]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/char/tty_io.c
959083961024727039a05d8a56fdbb198b4c50b6
[linux-2.6-omap-h63xx.git] / drivers / char / tty_io.c
1 /*
2  *  linux/drivers/char/tty_io.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9  * or rs-channels. It also implements echoing, cooked mode etc.
10  *
11  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12  *
13  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14  * tty_struct and tty_queue structures.  Previously there was an array
15  * of 256 tty_struct's which was statically allocated, and the
16  * tty_queue structures were allocated at boot time.  Both are now
17  * dynamically allocated only when the tty is open.
18  *
19  * Also restructured routines so that there is more of a separation
20  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21  * the low-level tty routines (serial.c, pty.c, console.c).  This
22  * makes for cleaner and more compact code.  -TYT, 9/17/92
23  *
24  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25  * which can be dynamically activated and de-activated by the line
26  * discipline handling modules (like SLIP).
27  *
28  * NOTE: pay no attention to the line discipline code (yet); its
29  * interface is still subject to change in this version...
30  * -- TYT, 1/31/92
31  *
32  * Added functionality to the OPOST tty handling.  No delays, but all
33  * other bits should be there.
34  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35  *
36  * Rewrote canonical mode and added more termios flags.
37  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38  *
39  * Reorganized FASYNC support so mouse code can share it.
40  *      -- ctm@ardi.com, 9Sep95
41  *
42  * New TIOCLINUX variants added.
43  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
44  *
45  * Restrict vt switching via ioctl()
46  *      -- grif@cs.ucr.edu, 5-Dec-95
47  *
48  * Move console and virtual terminal code to more appropriate files,
49  * implement CONFIG_VT and generalize console device interface.
50  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51  *
52  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53  *      -- Bill Hawes <whawes@star.net>, June 97
54  *
55  * Added devfs support.
56  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57  *
58  * Added support for a Unix98-style ptmx device.
59  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60  *
61  * Reduced memory usage for older ARM systems
62  *      -- Russell King <rmk@arm.linux.org.uk>
63  *
64  * Move do_SAK() into process context.  Less stack use in devfs functions.
65  * alloc_tty_struct() always uses kmalloc()
66  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67  */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114
115 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
116         .c_iflag = ICRNL | IXON,
117         .c_oflag = OPOST | ONLCR,
118         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120                    ECHOCTL | ECHOKE | IEXTEN,
121         .c_cc = INIT_C_CC,
122         .c_ispeed = 38400,
123         .c_ospeed = 38400
124 };
125
126 EXPORT_SYMBOL(tty_std_termios);
127
128 /* This list gets poked at by procfs and various bits of boot up code. This
129    could do with some rationalisation such as pulling the tty proc function
130    into this file */
131
132 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
133
134 /* Mutex to protect creating and releasing a tty. This is shared with
135    vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138
139 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
140 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
141 ssize_t redirected_tty_write(struct file *, const char __user *,
142                                                         size_t, loff_t *);
143 static unsigned int tty_poll(struct file *, poll_table *);
144 static int tty_open(struct inode *, struct file *);
145 static int tty_release(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int tty_fasync(int fd, struct file *filp, int on);
154 static void release_tty(struct tty_struct *tty, int idx);
155 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
156 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157
158 /**
159  *      alloc_tty_struct        -       allocate a tty object
160  *
161  *      Return a new empty tty structure. The data fields have not
162  *      been initialized in any way but has been zeroed
163  *
164  *      Locking: none
165  */
166
167 struct tty_struct *alloc_tty_struct(void)
168 {
169         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
170 }
171
172 /**
173  *      free_tty_struct         -       free a disused tty
174  *      @tty: tty struct to free
175  *
176  *      Free the write buffers, tty queue and tty memory itself.
177  *
178  *      Locking: none. Must be called after tty is definitely unused
179  */
180
181 void free_tty_struct(struct tty_struct *tty)
182 {
183         kfree(tty->write_buf);
184         tty_buffer_free_all(tty);
185         kfree(tty);
186 }
187
188 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
189
190 /**
191  *      tty_name        -       return tty naming
192  *      @tty: tty structure
193  *      @buf: buffer for output
194  *
195  *      Convert a tty structure into a name. The name reflects the kernel
196  *      naming policy and if udev is in use may not reflect user space
197  *
198  *      Locking: none
199  */
200
201 char *tty_name(struct tty_struct *tty, char *buf)
202 {
203         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
204                 strcpy(buf, "NULL tty");
205         else
206                 strcpy(buf, tty->name);
207         return buf;
208 }
209
210 EXPORT_SYMBOL(tty_name);
211
212 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
213                               const char *routine)
214 {
215 #ifdef TTY_PARANOIA_CHECK
216         if (!tty) {
217                 printk(KERN_WARNING
218                         "null TTY for (%d:%d) in %s\n",
219                         imajor(inode), iminor(inode), routine);
220                 return 1;
221         }
222         if (tty->magic != TTY_MAGIC) {
223                 printk(KERN_WARNING
224                         "bad magic number for tty struct (%d:%d) in %s\n",
225                         imajor(inode), iminor(inode), routine);
226                 return 1;
227         }
228 #endif
229         return 0;
230 }
231
232 static int check_tty_count(struct tty_struct *tty, const char *routine)
233 {
234 #ifdef CHECK_TTY_COUNT
235         struct list_head *p;
236         int count = 0;
237
238         file_list_lock();
239         list_for_each(p, &tty->tty_files) {
240                 count++;
241         }
242         file_list_unlock();
243         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
244             tty->driver->subtype == PTY_TYPE_SLAVE &&
245             tty->link && tty->link->count)
246                 count++;
247         if (tty->count != count) {
248                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
249                                     "!= #fd's(%d) in %s\n",
250                        tty->name, tty->count, count, routine);
251                 return count;
252         }
253 #endif
254         return 0;
255 }
256
257 /**
258  *      get_tty_driver          -       find device of a tty
259  *      @dev_t: device identifier
260  *      @index: returns the index of the tty
261  *
262  *      This routine returns a tty driver structure, given a device number
263  *      and also passes back the index number.
264  *
265  *      Locking: caller must hold tty_mutex
266  */
267
268 static struct tty_driver *get_tty_driver(dev_t device, int *index)
269 {
270         struct tty_driver *p;
271
272         list_for_each_entry(p, &tty_drivers, tty_drivers) {
273                 dev_t base = MKDEV(p->major, p->minor_start);
274                 if (device < base || device >= base + p->num)
275                         continue;
276                 *index = device - base;
277                 return tty_driver_kref_get(p);
278         }
279         return NULL;
280 }
281
282 #ifdef CONFIG_CONSOLE_POLL
283
284 /**
285  *      tty_find_polling_driver -       find device of a polled tty
286  *      @name: name string to match
287  *      @line: pointer to resulting tty line nr
288  *
289  *      This routine returns a tty driver structure, given a name
290  *      and the condition that the tty driver is capable of polled
291  *      operation.
292  */
293 struct tty_driver *tty_find_polling_driver(char *name, int *line)
294 {
295         struct tty_driver *p, *res = NULL;
296         int tty_line = 0;
297         int len;
298         char *str;
299
300         for (str = name; *str; str++)
301                 if ((*str >= '0' && *str <= '9') || *str == ',')
302                         break;
303         if (!*str)
304                 return NULL;
305
306         len = str - name;
307         tty_line = simple_strtoul(str, &str, 10);
308
309         mutex_lock(&tty_mutex);
310         /* Search through the tty devices to look for a match */
311         list_for_each_entry(p, &tty_drivers, tty_drivers) {
312                 if (strncmp(name, p->name, len) != 0)
313                         continue;
314                 if (*str == ',')
315                         str++;
316                 if (*str == '\0')
317                         str = NULL;
318
319                 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
320                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, str)) {
321                         res = tty_driver_kref_get(p);
322                         *line = tty_line;
323                         break;
324                 }
325         }
326         mutex_unlock(&tty_mutex);
327
328         return res;
329 }
330 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
331 #endif
332
333 /**
334  *      tty_check_change        -       check for POSIX terminal changes
335  *      @tty: tty to check
336  *
337  *      If we try to write to, or set the state of, a terminal and we're
338  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
339  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
340  *
341  *      Locking: ctrl_lock
342  */
343
344 int tty_check_change(struct tty_struct *tty)
345 {
346         unsigned long flags;
347         int ret = 0;
348
349         if (current->signal->tty != tty)
350                 return 0;
351
352         spin_lock_irqsave(&tty->ctrl_lock, flags);
353
354         if (!tty->pgrp) {
355                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
356                 goto out_unlock;
357         }
358         if (task_pgrp(current) == tty->pgrp)
359                 goto out_unlock;
360         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
361         if (is_ignored(SIGTTOU))
362                 goto out;
363         if (is_current_pgrp_orphaned()) {
364                 ret = -EIO;
365                 goto out;
366         }
367         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
368         set_thread_flag(TIF_SIGPENDING);
369         ret = -ERESTARTSYS;
370 out:
371         return ret;
372 out_unlock:
373         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
374         return ret;
375 }
376
377 EXPORT_SYMBOL(tty_check_change);
378
379 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
380                                 size_t count, loff_t *ppos)
381 {
382         return 0;
383 }
384
385 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
386                                  size_t count, loff_t *ppos)
387 {
388         return -EIO;
389 }
390
391 /* No kernel lock held - none needed ;) */
392 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
393 {
394         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
395 }
396
397 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
398                 unsigned long arg)
399 {
400         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
401 }
402
403 static long hung_up_tty_compat_ioctl(struct file *file,
404                                      unsigned int cmd, unsigned long arg)
405 {
406         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
407 }
408
409 static const struct file_operations tty_fops = {
410         .llseek         = no_llseek,
411         .read           = tty_read,
412         .write          = tty_write,
413         .poll           = tty_poll,
414         .unlocked_ioctl = tty_ioctl,
415         .compat_ioctl   = tty_compat_ioctl,
416         .open           = tty_open,
417         .release        = tty_release,
418         .fasync         = tty_fasync,
419 };
420
421 static const struct file_operations console_fops = {
422         .llseek         = no_llseek,
423         .read           = tty_read,
424         .write          = redirected_tty_write,
425         .poll           = tty_poll,
426         .unlocked_ioctl = tty_ioctl,
427         .compat_ioctl   = tty_compat_ioctl,
428         .open           = tty_open,
429         .release        = tty_release,
430         .fasync         = tty_fasync,
431 };
432
433 static const struct file_operations hung_up_tty_fops = {
434         .llseek         = no_llseek,
435         .read           = hung_up_tty_read,
436         .write          = hung_up_tty_write,
437         .poll           = hung_up_tty_poll,
438         .unlocked_ioctl = hung_up_tty_ioctl,
439         .compat_ioctl   = hung_up_tty_compat_ioctl,
440         .release        = tty_release,
441 };
442
443 static DEFINE_SPINLOCK(redirect_lock);
444 static struct file *redirect;
445
446 /**
447  *      tty_wakeup      -       request more data
448  *      @tty: terminal
449  *
450  *      Internal and external helper for wakeups of tty. This function
451  *      informs the line discipline if present that the driver is ready
452  *      to receive more output data.
453  */
454
455 void tty_wakeup(struct tty_struct *tty)
456 {
457         struct tty_ldisc *ld;
458
459         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
460                 ld = tty_ldisc_ref(tty);
461                 if (ld) {
462                         if (ld->ops->write_wakeup)
463                                 ld->ops->write_wakeup(tty);
464                         tty_ldisc_deref(ld);
465                 }
466         }
467         wake_up_interruptible(&tty->write_wait);
468 }
469
470 EXPORT_SYMBOL_GPL(tty_wakeup);
471
472 /**
473  *      tty_ldisc_flush -       flush line discipline queue
474  *      @tty: tty
475  *
476  *      Flush the line discipline queue (if any) for this tty. If there
477  *      is no line discipline active this is a no-op.
