578                         ld->ops->flush_buffer(tty);
579                 tty_driver_flush_buffer(tty);
580                 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
581                     ld->ops->write_wakeup)
582                         ld->ops->write_wakeup(tty);
583                 if (ld->ops->hangup)
584                         ld->ops->hangup(tty);
585         }
586         /*
587          * FIXME: Once we trust the LDISC code better we can wait here for
588          * ldisc completion and fix the driver call race
589          */
590         wake_up_interruptible(&tty->write_wait);
591         wake_up_interruptible(&tty->read_wait);
592         /*
593          * Shutdown the current line discipline, and reset it to
594          * N_TTY.
595          */
596         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
597                 tty_reset_termios(tty);
598         /* Defer ldisc switch */
599         /* tty_deferred_ldisc_switch(N_TTY);
600
601           This should get done automatically when the port closes and
602           tty_release is called */
603
604         read_lock(&tasklist_lock);
605         if (tty->session) {
606                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
607                         spin_lock_irq(&p->sighand->siglock);
608                         if (p->signal->tty == tty) {
609                                 p->signal->tty = NULL;
610                                 /* We defer the dereferences outside fo
611                                    the tasklist lock */
612                                 refs++;
613                         }
614                         if (!p->signal->leader) {
615                                 spin_unlock_irq(&p->sighand->siglock);
616                                 continue;
617                         }
618                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
619                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
620                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
621                         spin_lock_irqsave(&tty->ctrl_lock, flags);
622                         if (tty->pgrp)
623                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
624                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
625                         spin_unlock_irq(&p->sighand->siglock);
626                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
627         }
628         read_unlock(&tasklist_lock);
629
630         spin_lock_irqsave(&tty->ctrl_lock, flags);
631         tty->flags = 0;
632         put_pid(tty->session);
633         put_pid(tty->pgrp);
634         tty->session = NULL;
635         tty->pgrp = NULL;
636         tty->ctrl_status = 0;
637         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
638
639         /* Account for the p->signal references we killed */
640         while (refs--)
641                 tty_kref_put(tty);
642
643         /*
644          * If one of the devices matches a console pointer, we
645          * cannot just call hangup() because that will cause
646          * tty->count and state->count to go out of sync.
647          * So we just call close() the right number of times.
648          */
649         if (cons_filp) {
650                 if (tty->ops->close)
651                         for (n = 0; n < closecount; n++)
652                                 tty->ops->close(tty, cons_filp);
653         } else if (tty->ops->hangup)
654                 (tty->ops->hangup)(tty);
655         /*
656          * We don't want to have driver/ldisc interactions beyond
657          * the ones we did here. The driver layer expects no
658          * calls after ->hangup() from the ldisc side. However we
659          * can't yet guarantee all that.
660          */
661         set_bit(TTY_HUPPED, &tty->flags);
662         if (ld) {
663                 tty_ldisc_enable(tty);
664                 tty_ldisc_deref(ld);
665         }
666         unlock_kernel();
667         if (f)
668                 fput(f);
669 }
670
671 /**
672  *      tty_hangup              -       trigger a hangup event
673  *      @tty: tty to hangup
674  *
675  *      A carrier loss (virtual or otherwise) has occurred on this like
676  *      schedule a hangup sequence to run after this event.
677  */
678
679 void tty_hangup(struct tty_struct *tty)
680 {
681 #ifdef TTY_DEBUG_HANGUP
682         char    buf[64];
683         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
684 #endif
685         schedule_work(&tty->hangup_work);
686 }
687
688 EXPORT_SYMBOL(tty_hangup);
689
690 /**
691  *      tty_vhangup             -       process vhangup
692  *      @tty: tty to hangup
693  *
694  *      The user has asked via system call for the terminal to be hung up.
695  *      We do this synchronously so that when the syscall returns the process
696  *      is complete. That guarantee is necessary for security reasons.
697  */
698
699 void tty_vhangup(struct tty_struct *tty)
700 {
701 #ifdef TTY_DEBUG_HANGUP
702         char    buf[64];
703
704         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
705 #endif
706         do_tty_hangup(&tty->hangup_work);
707 }
708
709 EXPORT_SYMBOL(tty_vhangup);
710
711 /**
712  *      tty_vhangup_self        -       process vhangup for own ctty
713  *
714  *      Perform a vhangup on the current controlling tty
715  */
716
717 void tty_vhangup_self(void)
718 {
719         struct tty_struct *tty;
720
721         tty = get_current_tty();
722         if (tty) {
723                 tty_vhangup(tty);
724                 tty_kref_put(tty);
725         }
726 }
727
728 /**
729  *      tty_hung_up_p           -       was tty hung up
730  *      @filp: file pointer of tty
731  *
732  *      Return true if the tty has been subject to a vhangup or a carrier
733  *      loss
734  */
735
736 int tty_hung_up_p(struct file *filp)
737 {
738         return (filp->f_op == &hung_up_tty_fops);
739 }
740
741 EXPORT_SYMBOL(tty_hung_up_p);
742
743 static void session_clear_tty(struct pid *session)
744 {
745         struct task_struct *p;
746         do_each_pid_task(session, PIDTYPE_SID, p) {
747                 proc_clear_tty(p);
748         } while_each_pid_task(session, PIDTYPE_SID, p);
749 }
750
751 /**
752  *      disassociate_ctty       -       disconnect controlling tty
753  *      @on_exit: true if exiting so need to "hang up" the session
754  *
755  *      This function is typically called only by the session leader, when
756  *      it wants to disassociate itself from its controlling tty.
757  *
758  *      It performs the following functions:
759  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
760  *      (2)  Clears the tty from being controlling the session
761  *      (3)  Clears the controlling tty for all processes in the
762  *              session group.
763  *
764  *      The argument on_exit is set to 1 if called when a process is
765  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
766  *
767  *      Locking:
768  *              BKL is taken for hysterical raisins
769  *                tty_mutex is taken to protect tty
770  *                ->siglock is taken to protect ->signal/->sighand
771  *                tasklist_lock is taken to walk process list for sessions
772  *                  ->siglock is taken to protect ->signal/->sighand
773  */
774
775 void disassociate_ctty(int on_exit)
776 {
777         struct tty_struct *tty;
778         struct pid *tty_pgrp = NULL;
779
780
781         tty = get_current_tty();
782         if (tty) {
783                 tty_pgrp = get_pid(tty->pgrp);
784                 lock_kernel();
785                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
786                         tty_vhangup(tty);
787                 unlock_kernel();
788                 tty_kref_put(tty);
789         } else if (on_exit) {
790                 struct pid *old_pgrp;
791                 spin_lock_irq(&current->sighand->siglock);
792                 old_pgrp = current->signal->tty_old_pgrp;
793                 current->signal->tty_old_pgrp = NULL;
794                 spin_unlock_irq(&current->sighand->siglock);
795                 if (old_pgrp) {
796                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
797                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
798                         put_pid(old_pgrp);
799                 }
800                 return;
801         }
802         if (tty_pgrp) {
803                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
804                 if (!on_exit)
805                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
806                 put_pid(tty_pgrp);
807         }
808
809         spin_lock_irq(&current->sighand->siglock);
810         put_pid(current->signal->tty_old_pgrp);
811         current->signal->tty_old_pgrp = NULL;
812         spin_unlock_irq(&current->sighand->siglock);
813
814         tty = get_current_tty();
815         if (tty) {
816                 unsigned long flags;
817                 spin_lock_irqsave(&tty->ctrl_lock, flags);
818                 put_pid(tty->session);
819                 put_pid(tty->pgrp);
820                 tty->session = NULL;
821                 tty->pgrp = NULL;
822                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
823                 tty_kref_put(tty);
824         } else {
825 #ifdef TTY_DEBUG_HANGUP
826                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
827                        " = NULL", tty);
828 #endif
829         }
830
831         /* Now clear signal->tty under the lock */
832         read_lock(&tasklist_lock);
833         session_clear_tty(task_session(current));
834         read_unlock(&tasklist_lock);
835 }
836
837 /**
838  *
839  *      no_tty  - Ensure the current process does not have a controlling tty
840  */
841 void no_tty(void)
842 {
843         struct task_struct *tsk = current;
844         lock_kernel();
845         if (tsk->signal->leader)
846                 disassociate_ctty(0);
847         unlock_kernel();
848         proc_clear_tty(tsk);
849 }
850
851
852 /**
853  *      stop_tty        -       propagate flow control
854  *      @tty: tty to stop
855  *
856  *      Perform flow control to the driver. For PTY/TTY pairs we
857  *      must also propagate the TIOCKPKT status. May be called
858  *      on an already stopped device and will not re-call the driver
859  *      method.
860  *
861  *      This functionality is used by both the line disciplines for
862  *      halting incoming flow and by the driver. It may therefore be
863  *      called from any context, may be under the tty atomic_write_lock
864  *      but not always.
865  *
866  *      Locking:
867  *              Uses the tty control lock internally
868  */
869
870 void stop_tty(struct tty_struct *tty)
871 {
872         unsigned long flags;
873         spin_lock_irqsave(&tty->ctrl_lock, flags);
874         if (tty->stopped) {
875                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
876                 return;
877         }
878         tty->stopped = 1;
879         if (tty->link && tty->link->packet) {
880                 tty->ctrl_status &= ~TIOCPKT_START;
881                 tty->ctrl_status |= TIOCPKT_STOP;
882                 wake_up_interruptible(&tty->link->read_wait);
883         }
884         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
885         if (tty->ops->stop)
886                 (tty->ops->stop)(tty);
887 }
888
889 EXPORT_SYMBOL(stop_tty);
890
891 /**
892  *      start_tty       -       propagate flow control
893  *      @tty: tty to start
894  *
895  *      Start a tty that has been stopped if at all possible. Perform
896  *      any necessary wakeups and propagate the TIOCPKT status. If this
897  *      is the tty was previous stopped and is being started then the
898  *      driver start method is invoked and the line discipline woken.