478  */
479
480 void tty_ldisc_flush(struct tty_struct *tty)
481 {
482         struct tty_ldisc *ld = tty_ldisc_ref(tty);
483         if (ld) {
484                 if (ld->ops->flush_buffer)
485                         ld->ops->flush_buffer(tty);
486                 tty_ldisc_deref(ld);
487         }
488         tty_buffer_flush(tty);
489 }
490
491 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
492
493 /**
494  *      tty_reset_termios       -       reset terminal state
495  *      @tty: tty to reset
496  *
497  *      Restore a terminal to the driver default state
498  */
499
500 static void tty_reset_termios(struct tty_struct *tty)
501 {
502         mutex_lock(&tty->termios_mutex);
503         *tty->termios = tty->driver->init_termios;
504         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
505         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
506         mutex_unlock(&tty->termios_mutex);
507 }
508
509 /**
510  *      do_tty_hangup           -       actual handler for hangup events
511  *      @work: tty device
512  *
513  *      This can be called by the "eventd" kernel thread.  That is process
514  *      synchronous but doesn't hold any locks, so we need to make sure we
515  *      have the appropriate locks for what we're doing.
516  *
517  *      The hangup event clears any pending redirections onto the hung up
518  *      device. It ensures future writes will error and it does the needed
519  *      line discipline hangup and signal delivery. The tty object itself
520  *      remains intact.
521  *
522  *      Locking:
523  *              BKL
524  *                redirect lock for undoing redirection
525  *                file list lock for manipulating list of ttys
526  *                tty_ldisc_lock from called functions
527  *                termios_mutex resetting termios data
528  *                tasklist_lock to walk task list for hangup event
529  *                  ->siglock to protect ->signal/->sighand
530  */
531 static void do_tty_hangup(struct work_struct *work)
532 {
533         struct tty_struct *tty =
534                 container_of(work, struct tty_struct, hangup_work);
535         struct file *cons_filp = NULL;
536         struct file *filp, *f = NULL;
537         struct task_struct *p;
538         struct tty_ldisc *ld;
539         int    closecount = 0, n;
540         unsigned long flags;
541         int refs = 0;
542
543         if (!tty)
544                 return;
545
546         /* inuse_filps is protected by the single kernel lock */
547         lock_kernel();
548
549         spin_lock(&redirect_lock);
550         if (redirect && redirect->private_data == tty) {
551                 f = redirect;
552                 redirect = NULL;
553         }
554         spin_unlock(&redirect_lock);
555
556         check_tty_count(tty, "do_tty_hangup");
557         file_list_lock();
558         /* This breaks for file handles being sent over AF_UNIX sockets ? */
559         list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
560                 if (filp->f_op->write == redirected_tty_write)
561                         cons_filp = filp;
562                 if (filp->f_op->write != tty_write)
563                         continue;
564                 closecount++;
565                 tty_fasync(-1, filp, 0);        /* can't block */
566                 filp->f_op = &hung_up_tty_fops;
567         }
568         file_list_unlock();
569         /*
570          * FIXME! What are the locking issues here? This may me overdoing
571          * things... This question is especially important now that we've
572          * removed the irqlock.
573          */
574         ld = tty_ldisc_ref(tty);
575         if (ld != NULL) {
576                 /* We may have no line discipline at this point */
577                 if (ld->ops->flush_buffer)
578                         ld->ops->flush_buffer(tty);
579                 tty_driver_flush_buffer(tty);
580                 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
581                     ld->ops->write_wakeup)
582                         ld->ops->write_wakeup(tty);
583                 if (ld->ops->hangup)
584                         ld->ops->hangup(tty);
585         }
586         /*
587          * FIXME: Once we trust the LDISC code better we can wait here for
588          * ldisc completion and fix the driver call race
589          */
590         wake_up_interruptible(&tty->write_wait);
591         wake_up_interruptible(&tty->read_wait);
592         /*
593          * Shutdown the current line discipline, and reset it to
594          * N_TTY.
595          */
596         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
597                 tty_reset_termios(tty);
598         /* Defer ldisc switch */
599         /* tty_deferred_ldisc_switch(N_TTY);
600
601           This should get done automatically when the port closes and
602           tty_release is called */
603
604         read_lock(&tasklist_lock);
605         if (tty->session) {
606                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
607                         spin_lock_irq(&p->sighand->siglock);
608                         if (p->signal->tty == tty) {
609                                 p->signal->tty = NULL;
610                                 /* We defer the dereferences outside fo
611                                    the tasklist lock */
612                                 refs++;
613                         }
614                         if (!p->signal->leader) {
615                                 spin_unlock_irq(&p->sighand->siglock);
616                                 continue;
617                         }
618                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
619                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
620                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
621                         spin_lock_irqsave(&tty->ctrl_lock, flags);
622                         if (tty->pgrp)
623                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
624                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
625                         spin_unlock_irq(&p->sighand->siglock);
626                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
627         }
628         read_unlock(&tasklist_lock);
629
630         spin_lock_irqsave(&tty->ctrl_lock, flags);
631         tty->flags = 0;
632         put_pid(tty->session);
633         put_pid(tty->pgrp);
634         tty->session = NULL;
635         tty->pgrp = NULL;
636         tty->ctrl_status = 0;
637         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
638
639         /* Account for the p->signal references we killed */
640         while (refs--)
641                 tty_kref_put(tty);
642
643         /*
644          * If one of the devices matches a console pointer, we
645          * cannot just call hangup() because that will cause
646          * tty->count and state->count to go out of sync.
647          * So we just call close() the right number of times.
648          */
649         if (cons_filp) {
650                 if (tty->ops->close)
651                         for (n = 0; n < closecount; n++)
652                                 tty->ops->close(tty, cons_filp);
653         } else if (tty->ops->hangup)
654                 (tty->ops->hangup)(tty);
655         /*
656          * We don't want to have driver/ldisc interactions beyond
657          * the ones we did here. The driver layer expects no
658          * calls after ->hangup() from the ldisc side. However we
659          * can't yet guarantee all that.
660          */
661         set_bit(TTY_HUPPED, &tty->flags);
662         if (ld) {
663                 tty_ldisc_enable(tty);
664                 tty_ldisc_deref(ld);
665         }
666         unlock_kernel();
667         if (f)
668                 fput(f);
669 }
670
671 /**
672  *      tty_hangup              -       trigger a hangup event
673  *      @tty: tty to hangup
674  *
675  *      A carrier loss (virtual or otherwise) has occurred on this like
676  *      schedule a hangup sequence to run after this event.
677  */
678
679 void tty_hangup(struct tty_struct *tty)
680 {
681 #ifdef TTY_DEBUG_HANGUP
682         char    buf[64];
683         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
684 #endif
685         schedule_work(&tty->hangup_work);
686 }
687
688 EXPORT_SYMBOL(tty_hangup);
689
690 /**
691  *      tty_vhangup             -       process vhangup
692  *      @tty: tty to hangup
693  *
694  *      The user has asked via system call for the terminal to be hung up.
695  *      We do this synchronously so that when the syscall returns the process
696  *      is complete. That guarantee is necessary for security reasons.
697  */
698
699 void tty_vhangup(struct tty_struct *tty)
700 {
701 #ifdef TTY_DEBUG_HANGUP
702         char    buf[64];
703
704         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
705 #endif
706         do_tty_hangup(&tty->hangup_work);
707 }
708
709 EXPORT_SYMBOL(tty_vhangup);
710
711 /**
712  *      tty_vhangup_self        -       process vhangup for own ctty
713  *
714  *      Perform a vhangup on the current controlling tty
715  */
716
717 void tty_vhangup_self(void)
718 {
719         struct tty_struct *tty;
720
721         tty = get_current_tty();
722         if (tty) {
723                 tty_vhangup(tty);
724                 tty_kref_put(tty);
725         }
726 }
727
728 /**
729  *      tty_hung_up_p           -       was tty hung up
730  *      @filp: file pointer of tty
731  *
732  *      Return true if the tty has been subject to a vhangup or a carrier
733  *      loss
734  */
735
736 int tty_hung_up_p(struct file *filp)
737 {
738         return (filp->f_op == &hung_up_tty_fops);
739 }
740
741 EXPORT_SYMBOL(tty_hung_up_p);
742
743 static void session_clear_tty(struct pid *session)
744 {
745         struct task_struct *p;
746         do_each_pid_task(session, PIDTYPE_SID, p) {
747                 proc_clear_tty(p);
748         } while_each_pid_task(session, PIDTYPE_SID, p);
749 }
750
751 /**
752  *      disassociate_ctty       -       disconnect controlling tty
753  *      @on_exit: true if exiting so need to "hang up" the session
754  *
755  *      This function is typically called only by the session leader, when
756  *      it wants to disassociate itself from its controlling tty.
757  *
758  *      It performs the following functions:
759  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
760  *      (2)  Clears the tty from being controlling the session
761  *      (3)  Clears the controlling tty for all processes in the
762  *              session group.
763  *
764  *      The argument on_exit is set to 1 if called when a process is
765  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
766  *
767  *      Locking:
768  *              BKL is taken for hysterical raisins
769  *                tty_mutex is taken to protect tty
770  *                ->siglock is taken to protect ->signal/->sighand
771  *                tasklist_lock is taken to walk process list for sessions
772  *                  ->siglock is taken to protect ->signal/->sighand
773  */
774
775 void disassociate_ctty(int on_exit)
776 {
777         struct tty_struct *tty;
778         struct pid *tty_pgrp = NULL;
779
780
781         tty = get_current_tty();
782         if (tty) {
783                 tty_pgrp = get_pid(tty->pgrp);
784                 lock_kernel();
785                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
786                         tty_vhangup(tty);
787                 unlock_kernel();
788                 tty_kref_put(tty);
789         } else if (on_exit) {
790                 struct pid *old_pgrp;
791                 spin_lock_irq(&current->sighand->siglock);
792                 old_pgrp = current->signal->tty_old_pgrp;
793                 current->signal->tty_old_pgrp = NULL;
794                 spin_unlock_irq(&current->sighand->siglock);
795                 if (old_pgrp) {
796                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
797                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
798                         put_pid(old_pgrp);
799                 }
800                 return;
801         }
802         if (tty_pgrp) {
803                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
804                 if (!on_exit)
805                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
806                 put_pid(tty_pgrp);
807         }
808
809         spin_lock_irq(&current->sighand->siglock);
810         put_pid(current->signal->tty_old_pgrp);
811         current->signal->tty_old_pgrp = NULL;
812         spin_unlock_irq(&current->sighand->siglock);
813
814         tty = get_current_tty();
815         if (tty) {
816                 unsigned long flags;
817                 spin_lock_irqsave(&tty->ctrl_lock, flags);
818                 put_pid(tty->session);
819                 put_pid(tty->pgrp);
820                 tty->session = NULL;
821                 tty->pgrp = NULL;
822                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
823                 tty_kref_put(tty);
824         } else {
825 #ifdef TTY_DEBUG_HANGUP
826                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
827                        " = NULL", tty);
828 #endif
829         }
830
831         /* Now clear signal->tty under the lock */
832         read_lock(&tasklist_lock);
833         session_clear_tty(task_session(current));
834         read_unlock(&tasklist_lock);
835 }
836
837 /**
838  *
839  *      no_tty  - Ensure the current process does not have a controlling tty
840  */
841 void no_tty(void)
842 {
843         struct task_struct *tsk = current;
844         lock_kernel();
845         if (tsk->signal->leader)
846                 disassociate_ctty(0);
847         unlock_kernel();
848         proc_clear_tty(tsk);
849 }
850
851
852 /**
853  *      stop_tty        -       propagate flow control
854  *      @tty: tty to stop
855  *
856  *      Perform flow control to the driver. For PTY/TTY pairs we
857  *      must also propagate the TIOCKPKT status. May be called
858  *      on an already stopped device and will not re-call the driver
859  *      method.
860  *
861  *      This functionality is used by both the line disciplines for
862  *      halting incoming flow and by the driver. It may therefore be
863  *      called from any context, may be under the tty atomic_write_lock
864  *      but not always.
865  *
866  *      Locking:
867  *              Uses the tty control lock internally
868  */
869
870 void stop_tty(struct tty_struct *tty)
871 {
872         unsigned long flags;
873         spin_lock_irqsave(&tty->ctrl_lock, flags);
874         if (tty->stopped) {
875                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
876                 return;
877         }
878         tty->stopped = 1;
879         if (tty->link && tty->link->packet) {
880                 tty->ctrl_status &= ~TIOCPKT_START;
881                 tty->ctrl_status |= TIOCPKT_STOP;
882                 wake_up_interruptible(&tty->link->read_wait);
883         }
884         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
885         if (tty->ops->stop)
886                 (tty->ops->stop)(tty);
887 }
888
889 EXPORT_SYMBOL(stop_tty);
890
891 /**
892  *      start_tty       -       propagate flow control
893  *      @tty: tty to start
894  *
895  *      Start a tty that has been stopped if at all possible. Perform
896  *      any necessary wakeups and propagate the TIOCPKT status. If this
897  *      is the tty was previous stopped and is being started then the
898  *      driver start method is invoked and the line discipline woken.
899  *
900  *      Locking:
901  *              ctrl_lock
902  */
903
904 void start_tty(struct tty_struct *tty)
905 {
906         unsigned long flags;
907         spin_lock_irqsave(&tty->ctrl_lock, flags);
908         if (!tty->stopped || tty->flow_stopped) {
909                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
910                 return;
911         }
912         tty->stopped = 0;
913         if (tty->link && tty->link->packet) {
914                 tty->ctrl_status &= ~TIOCPKT_STOP;
915                 tty->ctrl_status |= TIOCPKT_START;
916                 wake_up_interruptible(&tty->link->read_wait);
917         }
918         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
919         if (tty->ops->start)
920                 (tty->ops->start)(tty);
921         /* If we have a running line discipline it may need kicking */
922         tty_wakeup(tty);
923 }
924
925 EXPORT_SYMBOL(start_tty);
926
927 /**
928  *      tty_read        -       read method for tty device files
929  *      @file: pointer to tty file
930  *      @buf: user buffer
931  *      @count: size of user buffer
932  *      @ppos: unused
933  *
934  *      Perform the read system call function on this terminal device. Checks
935  *      for hung up devices before calling the line discipline method.
936  *
937  *      Locking:
938  *              Locks the line discipline internally while needed. Multiple
939  *      read calls may be outstanding in parallel.
940  */
941
942 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
943                         loff_t *ppos)
944 {
945         int i;
946         struct tty_struct *tty;
947         struct inode *inode;
948         struct tty_ldisc *ld;
949
950         tty = (struct tty_struct *)file->private_data;
951         inode = file->f_path.dentry->d_inode;
952         if (tty_paranoia_check(tty, inode, "tty_read"))
953                 return -EIO;
954         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
955                 return -EIO;
956
957         /* We want to wait for the line discipline to sort out in this
958            situation */
959         ld = tty_ldisc_ref_wait(tty);
960         if (ld->ops->read)
961                 i = (ld->ops->read)(tty, file, buf, count);
962         else
963                 i = -EIO;
964         tty_ldisc_deref(ld);
965         if (i > 0)
966                 inode->i_atime = current_fs_time(inode->i_sb);
967         return i;
968 }
969
970 void tty_write_unlock(struct tty_struct *tty)
971 {
972         mutex_unlock(&tty->atomic_write_lock);
973         wake_up_interruptible(&tty->write_wait);
974 }
975
976 int tty_write_lock(struct tty_struct *tty, int ndelay)
977 {
978         if (!mutex_trylock(&tty->atomic_write_lock)) {
979                 if (ndelay)
980                         return -EAGAIN;
981                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
982                         return -ERESTARTSYS;
983         }
984         return 0;
985 }
986
987 /*
988  * Split writes up in sane blocksizes to avoid
989  * denial-of-service type attacks
990  */
991 static inline ssize_t do_tty_write(
992         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
993         struct tty_struct *tty,
994         struct file *file,
995         const char __user *buf,
996         size_t count)
997 {
998         ssize_t ret, written = 0;
999         unsigned int chunk;
1000
1001         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1002         if (ret < 0)
1003                 return ret;
1004
1005         /*
1006          * We chunk up writes into a temporary buffer. This
1007          * simplifies low-level drivers immensely, since they
1008          * don't have locking issues and user mode accesses.
1009          *
1010          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1011          * big chunk-size..
1012          *
1013          * The default chunk-size is 2kB, because the NTTY
1014          * layer has problems with bigger chunks. It will
1015          * claim to be able to handle more characters than
1016          * it actually does.
1017          *
1018          * FIXME: This can probably go away now except that 64K chunks
1019          * are too likely to fail unless switched to vmalloc...
1020          */
1021         chunk = 2048;
1022         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1023                 chunk = 65536;
1024         if (count < chunk)
1025                 chunk = count;
1026
1027         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1028         if (tty->write_cnt < chunk) {
1029                 unsigned char *buf;
1030
1031                 if (chunk < 1024)
1032                         chunk = 1024;
1033
1034                 buf = kmalloc(chunk, GFP_KERNEL);
1035                 if (!buf) {
1036                         ret = -ENOMEM;
1037                         goto out;
1038                 }
1039                 kfree(tty->write_buf);
1040                 tty->write_cnt = chunk;
1041                 tty->write_buf = buf;
1042         }
1043
1044         /* Do the write .. */
1045         for (;;) {
1046                 size_t size = count;
1047                 if (size > chunk)
1048                         size = chunk;
1049                 ret = -EFAULT;
1050                 if (copy_from_user(tty->write_buf, buf, size))
1051                         break;
1052                 ret = write(tty, file, tty->write_buf, size);
1053                 if (ret <= 0)
1054                         break;
1055                 written += ret;
1056                 buf += ret;
1057                 count -= ret;
1058                 if (!count)
1059                         break;
1060                 ret = -ERESTARTSYS;
1061                 if (signal_pending(current))
1062                         break;
1063                 cond_resched();
1064         }
1065         if (written) {
1066                 struct inode *inode = file->f_path.dentry->d_inode;
1067                 inode->i_mtime = current_fs_time(inode->i_sb);
1068                 ret = written;
1069         }
1070 out:
1071         tty_write_unlock(tty);
1072         return ret;
1073 }
1074
1075 /**
1076  * tty_write_message - write a message to a certain tty, not just the console.
1077  * @tty: the destination tty_struct
1078  * @msg: the message to write
1079  *
1080  * This is used for messages that need to be redirected to a specific tty.
1081  * We don't put it into the syslog queue right now maybe in the future if
1082  * really needed.
1083  *
1084  * We must still hold the BKL and test the CLOSING flag for the moment.
1085  */
1086
1087 void tty_write_message(struct tty_struct *tty, char *msg)
1088 {
1089         lock_kernel();
1090         if (tty) {
1091                 mutex_lock(&tty->atomic_write_lock);
1092                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags))
1093                         tty->ops->write(tty, msg, strlen(msg));
1094                 tty_write_unlock(tty);
1095         }
1096         unlock_kernel();
1097         return;
1098 }
1099
1100
1101 /**
1102  *      tty_write               -       write method for tty device file
1103  *      @file: tty file pointer
1104  *      @buf: user data to write
1105  *      @count: bytes to write
1106  *      @ppos: unused
1107  *
1108  *      Write data to a tty device via the line discipline.
1109  *
1110  *      Locking:
1111  *              Locks the line discipline as required
1112  *              Writes to the tty driver are serialized by the atomic_write_lock
1113  *      and are then processed in chunks to the device. The line discipline
1114  *      write method will not be involked in parallel for each device
1115  *              The line discipline write method is called under the big
1116  *      kernel lock for historical reasons. New code should not rely on this.
1117  */
1118
1119 static ssize_t tty_write(struct file *file, const char __user *buf,
1120                                                 size_t count, loff_t *ppos)
1121 {
1122         struct tty_struct *tty;
1123         struct inode *inode = file->f_path.dentry->d_inode;
1124         ssize_t ret;
1125         struct tty_ldisc *ld;
1126
1127         tty = (struct tty_struct *)file->private_data;
1128         if (tty_paranoia_check(tty, inode, "tty_write"))
1129                 return -EIO;
1130         if (!tty || !tty->ops->write ||
1131                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1132                         return -EIO;
1133         /* Short term debug to catch buggy drivers */
1134         if (tty->ops->write_room == NULL)
1135                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1136                         tty->driver->name);
1137         ld = tty_ldisc_ref_wait(tty);
1138         if (!ld->ops->write)
1139                 ret = -EIO;
1140         else
1141                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1142         tty_ldisc_deref(ld);
1143         return ret;
1144 }
1145
1146 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1147                                                 size_t count, loff_t *ppos)
1148 {
1149         struct file *p = NULL;
1150
1151         spin_lock(&redirect_lock);
1152         if (redirect) {
1153                 get_file(redirect);
1154                 p = redirect;
1155         }
1156         spin_unlock(&redirect_lock);
1157
1158         if (p) {
1159                 ssize_t res;
1160                 res = vfs_write(p, buf, count, &p->f_pos);
1161                 fput(p);
1162                 return res;
1163         }
1164         return tty_write(file, buf, count, ppos);
1165 }
1166
1167 static char ptychar[] = "pqrstuvwxyzabcde";
1168
1169 /**
1170  *      pty_line_name   -       generate name for a pty
1171  *      @driver: the tty driver in use
1172  *      @index: the minor number
1173  *      @p: output buffer of at least 6 bytes
1174  *
1175  *      Generate a name from a driver reference and write it to the output
1176  *      buffer.
1177  *
1178  *      Locking: None
1179  */
1180 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1181 {
1182         int i = index + driver->name_base;
1183         /* ->name is initialized to "ttyp", but "tty" is expected */
1184         sprintf(p, "%s%c%x",
1185                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1186                 ptychar[i >> 4 & 0xf], i & 0xf);
1187 }
1188
1189 /**
1190  *      tty_line_name   -       generate name for a tty
1191  *      @driver: the tty driver in use
1192  *      @index: the minor number
1193  *      @p: output buffer of at least 7 bytes
1194  *
1195  *      Generate a name from a driver reference and write it to the output
1196  *      buffer.
1197  *
1198  *      Locking: None
1199  */
1200 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1201 {
1202         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1203 }
1204
1205 /**
1206  *      tty_driver_lookup_tty() - find an existing tty, if any
1207  *      @driver: the driver for the tty
1208  *      @idx:    the minor number
1209  *
1210  *      Return the tty, if found or ERR_PTR() otherwise.
1211  *
1212  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1213  *      be held until the 'fast-open' is also done. Will change once we
1214  *      have refcounting in the driver and per driver locking
1215  */
1216 struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1217                 struct inode *inode, int idx)
1218 {
1219         struct tty_struct *tty;
1220
1221         if (driver->ops->lookup)
1222                 return driver->ops->lookup(driver, inode, idx);
1223
1224         tty = driver->ttys[idx];
1225         return tty;
1226 }
1227
1228 /**
1229  *      tty_init_termios        -  helper for termios setup
1230  *      @tty: the tty to set up
1231  *
1232  *      Initialise the termios structures for this tty. Thus runs under
1233  *      the tty_mutex currently so we can be relaxed about ordering.
1234  */
1235
1236 int tty_init_termios(struct tty_struct *tty)
1237 {
1238         struct ktermios *tp, *ltp;
1239         int idx = tty->index;
1240
1241         tp = tty->driver->termios[idx];
1242         ltp = tty->driver->termios_locked[idx];
1243         if (tp == NULL) {
1244                 WARN_ON(ltp != NULL);
1245                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1246                 ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
1247                 if (tp == NULL || ltp == NULL) {
1248                         kfree(tp);
1249                         kfree(ltp);
1250                         return -ENOMEM;
1251                 }
1252                 memcpy(tp, &tty->driver->init_termios,
1253                                                 sizeof(struct ktermios));
1254                 tty->driver->termios[idx] = tp;
1255                 tty->driver->termios_locked[idx] = ltp;
1256         }
1257         tty->termios = tp;
1258         tty->termios_locked = ltp;
1259
1260         /* Compatibility until drivers always set this */
1261         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1262         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1263         return 0;
1264 }
1265
1266 /**
1267  *      tty_driver_install_tty() - install a tty entry in the driver
1268  *      @driver: the driver for the tty
1269  *      @tty: the tty
1270  *
1271  *      Install a tty object into the driver tables. The tty->index field
1272  *      will be set by the time this is called. This method is responsible
1273  *      for ensuring any need additional structures are allocated and
1274  *      configured.