899  *
900  *      Locking:
901  *              ctrl_lock
902  */
903
904 void start_tty(struct tty_struct *tty)
905 {
906         unsigned long flags;
907         spin_lock_irqsave(&tty->ctrl_lock, flags);
908         if (!tty->stopped || tty->flow_stopped) {
909                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
910                 return;
911         }
912         tty->stopped = 0;
913         if (tty->link && tty->link->packet) {
914                 tty->ctrl_status &= ~TIOCPKT_STOP;
915                 tty->ctrl_status |= TIOCPKT_START;
916                 wake_up_interruptible(&tty->link->read_wait);
917         }
918         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
919         if (tty->ops->start)
920                 (tty->ops->start)(tty);
921         /* If we have a running line discipline it may need kicking */
922         tty_wakeup(tty);
923 }
924
925 EXPORT_SYMBOL(start_tty);
926
927 /**
928  *      tty_read        -       read method for tty device files
929  *      @file: pointer to tty file
930  *      @buf: user buffer
931  *      @count: size of user buffer
932  *      @ppos: unused
933  *
934  *      Perform the read system call function on this terminal device. Checks
935  *      for hung up devices before calling the line discipline method.
936  *
937  *      Locking:
938  *              Locks the line discipline internally while needed. Multiple
939  *      read calls may be outstanding in parallel.
940  */
941
942 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
943                         loff_t *ppos)
944 {
945         int i;
946         struct tty_struct *tty;
947         struct inode *inode;
948         struct tty_ldisc *ld;
949
950         tty = (struct tty_struct *)file->private_data;
951         inode = file->f_path.dentry->d_inode;
952         if (tty_paranoia_check(tty, inode, "tty_read"))
953                 return -EIO;
954         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
955                 return -EIO;
956
957         /* We want to wait for the line discipline to sort out in this
958            situation */
959         ld = tty_ldisc_ref_wait(tty);
960         if (ld->ops->read)
961                 i = (ld->ops->read)(tty, file, buf, count);
962         else
963                 i = -EIO;
964         tty_ldisc_deref(ld);
965         if (i > 0)
966                 inode->i_atime = current_fs_time(inode->i_sb);
967         return i;
968 }
969
970 void tty_write_unlock(struct tty_struct *tty)
971 {
972         mutex_unlock(&tty->atomic_write_lock);
973         wake_up_interruptible(&tty->write_wait);
974 }
975
976 int tty_write_lock(struct tty_struct *tty, int ndelay)
977 {
978         if (!mutex_trylock(&tty->atomic_write_lock)) {
979                 if (ndelay)
980                         return -EAGAIN;
981                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
982                         return -ERESTARTSYS;
983         }
984         return 0;
985 }
986
987 /*
988  * Split writes up in sane blocksizes to avoid
989  * denial-of-service type attacks
990  */
991 static inline ssize_t do_tty_write(
992         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
993         struct tty_struct *tty,
994         struct file *file,
995         const char __user *buf,
996         size_t count)
997 {
998         ssize_t ret, written = 0;
999         unsigned int chunk;
1000
1001         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1002         if (ret < 0)
1003                 return ret;
1004
1005         /*
1006          * We chunk up writes into a temporary buffer. This
1007          * simplifies low-level drivers immensely, since they
1008          * don't have locking issues and user mode accesses.
1009          *
1010          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1011          * big chunk-size..
1012          *
1013          * The default chunk-size is 2kB, because the NTTY
1014          * layer has problems with bigger chunks. It will
1015          * claim to be able to handle more characters than
1016          * it actually does.
1017          *
1018          * FIXME: This can probably go away now except that 64K chunks
1019          * are too likely to fail unless switched to vmalloc...
1020          */
1021         chunk = 2048;
1022         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1023                 chunk = 65536;
1024         if (count < chunk)
1025                 chunk = count;
1026
1027         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1028         if (tty->write_cnt < chunk) {
1029                 unsigned char *buf;
1030
1031                 if (chunk < 1024)
1032                         chunk = 1024;
1033
1034                 buf = kmalloc(chunk, GFP_KERNEL);
1035                 if (!buf) {
1036                         ret = -ENOMEM;
1037                         goto out;
1038                 }
1039                 kfree(tty->write_buf);
1040                 tty->write_cnt = chunk;
1041                 tty->write_buf = buf;
1042         }
1043
1044         /* Do the write .. */
1045         for (;;) {
1046                 size_t size = count;
1047                 if (size > chunk)
1048                         size = chunk;
1049                 ret = -EFAULT;
1050                 if (copy_from_user(tty->write_buf, buf, size))
1051                         break;
1052                 ret = write(tty, file, tty->write_buf, size);
1053                 if (ret <= 0)
1054                         break;
1055                 written += ret;
1056                 buf += ret;
1057                 count -= ret;
1058                 if (!count)
1059                         break;
1060                 ret = -ERESTARTSYS;
1061                 if (signal_pending(current))
1062                         break;
1063                 cond_resched();
1064         }
1065         if (written) {
1066                 struct inode *inode = file->f_path.dentry->d_inode;
1067                 inode->i_mtime = current_fs_time(inode->i_sb);
1068                 ret = written;
1069         }
1070 out:
1071         tty_write_unlock(tty);
1072         return ret;
1073 }
1074
1075 /**
1076  * tty_write_message - write a message to a certain tty, not just the console.
1077  * @tty: the destination tty_struct
1078  * @msg: the message to write
1079  *
1080  * This is used for messages that need to be redirected to a specific tty.
1081  * We don't put it into the syslog queue right now maybe in the future if
1082  * really needed.
1083  *
1084  * We must still hold the BKL and test the CLOSING flag for the moment.
1085  */
1086
1087 void tty_write_message(struct tty_struct *tty, char *msg)
1088 {
1089         lock_kernel();
1090         if (tty) {
1091                 mutex_lock(&tty->atomic_write_lock);
1092                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags))
1093                         tty->ops->write(tty, msg, strlen(msg));
1094                 tty_write_unlock(tty);
1095         }
1096         unlock_kernel();
1097         return;
1098 }
1099
1100
1101 /**
1102  *      tty_write               -       write method for tty device file
1103  *      @file: tty file pointer
1104  *      @buf: user data to write
1105  *      @count: bytes to write
1106  *      @ppos: unused
1107  *
1108  *      Write data to a tty device via the line discipline.
1109  *
1110  *      Locking:
1111  *              Locks the line discipline as required
1112  *              Writes to the tty driver are serialized by the atomic_write_lock
1113  *      and are then processed in chunks to the device. The line discipline
1114  *      write method will not be involked in parallel for each device
1115  *              The line discipline write method is called under the big
1116  *      kernel lock for historical reasons. New code should not rely on this.
1117  */
1118
1119 static ssize_t tty_write(struct file *file, const char __user *buf,
1120                                                 size_t count, loff_t *ppos)
1121 {
1122         struct tty_struct *tty;
1123         struct inode *inode = file->f_path.dentry->d_inode;
1124         ssize_t ret;
1125         struct tty_ldisc *ld;
1126
1127         tty = (struct tty_struct *)file->private_data;
1128         if (tty_paranoia_check(tty, inode, "tty_write"))
1129                 return -EIO;
1130         if (!tty || !tty->ops->write ||
1131                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1132                         return -EIO;
1133         /* Short term debug to catch buggy drivers */
1134         if (tty->ops->write_room == NULL)
1135                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1136                         tty->driver->name);
1137         ld = tty_ldisc_ref_wait(tty);
1138         if (!ld->ops->write)
1139                 ret = -EIO;
1140         else
1141                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1142         tty_ldisc_deref(ld);
1143         return ret;
1144 }
1145
1146 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1147                                                 size_t count, loff_t *ppos)
1148 {
1149         struct file *p = NULL;
1150
1151         spin_lock(&redirect_lock);
1152         if (redirect) {
1153                 get_file(redirect);
1154                 p = redirect;
1155         }
1156         spin_unlock(&redirect_lock);
1157
1158         if (p) {
1159                 ssize_t res;
1160                 res = vfs_write(p, buf, count, &p->f_pos);
1161                 fput(p);
1162                 return res;
1163         }
1164         return tty_write(file, buf, count, ppos);
1165 }
1166
1167 static char ptychar[] = "pqrstuvwxyzabcde";
1168
1169 /**
1170  *      pty_line_name   -       generate name for a pty
1171  *      @driver: the tty driver in use
1172  *      @index: the minor number
1173  *      @p: output buffer of at least 6 bytes
1174  *
1175  *      Generate a name from a driver reference and write it to the output
1176  *      buffer.
1177  *
1178  *      Locking: None
1179  */
1180 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1181 {
1182         int i = index + driver->name_base;
1183         /* ->name is initialized to "ttyp", but "tty" is expected */
1184         sprintf(p, "%s%c%x",
1185                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1186                 ptychar[i >> 4 & 0xf], i & 0xf);
1187 }
1188
1189 /**
1190  *      tty_line_name   -       generate name for a tty
1191  *      @driver: the tty driver in use
1192  *      @index: the minor number
1193  *      @p: output buffer of at least 7 bytes
1194  *
1195  *      Generate a name from a driver reference and write it to the output
1196  *      buffer.
1197  *
1198  *      Locking: None
1199  */
1200 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1201 {
1202         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1203 }
1204
1205 /**
1206  *      tty_driver_lookup_tty() - find an existing tty, if any
1207  *      @driver: the driver for the tty
1208  *      @idx:    the minor number
1209  *
1210  *      Return the tty, if found or ERR_PTR() otherwise.
1211  *
1212  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1213  *      be held until the 'fast-open' is also done. Will change once we
1214  *      have refcounting in the driver and per driver locking
1215  */
1216 struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, int idx)
1217 {
1218         struct tty_struct *tty;
1219
1220         if (driver->ops->lookup)
1221                 return driver->ops->lookup(driver, idx);
1222
1223         tty = driver->ttys[idx];
1224         return tty;
1225 }
1226
1227 /**
1228  *      tty_init_termios        -  helper for termios setup
1229  *      @tty: the tty to set up
1230  *
1231  *      Initialise the termios structures for this tty. Thus runs under
1232  *      the tty_mutex currently so we can be relaxed about ordering.