1275  *
1276  *      Locking: tty_mutex for now
1277  */
1278 static int tty_driver_install_tty(struct tty_driver *driver,
1279                                                 struct tty_struct *tty)
1280 {
1281         int idx = tty->index;
1282
1283         if (driver->ops->install)
1284                 return driver->ops->install(driver, tty);
1285
1286         if (tty_init_termios(tty) == 0) {
1287                 tty_driver_kref_get(driver);
1288                 tty->count++;
1289                 driver->ttys[idx] = tty;
1290                 return 0;
1291         }
1292         return -ENOMEM;
1293 }
1294
1295 /**
1296  *      tty_driver_remove_tty() - remove a tty from the driver tables
1297  *      @driver: the driver for the tty
1298  *      @idx:    the minor number
1299  *
1300  *      Remvoe a tty object from the driver tables. The tty->index field
1301  *      will be set by the time this is called.
1302  *
1303  *      Locking: tty_mutex for now
1304  */
1305 static void tty_driver_remove_tty(struct tty_driver *driver,
1306                                                 struct tty_struct *tty)
1307 {
1308         if (driver->ops->remove)
1309                 driver->ops->remove(driver, tty);
1310         else
1311                 driver->ttys[tty->index] = NULL;
1312 }
1313
1314 /*
1315  *      tty_reopen()    - fast re-open of an open tty
1316  *      @tty    - the tty to open
1317  *
1318  *      Return 0 on success, -errno on error.
1319  *
1320  *      Locking: tty_mutex must be held from the time the tty was found
1321  *               till this open completes.
1322  */
1323 static int tty_reopen(struct tty_struct *tty)
1324 {
1325         struct tty_driver *driver = tty->driver;
1326
1327         if (test_bit(TTY_CLOSING, &tty->flags))
1328                 return -EIO;
1329
1330         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1331             driver->subtype == PTY_TYPE_MASTER) {
1332                 /*
1333                  * special case for PTY masters: only one open permitted,
1334                  * and the slave side open count is incremented as well.
1335                  */
1336                 if (tty->count)
1337                         return -EIO;
1338
1339                 tty->link->count++;
1340         }
1341         tty->count++;
1342         tty->driver = driver; /* N.B. why do this every time?? */
1343
1344         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1345
1346         return 0;
1347 }
1348
1349 /**
1350  *      tty_init_dev            -       initialise a tty device
1351  *      @driver: tty driver we are opening a device on
1352  *      @idx: device index
1353  *      @ret_tty: returned tty structure
1354  *      @first_ok: ok to open a new device (used by ptmx)
1355  *
1356  *      Prepare a tty device. This may not be a "new" clean device but
1357  *      could also be an active device. The pty drivers require special
1358  *      handling because of this.
1359  *
1360  *      Locking:
1361  *              The function is called under the tty_mutex, which
1362  *      protects us from the tty struct or driver itself going away.
1363  *
1364  *      On exit the tty device has the line discipline attached and
1365  *      a reference count of 1. If a pair was created for pty/tty use
1366  *      and the other was a pty master then it too has a reference count of 1.
1367  *
1368  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1369  * failed open.  The new code protects the open with a mutex, so it's
1370  * really quite straightforward.  The mutex locking can probably be
1371  * relaxed for the (most common) case of reopening a tty.
1372  */
1373
1374 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1375                                                                 int first_ok)
1376 {
1377         struct tty_struct *tty;
1378         int retval;
1379
1380         /* Check if pty master is being opened multiple times */
1381         if (driver->subtype == PTY_TYPE_MASTER &&
1382                 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok)
1383                 return ERR_PTR(-EIO);
1384
1385         /*
1386          * First time open is complex, especially for PTY devices.
1387          * This code guarantees that either everything succeeds and the
1388          * TTY is ready for operation, or else the table slots are vacated
1389          * and the allocated memory released.  (Except that the termios
1390          * and locked termios may be retained.)
1391          */
1392
1393         if (!try_module_get(driver->owner))
1394                 return ERR_PTR(-ENODEV);
1395
1396         tty = alloc_tty_struct();
1397         if (!tty)
1398                 goto fail_no_mem;
1399         initialize_tty_struct(tty, driver, idx);
1400
1401         retval = tty_driver_install_tty(driver, tty);
1402         if (retval < 0) {
1403                 free_tty_struct(tty);
1404                 module_put(driver->owner);
1405                 return ERR_PTR(retval);
1406         }
1407
1408         /*
1409          * Structures all installed ... call the ldisc open routines.
1410          * If we fail here just call release_tty to clean up.  No need
1411          * to decrement the use counts, as release_tty doesn't care.
1412          */
1413
1414         retval = tty_ldisc_setup(tty, tty->link);
1415         if (retval)
1416                 goto release_mem_out;
1417         return tty;
1418
1419 fail_no_mem:
1420         module_put(driver->owner);
1421         return ERR_PTR(-ENOMEM);
1422
1423         /* call the tty release_tty routine to clean out this slot */
1424 release_mem_out:
1425         if (printk_ratelimit())
1426                 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1427                                  "clearing slot %d\n", idx);
1428         release_tty(tty, idx);
1429         return ERR_PTR(retval);
1430 }
1431
1432 void tty_free_termios(struct tty_struct *tty)
1433 {
1434         struct ktermios *tp;
1435         int idx = tty->index;
1436         /* Kill this flag and push into drivers for locking etc */
1437         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1438                 /* FIXME: Locking on ->termios array */
1439                 tp = tty->termios;
1440                 tty->driver->termios[idx] = NULL;
1441                 kfree(tp);
1442
1443                 tp = tty->termios_locked;
1444                 tty->driver->termios_locked[idx] = NULL;
1445                 kfree(tp);
1446         }
1447 }
1448 EXPORT_SYMBOL(tty_free_termios);
1449
1450 void tty_shutdown(struct tty_struct *tty)
1451 {
1452         tty_driver_remove_tty(tty->driver, tty);
1453         tty_free_termios(tty);
1454 }
1455 EXPORT_SYMBOL(tty_shutdown);
1456
1457 /**
1458  *      release_one_tty         -       release tty structure memory
1459  *      @kref: kref of tty we are obliterating
1460  *
1461  *      Releases memory associated with a tty structure, and clears out the
1462  *      driver table slots. This function is called when a device is no longer
1463  *      in use. It also gets called when setup of a device fails.
1464  *
1465  *      Locking:
1466  *              tty_mutex - sometimes only
1467  *              takes the file list lock internally when working on the list
1468  *      of ttys that the driver keeps.
1469  */
1470 static void release_one_tty(struct kref *kref)
1471 {
1472         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1473         struct tty_driver *driver = tty->driver;
1474
1475         if (tty->ops->shutdown)
1476                 tty->ops->shutdown(tty);
1477         else
1478                 tty_shutdown(tty);
1479         tty->magic = 0;
1480         tty_driver_kref_put(driver);
1481         module_put(driver->owner);
1482
1483         file_list_lock();
1484         list_del_init(&tty->tty_files);
1485         file_list_unlock();
1486
1487         free_tty_struct(tty);
1488 }
1489
1490 /**
1491  *      tty_kref_put            -       release a tty kref
1492  *      @tty: tty device
1493  *
1494  *      Release a reference to a tty device and if need be let the kref
1495  *      layer destruct the object for us
1496  */
1497
1498 void tty_kref_put(struct tty_struct *tty)
1499 {
1500         if (tty)
1501                 kref_put(&tty->kref, release_one_tty);
1502 }
1503 EXPORT_SYMBOL(tty_kref_put);
1504
1505 /**
1506  *      release_tty             -       release tty structure memory
1507  *
1508  *      Release both @tty and a possible linked partner (think pty pair),
1509  *      and decrement the refcount of the backing module.
1510  *
1511  *      Locking:
1512  *              tty_mutex - sometimes only
1513  *              takes the file list lock internally when working on the list
1514  *      of ttys that the driver keeps.
1515  *              FIXME: should we require tty_mutex is held here ??
1516  *
1517  */
1518 static void release_tty(struct tty_struct *tty, int idx)
1519 {
1520         /* This should always be true but check for the moment */
1521         WARN_ON(tty->index != idx);
1522
1523         if (tty->link)
1524                 tty_kref_put(tty->link);
1525         tty_kref_put(tty);
1526 }
1527
1528 /*
1529  * Even releasing the tty structures is a tricky business.. We have
1530  * to be very careful that the structures are all released at the
1531  * same time, as interrupts might otherwise get the wrong pointers.
1532  *
1533  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1534  * lead to double frees or releasing memory still in use.
1535  */
1536 void tty_release_dev(struct file *filp)
1537 {
1538         struct tty_struct *tty, *o_tty;
1539         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1540         int     devpts;
1541         int     idx;
1542         char    buf[64];
1543         struct  inode *inode;
1544
1545         inode = filp->f_path.dentry->d_inode;
1546         tty = (struct tty_struct *)filp->private_data;
1547         if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1548                 return;
1549
1550         check_tty_count(tty, "tty_release_dev");
1551
1552         tty_fasync(-1, filp, 0);
1553
1554         idx = tty->index;
1555         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1556                       tty->driver->subtype == PTY_TYPE_MASTER);
1557         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1558         o_tty = tty->link;
1559
1560 #ifdef TTY_PARANOIA_CHECK
1561         if (idx < 0 || idx >= tty->driver->num) {
1562                 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1563                                   "free (%s)\n", tty->name);
1564                 return;
1565         }
1566         if (!devpts) {
1567                 if (tty != tty->driver->ttys[idx]) {
1568                         printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1569                                "for (%s)\n", idx, tty->name);
1570                         return;
1571                 }
1572                 if (tty->termios != tty->driver->termios[idx]) {
1573                         printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1574                                "for (%s)\n",
1575                                idx, tty->name);
1576                         return;
1577                 }
1578                 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
1579                         printk(KERN_DEBUG "tty_release_dev: driver.termios_locked[%d] not "
1580                                "termios_locked for (%s)\n",
1581                                idx, tty->name);
1582                         return;
1583                 }
1584         }
1585 #endif
1586
1587 #ifdef TTY_DEBUG_HANGUP
1588         printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1589                tty_name(tty, buf), tty->count);
1590 #endif
1591
1592 #ifdef TTY_PARANOIA_CHECK
1593         if (tty->driver->other &&
1594              !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1595                 if (o_tty != tty->driver->other->ttys[idx]) {
1596                         printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1597                                           "not o_tty for (%s)\n",
1598                                idx, tty->name);
1599                         return;
1600                 }
1601                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1602                         printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1603                                           "not o_termios for (%s)\n",
1604                                idx, tty->name);
1605                         return;
1606                 }
1607                 if (o_tty->termios_locked !=
1608                       tty->driver->other->termios_locked[idx]) {
1609                         printk(KERN_DEBUG "tty_release_dev: other->termios_locked["
1610                                           "%d] not o_termios_locked for (%s)\n",
1611                                idx, tty->name);
1612                         return;
1613                 }
1614                 if (o_tty->link != tty) {
1615                         printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1616                         return;
1617                 }
1618         }
1619 #endif
1620         if (tty->ops->close)
1621                 tty->ops->close(tty, filp);
1622
1623         /*
1624          * Sanity check: if tty->count is going to zero, there shouldn't be
1625          * any waiters on tty->read_wait or tty->write_wait.  We test the
1626          * wait queues and kick everyone out _before_ actually starting to
1627          * close.  This ensures that we won't block while releasing the tty
1628          * structure.
1629          *
1630          * The test for the o_tty closing is necessary, since the master and
1631          * slave sides may close in any order.  If the slave side closes out
1632          * first, its count will be one, since the master side holds an open.