1233  */
1234
1235 int tty_init_termios(struct tty_struct *tty)
1236 {
1237         struct ktermios *tp, *ltp;
1238         int idx = tty->index;
1239
1240         tp = tty->driver->termios[idx];
1241         ltp = tty->driver->termios_locked[idx];
1242         if (tp == NULL) {
1243                 WARN_ON(ltp != NULL);
1244                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1245                 ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
1246                 if (tp == NULL || ltp == NULL) {
1247                         kfree(tp);
1248                         kfree(ltp);
1249                         return -ENOMEM;
1250                 }
1251                 memcpy(tp, &tty->driver->init_termios,
1252                                                 sizeof(struct ktermios));
1253                 tty->driver->termios[idx] = tp;
1254                 tty->driver->termios_locked[idx] = ltp;
1255         }
1256         tty->termios = tp;
1257         tty->termios_locked = ltp;
1258
1259         /* Compatibility until drivers always set this */
1260         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1261         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1262         return 0;
1263 }
1264
1265 /**
1266  *      tty_driver_install_tty() - install a tty entry in the driver
1267  *      @driver: the driver for the tty
1268  *      @tty: the tty
1269  *
1270  *      Install a tty object into the driver tables. The tty->index field
1271  *      will be set by the time this is called. This method is responsible
1272  *      for ensuring any need additional structures are allocated and
1273  *      configured.
1274  *
1275  *      Locking: tty_mutex for now
1276  */
1277 static int tty_driver_install_tty(struct tty_driver *driver,
1278                                                 struct tty_struct *tty)
1279 {
1280         int idx = tty->index;
1281
1282         if (driver->ops->install)
1283                 return driver->ops->install(driver, tty);
1284
1285         if (tty_init_termios(tty) == 0) {
1286                 tty_driver_kref_get(driver);
1287                 tty->count++;
1288                 driver->ttys[idx] = tty;
1289                 return 0;
1290         }
1291         return -ENOMEM;
1292 }
1293
1294 /**
1295  *      tty_driver_remove_tty() - remove a tty from the driver tables
1296  *      @driver: the driver for the tty
1297  *      @idx:    the minor number
1298  *
1299  *      Remvoe a tty object from the driver tables. The tty->index field
1300  *      will be set by the time this is called.
1301  *
1302  *      Locking: tty_mutex for now
1303  */
1304 static void tty_driver_remove_tty(struct tty_driver *driver,
1305                                                 struct tty_struct *tty)
1306 {
1307         if (driver->ops->remove)
1308                 driver->ops->remove(driver, tty);
1309         else
1310                 driver->ttys[tty->index] = NULL;
1311 }
1312
1313 /*
1314  *      tty_reopen()    - fast re-open of an open tty
1315  *      @tty    - the tty to open
1316  *
1317  *      Return 0 on success, -errno on error.
1318  *
1319  *      Locking: tty_mutex must be held from the time the tty was found
1320  *               till this open completes.
1321  */
1322 static int tty_reopen(struct tty_struct *tty)
1323 {
1324         struct tty_driver *driver = tty->driver;
1325
1326         if (test_bit(TTY_CLOSING, &tty->flags))
1327                 return -EIO;
1328
1329         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1330             driver->subtype == PTY_TYPE_MASTER) {
1331                 /*
1332                  * special case for PTY masters: only one open permitted,
1333                  * and the slave side open count is incremented as well.
1334                  */
1335                 if (tty->count)
1336                         return -EIO;
1337
1338                 tty->link->count++;
1339         }
1340         tty->count++;
1341         tty->driver = driver; /* N.B. why do this every time?? */
1342
1343         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1344
1345         return 0;
1346 }
1347
1348 /**
1349  *      tty_init_dev            -       initialise a tty device
1350  *      @driver: tty driver we are opening a device on
1351  *      @idx: device index
1352  *      @ret_tty: returned tty structure
1353  *      @first_ok: ok to open a new device (used by ptmx)
1354  *
1355  *      Prepare a tty device. This may not be a "new" clean device but
1356  *      could also be an active device. The pty drivers require special
1357  *      handling because of this.
1358  *
1359  *      Locking:
1360  *              The function is called under the tty_mutex, which
1361  *      protects us from the tty struct or driver itself going away.
1362  *
1363  *      On exit the tty device has the line discipline attached and
1364  *      a reference count of 1. If a pair was created for pty/tty use
1365  *      and the other was a pty master then it too has a reference count of 1.
1366  *
1367  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1368  * failed open.  The new code protects the open with a mutex, so it's
1369  * really quite straightforward.  The mutex locking can probably be
1370  * relaxed for the (most common) case of reopening a tty.
1371  */
1372
1373 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1374                                                                 int first_ok)
1375 {
1376         struct tty_struct *tty;
1377         int retval;
1378
1379         /* check whether we're reopening an existing tty */
1380         tty = tty_driver_lookup_tty(driver, idx);
1381
1382         if (IS_ERR(tty))
1383                 return tty;
1384
1385         if (tty) {
1386                 retval = tty_reopen(tty);
1387                 if (retval)
1388                         return ERR_PTR(retval);
1389                 return tty;
1390         }
1391
1392         /* Check if pty master is being opened multiple times */
1393         if (driver->subtype == PTY_TYPE_MASTER &&
1394                 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok)
1395                 return ERR_PTR(-EIO);
1396
1397         /*
1398          * First time open is complex, especially for PTY devices.
1399          * This code guarantees that either everything succeeds and the
1400          * TTY is ready for operation, or else the table slots are vacated
1401          * and the allocated memory released.  (Except that the termios
1402          * and locked termios may be retained.)
1403          */
1404
1405         if (!try_module_get(driver->owner))
1406                 return ERR_PTR(-ENODEV);
1407
1408         tty = alloc_tty_struct();
1409         if (!tty)
1410                 goto fail_no_mem;
1411         initialize_tty_struct(tty, driver, idx);
1412
1413         retval = tty_driver_install_tty(driver, tty);
1414         if (retval < 0) {
1415                 free_tty_struct(tty);
1416                 module_put(driver->owner);
1417                 return ERR_PTR(retval);
1418         }
1419
1420         /*
1421          * Structures all installed ... call the ldisc open routines.
1422          * If we fail here just call release_tty to clean up.  No need
1423          * to decrement the use counts, as release_tty doesn't care.
1424          */
1425
1426         retval = tty_ldisc_setup(tty, tty->link);
1427         if (retval)
1428                 goto release_mem_out;
1429         return tty;
1430
1431 fail_no_mem:
1432         module_put(driver->owner);
1433         return ERR_PTR(-ENOMEM);
1434
1435         /* call the tty release_tty routine to clean out this slot */
1436 release_mem_out:
1437         if (printk_ratelimit())
1438                 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1439                                  "clearing slot %d\n", idx);
1440         release_tty(tty, idx);
1441         return ERR_PTR(retval);
1442 }
1443
1444 void tty_free_termios(struct tty_struct *tty)
1445 {
1446         struct ktermios *tp;
1447         int idx = tty->index;
1448         /* Kill this flag and push into drivers for locking etc */
1449         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1450                 /* FIXME: Locking on ->termios array */
1451                 tp = tty->termios;
1452                 tty->driver->termios[idx] = NULL;
1453                 kfree(tp);
1454
1455                 tp = tty->termios_locked;
1456                 tty->driver->termios_locked[idx] = NULL;
1457                 kfree(tp);
1458         }
1459 }
1460 EXPORT_SYMBOL(tty_free_termios);
1461
1462 void tty_shutdown(struct tty_struct *tty)
1463 {
1464         tty_driver_remove_tty(tty->driver, tty);
1465         tty_free_termios(tty);
1466 }
1467 EXPORT_SYMBOL(tty_shutdown);
1468
1469 /**
1470  *      release_one_tty         -       release tty structure memory
1471  *      @kref: kref of tty we are obliterating
1472  *
1473  *      Releases memory associated with a tty structure, and clears out the
1474  *      driver table slots. This function is called when a device is no longer
1475  *      in use. It also gets called when setup of a device fails.
1476  *
1477  *      Locking:
1478  *              tty_mutex - sometimes only
1479  *              takes the file list lock internally when working on the list
1480  *      of ttys that the driver keeps.
1481  */
1482 static void release_one_tty(struct kref *kref)
1483 {
1484         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1485         struct tty_driver *driver = tty->driver;
1486
1487         if (tty->ops->shutdown)
1488                 tty->ops->shutdown(tty);
1489         else
1490                 tty_shutdown(tty);
1491         tty->magic = 0;
1492         tty_driver_kref_put(driver);
1493         module_put(driver->owner);
1494
1495         file_list_lock();
1496         list_del_init(&tty->tty_files);
1497         file_list_unlock();
1498
1499         free_tty_struct(tty);
1500 }
1501
1502 /**
1503  *      tty_kref_put            -       release a tty kref
1504  *      @tty: tty device
1505  *
1506  *      Release a reference to a tty device and if need be let the kref
1507  *      layer destruct the object for us
1508  */
1509
1510 void tty_kref_put(struct tty_struct *tty)
1511 {
1512         if (tty)
1513                 kref_put(&tty->kref, release_one_tty);
1514 }
1515 EXPORT_SYMBOL(tty_kref_put);
1516
1517 /**
1518  *      release_tty             -       release tty structure memory
1519  *
1520  *      Release both @tty and a possible linked partner (think pty pair),
1521  *      and decrement the refcount of the backing module.
1522  *
1523  *      Locking:
1524  *              tty_mutex - sometimes only
1525  *              takes the file list lock internally when working on the list
1526  *      of ttys that the driver keeps.
1527  *              FIXME: should we require tty_mutex is held here ??
1528  *
1529  */
1530 static void release_tty(struct tty_struct *tty, int idx)
1531 {
1532         /* This should always be true but check for the moment */
1533         WARN_ON(tty->index != idx);
1534
1535         if (tty->link)
1536                 tty_kref_put(tty->link);
1537         tty_kref_put(tty);
1538 }
1539
1540 /*
1541  * Even releasing the tty structures is a tricky business.. We have
1542  * to be very careful that the structures are all released at the
1543  * same time, as interrupts might otherwise get the wrong pointers.
1544  *
1545  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1546  * lead to double frees or releasing memory still in use.
1547  */
1548 void tty_release_dev(struct file *filp)
1549 {
1550         struct tty_struct *tty, *o_tty;
1551         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1552         int     devpts;
1553         int     idx;
1554         char    buf[64];
1555
1556         tty = (struct tty_struct *)filp->private_data;
1557         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode,
1558                                                         "tty_release_dev"))
1559                 return;
1560
1561         check_tty_count(tty, "tty_release_dev");
1562
1563         tty_fasync(-1, filp, 0);
1564
1565         idx = tty->index;
1566         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1567                       tty->driver->subtype == PTY_TYPE_MASTER);
1568         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1569         o_tty = tty->link;
1570
1571 #ifdef TTY_PARANOIA_CHECK
1572         if (idx < 0 || idx >= tty->driver->num) {
1573                 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1574                                   "free (%s)\n", tty->name);
1575                 return;
1576         }
1577         if (!devpts) {
1578                 if (tty != tty->driver->ttys[idx]) {
1579                         printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1580                                "for (%s)\n", idx, tty->name);
1581                         return;
1582                 }
1583                 if (tty->termios != tty->driver->termios[idx]) {
1584                         printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1585                                "for (%s)\n",
1586                                idx, tty->name);
1587                         return;
1588                 }
1589                 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
1590                         printk(KERN_DEBUG "tty_release_dev: driver.termios_locked[%d] not "
1591                                "termios_locked for (%s)\n",
1592                                idx, tty->name);
1593                         return;
1594                 }
1595         }
1596 #endif
1597
1598 #ifdef TTY_DEBUG_HANGUP
1599         printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1600                tty_name(tty, buf), tty->count);
1601 #endif
1602
1603 #ifdef TTY_PARANOIA_CHECK
1604         if (tty->driver->other &&
1605              !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1606                 if (o_tty != tty->driver->other->ttys[idx]) {
1607                         printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1608                                           "not o_tty for (%s)\n",
1609                                idx, tty->name);
1610                         return;
1611                 }
1612                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1613                         printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1614                                           "not o_termios for (%s)\n",
1615                                idx, tty->name);
1616                         return;
1617                 }
1618                 if (o_tty->termios_locked !=
1619                       tty->driver->other->termios_locked[idx]) {
1620                         printk(KERN_DEBUG "tty_release_dev: other->termios_locked["
1621                                           "%d] not o_termios_locked for (%s)\n",
1622                                idx, tty->name);
1623                         return;
1624                 }
1625                 if (o_tty->link != tty) {
1626                         printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1627                         return;
1628                 }
1629         }
1630 #endif
1631         if (tty->ops->close)
1632                 tty->ops->close(tty, filp);
1633
1634         /*
1635          * Sanity check: if tty->count is going to zero, there shouldn't be
1636          * any waiters on tty->read_wait or tty->write_wait.  We test the
1637          * wait queues and kick everyone out _before_ actually starting to
1638          * close.  This ensures that we won't block while releasing the tty
1639          * structure.
1640          *
1641          * The test for the o_tty closing is necessary, since the master and
1642          * slave sides may close in any order.  If the slave side closes out
1643          * first, its count will be one, since the master side holds an open.
1644          * Thus this test wouldn't be triggered at the time the slave closes,
1645          * so we do it now.
1646          *
1647          * Note that it's possible for the tty to be opened again while we're
1648          * flushing out waiters.  By recalculating the closing flags before
1649          * each iteration we avoid any problems.
1650          */
1651         while (1) {
1652                 /* Guard against races with tty->count changes elsewhere and
1653                    opens on /dev/tty */
1654
1655                 mutex_lock(&tty_mutex);
1656                 tty_closing = tty->count <= 1;
1657                 o_tty_closing = o_tty &&
1658                         (o_tty->count <= (pty_master ? 1 : 0));
1659                 do_sleep = 0;
1660
1661                 if (tty_closing) {
1662                         if (waitqueue_active(&tty->read_wait)) {
1663                                 wake_up(&tty->read_wait);
1664                                 do_sleep++;
1665                         }
1666                         if (waitqueue_active(&tty->write_wait)) {
1667                                 wake_up(&tty->write_wait);
1668                                 do_sleep++;
1669                         }
1670                 }
1671                 if (o_tty_closing) {
1672                         if (waitqueue_active(&o_tty->read_wait)) {
1673                                 wake_up(&o_tty->read_wait);
1674                                 do_sleep++;
1675                         }
1676                         if (waitqueue_active(&o_tty->write_wait)) {
1677                                 wake_up(&o_tty->write_wait);
1678                                 do_sleep++;
1679                         }
1680                 }
1681                 if (!do_sleep)
1682                         break;
1683
1684                 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1685                                     "active!\n", tty_name(tty, buf));
1686                 mutex_unlock(&tty_mutex);
1687                 schedule();
1688         }
1689
1690         /*
1691          * The closing flags are now consistent with the open counts on
1692          * both sides, and we've completed the last operation that could
1693          * block, so it's safe to proceed with closing.
1694          */
1695         if (pty_master) {
1696                 if (--o_tty->count < 0) {
1697                         printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1698                                             "(%d) for %s\n",
1699                                o_tty->count, tty_name(o_tty, buf));
1700                         o_tty->count = 0;
1701                 }
1702         }
1703         if (--tty->count < 0) {
1704                 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1705                        tty->count, tty_name(tty, buf));
1706                 tty->count = 0;
1707         }
1708
1709         /*
1710          * We've decremented tty->count, so we need to remove this file
1711          * descriptor off the tty->tty_files list; this serves two
1712          * purposes:
1713          *  - check_tty_count sees the correct number of file descriptors
1714          *    associated with this tty.
1715          *  - do_tty_hangup no longer sees this file descriptor as
1716          *    something that needs to be handled for hangups.
1717          */
1718         file_kill(filp);
1719         filp->private_data = NULL;
1720
1721         /*
1722          * Perform some housekeeping before deciding whether to return.
1723          *
1724          * Set the TTY_CLOSING flag if this was the last open.  In the
1725          * case of a pty we may have to wait around for the other side
1726          * to close, and TTY_CLOSING makes sure we can't be reopened.
1727          */
1728         if (tty_closing)
1729                 set_bit(TTY_CLOSING, &tty->flags);
1730         if (o_tty_closing)
1731                 set_bit(TTY_CLOSING, &o_tty->flags);
1732
1733         /*
1734          * If _either_ side is closing, make sure there aren't any
1735          * processes that still think tty or o_tty is their controlling
1736          * tty.
1737          */
1738         if (tty_closing || o_tty_closing) {
1739                 read_lock(&tasklist_lock);
1740                 session_clear_tty(tty->session);
1741                 if (o_tty)
1742                         session_clear_tty(o_tty->session);
1743                 read_unlock(&tasklist_lock);
1744         }
1745
1746         mutex_unlock(&tty_mutex);
1747
1748         /* check whether both sides are closing ... */
1749         if (!tty_closing || (o_tty && !o_tty_closing))
1750                 return;
1751
1752 #ifdef TTY_DEBUG_HANGUP
1753         printk(KERN_DEBUG "freeing tty structure...");
1754 #endif
1755         /*
1756          * Ask the line discipline code to release its structures
1757          */
1758         tty_ldisc_release(tty, o_tty);
1759         /*
1760          * The release_tty function takes care of the details of clearing
1761          * the slots and preserving the termios structure.
1762          */
1763         release_tty(tty, idx);
1764
1765         /* Make this pty number available for reallocation */
1766         if (devpts)
1767                 devpts_kill_index(idx);
1768 }
1769
1770 /**
1771  *      __tty_open              -       open a tty device
1772  *      @inode: inode of device file
1773  *      @filp: file pointer to tty
1774  *
1775  *      tty_open and tty_release keep up the tty count that contains the
1776  *      number of opens done on a tty. We cannot use the inode-count, as
1777  *      different inodes might point to the same tty.
1778  *
1779  *      Open-counting is needed for pty masters, as well as for keeping
1780  *      track of serial lines: DTR is dropped when the last close happens.
1781  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1782  *
1783  *      The termios state of a pty is reset on first open so that
1784  *      settings don't persist across reuse.
1785  *
1786  *      Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1787  *               tty->count should protect the rest.
1788  *               ->siglock protects ->signal/->sighand
1789  */
1790
1791 static int __tty_open(struct inode *inode, struct file *filp)
1792 {
1793         struct tty_struct *tty;
1794         int noctty, retval;
1795         struct tty_driver *driver;
1796         int index;
1797         dev_t device = inode->i_rdev;
1798         unsigned short saved_flags = filp->f_flags;
1799
1800         nonseekable_open(inode, filp);
1801
1802 retry_open:
1803         noctty = filp->f_flags & O_NOCTTY;
1804         index  = -1;
1805         retval = 0;
1806
1807         mutex_lock(&tty_mutex);
1808
1809         if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1810                 tty = get_current_tty();
1811                 if (!tty) {
1812                         mutex_unlock(&tty_mutex);
1813                         return -ENXIO;
1814                 }
1815                 driver = tty_driver_kref_get(tty->driver);
1816                 index = tty->index;
1817                 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1818                 /* noctty = 1; */
1819                 /* FIXME: Should we take a driver reference ? */
1820                 tty_kref_put(tty);
1821                 goto got_driver;
1822         }
1823 #ifdef CONFIG_VT
1824         if (device == MKDEV(TTY_MAJOR, 0)) {
1825                 extern struct tty_driver *console_driver;
1826                 driver = tty_driver_kref_get(console_driver);
1827                 index = fg_console;
1828                 noctty = 1;
1829                 goto got_driver;
1830         }
1831 #endif
1832         if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1833                 driver = tty_driver_kref_get(console_device(&index));
1834                 if (driver) {
1835                         /* Don't let /dev/console block */
1836                         filp->f_flags |= O_NONBLOCK;
1837                         noctty = 1;
1838                         goto got_driver;
1839                 }
1840                 mutex_unlock(&tty_mutex);
1841                 return -ENODEV;
1842         }
1843
1844         driver = get_tty_driver(device, &index);
1845         if (!driver) {
1846                 mutex_unlock(&tty_mutex);
1847                 return -ENODEV;
1848         }
1849 got_driver:
1850         tty = tty_init_dev(driver, index, 0);
1851         mutex_unlock(&tty_mutex);
1852         tty_driver_kref_put(driver);
1853         if (IS_ERR(tty))
1854                 return PTR_ERR(tty);
1855
1856         filp->private_data = tty;
1857         file_move(filp, &tty->tty_files);
1858         check_tty_count(tty, "tty_open");
1859         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1860             tty->driver->subtype == PTY_TYPE_MASTER)
1861                 noctty = 1;
1862 #ifdef TTY_DEBUG_HANGUP
1863         printk(KERN_DEBUG "opening %s...", tty->name);
1864 #endif
1865         if (!retval) {
1866                 if (tty->ops->open)
1867                         retval = tty->ops->open(tty, filp);
1868                 else
1869                         retval = -ENODEV;
1870         }
1871         filp->f_flags = saved_flags;
1872
1873         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1874                                                 !capable(CAP_SYS_ADMIN))
1875                 retval = -EBUSY;
1876
1877         if (retval) {
1878 #ifdef TTY_DEBUG_HANGUP
1879                 printk(KERN_DEBUG "error %d in opening %s...", retval,
1880                        tty->name);
1881 #endif
1882                 tty_release_dev(filp);
1883                 if (retval != -ERESTARTSYS)
1884                         return retval;
1885                 if (signal_pending(current))
1886                         return retval;
1887                 schedule();
1888                 /*
1889                  * Need to reset f_op in case a hangup happened.