1633          * Thus this test wouldn't be triggered at the time the slave closes,
1634          * so we do it now.
1635          *
1636          * Note that it's possible for the tty to be opened again while we're
1637          * flushing out waiters.  By recalculating the closing flags before
1638          * each iteration we avoid any problems.
1639          */
1640         while (1) {
1641                 /* Guard against races with tty->count changes elsewhere and
1642                    opens on /dev/tty */
1643
1644                 mutex_lock(&tty_mutex);
1645                 tty_closing = tty->count <= 1;
1646                 o_tty_closing = o_tty &&
1647                         (o_tty->count <= (pty_master ? 1 : 0));
1648                 do_sleep = 0;
1649
1650                 if (tty_closing) {
1651                         if (waitqueue_active(&tty->read_wait)) {
1652                                 wake_up(&tty->read_wait);
1653                                 do_sleep++;
1654                         }
1655                         if (waitqueue_active(&tty->write_wait)) {
1656                                 wake_up(&tty->write_wait);
1657                                 do_sleep++;
1658                         }
1659                 }
1660                 if (o_tty_closing) {
1661                         if (waitqueue_active(&o_tty->read_wait)) {
1662                                 wake_up(&o_tty->read_wait);
1663                                 do_sleep++;
1664                         }
1665                         if (waitqueue_active(&o_tty->write_wait)) {
1666                                 wake_up(&o_tty->write_wait);
1667                                 do_sleep++;
1668                         }
1669                 }
1670                 if (!do_sleep)
1671                         break;
1672
1673                 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1674                                     "active!\n", tty_name(tty, buf));
1675                 mutex_unlock(&tty_mutex);
1676                 schedule();
1677         }
1678
1679         /*
1680          * The closing flags are now consistent with the open counts on
1681          * both sides, and we've completed the last operation that could
1682          * block, so it's safe to proceed with closing.
1683          */
1684         if (pty_master) {
1685                 if (--o_tty->count < 0) {
1686                         printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1687                                             "(%d) for %s\n",
1688                                o_tty->count, tty_name(o_tty, buf));
1689                         o_tty->count = 0;
1690                 }
1691         }
1692         if (--tty->count < 0) {
1693                 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1694                        tty->count, tty_name(tty, buf));
1695                 tty->count = 0;
1696         }
1697
1698         /*
1699          * We've decremented tty->count, so we need to remove this file
1700          * descriptor off the tty->tty_files list; this serves two
1701          * purposes:
1702          *  - check_tty_count sees the correct number of file descriptors
1703          *    associated with this tty.
1704          *  - do_tty_hangup no longer sees this file descriptor as
1705          *    something that needs to be handled for hangups.
1706          */
1707         file_kill(filp);
1708         filp->private_data = NULL;
1709
1710         /*
1711          * Perform some housekeeping before deciding whether to return.
1712          *
1713          * Set the TTY_CLOSING flag if this was the last open.  In the
1714          * case of a pty we may have to wait around for the other side
1715          * to close, and TTY_CLOSING makes sure we can't be reopened.
1716          */
1717         if (tty_closing)
1718                 set_bit(TTY_CLOSING, &tty->flags);
1719         if (o_tty_closing)
1720                 set_bit(TTY_CLOSING, &o_tty->flags);
1721
1722         /*
1723          * If _either_ side is closing, make sure there aren't any
1724          * processes that still think tty or o_tty is their controlling
1725          * tty.
1726          */
1727         if (tty_closing || o_tty_closing) {
1728                 read_lock(&tasklist_lock);
1729                 session_clear_tty(tty->session);
1730                 if (o_tty)
1731                         session_clear_tty(o_tty->session);
1732                 read_unlock(&tasklist_lock);
1733         }
1734
1735         mutex_unlock(&tty_mutex);
1736
1737         /* check whether both sides are closing ... */
1738         if (!tty_closing || (o_tty && !o_tty_closing))
1739                 return;
1740
1741 #ifdef TTY_DEBUG_HANGUP
1742         printk(KERN_DEBUG "freeing tty structure...");
1743 #endif
1744         /*
1745          * Ask the line discipline code to release its structures
1746          */
1747         tty_ldisc_release(tty, o_tty);
1748         /*
1749          * The release_tty function takes care of the details of clearing
1750          * the slots and preserving the termios structure.
1751          */
1752         release_tty(tty, idx);
1753
1754         /* Make this pty number available for reallocation */
1755         if (devpts)
1756                 devpts_kill_index(inode, idx);
1757 }
1758
1759 /**
1760  *      __tty_open              -       open a tty device
1761  *      @inode: inode of device file
1762  *      @filp: file pointer to tty
1763  *
1764  *      tty_open and tty_release keep up the tty count that contains the
1765  *      number of opens done on a tty. We cannot use the inode-count, as
1766  *      different inodes might point to the same tty.
1767  *
1768  *      Open-counting is needed for pty masters, as well as for keeping
1769  *      track of serial lines: DTR is dropped when the last close happens.
1770  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1771  *
1772  *      The termios state of a pty is reset on first open so that
1773  *      settings don't persist across reuse.
1774  *
1775  *      Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1776  *               tty->count should protect the rest.
1777  *               ->siglock protects ->signal/->sighand
1778  */
1779
1780 static int __tty_open(struct inode *inode, struct file *filp)
1781 {
1782         struct tty_struct *tty = NULL;
1783         int noctty, retval;
1784         struct tty_driver *driver;
1785         int index;
1786         dev_t device = inode->i_rdev;
1787         unsigned short saved_flags = filp->f_flags;
1788
1789         nonseekable_open(inode, filp);
1790
1791 retry_open:
1792         noctty = filp->f_flags & O_NOCTTY;
1793         index  = -1;
1794         retval = 0;
1795
1796         mutex_lock(&tty_mutex);
1797
1798         if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1799                 tty = get_current_tty();
1800                 if (!tty) {
1801                         mutex_unlock(&tty_mutex);
1802                         return -ENXIO;
1803                 }
1804                 driver = tty_driver_kref_get(tty->driver);
1805                 index = tty->index;
1806                 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1807                 /* noctty = 1; */
1808                 /* FIXME: Should we take a driver reference ? */
1809                 tty_kref_put(tty);
1810                 goto got_driver;
1811         }
1812 #ifdef CONFIG_VT
1813         if (device == MKDEV(TTY_MAJOR, 0)) {
1814                 extern struct tty_driver *console_driver;
1815                 driver = tty_driver_kref_get(console_driver);
1816                 index = fg_console;
1817                 noctty = 1;
1818                 goto got_driver;
1819         }
1820 #endif
1821         if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1822                 driver = tty_driver_kref_get(console_device(&index));
1823                 if (driver) {
1824                         /* Don't let /dev/console block */
1825                         filp->f_flags |= O_NONBLOCK;
1826                         noctty = 1;
1827                         goto got_driver;
1828                 }
1829                 mutex_unlock(&tty_mutex);
1830                 return -ENODEV;
1831         }
1832
1833         driver = get_tty_driver(device, &index);
1834         if (!driver) {
1835                 mutex_unlock(&tty_mutex);
1836                 return -ENODEV;
1837         }
1838 got_driver:
1839         if (!tty) {
1840                 /* check whether we're reopening an existing tty */
1841                 tty = tty_driver_lookup_tty(driver, inode, index);
1842
1843                 if (IS_ERR(tty))
1844                         return PTR_ERR(tty);
1845         }
1846
1847         if (tty) {
1848                 retval = tty_reopen(tty);
1849                 if (retval)
1850                         tty = ERR_PTR(retval);
1851         } else
1852                 tty = tty_init_dev(driver, index, 0);
1853
1854         mutex_unlock(&tty_mutex);
1855         tty_driver_kref_put(driver);
1856         if (IS_ERR(tty))
1857                 return PTR_ERR(tty);
1858
1859         filp->private_data = tty;
1860         file_move(filp, &tty->tty_files);
1861         check_tty_count(tty, "tty_open");
1862         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1863             tty->driver->subtype == PTY_TYPE_MASTER)
1864                 noctty = 1;
1865 #ifdef TTY_DEBUG_HANGUP
1866         printk(KERN_DEBUG "opening %s...", tty->name);
1867 #endif
1868         if (!retval) {
1869                 if (tty->ops->open)
1870                         retval = tty->ops->open(tty, filp);
1871                 else
1872                         retval = -ENODEV;
1873         }
1874         filp->f_flags = saved_flags;
1875
1876         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1877                                                 !capable(CAP_SYS_ADMIN))
1878                 retval = -EBUSY;
1879
1880         if (retval) {
1881 #ifdef TTY_DEBUG_HANGUP
1882                 printk(KERN_DEBUG "error %d in opening %s...", retval,
1883                        tty->name);
1884 #endif
1885                 tty_release_dev(filp);
1886                 if (retval != -ERESTARTSYS)
1887                         return retval;
1888                 if (signal_pending(current))
1889                         return retval;
1890                 schedule();
1891                 /*
1892                  * Need to reset f_op in case a hangup happened.
1893                  */
1894                 if (filp->f_op == &hung_up_tty_fops)
1895                         filp->f_op = &tty_fops;
1896                 goto retry_open;
1897         }
1898
1899         mutex_lock(&tty_mutex);
1900         spin_lock_irq(&current->sighand->siglock);
1901         if (!noctty &&
1902             current->signal->leader &&
1903             !current->signal->tty &&
1904             tty->session == NULL)
1905                 __proc_set_tty(current, tty);
1906         spin_unlock_irq(&current->sighand->siglock);
1907         mutex_unlock(&tty_mutex);
1908         return 0;
1909 }
1910
1911 /* BKL pushdown: scary code avoidance wrapper */
1912 static int tty_open(struct inode *inode, struct file *filp)
1913 {
1914         int ret;
1915
1916         lock_kernel();
1917         ret = __tty_open(inode, filp);
1918         unlock_kernel();
1919         return ret;
1920 }
1921
1922
1923
1924
1925 /**
1926  *      tty_release             -       vfs callback for close
1927  *      @inode: inode of tty
1928  *      @filp: file pointer for handle to tty
1929  *
1930  *      Called the last time each file handle is closed that references
1931  *      this tty. There may however be several such references.
1932  *
1933  *      Locking:
1934  *              Takes bkl. See tty_release_dev
1935  */
1936
1937 static int tty_release(struct inode *inode, struct file *filp)
1938 {
1939         lock_kernel();
1940         tty_release_dev(filp);
1941         unlock_kernel();
1942         return 0;
1943 }
1944
1945 /**
1946  *      tty_poll        -       check tty status
1947  *      @filp: file being polled
1948  *      @wait: poll wait structures to update
1949  *
1950  *      Call the line discipline polling method to obtain the poll
1951  *      status of the device.
1952  *
1953  *      Locking: locks called line discipline but ldisc poll method
1954  *      may be re-entered freely by other callers.
1955  */
1956
1957 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1958 {
1959         struct tty_struct *tty;
1960         struct tty_ldisc *ld;
1961         int ret = 0;
1962
1963         tty = (struct tty_struct *)filp->private_data;
1964         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1965                 return 0;
1966
1967         ld = tty_ldisc_ref_wait(tty);
1968         if (ld->ops->poll)
1969                 ret = (ld->ops->poll)(tty, filp, wait);
1970         tty_ldisc_deref(ld);
1971         return ret;
1972 }
1973
1974 static int tty_fasync(int fd, struct file *filp, int on)
1975 {
1976         struct tty_struct *tty;
1977         unsigned long flags;
1978         int retval = 0;
1979
1980         lock_kernel();
1981         tty = (struct tty_struct *)filp->private_data;
1982         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1983                 goto out;
1984
1985         retval = fasync_helper(fd, filp, on, &tty->fasync);
1986         if (retval <= 0)
1987                 goto out;
1988
1989         if (on) {
1990                 enum pid_type type;
1991                 struct pid *pid;
1992                 if (!waitqueue_active(&tty->read_wait))
1993                         tty->minimum_to_wake = 1;
1994                 spin_lock_irqsave(&tty->ctrl_lock, flags);
1995                 if (tty->pgrp) {
1996                         pid = tty->pgrp;
1997                         type = PIDTYPE_PGID;
1998                 } else {
1999                         pid = task_pid(current);
2000                         type = PIDTYPE_PID;
2001                 }
2002                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2003                 retval = __f_setown(filp, pid, type, 0);
2004                 if (retval)
2005                         goto out;
2006         } else {
2007                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2008                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2009         }
2010         retval = 0;
2011 out:
2012         unlock_kernel();
2013         return retval;
2014 }
2015
2016 /**
2017  *      tiocsti                 -       fake input character
2018  *      @tty: tty to fake input into
2019  *      @p: pointer to character
2020  *
2021  *      Fake input to a tty device. Does the necessary locking and
2022  *      input management.