1890                  */
1891                 if (filp->f_op == &hung_up_tty_fops)
1892                         filp->f_op = &tty_fops;
1893                 goto retry_open;
1894         }
1895
1896         mutex_lock(&tty_mutex);
1897         spin_lock_irq(&current->sighand->siglock);
1898         if (!noctty &&
1899             current->signal->leader &&
1900             !current->signal->tty &&
1901             tty->session == NULL)
1902                 __proc_set_tty(current, tty);
1903         spin_unlock_irq(&current->sighand->siglock);
1904         mutex_unlock(&tty_mutex);
1905         return 0;
1906 }
1907
1908 /* BKL pushdown: scary code avoidance wrapper */
1909 static int tty_open(struct inode *inode, struct file *filp)
1910 {
1911         int ret;
1912
1913         lock_kernel();
1914         ret = __tty_open(inode, filp);
1915         unlock_kernel();
1916         return ret;
1917 }
1918
1919
1920
1921
1922 /**
1923  *      tty_release             -       vfs callback for close
1924  *      @inode: inode of tty
1925  *      @filp: file pointer for handle to tty
1926  *
1927  *      Called the last time each file handle is closed that references
1928  *      this tty. There may however be several such references.
1929  *
1930  *      Locking:
1931  *              Takes bkl. See tty_release_dev
1932  */
1933
1934 static int tty_release(struct inode *inode, struct file *filp)
1935 {
1936         lock_kernel();
1937         tty_release_dev(filp);
1938         unlock_kernel();
1939         return 0;
1940 }
1941
1942 /**
1943  *      tty_poll        -       check tty status
1944  *      @filp: file being polled
1945  *      @wait: poll wait structures to update
1946  *
1947  *      Call the line discipline polling method to obtain the poll
1948  *      status of the device.
1949  *
1950  *      Locking: locks called line discipline but ldisc poll method
1951  *      may be re-entered freely by other callers.
1952  */
1953
1954 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1955 {
1956         struct tty_struct *tty;
1957         struct tty_ldisc *ld;
1958         int ret = 0;
1959
1960         tty = (struct tty_struct *)filp->private_data;
1961         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1962                 return 0;
1963
1964         ld = tty_ldisc_ref_wait(tty);
1965         if (ld->ops->poll)
1966                 ret = (ld->ops->poll)(tty, filp, wait);
1967         tty_ldisc_deref(ld);
1968         return ret;
1969 }
1970
1971 static int tty_fasync(int fd, struct file *filp, int on)
1972 {
1973         struct tty_struct *tty;
1974         unsigned long flags;
1975         int retval = 0;
1976
1977         lock_kernel();
1978         tty = (struct tty_struct *)filp->private_data;
1979         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1980                 goto out;
1981
1982         retval = fasync_helper(fd, filp, on, &tty->fasync);
1983         if (retval <= 0)
1984                 goto out;
1985
1986         if (on) {
1987                 enum pid_type type;
1988                 struct pid *pid;
1989                 if (!waitqueue_active(&tty->read_wait))
1990                         tty->minimum_to_wake = 1;
1991                 spin_lock_irqsave(&tty->ctrl_lock, flags);
1992                 if (tty->pgrp) {
1993                         pid = tty->pgrp;
1994                         type = PIDTYPE_PGID;
1995                 } else {
1996                         pid = task_pid(current);
1997                         type = PIDTYPE_PID;
1998                 }
1999                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2000                 retval = __f_setown(filp, pid, type, 0);
2001                 if (retval)
2002                         goto out;
2003         } else {
2004                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2005                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2006         }
2007         retval = 0;
2008 out:
2009         unlock_kernel();
2010         return retval;
2011 }
2012
2013 /**
2014  *      tiocsti                 -       fake input character
2015  *      @tty: tty to fake input into
2016  *      @p: pointer to character
2017  *
2018  *      Fake input to a tty device. Does the necessary locking and
2019  *      input management.
2020  *
2021  *      FIXME: does not honour flow control ??
2022  *
2023  *      Locking:
2024  *              Called functions take tty_ldisc_lock
2025  *              current->signal->tty check is safe without locks
2026  *
2027  *      FIXME: may race normal receive processing
2028  */
2029
2030 static int tiocsti(struct tty_struct *tty, char __user *p)
2031 {
2032         char ch, mbz = 0;
2033         struct tty_ldisc *ld;
2034
2035         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2036                 return -EPERM;
2037         if (get_user(ch, p))
2038                 return -EFAULT;
2039         ld = tty_ldisc_ref_wait(tty);
2040         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2041         tty_ldisc_deref(ld);
2042         return 0;
2043 }
2044
2045 /**
2046  *      tiocgwinsz              -       implement window query ioctl
2047  *      @tty; tty
2048  *      @arg: user buffer for result
2049  *
2050  *      Copies the kernel idea of the window size into the user buffer.
2051  *
2052  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2053  *              is consistent.
2054  */
2055
2056 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2057 {
2058         int err;
2059
2060         mutex_lock(&tty->termios_mutex);
2061         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2062         mutex_unlock(&tty->termios_mutex);
2063
2064         return err ? -EFAULT: 0;
2065 }
2066
2067 /**
2068  *      tty_do_resize           -       resize event
2069  *      @tty: tty being resized
2070  *      @real_tty: real tty (not the same as tty if using a pty/tty pair)
2071  *      @rows: rows (character)
2072  *      @cols: cols (character)
2073  *
2074  *      Update the termios variables and send the neccessary signals to
2075  *      peform a terminal resize correctly
2076  */
2077
2078 int tty_do_resize(struct tty_struct *tty, struct tty_struct *real_tty,
2079                                         struct winsize *ws)
2080 {
2081         struct pid *pgrp, *rpgrp;
2082         unsigned long flags;
2083
2084         /* For a PTY we need to lock the tty side */
2085         mutex_lock(&real_tty->termios_mutex);
2086         if (!memcmp(ws, &real_tty->winsize, sizeof(*ws)))
2087                 goto done;
2088         /* Get the PID values and reference them so we can
2089            avoid holding the tty ctrl lock while sending signals */
2090         spin_lock_irqsave(&tty->ctrl_lock, flags);
2091         pgrp = get_pid(tty->pgrp);
2092         rpgrp = get_pid(real_tty->pgrp);
2093         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2094
2095         if (pgrp)
2096                 kill_pgrp(pgrp, SIGWINCH, 1);
2097         if (rpgrp != pgrp && rpgrp)
2098                 kill_pgrp(rpgrp, SIGWINCH, 1);
2099
2100         put_pid(pgrp);
2101         put_pid(rpgrp);
2102
2103         tty->winsize = *ws;
2104         real_tty->winsize = *ws;
2105 done:
2106         mutex_unlock(&real_tty->termios_mutex);
2107         return 0;
2108 }
2109
2110 /**
2111  *      tiocswinsz              -       implement window size set ioctl
2112  *      @tty; tty
2113  *      @arg: user buffer for result
2114  *
2115  *      Copies the user idea of the window size to the kernel. Traditionally
2116  *      this is just advisory information but for the Linux console it
2117  *      actually has driver level meaning and triggers a VC resize.
2118  *
2119  *      Locking:
2120  *              Driver dependant. The default do_resize method takes the
2121  *      tty termios mutex and ctrl_lock. The console takes its own lock
2122  *      then calls into the default method.
2123  */
2124
2125 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2126         struct winsize __user *arg)
2127 {
2128         struct winsize tmp_ws;
2129         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2130                 return -EFAULT;
2131
2132         if (tty->ops->resize)
2133                 return tty->ops->resize(tty, real_tty, &tmp_ws);
2134         else
2135                 return tty_do_resize(tty, real_tty, &tmp_ws);
2136 }
2137
2138 /**
2139  *      tioccons        -       allow admin to move logical console
2140  *      @file: the file to become console
2141  *
2142  *      Allow the adminstrator to move the redirected console device
2143  *
2144  *      Locking: uses redirect_lock to guard the redirect information
2145  */
2146
2147 static int tioccons(struct file *file)
2148 {
2149         if (!capable(CAP_SYS_ADMIN))
2150                 return -EPERM;
2151         if (file->f_op->write == redirected_tty_write) {
2152                 struct file *f;
2153                 spin_lock(&redirect_lock);
2154                 f = redirect;
2155                 redirect = NULL;
2156                 spin_unlock(&redirect_lock);
2157                 if (f)
2158                         fput(f);
2159                 return 0;
2160         }
2161         spin_lock(&redirect_lock);
2162         if (redirect) {
2163                 spin_unlock(&redirect_lock);
2164                 return -EBUSY;
2165         }
2166         get_file(file);
2167         redirect = file;
2168         spin_unlock(&redirect_lock);
2169         return 0;
2170 }
2171
2172 /**
2173  *      fionbio         -       non blocking ioctl
2174  *      @file: file to set blocking value
2175  *      @p: user parameter
2176  *
2177  *      Historical tty interfaces had a blocking control ioctl before
2178  *      the generic functionality existed. This piece of history is preserved
2179  *      in the expected tty API of posix OS's.
2180  *
2181  *      Locking: none, the open fle handle ensures it won't go away.
2182  */
2183
2184 static int fionbio(struct file *file, int __user *p)
2185 {
2186         int nonblock;
2187
2188         if (get_user(nonblock, p))
2189                 return -EFAULT;
2190
2191         /* file->f_flags is still BKL protected in the fs layer - vomit */
2192         lock_kernel();
2193         if (nonblock)
2194                 file->f_flags |= O_NONBLOCK;
2195         else
2196                 file->f_flags &= ~O_NONBLOCK;
2197         unlock_kernel();
2198         return 0;
2199 }
2200
2201 /**
2202  *      tiocsctty       -       set controlling tty
2203  *      @tty: tty structure
2204  *      @arg: user argument
2205  *
2206  *      This ioctl is used to manage job control. It permits a session
2207  *      leader to set this tty as the controlling tty for the session.