2023  *
2024  *      FIXME: does not honour flow control ??
2025  *
2026  *      Locking:
2027  *              Called functions take tty_ldisc_lock
2028  *              current->signal->tty check is safe without locks
2029  *
2030  *      FIXME: may race normal receive processing
2031  */
2032
2033 static int tiocsti(struct tty_struct *tty, char __user *p)
2034 {
2035         char ch, mbz = 0;
2036         struct tty_ldisc *ld;
2037
2038         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2039                 return -EPERM;
2040         if (get_user(ch, p))
2041                 return -EFAULT;
2042         ld = tty_ldisc_ref_wait(tty);
2043         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2044         tty_ldisc_deref(ld);
2045         return 0;
2046 }
2047
2048 /**
2049  *      tiocgwinsz              -       implement window query ioctl
2050  *      @tty; tty
2051  *      @arg: user buffer for result
2052  *
2053  *      Copies the kernel idea of the window size into the user buffer.
2054  *
2055  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2056  *              is consistent.
2057  */
2058
2059 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2060 {
2061         int err;
2062
2063         mutex_lock(&tty->termios_mutex);
2064         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2065         mutex_unlock(&tty->termios_mutex);
2066
2067         return err ? -EFAULT: 0;
2068 }
2069
2070 /**
2071  *      tty_do_resize           -       resize event
2072  *      @tty: tty being resized
2073  *      @real_tty: real tty (not the same as tty if using a pty/tty pair)
2074  *      @rows: rows (character)
2075  *      @cols: cols (character)
2076  *
2077  *      Update the termios variables and send the neccessary signals to
2078  *      peform a terminal resize correctly
2079  */
2080
2081 int tty_do_resize(struct tty_struct *tty, struct tty_struct *real_tty,
2082                                         struct winsize *ws)
2083 {
2084         struct pid *pgrp, *rpgrp;
2085         unsigned long flags;
2086
2087         /* For a PTY we need to lock the tty side */
2088         mutex_lock(&real_tty->termios_mutex);
2089         if (!memcmp(ws, &real_tty->winsize, sizeof(*ws)))
2090                 goto done;
2091         /* Get the PID values and reference them so we can
2092            avoid holding the tty ctrl lock while sending signals */
2093         spin_lock_irqsave(&tty->ctrl_lock, flags);
2094         pgrp = get_pid(tty->pgrp);
2095         rpgrp = get_pid(real_tty->pgrp);
2096         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2097
2098         if (pgrp)
2099                 kill_pgrp(pgrp, SIGWINCH, 1);
2100         if (rpgrp != pgrp && rpgrp)
2101                 kill_pgrp(rpgrp, SIGWINCH, 1);
2102
2103         put_pid(pgrp);
2104         put_pid(rpgrp);
2105
2106         tty->winsize = *ws;
2107         real_tty->winsize = *ws;
2108 done:
2109         mutex_unlock(&real_tty->termios_mutex);
2110         return 0;
2111 }
2112
2113 /**
2114  *      tiocswinsz              -       implement window size set ioctl
2115  *      @tty; tty
2116  *      @arg: user buffer for result
2117  *
2118  *      Copies the user idea of the window size to the kernel. Traditionally
2119  *      this is just advisory information but for the Linux console it
2120  *      actually has driver level meaning and triggers a VC resize.
2121  *
2122  *      Locking:
2123  *              Driver dependant. The default do_resize method takes the
2124  *      tty termios mutex and ctrl_lock. The console takes its own lock
2125  *      then calls into the default method.
2126  */
2127
2128 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2129         struct winsize __user *arg)
2130 {
2131         struct winsize tmp_ws;
2132         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2133                 return -EFAULT;
2134
2135         if (tty->ops->resize)
2136                 return tty->ops->resize(tty, real_tty, &tmp_ws);
2137         else
2138                 return tty_do_resize(tty, real_tty, &tmp_ws);
2139 }
2140
2141 /**
2142  *      tioccons        -       allow admin to move logical console
2143  *      @file: the file to become console
2144  *
2145  *      Allow the adminstrator to move the redirected console device
2146  *
2147  *      Locking: uses redirect_lock to guard the redirect information
2148  */
2149
2150 static int tioccons(struct file *file)
2151 {
2152         if (!capable(CAP_SYS_ADMIN))
2153                 return -EPERM;
2154         if (file->f_op->write == redirected_tty_write) {
2155                 struct file *f;
2156                 spin_lock(&redirect_lock);
2157                 f = redirect;
2158                 redirect = NULL;
2159                 spin_unlock(&redirect_lock);
2160                 if (f)
2161                         fput(f);
2162                 return 0;
2163         }
2164         spin_lock(&redirect_lock);
2165         if (redirect) {
2166                 spin_unlock(&redirect_lock);
2167                 return -EBUSY;
2168         }
2169         get_file(file);
2170         redirect = file;
2171         spin_unlock(&redirect_lock);
2172         return 0;
2173 }
2174
2175 /**
2176  *      fionbio         -       non blocking ioctl
2177  *      @file: file to set blocking value
2178  *      @p: user parameter
2179  *
2180  *      Historical tty interfaces had a blocking control ioctl before
2181  *      the generic functionality existed. This piece of history is preserved
2182  *      in the expected tty API of posix OS's.
2183  *
2184  *      Locking: none, the open fle handle ensures it won't go away.
2185  */
2186
2187 static int fionbio(struct file *file, int __user *p)
2188 {
2189         int nonblock;
2190
2191         if (get_user(nonblock, p))
2192                 return -EFAULT;
2193
2194         /* file->f_flags is still BKL protected in the fs layer - vomit */
2195         lock_kernel();
2196         if (nonblock)
2197                 file->f_flags |= O_NONBLOCK;
2198         else
2199                 file->f_flags &= ~O_NONBLOCK;
2200         unlock_kernel();
2201         return 0;
2202 }
2203
2204 /**
2205  *      tiocsctty       -       set controlling tty
2206  *      @tty: tty structure
2207  *      @arg: user argument
2208  *
2209  *      This ioctl is used to manage job control. It permits a session
2210  *      leader to set this tty as the controlling tty for the session.
2211  *
2212  *      Locking:
2213  *              Takes tty_mutex() to protect tty instance
2214  *              Takes tasklist_lock internally to walk sessions
2215  *              Takes ->siglock() when updating signal->tty
2216  */
2217
2218 static int tiocsctty(struct tty_struct *tty, int arg)
2219 {
2220         int ret = 0;
2221         if (current->signal->leader && (task_session(current) == tty->session))
2222                 return ret;
2223
2224         mutex_lock(&tty_mutex);
2225         /*
2226          * The process must be a session leader and
2227          * not have a controlling tty already.
2228          */
2229         if (!current->signal->leader || current->signal->tty) {
2230                 ret = -EPERM;
2231                 goto unlock;
2232         }
2233
2234         if (tty->session) {
2235                 /*
2236                  * This tty is already the controlling
2237                  * tty for another session group!
2238                  */
2239                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2240                         /*
2241                          * Steal it away
2242                          */
2243                         read_lock(&tasklist_lock);
2244                         session_clear_tty(tty->session);
2245                         read_unlock(&tasklist_lock);
2246                 } else {
2247                         ret = -EPERM;
2248                         goto unlock;
2249                 }
2250         }
2251         proc_set_tty(current, tty);
2252 unlock:
2253         mutex_unlock(&tty_mutex);
2254         return ret;
2255 }
2256
2257 /**
2258  *      tty_get_pgrp    -       return a ref counted pgrp pid
2259  *      @tty: tty to read
2260  *
2261  *      Returns a refcounted instance of the pid struct for the process
2262  *      group controlling the tty.
2263  */
2264
2265 struct pid *tty_get_pgrp(struct tty_struct *tty)
2266 {
2267         unsigned long flags;
2268         struct pid *pgrp;
2269
2270         spin_lock_irqsave(&tty->ctrl_lock, flags);
2271         pgrp = get_pid(tty->pgrp);
2272         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2273
2274         return pgrp;
2275 }
2276 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2277
2278 /**
2279  *      tiocgpgrp               -       get process group
2280  *      @tty: tty passed by user
2281  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2282  *      @p: returned pid
2283  *
2284  *      Obtain the process group of the tty. If there is no process group
2285  *      return an error.
2286  *
2287  *      Locking: none. Reference to current->signal->tty is safe.
2288  */
2289
2290 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2291 {
2292         struct pid *pid;
2293         int ret;
2294         /*
2295          * (tty == real_tty) is a cheap way of
2296          * testing if the tty is NOT a master pty.
2297          */
2298         if (tty == real_tty && current->signal->tty != real_tty)
2299                 return -ENOTTY;
2300         pid = tty_get_pgrp(real_tty);
2301         ret =  put_user(pid_vnr(pid), p);
2302         put_pid(pid);
2303         return ret;
2304 }
2305
2306 /**
2307  *      tiocspgrp               -       attempt to set process group
2308  *      @tty: tty passed by user
2309  *      @real_tty: tty side device matching tty passed by user
2310  *      @p: pid pointer
2311  *
2312  *      Set the process group of the tty to the session passed. Only
2313  *      permitted where the tty session is our session.
2314  *
2315  *      Locking: RCU, ctrl lock
2316  */
2317
2318 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2319 {
2320         struct pid *pgrp;
2321         pid_t pgrp_nr;
2322         int retval = tty_check_change(real_tty);
2323         unsigned long flags;
2324
2325         if (retval == -EIO)
2326                 return -ENOTTY;
2327         if (retval)
2328                 return retval;
2329         if (!current->signal->tty ||
2330             (current->signal->tty != real_tty) ||
2331             (real_tty->session != task_session(current)))
2332                 return -ENOTTY;
2333         if (get_user(pgrp_nr, p))
2334                 return -EFAULT;
2335         if (pgrp_nr < 0)
2336                 return -EINVAL;
2337         rcu_read_lock();
2338         pgrp = find_vpid(pgrp_nr);
2339         retval = -ESRCH;
2340         if (!pgrp)
2341                 goto out_unlock;
2342         retval = -EPERM;
2343         if (session_of_pgrp(pgrp) != task_session(current))
2344                 goto out_unlock;
2345         retval = 0;
2346         spin_lock_irqsave(&tty->ctrl_lock, flags);
2347         put_pid(real_tty->pgrp);
2348         real_tty->pgrp = get_pid(pgrp);
2349         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2350 out_unlock:
2351         rcu_read_unlock();
2352         return retval;
2353 }
2354
2355 /**
2356  *      tiocgsid                -       get session id
2357  *      @tty: tty passed by user
2358  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2359  *      @p: pointer to returned session id
2360  *
2361  *      Obtain the session id of the tty. If there is no session
2362  *      return an error.
2363  *
2364  *      Locking: none. Reference to current->signal->tty is safe.
2365  */
2366
2367 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2368 {
2369         /*
2370          * (tty == real_tty) is a cheap way of
2371          * testing if the tty is NOT a master pty.
2372         */
2373         if (tty == real_tty && current->signal->tty != real_tty)
2374                 return -ENOTTY;
2375         if (!real_tty->session)
2376                 return -ENOTTY;
2377         return put_user(pid_vnr(real_tty->session), p);
2378 }
2379
2380 /**
2381  *      tiocsetd        -       set line discipline
2382  *      @tty: tty device
2383  *      @p: pointer to user data
2384  *
2385  *      Set the line discipline according to user request.