2208  *
2209  *      Locking:
2210  *              Takes tty_mutex() to protect tty instance
2211  *              Takes tasklist_lock internally to walk sessions
2212  *              Takes ->siglock() when updating signal->tty
2213  */
2214
2215 static int tiocsctty(struct tty_struct *tty, int arg)
2216 {
2217         int ret = 0;
2218         if (current->signal->leader && (task_session(current) == tty->session))
2219                 return ret;
2220
2221         mutex_lock(&tty_mutex);
2222         /*
2223          * The process must be a session leader and
2224          * not have a controlling tty already.
2225          */
2226         if (!current->signal->leader || current->signal->tty) {
2227                 ret = -EPERM;
2228                 goto unlock;
2229         }
2230
2231         if (tty->session) {
2232                 /*
2233                  * This tty is already the controlling
2234                  * tty for another session group!
2235                  */
2236                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2237                         /*
2238                          * Steal it away
2239                          */
2240                         read_lock(&tasklist_lock);
2241                         session_clear_tty(tty->session);
2242                         read_unlock(&tasklist_lock);
2243                 } else {
2244                         ret = -EPERM;
2245                         goto unlock;
2246                 }
2247         }
2248         proc_set_tty(current, tty);
2249 unlock:
2250         mutex_unlock(&tty_mutex);
2251         return ret;
2252 }
2253
2254 /**
2255  *      tty_get_pgrp    -       return a ref counted pgrp pid
2256  *      @tty: tty to read
2257  *
2258  *      Returns a refcounted instance of the pid struct for the process
2259  *      group controlling the tty.
2260  */
2261
2262 struct pid *tty_get_pgrp(struct tty_struct *tty)
2263 {
2264         unsigned long flags;
2265         struct pid *pgrp;
2266
2267         spin_lock_irqsave(&tty->ctrl_lock, flags);
2268         pgrp = get_pid(tty->pgrp);
2269         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2270
2271         return pgrp;
2272 }
2273 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2274
2275 /**
2276  *      tiocgpgrp               -       get process group
2277  *      @tty: tty passed by user
2278  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2279  *      @p: returned pid
2280  *
2281  *      Obtain the process group of the tty. If there is no process group
2282  *      return an error.
2283  *
2284  *      Locking: none. Reference to current->signal->tty is safe.
2285  */
2286
2287 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2288 {
2289         struct pid *pid;
2290         int ret;
2291         /*
2292          * (tty == real_tty) is a cheap way of
2293          * testing if the tty is NOT a master pty.
2294          */
2295         if (tty == real_tty && current->signal->tty != real_tty)
2296                 return -ENOTTY;
2297         pid = tty_get_pgrp(real_tty);
2298         ret =  put_user(pid_vnr(pid), p);
2299         put_pid(pid);
2300         return ret;
2301 }
2302
2303 /**
2304  *      tiocspgrp               -       attempt to set process group
2305  *      @tty: tty passed by user
2306  *      @real_tty: tty side device matching tty passed by user
2307  *      @p: pid pointer
2308  *
2309  *      Set the process group of the tty to the session passed. Only
2310  *      permitted where the tty session is our session.
2311  *
2312  *      Locking: RCU, ctrl lock
2313  */
2314
2315 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2316 {
2317         struct pid *pgrp;
2318         pid_t pgrp_nr;
2319         int retval = tty_check_change(real_tty);
2320         unsigned long flags;
2321
2322         if (retval == -EIO)
2323                 return -ENOTTY;
2324         if (retval)
2325                 return retval;
2326         if (!current->signal->tty ||
2327             (current->signal->tty != real_tty) ||
2328             (real_tty->session != task_session(current)))
2329                 return -ENOTTY;
2330         if (get_user(pgrp_nr, p))
2331                 return -EFAULT;
2332         if (pgrp_nr < 0)
2333                 return -EINVAL;
2334         rcu_read_lock();
2335         pgrp = find_vpid(pgrp_nr);
2336         retval = -ESRCH;
2337         if (!pgrp)
2338                 goto out_unlock;
2339         retval = -EPERM;
2340         if (session_of_pgrp(pgrp) != task_session(current))
2341                 goto out_unlock;
2342         retval = 0;
2343         spin_lock_irqsave(&tty->ctrl_lock, flags);
2344         put_pid(real_tty->pgrp);
2345         real_tty->pgrp = get_pid(pgrp);
2346         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2347 out_unlock:
2348         rcu_read_unlock();
2349         return retval;
2350 }
2351
2352 /**
2353  *      tiocgsid                -       get session id
2354  *      @tty: tty passed by user
2355  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2356  *      @p: pointer to returned session id
2357  *
2358  *      Obtain the session id of the tty. If there is no session
2359  *      return an error.
2360  *
2361  *      Locking: none. Reference to current->signal->tty is safe.
2362  */
2363
2364 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2365 {
2366         /*
2367          * (tty == real_tty) is a cheap way of
2368          * testing if the tty is NOT a master pty.
2369         */
2370         if (tty == real_tty && current->signal->tty != real_tty)
2371                 return -ENOTTY;
2372         if (!real_tty->session)
2373                 return -ENOTTY;
2374         return put_user(pid_vnr(real_tty->session), p);
2375 }
2376
2377 /**
2378  *      tiocsetd        -       set line discipline
2379  *      @tty: tty device
2380  *      @p: pointer to user data
2381  *
2382  *      Set the line discipline according to user request.
2383  *
2384  *      Locking: see tty_set_ldisc, this function is just a helper
2385  */
2386
2387 static int tiocsetd(struct tty_struct *tty, int __user *p)
2388 {
2389         int ldisc;
2390         int ret;
2391
2392         if (get_user(ldisc, p))
2393                 return -EFAULT;
2394
2395         lock_kernel();
2396         ret = tty_set_ldisc(tty, ldisc);
2397         unlock_kernel();
2398
2399         return ret;
2400 }
2401
2402 /**
2403  *      send_break      -       performed time break
2404  *      @tty: device to break on
2405  *      @duration: timeout in mS
2406  *
2407  *      Perform a timed break on hardware that lacks its own driver level
2408  *      timed break functionality.
2409  *
2410  *      Locking:
2411  *              atomic_write_lock serializes
2412  *
2413  */
2414
2415 static int send_break(struct tty_struct *tty, unsigned int duration)
2416 {
2417         int retval;
2418
2419         if (tty->ops->break_ctl == NULL)
2420                 return 0;
2421
2422         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2423                 retval = tty->ops->break_ctl(tty, duration);
2424         else {
2425                 /* Do the work ourselves */
2426                 if (tty_write_lock(tty, 0) < 0)
2427                         return -EINTR;
2428                 retval = tty->ops->break_ctl(tty, -1);
2429                 if (retval)
2430                         goto out;
2431                 if (!signal_pending(current))
2432                         msleep_interruptible(duration);
2433                 retval = tty->ops->break_ctl(tty, 0);
2434 out:
2435                 tty_write_unlock(tty);
2436                 if (signal_pending(current))
2437                         retval = -EINTR;
2438         }
2439         return retval;
2440 }
2441
2442 /**
2443  *      tty_tiocmget            -       get modem status
2444  *      @tty: tty device
2445  *      @file: user file pointer
2446  *      @p: pointer to result
2447  *
2448  *      Obtain the modem status bits from the tty driver if the feature
2449  *      is supported. Return -EINVAL if it is not available.
2450  *
2451  *      Locking: none (up to the driver)
2452  */
2453
2454 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2455 {
2456         int retval = -EINVAL;
2457
2458         if (tty->ops->tiocmget) {
2459                 retval = tty->ops->tiocmget(tty, file);
2460
2461                 if (retval >= 0)
2462                         retval = put_user(retval, p);
2463         }
2464         return retval;
2465 }
2466
2467 /**
2468  *      tty_tiocmset            -       set modem status
2469  *      @tty: tty device
2470  *      @file: user file pointer
2471  *      @cmd: command - clear bits, set bits or set all
2472  *      @p: pointer to desired bits
2473  *
2474  *      Set the modem status bits from the tty driver if the feature
2475  *      is supported. Return -EINVAL if it is not available.
2476  *
2477  *      Locking: none (up to the driver)
2478  */
2479
2480 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2481              unsigned __user *p)
2482 {
2483         int retval;
2484         unsigned int set, clear, val;
2485
2486         if (tty->ops->tiocmset == NULL)
2487                 return -EINVAL;
2488
2489         retval = get_user(val, p);
2490         if (retval)
2491                 return retval;
2492         set = clear = 0;
2493         switch (cmd) {
2494         case TIOCMBIS:
2495                 set = val;
2496                 break;
2497         case TIOCMBIC:
2498                 clear = val;
2499                 break;
2500         case TIOCMSET:
2501                 set = val;
2502                 clear = ~val;
2503                 break;
2504         }
2505         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2506         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2507         return tty->ops->tiocmset(tty, file, set, clear);
2508 }
2509
2510 /*
2511  * Split this up, as gcc can choke on it otherwise..
2512  */
2513 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2514 {
2515         struct tty_struct *tty, *real_tty;
2516         void __user *p = (void __user *)arg;
2517         int retval;
2518         struct tty_ldisc *ld;
2519         struct inode *inode = file->f_dentry->d_inode;
2520
2521         tty = (struct tty_struct *)file->private_data;
2522         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2523                 return -EINVAL;
2524
2525         real_tty = tty;
2526         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2527             tty->driver->subtype == PTY_TYPE_MASTER)
2528                 real_tty = tty->link;
2529
2530
2531         /*
2532          * Factor out some common prep work
2533          */
2534         switch (cmd) {
2535         case TIOCSETD:
2536         case TIOCSBRK:
2537         case TIOCCBRK:
2538         case TCSBRK:
2539         case TCSBRKP:
2540                 retval = tty_check_change(tty);
2541                 if (retval)
2542                         return retval;
2543                 if (cmd != TIOCCBRK) {
2544                         tty_wait_until_sent(tty, 0);
2545                         if (signal_pending(current))
2546                                 return -EINTR;
2547                 }
2548                 break;
2549         }
2550
2551         /*
2552          *      Now do the stuff.