2386  *
2387  *      Locking: see tty_set_ldisc, this function is just a helper
2388  */
2389
2390 static int tiocsetd(struct tty_struct *tty, int __user *p)
2391 {
2392         int ldisc;
2393         int ret;
2394
2395         if (get_user(ldisc, p))
2396                 return -EFAULT;
2397
2398         lock_kernel();
2399         ret = tty_set_ldisc(tty, ldisc);
2400         unlock_kernel();
2401
2402         return ret;
2403 }
2404
2405 /**
2406  *      send_break      -       performed time break
2407  *      @tty: device to break on
2408  *      @duration: timeout in mS
2409  *
2410  *      Perform a timed break on hardware that lacks its own driver level
2411  *      timed break functionality.
2412  *
2413  *      Locking:
2414  *              atomic_write_lock serializes
2415  *
2416  */
2417
2418 static int send_break(struct tty_struct *tty, unsigned int duration)
2419 {
2420         int retval;
2421
2422         if (tty->ops->break_ctl == NULL)
2423                 return 0;
2424
2425         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2426                 retval = tty->ops->break_ctl(tty, duration);
2427         else {
2428                 /* Do the work ourselves */
2429                 if (tty_write_lock(tty, 0) < 0)
2430                         return -EINTR;
2431                 retval = tty->ops->break_ctl(tty, -1);
2432                 if (retval)
2433                         goto out;
2434                 if (!signal_pending(current))
2435                         msleep_interruptible(duration);
2436                 retval = tty->ops->break_ctl(tty, 0);
2437 out:
2438                 tty_write_unlock(tty);
2439                 if (signal_pending(current))
2440                         retval = -EINTR;
2441         }
2442         return retval;
2443 }
2444
2445 /**
2446  *      tty_tiocmget            -       get modem status
2447  *      @tty: tty device
2448  *      @file: user file pointer
2449  *      @p: pointer to result
2450  *
2451  *      Obtain the modem status bits from the tty driver if the feature
2452  *      is supported. Return -EINVAL if it is not available.
2453  *
2454  *      Locking: none (up to the driver)
2455  */
2456
2457 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2458 {
2459         int retval = -EINVAL;
2460
2461         if (tty->ops->tiocmget) {
2462                 retval = tty->ops->tiocmget(tty, file);
2463
2464                 if (retval >= 0)
2465                         retval = put_user(retval, p);
2466         }
2467         return retval;
2468 }
2469
2470 /**
2471  *      tty_tiocmset            -       set modem status
2472  *      @tty: tty device
2473  *      @file: user file pointer
2474  *      @cmd: command - clear bits, set bits or set all
2475  *      @p: pointer to desired bits
2476  *
2477  *      Set the modem status bits from the tty driver if the feature
2478  *      is supported. Return -EINVAL if it is not available.
2479  *
2480  *      Locking: none (up to the driver)
2481  */
2482
2483 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2484              unsigned __user *p)
2485 {
2486         int retval;
2487         unsigned int set, clear, val;
2488
2489         if (tty->ops->tiocmset == NULL)
2490                 return -EINVAL;
2491
2492         retval = get_user(val, p);
2493         if (retval)
2494                 return retval;
2495         set = clear = 0;
2496         switch (cmd) {
2497         case TIOCMBIS:
2498                 set = val;
2499                 break;
2500         case TIOCMBIC:
2501                 clear = val;
2502                 break;
2503         case TIOCMSET:
2504                 set = val;
2505                 clear = ~val;
2506                 break;
2507         }
2508         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2509         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2510         return tty->ops->tiocmset(tty, file, set, clear);
2511 }
2512
2513 /*
2514  * Split this up, as gcc can choke on it otherwise..
2515  */
2516 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2517 {
2518         struct tty_struct *tty, *real_tty;
2519         void __user *p = (void __user *)arg;
2520         int retval;
2521         struct tty_ldisc *ld;
2522         struct inode *inode = file->f_dentry->d_inode;
2523
2524         tty = (struct tty_struct *)file->private_data;
2525         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2526                 return -EINVAL;
2527
2528         real_tty = tty;
2529         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2530             tty->driver->subtype == PTY_TYPE_MASTER)
2531                 real_tty = tty->link;
2532
2533
2534         /*
2535          * Factor out some common prep work
2536          */
2537         switch (cmd) {
2538         case TIOCSETD:
2539         case TIOCSBRK:
2540         case TIOCCBRK:
2541         case TCSBRK:
2542         case TCSBRKP:
2543                 retval = tty_check_change(tty);
2544                 if (retval)
2545                         return retval;
2546                 if (cmd != TIOCCBRK) {
2547                         tty_wait_until_sent(tty, 0);
2548                         if (signal_pending(current))
2549                                 return -EINTR;
2550                 }
2551                 break;
2552         }
2553
2554         /*
2555          *      Now do the stuff.
2556          */
2557         switch (cmd) {
2558         case TIOCSTI:
2559                 return tiocsti(tty, p);
2560         case TIOCGWINSZ:
2561                 return tiocgwinsz(real_tty, p);
2562         case TIOCSWINSZ:
2563                 return tiocswinsz(tty, real_tty, p);
2564         case TIOCCONS:
2565                 return real_tty != tty ? -EINVAL : tioccons(file);
2566         case FIONBIO:
2567                 return fionbio(file, p);
2568         case TIOCEXCL:
2569                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2570                 return 0;
2571         case TIOCNXCL:
2572                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2573                 return 0;
2574         case TIOCNOTTY:
2575                 if (current->signal->tty != tty)
2576                         return -ENOTTY;
2577                 no_tty();
2578                 return 0;
2579         case TIOCSCTTY:
2580                 return tiocsctty(tty, arg);
2581         case TIOCGPGRP:
2582                 return tiocgpgrp(tty, real_tty, p);
2583         case TIOCSPGRP:
2584                 return tiocspgrp(tty, real_tty, p);
2585         case TIOCGSID:
2586                 return tiocgsid(tty, real_tty, p);
2587         case TIOCGETD:
2588                 return put_user(tty->ldisc.ops->num, (int __user *)p);
2589         case TIOCSETD:
2590                 return tiocsetd(tty, p);
2591         /*
2592          * Break handling
2593          */
2594         case TIOCSBRK:  /* Turn break on, unconditionally */
2595                 if (tty->ops->break_ctl)
2596                         return tty->ops->break_ctl(tty, -1);
2597                 return 0;
2598         case TIOCCBRK:  /* Turn break off, unconditionally */
2599                 if (tty->ops->break_ctl)
2600                         return tty->ops->break_ctl(tty, 0);
2601                 return 0;
2602         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2603                 /* non-zero arg means wait for all output data
2604                  * to be sent (performed above) but don't send break.
2605                  * This is used by the tcdrain() termios function.
2606                  */
2607                 if (!arg)
2608                         return send_break(tty, 250);
2609                 return 0;
2610         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2611                 return send_break(tty, arg ? arg*100 : 250);
2612
2613         case TIOCMGET:
2614                 return tty_tiocmget(tty, file, p);
2615         case TIOCMSET:
2616         case TIOCMBIC:
2617         case TIOCMBIS:
2618                 return tty_tiocmset(tty, file, cmd, p);
2619         case TCFLSH:
2620                 switch (arg) {
2621                 case TCIFLUSH:
2622                 case TCIOFLUSH:
2623                 /* flush tty buffer and allow ldisc to process ioctl */
2624                         tty_buffer_flush(tty);
2625                         break;
2626                 }
2627                 break;
2628         }
2629         if (tty->ops->ioctl) {
2630                 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2631                 if (retval != -ENOIOCTLCMD)
2632                         return retval;
2633         }
2634         ld = tty_ldisc_ref_wait(tty);
2635         retval = -EINVAL;
2636         if (ld->ops->ioctl) {
2637                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2638                 if (retval == -ENOIOCTLCMD)
2639                         retval = -EINVAL;
2640         }
2641         tty_ldisc_deref(ld);
2642         return retval;
2643 }
2644
2645 #ifdef CONFIG_COMPAT
2646 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2647                                 unsigned long arg)
2648 {
2649         struct inode *inode = file->f_dentry->d_inode;
2650         struct tty_struct *tty = file->private_data;
2651         struct tty_ldisc *ld;
2652         int retval = -ENOIOCTLCMD;
2653
2654         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2655                 return -EINVAL;
2656
2657         if (tty->ops->compat_ioctl) {
2658                 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2659                 if (retval != -ENOIOCTLCMD)
2660                         return retval;
2661         }
2662
2663         ld = tty_ldisc_ref_wait(tty);
2664         if (ld->ops->compat_ioctl)
2665                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2666         tty_ldisc_deref(ld);
2667
2668         return retval;
2669 }
2670 #endif
2671
2672 /*
2673  * This implements the "Secure Attention Key" ---  the idea is to
2674  * prevent trojan horses by killing all processes associated with this
2675  * tty when the user hits the "Secure Attention Key".  Required for
2676  * super-paranoid applications --- see the Orange Book for more details.
2677  *
2678  * This code could be nicer; ideally it should send a HUP, wait a few
2679  * seconds, then send a INT, and then a KILL signal.  But you then
2680  * have to coordinate with the init process, since all processes associated
2681  * with the current tty must be dead before the new getty is allowed
2682  * to spawn.
2683  *
2684  * Now, if it would be correct ;-/ The current code has a nasty hole -
2685  * it doesn't catch files in flight. We may send the descriptor to ourselves
2686  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2687  *
2688  * Nasty bug: do_SAK is being called in interrupt context.  This can
2689  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2690  */
2691 void __do_SAK(struct tty_struct *tty)
2692 {
2693 #ifdef TTY_SOFT_SAK
2694         tty_hangup(tty);
2695 #else
2696         struct task_struct *g, *p;
2697         struct pid *session;
2698         int             i;
2699         struct file     *filp;
2700         struct fdtable *fdt;
2701
2702         if (!tty)
2703                 return;
2704         session = tty->session;
2705
2706         tty_ldisc_flush(tty);
2707
2708         tty_driver_flush_buffer(tty);
2709
2710         read_lock(&tasklist_lock);
2711         /* Kill the entire session */
2712         do_each_pid_task(session, PIDTYPE_SID, p) {
2713                 printk(KERN_NOTICE "SAK: killed process %d"
2714                         " (%s): task_session_nr(p)==tty->session\n",
2715                         task_pid_nr(p), p->comm);
2716                 send_sig(SIGKILL, p, 1);
2717         } while_each_pid_task(session, PIDTYPE_SID, p);
2718         /* Now kill any processes that happen to have the
2719          * tty open.
2720          */
2721         do_each_thread(g, p) {
2722                 if (p->signal->tty == tty) {
2723                         printk(KERN_NOTICE "SAK: killed process %d"
2724                             " (%s): task_session_nr(p)==tty->session\n",
2725                             task_pid_nr(p), p->comm);
2726                         send_sig(SIGKILL, p, 1);
2727                         continue;
2728                 }
2729                 task_lock(p);
2730                 if (p->files) {
2731                         /*
2732                          * We don't take a ref to the file, so we must
2733                          * hold ->file_lock instead.