2553          */
2554         switch (cmd) {
2555         case TIOCSTI:
2556                 return tiocsti(tty, p);
2557         case TIOCGWINSZ:
2558                 return tiocgwinsz(real_tty, p);
2559         case TIOCSWINSZ:
2560                 return tiocswinsz(tty, real_tty, p);
2561         case TIOCCONS:
2562                 return real_tty != tty ? -EINVAL : tioccons(file);
2563         case FIONBIO:
2564                 return fionbio(file, p);
2565         case TIOCEXCL:
2566                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2567                 return 0;
2568         case TIOCNXCL:
2569                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2570                 return 0;
2571         case TIOCNOTTY:
2572                 if (current->signal->tty != tty)
2573                         return -ENOTTY;
2574                 no_tty();
2575                 return 0;
2576         case TIOCSCTTY:
2577                 return tiocsctty(tty, arg);
2578         case TIOCGPGRP:
2579                 return tiocgpgrp(tty, real_tty, p);
2580         case TIOCSPGRP:
2581                 return tiocspgrp(tty, real_tty, p);
2582         case TIOCGSID:
2583                 return tiocgsid(tty, real_tty, p);
2584         case TIOCGETD:
2585                 return put_user(tty->ldisc.ops->num, (int __user *)p);
2586         case TIOCSETD:
2587                 return tiocsetd(tty, p);
2588         /*
2589          * Break handling
2590          */
2591         case TIOCSBRK:  /* Turn break on, unconditionally */
2592                 if (tty->ops->break_ctl)
2593                         return tty->ops->break_ctl(tty, -1);
2594                 return 0;
2595         case TIOCCBRK:  /* Turn break off, unconditionally */
2596                 if (tty->ops->break_ctl)
2597                         return tty->ops->break_ctl(tty, 0);
2598                 return 0;
2599         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2600                 /* non-zero arg means wait for all output data
2601                  * to be sent (performed above) but don't send break.
2602                  * This is used by the tcdrain() termios function.
2603                  */
2604                 if (!arg)
2605                         return send_break(tty, 250);
2606                 return 0;
2607         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2608                 return send_break(tty, arg ? arg*100 : 250);
2609
2610         case TIOCMGET:
2611                 return tty_tiocmget(tty, file, p);
2612         case TIOCMSET:
2613         case TIOCMBIC:
2614         case TIOCMBIS:
2615                 return tty_tiocmset(tty, file, cmd, p);
2616         case TCFLSH:
2617                 switch (arg) {
2618                 case TCIFLUSH:
2619                 case TCIOFLUSH:
2620                 /* flush tty buffer and allow ldisc to process ioctl */
2621                         tty_buffer_flush(tty);
2622                         break;
2623                 }
2624                 break;
2625         }
2626         if (tty->ops->ioctl) {
2627                 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2628                 if (retval != -ENOIOCTLCMD)
2629                         return retval;
2630         }
2631         ld = tty_ldisc_ref_wait(tty);
2632         retval = -EINVAL;
2633         if (ld->ops->ioctl) {
2634                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2635                 if (retval == -ENOIOCTLCMD)
2636                         retval = -EINVAL;
2637         }
2638         tty_ldisc_deref(ld);
2639         return retval;
2640 }
2641
2642 #ifdef CONFIG_COMPAT
2643 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2644                                 unsigned long arg)
2645 {
2646         struct inode *inode = file->f_dentry->d_inode;
2647         struct tty_struct *tty = file->private_data;
2648         struct tty_ldisc *ld;
2649         int retval = -ENOIOCTLCMD;
2650
2651         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2652                 return -EINVAL;
2653
2654         if (tty->ops->compat_ioctl) {
2655                 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2656                 if (retval != -ENOIOCTLCMD)
2657                         return retval;
2658         }
2659
2660         ld = tty_ldisc_ref_wait(tty);
2661         if (ld->ops->compat_ioctl)
2662                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2663         tty_ldisc_deref(ld);
2664
2665         return retval;
2666 }
2667 #endif
2668
2669 /*
2670  * This implements the "Secure Attention Key" ---  the idea is to
2671  * prevent trojan horses by killing all processes associated with this
2672  * tty when the user hits the "Secure Attention Key".  Required for
2673  * super-paranoid applications --- see the Orange Book for more details.
2674  *
2675  * This code could be nicer; ideally it should send a HUP, wait a few
2676  * seconds, then send a INT, and then a KILL signal.  But you then
2677  * have to coordinate with the init process, since all processes associated
2678  * with the current tty must be dead before the new getty is allowed
2679  * to spawn.
2680  *
2681  * Now, if it would be correct ;-/ The current code has a nasty hole -
2682  * it doesn't catch files in flight. We may send the descriptor to ourselves
2683  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2684  *
2685  * Nasty bug: do_SAK is being called in interrupt context.  This can
2686  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2687  */
2688 void __do_SAK(struct tty_struct *tty)
2689 {
2690 #ifdef TTY_SOFT_SAK
2691         tty_hangup(tty);
2692 #else
2693         struct task_struct *g, *p;
2694         struct pid *session;
2695         int             i;
2696         struct file     *filp;
2697         struct fdtable *fdt;
2698
2699         if (!tty)
2700                 return;
2701         session = tty->session;
2702
2703         tty_ldisc_flush(tty);
2704
2705         tty_driver_flush_buffer(tty);
2706
2707         read_lock(&tasklist_lock);
2708         /* Kill the entire session */
2709         do_each_pid_task(session, PIDTYPE_SID, p) {
2710                 printk(KERN_NOTICE "SAK: killed process %d"
2711                         " (%s): task_session_nr(p)==tty->session\n",
2712                         task_pid_nr(p), p->comm);
2713                 send_sig(SIGKILL, p, 1);
2714         } while_each_pid_task(session, PIDTYPE_SID, p);
2715         /* Now kill any processes that happen to have the
2716          * tty open.
2717          */
2718         do_each_thread(g, p) {
2719                 if (p->signal->tty == tty) {
2720                         printk(KERN_NOTICE "SAK: killed process %d"
2721                             " (%s): task_session_nr(p)==tty->session\n",
2722                             task_pid_nr(p), p->comm);
2723                         send_sig(SIGKILL, p, 1);
2724                         continue;
2725                 }
2726                 task_lock(p);
2727                 if (p->files) {
2728                         /*
2729                          * We don't take a ref to the file, so we must
2730                          * hold ->file_lock instead.
2731                          */
2732                         spin_lock(&p->files->file_lock);
2733                         fdt = files_fdtable(p->files);
2734                         for (i = 0; i < fdt->max_fds; i++) {
2735                                 filp = fcheck_files(p->files, i);
2736                                 if (!filp)
2737                                         continue;
2738                                 if (filp->f_op->read == tty_read &&
2739                                     filp->private_data == tty) {
2740                                         printk(KERN_NOTICE "SAK: killed process %d"
2741                                             " (%s): fd#%d opened to the tty\n",
2742                                             task_pid_nr(p), p->comm, i);
2743                                         force_sig(SIGKILL, p);
2744                                         break;
2745                                 }
2746                         }
2747                         spin_unlock(&p->files->file_lock);
2748                 }
2749                 task_unlock(p);
2750         } while_each_thread(g, p);
2751         read_unlock(&tasklist_lock);
2752 #endif
2753 }
2754
2755 static void do_SAK_work(struct work_struct *work)
2756 {
2757         struct tty_struct *tty =
2758                 container_of(work, struct tty_struct, SAK_work);
2759         __do_SAK(tty);
2760 }
2761
2762 /*
2763  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2764  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2765  * the values which we write to it will be identical to the values which it
2766  * already has. --akpm
2767  */
2768 void do_SAK(struct tty_struct *tty)
2769 {
2770         if (!tty)
2771                 return;
2772         schedule_work(&tty->SAK_work);
2773 }
2774
2775 EXPORT_SYMBOL(do_SAK);
2776
2777 /**
2778  *      initialize_tty_struct
2779  *      @tty: tty to initialize
2780  *
2781  *      This subroutine initializes a tty structure that has been newly
2782  *      allocated.
2783  *
2784  *      Locking: none - tty in question must not be exposed at this point
2785  */
2786
2787 void initialize_tty_struct(struct tty_struct *tty,
2788                 struct tty_driver *driver, int idx)
2789 {
2790         memset(tty, 0, sizeof(struct tty_struct));
2791         kref_init(&tty->kref);
2792         tty->magic = TTY_MAGIC;
2793         tty_ldisc_init(tty);
2794         tty->session = NULL;
2795         tty->pgrp = NULL;
2796         tty->overrun_time = jiffies;
2797         tty->buf.head = tty->buf.tail = NULL;
2798         tty_buffer_init(tty);
2799         mutex_init(&tty->termios_mutex);
2800         init_waitqueue_head(&tty->write_wait);
2801         init_waitqueue_head(&tty->read_wait);
2802         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2803         mutex_init(&tty->atomic_read_lock);
2804         mutex_init(&tty->atomic_write_lock);
2805         spin_lock_init(&tty->read_lock);
2806         spin_lock_init(&tty->ctrl_lock);
2807         INIT_LIST_HEAD(&tty->tty_files);
2808         INIT_WORK(&tty->SAK_work, do_SAK_work);
2809
2810         tty->driver = driver;
2811         tty->ops = driver->ops;
2812         tty->index = idx;
2813         tty_line_name(driver, idx, tty->name);
2814 }
2815
2816 /**
2817  *      tty_put_char    -       write one character to a tty
2818  *      @tty: tty
2819  *      @ch: character
2820  *
2821  *      Write one byte to the tty using the provided put_char method
2822  *      if present. Returns the number of characters successfully output.
2823  *
2824  *      Note: the specific put_char operation in the driver layer may go
2825  *      away soon. Don't call it directly, use this method
2826  */
2827
2828 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2829 {
2830         if (tty->ops->put_char)
2831                 return tty->ops->put_char(tty, ch);
2832         return tty->ops->write(tty, &ch, 1);
2833 }
2834 EXPORT_SYMBOL_GPL(tty_put_char);
2835
2836 struct class *tty_class;
2837
2838 /**
2839  *      tty_register_device - register a tty device
2840  *      @driver: the tty driver that describes the tty device
2841  *      @index: the index in the tty driver for this tty device
2842  *      @device: a struct device that is associated with this tty device.
2843  *              This field is optional, if there is no known struct device
2844  *              for this tty device it can be set to NULL safely.
2845  *
2846  *      Returns a pointer to the struct device for this tty device
2847  *      (or ERR_PTR(-EFOO) on error).
2848  *
2849  *      This call is required to be made to register an individual tty device
2850  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2851  *      that bit is not set, this function should not be called by a tty
2852  *      driver.
2853  *
2854  *      Locking: ??
2855  */
2856
2857 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2858                                    struct device *device)
2859 {
2860         char name[64];
2861         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2862
2863         if (index >= driver->num) {
2864                 printk(KERN_ERR "Attempt to register invalid tty line number "
2865                        " (%d).\n", index);
2866                 return ERR_PTR(-EINVAL);
2867         }
2868
2869         if (driver->type == TTY_DRIVER_TYPE_PTY)
2870                 pty_line_name(driver, index, name);
2871         else
2872                 tty_line_name(driver, index, name);
2873
2874         return device_create_drvdata(tty_class, device, dev, NULL, name);
2875 }
2876 EXPORT_SYMBOL(tty_register_device);
2877
2878 /**
2879  *      tty_unregister_device - unregister a tty device
2880  *      @driver: the tty driver that describes the tty device
2881  *      @index: the index in the tty driver for this tty device
2882  *
2883  *      If a tty device is registered with a call to tty_register_device() then
2884  *      this function must be called when the tty device is gone.
2885  *
2886  *      Locking: ??
2887  */
2888
2889 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2890 {
2891         device_destroy(tty_class,
2892                 MKDEV(driver->major, driver->minor_start) + index);
2893 }
2894 EXPORT_SYMBOL(tty_unregister_device);
2895
2896 struct tty_driver *alloc_tty_driver(int lines)
2897 {
2898         struct tty_driver *driver;
2899
2900         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2901         if (driver) {
2902                 kref_init(&driver->kref);
2903                 driver->magic = TTY_DRIVER_MAGIC;
2904                 driver->num = lines;
2905                 /* later we'll move allocation of tables here */
2906         }
2907         return driver;
2908 }
2909 EXPORT_SYMBOL(alloc_tty_driver);
2910
2911 static void destruct_tty_driver(struct kref *kref)
2912 {
2913         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2914         int i;
2915         struct ktermios *tp;
2916         void *p;
2917
2918         if (driver->flags & TTY_DRIVER_INSTALLED) {
2919                 /*
2920                  * Free the termios and termios_locked structures because
2921                  * we don't want to get memory leaks when modular tty
2922                  * drivers are removed from the kernel.
2923                  */
2924                 for (i = 0; i < driver->num; i++) {
2925                         tp = driver->termios[i];
2926                         if (tp) {
2927                                 driver->termios[i] = NULL;
2928                                 kfree(tp);
2929                         }
2930                         tp = driver->termios_locked[i];
2931                         if (tp) {
2932                                 driver->termios_locked[i] = NULL;
2933                                 kfree(tp);
2934                         }
2935                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2936                                 tty_unregister_device(driver, i);
2937                 }
2938                 p = driver->ttys;
2939                 proc_tty_unregister_driver(driver);
2940                 driver->ttys = NULL;
2941                 driver->termios = driver->termios_locked = NULL;
2942                 kfree(p);
2943                 cdev_del(&driver->cdev);
2944         }
2945         kfree(driver);
2946 }
2947
2948 void tty_driver_kref_put(struct tty_driver *driver)
2949 {
2950         kref_put(&driver->kref, destruct_tty_driver);
2951 }
2952 EXPORT_SYMBOL(tty_driver_kref_put);
2953
2954 void tty_set_operations(struct tty_driver *driver,
2955                         const struct tty_operations *op)
2956 {
2957         driver->ops = op;
2958 };
2959 EXPORT_SYMBOL(tty_set_operations);
2960
2961 void put_tty_driver(struct tty_driver *d)
2962 {
2963         tty_driver_kref_put(d);
2964 }
2965 EXPORT_SYMBOL(put_tty_driver);
2966
2967 /*
2968  * Called by a tty driver to register itself.
2969  */
2970 int tty_register_driver(struct tty_driver *driver)
2971 {
2972         int error;
2973         int i;
2974         dev_t dev;
2975         void **p = NULL;
2976
2977         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2978                 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
2979                 if (!p)
2980                         return -ENOMEM;
2981         }
2982
2983         if (!driver->major) {
2984                 error = alloc_chrdev_region(&dev, driver->minor_start,
2985                                                 driver->num, driver->name);
2986                 if (!error) {
2987                         driver->major = MAJOR(dev);
2988                         driver->minor_start = MINOR(dev);
2989                 }
2990         } else {
2991                 dev = MKDEV(driver->major, driver->minor_start);
2992                 error = register_chrdev_region(dev, driver->num, driver->name);
2993         }
2994         if (error < 0) {
2995                 kfree(p);
2996                 return error;
2997         }
2998
2999         if (p) {
3000                 driver->ttys = (struct tty_struct **)p;
3001                 driver->termios = (struct ktermios **)(p + driver->num);
3002                 driver->termios_locked = (struct ktermios **)
3003                                                         (p + driver->num * 2);
3004         } else {
3005                 driver->ttys = NULL;
3006                 driver->termios = NULL;
3007                 driver->termios_locked = NULL;
3008         }
3009
3010         cdev_init(&driver->cdev, &tty_fops);
3011         driver->cdev.owner = driver->owner;
3012         error = cdev_add(&driver->cdev, dev, driver->num);
3013         if (error) {
3014                 unregister_chrdev_region(dev, driver->num);
3015                 driver->ttys = NULL;
3016                 driver->termios = driver->termios_locked = NULL;
3017                 kfree(p);
3018                 return error;
3019         }
3020
3021         mutex_lock(&tty_mutex);
3022         list_add(&driver->tty_drivers, &tty_drivers);
3023         mutex_unlock(&tty_mutex);
3024
3025         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3026                 for (i = 0; i < driver->num; i++)
3027                     tty_register_device(driver, i, NULL);
3028         }
3029         proc_tty_register_driver(driver);
3030         driver->flags |= TTY_DRIVER_INSTALLED;
3031         return 0;
3032 }
3033
3034 EXPORT_SYMBOL(tty_register_driver);
3035
3036 /*
3037  * Called by a tty driver to unregister itself.
3038  */
3039 int tty_unregister_driver(struct tty_driver *driver)
3040 {
3041 #if 0
3042         /* FIXME */
3043         if (driver->refcount)
3044                 return -EBUSY;
3045 #endif
3046         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3047                                 driver->num);
3048         mutex_lock(&tty_mutex);
3049         list_del(&driver->tty_drivers);
3050         mutex_unlock(&tty_mutex);
3051         return 0;
3052 }
3053
3054 EXPORT_SYMBOL(tty_unregister_driver);
3055
3056 dev_t tty_devnum(struct tty_struct *tty)
3057 {
3058         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3059 }
3060 EXPORT_SYMBOL(tty_devnum);
3061
3062 void proc_clear_tty(struct task_struct *p)
3063 {
3064         struct tty_struct *tty;
3065         spin_lock_irq(&p->sighand->siglock);
3066         tty = p->signal->tty;
3067         p->signal->tty = NULL;
3068         spin_unlock_irq(&p->sighand->siglock);
3069         tty_kref_put(tty);
3070 }
3071
3072 /* Called under the sighand lock */
3073
3074 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3075 {
3076         if (tty) {
3077                 unsigned long flags;
3078                 /* We should not have a session or pgrp to put here but.... */
3079                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3080                 put_pid(tty->session);
3081                 put_pid(tty->pgrp);
3082                 tty->pgrp = get_pid(task_pgrp(tsk));
3083                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3084                 tty->session = get_pid(task_session(tsk));
3085                 if (tsk->signal->tty) {
3086                         printk(KERN_DEBUG "tty not NULL!!\n");
3087                         tty_kref_put(tsk->signal->tty);
3088                 }
3089         }
3090         put_pid(tsk->signal->tty_old_pgrp);
3091         tsk->signal->tty = tty_kref_get(tty);
3092         tsk->signal->tty_old_pgrp = NULL;
3093 }
3094
3095 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3096 {
3097         spin_lock_irq(&tsk->sighand->siglock);
3098         __proc_set_tty(tsk, tty);
3099         spin_unlock_irq(&tsk->sighand->siglock);
3100 }
3101
3102 struct tty_struct *get_current_tty(void)
3103 {
3104         struct tty_struct *tty;
3105         unsigned long flags;
3106
3107         spin_lock_irqsave(&current->sighand->siglock, flags);
3108         tty = tty_kref_get(current->signal->tty);
3109         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3110         return tty;
3111 }
3112 EXPORT_SYMBOL_GPL(get_current_tty);
3113
3114 void tty_default_fops(struct file_operations *fops)
3115 {
3116         *fops = tty_fops;
3117 }
3118
3119 /*
3120  * Initialize the console device. This is called *early*, so
3121  * we can't necessarily depend on lots of kernel help here.
3122  * Just do some early initializations, and do the complex setup
3123  * later.
3124  */
3125 void __init console_init(void)
3126 {
3127         initcall_t *call;
3128
3129         /* Setup the default TTY line discipline. */
3130         tty_ldisc_begin();
3131
3132         /*
3133          * set up the console device so that later boot sequences can
3134          * inform about problems etc..
3135          */
3136         call = __con_initcall_start;
3137         while (call < __con_initcall_end) {
3138                 (*call)();
3139                 call++;
3140         }
3141 }
3142
3143 static int __init tty_class_init(void)
3144 {
3145         tty_class = class_create(THIS_MODULE, "tty");
3146         if (IS_ERR(tty_class))
3147                 return PTR_ERR(tty_class);
3148         return 0;
3149 }
3150
3151 postcore_initcall(tty_class_init);
3152
3153 /* 3/2004 jmc: why do these devices exist? */
3154
3155 static struct cdev tty_cdev, console_cdev;
3156
3157 /*
3158  * Ok, now we can initialize the rest of the tty devices and can count
3159  * on memory allocations, interrupts etc..
3160  */
3161 static int __init tty_init(void)
3162 {
3163         cdev_init(&tty_cdev, &tty_fops);
3164         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3165             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3166                 panic("Couldn't register /dev/tty driver\n");
3167         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3168                               "tty");
3169
3170         cdev_init(&console_cdev, &console_fops);
3171         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3172             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3173                 panic("Couldn't register /dev/console driver\n");
3174         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3175                               "console");
3176
3177 #ifdef CONFIG_VT
3178         vty_init(&console_fops);
3179 #endif
3180         return 0;
3181 }
3182 module_init(tty_init);