2734                          */
2735                         spin_lock(&p->files->file_lock);
2736                         fdt = files_fdtable(p->files);
2737                         for (i = 0; i < fdt->max_fds; i++) {
2738                                 filp = fcheck_files(p->files, i);
2739                                 if (!filp)
2740                                         continue;
2741                                 if (filp->f_op->read == tty_read &&
2742                                     filp->private_data == tty) {
2743                                         printk(KERN_NOTICE "SAK: killed process %d"
2744                                             " (%s): fd#%d opened to the tty\n",
2745                                             task_pid_nr(p), p->comm, i);
2746                                         force_sig(SIGKILL, p);
2747                                         break;
2748                                 }
2749                         }
2750                         spin_unlock(&p->files->file_lock);
2751                 }
2752                 task_unlock(p);
2753         } while_each_thread(g, p);
2754         read_unlock(&tasklist_lock);
2755 #endif
2756 }
2757
2758 static void do_SAK_work(struct work_struct *work)
2759 {
2760         struct tty_struct *tty =
2761                 container_of(work, struct tty_struct, SAK_work);
2762         __do_SAK(tty);
2763 }
2764
2765 /*
2766  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2767  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2768  * the values which we write to it will be identical to the values which it
2769  * already has. --akpm
2770  */
2771 void do_SAK(struct tty_struct *tty)
2772 {
2773         if (!tty)
2774                 return;
2775         schedule_work(&tty->SAK_work);
2776 }
2777
2778 EXPORT_SYMBOL(do_SAK);
2779
2780 /**
2781  *      initialize_tty_struct
2782  *      @tty: tty to initialize
2783  *
2784  *      This subroutine initializes a tty structure that has been newly
2785  *      allocated.
2786  *
2787  *      Locking: none - tty in question must not be exposed at this point
2788  */
2789
2790 void initialize_tty_struct(struct tty_struct *tty,
2791                 struct tty_driver *driver, int idx)
2792 {
2793         memset(tty, 0, sizeof(struct tty_struct));
2794         kref_init(&tty->kref);
2795         tty->magic = TTY_MAGIC;
2796         tty_ldisc_init(tty);
2797         tty->session = NULL;
2798         tty->pgrp = NULL;
2799         tty->overrun_time = jiffies;
2800         tty->buf.head = tty->buf.tail = NULL;
2801         tty_buffer_init(tty);
2802         mutex_init(&tty->termios_mutex);
2803         init_waitqueue_head(&tty->write_wait);
2804         init_waitqueue_head(&tty->read_wait);
2805         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2806         mutex_init(&tty->atomic_read_lock);
2807         mutex_init(&tty->atomic_write_lock);
2808         spin_lock_init(&tty->read_lock);
2809         spin_lock_init(&tty->ctrl_lock);
2810         INIT_LIST_HEAD(&tty->tty_files);
2811         INIT_WORK(&tty->SAK_work, do_SAK_work);
2812
2813         tty->driver = driver;
2814         tty->ops = driver->ops;
2815         tty->index = idx;
2816         tty_line_name(driver, idx, tty->name);
2817 }
2818
2819 /**
2820  *      tty_put_char    -       write one character to a tty
2821  *      @tty: tty
2822  *      @ch: character
2823  *
2824  *      Write one byte to the tty using the provided put_char method
2825  *      if present. Returns the number of characters successfully output.
2826  *
2827  *      Note: the specific put_char operation in the driver layer may go
2828  *      away soon. Don't call it directly, use this method
2829  */
2830
2831 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2832 {
2833         if (tty->ops->put_char)
2834                 return tty->ops->put_char(tty, ch);
2835         return tty->ops->write(tty, &ch, 1);
2836 }
2837 EXPORT_SYMBOL_GPL(tty_put_char);
2838
2839 struct class *tty_class;
2840
2841 /**
2842  *      tty_register_device - register a tty device
2843  *      @driver: the tty driver that describes the tty device
2844  *      @index: the index in the tty driver for this tty device
2845  *      @device: a struct device that is associated with this tty device.
2846  *              This field is optional, if there is no known struct device
2847  *              for this tty device it can be set to NULL safely.
2848  *
2849  *      Returns a pointer to the struct device for this tty device
2850  *      (or ERR_PTR(-EFOO) on error).
2851  *
2852  *      This call is required to be made to register an individual tty device
2853  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2854  *      that bit is not set, this function should not be called by a tty
2855  *      driver.
2856  *
2857  *      Locking: ??
2858  */
2859
2860 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2861                                    struct device *device)
2862 {
2863         char name[64];
2864         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2865
2866         if (index >= driver->num) {
2867                 printk(KERN_ERR "Attempt to register invalid tty line number "
2868                        " (%d).\n", index);
2869                 return ERR_PTR(-EINVAL);
2870         }
2871
2872         if (driver->type == TTY_DRIVER_TYPE_PTY)
2873                 pty_line_name(driver, index, name);
2874         else
2875                 tty_line_name(driver, index, name);
2876
2877         return device_create_drvdata(tty_class, device, dev, NULL, name);
2878 }
2879 EXPORT_SYMBOL(tty_register_device);
2880
2881 /**
2882  *      tty_unregister_device - unregister a tty device
2883  *      @driver: the tty driver that describes the tty device
2884  *      @index: the index in the tty driver for this tty device
2885  *
2886  *      If a tty device is registered with a call to tty_register_device() then
2887  *      this function must be called when the tty device is gone.
2888  *
2889  *      Locking: ??
2890  */
2891
2892 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2893 {
2894         device_destroy(tty_class,
2895                 MKDEV(driver->major, driver->minor_start) + index);
2896 }
2897 EXPORT_SYMBOL(tty_unregister_device);
2898
2899 struct tty_driver *alloc_tty_driver(int lines)
2900 {
2901         struct tty_driver *driver;
2902
2903         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2904         if (driver) {
2905                 kref_init(&driver->kref);
2906                 driver->magic = TTY_DRIVER_MAGIC;
2907                 driver->num = lines;
2908                 /* later we'll move allocation of tables here */
2909         }
2910         return driver;
2911 }
2912 EXPORT_SYMBOL(alloc_tty_driver);
2913
2914 static void destruct_tty_driver(struct kref *kref)
2915 {
2916         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2917         int i;
2918         struct ktermios *tp;
2919         void *p;
2920
2921         if (driver->flags & TTY_DRIVER_INSTALLED) {
2922                 /*
2923                  * Free the termios and termios_locked structures because
2924                  * we don't want to get memory leaks when modular tty
2925                  * drivers are removed from the kernel.
2926                  */
2927                 for (i = 0; i < driver->num; i++) {
2928                         tp = driver->termios[i];
2929                         if (tp) {
2930                                 driver->termios[i] = NULL;
2931                                 kfree(tp);
2932                         }
2933                         tp = driver->termios_locked[i];
2934                         if (tp) {
2935                                 driver->termios_locked[i] = NULL;
2936                                 kfree(tp);
2937                         }
2938                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2939                                 tty_unregister_device(driver, i);
2940                 }
2941                 p = driver->ttys;
2942                 proc_tty_unregister_driver(driver);
2943                 driver->ttys = NULL;
2944                 driver->termios = driver->termios_locked = NULL;
2945                 kfree(p);
2946                 cdev_del(&driver->cdev);
2947         }
2948         kfree(driver);
2949 }
2950
2951 void tty_driver_kref_put(struct tty_driver *driver)
2952 {
2953         kref_put(&driver->kref, destruct_tty_driver);
2954 }
2955 EXPORT_SYMBOL(tty_driver_kref_put);
2956
2957 void tty_set_operations(struct tty_driver *driver,
2958                         const struct tty_operations *op)
2959 {
2960         driver->ops = op;
2961 };
2962 EXPORT_SYMBOL(tty_set_operations);
2963
2964 void put_tty_driver(struct tty_driver *d)
2965 {
2966         tty_driver_kref_put(d);
2967 }
2968 EXPORT_SYMBOL(put_tty_driver);
2969
2970 /*
2971  * Called by a tty driver to register itself.
2972  */
2973 int tty_register_driver(struct tty_driver *driver)
2974 {
2975         int error;
2976         int i;
2977         dev_t dev;
2978         void **p = NULL;
2979
2980         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2981                 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
2982                 if (!p)
2983                         return -ENOMEM;
2984         }
2985
2986         if (!driver->major) {
2987                 error = alloc_chrdev_region(&dev, driver->minor_start,
2988                                                 driver->num, driver->name);
2989                 if (!error) {
2990                         driver->major = MAJOR(dev);
2991                         driver->minor_start = MINOR(dev);
2992                 }
2993         } else {
2994                 dev = MKDEV(driver->major, driver->minor_start);
2995                 error = register_chrdev_region(dev, driver->num, driver->name);
2996         }
2997         if (error < 0) {
2998                 kfree(p);
2999                 return error;
3000         }
3001
3002         if (p) {
3003                 driver->ttys = (struct tty_struct **)p;
3004                 driver->termios = (struct ktermios **)(p + driver->num);
3005                 driver->termios_locked = (struct ktermios **)
3006                                                         (p + driver->num * 2);
3007         } else {
3008                 driver->ttys = NULL;
3009                 driver->termios = NULL;
3010                 driver->termios_locked = NULL;
3011         }
3012
3013         cdev_init(&driver->cdev, &tty_fops);
3014         driver->cdev.owner = driver->owner;
3015         error = cdev_add(&driver->cdev, dev, driver->num);
3016         if (error) {
3017                 unregister_chrdev_region(dev, driver->num);
3018                 driver->ttys = NULL;
3019                 driver->termios = driver->termios_locked = NULL;
3020                 kfree(p);
3021                 return error;
3022         }
3023
3024         mutex_lock(&tty_mutex);
3025         list_add(&driver->tty_drivers, &tty_drivers);
3026         mutex_unlock(&tty_mutex);
3027
3028         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3029                 for (i = 0; i < driver->num; i++)
3030                     tty_register_device(driver, i, NULL);
3031         }
3032         proc_tty_register_driver(driver);
3033         driver->flags |= TTY_DRIVER_INSTALLED;
3034         return 0;
3035 }
3036
3037 EXPORT_SYMBOL(tty_register_driver);
3038
3039 /*
3040  * Called by a tty driver to unregister itself.
3041  */
3042 int tty_unregister_driver(struct tty_driver *driver)
3043 {
3044 #if 0
3045         /* FIXME */
3046         if (driver->refcount)
3047                 return -EBUSY;
3048 #endif
3049         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3050                                 driver->num);
3051         mutex_lock(&tty_mutex);
3052         list_del(&driver->tty_drivers);
3053         mutex_unlock(&tty_mutex);
3054         return 0;
3055 }
3056
3057 EXPORT_SYMBOL(tty_unregister_driver);
3058
3059 dev_t tty_devnum(struct tty_struct *tty)
3060 {
3061         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3062 }
3063 EXPORT_SYMBOL(tty_devnum);
3064
3065 void proc_clear_tty(struct task_struct *p)
3066 {
3067         struct tty_struct *tty;
3068         spin_lock_irq(&p->sighand->siglock);
3069         tty = p->signal->tty;
3070         p->signal->tty = NULL;
3071         spin_unlock_irq(&p->sighand->siglock);
3072         tty_kref_put(tty);
3073 }
3074
3075 /* Called under the sighand lock */
3076
3077 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3078 {
3079         if (tty) {
3080                 unsigned long flags;
3081                 /* We should not have a session or pgrp to put here but.... */
3082                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3083                 put_pid(tty->session);
3084                 put_pid(tty->pgrp);
3085                 tty->pgrp = get_pid(task_pgrp(tsk));
3086                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3087                 tty->session = get_pid(task_session(tsk));
3088                 if (tsk->signal->tty) {
3089                         printk(KERN_DEBUG "tty not NULL!!\n");
3090                         tty_kref_put(tsk->signal->tty);
3091                 }
3092         }
3093         put_pid(tsk->signal->tty_old_pgrp);
3094         tsk->signal->tty = tty_kref_get(tty);
3095         tsk->signal->tty_old_pgrp = NULL;
3096 }
3097
3098 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3099 {
3100         spin_lock_irq(&tsk->sighand->siglock);
3101         __proc_set_tty(tsk, tty);
3102         spin_unlock_irq(&tsk->sighand->siglock);
3103 }
3104
3105 struct tty_struct *get_current_tty(void)
3106 {
3107         struct tty_struct *tty;
3108         unsigned long flags;
3109
3110         spin_lock_irqsave(&current->sighand->siglock, flags);
3111         tty = tty_kref_get(current->signal->tty);
3112         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3113         return tty;
3114 }
3115 EXPORT_SYMBOL_GPL(get_current_tty);
3116
3117 void tty_default_fops(struct file_operations *fops)
3118 {
3119         *fops = tty_fops;
3120 }
3121
3122 /*
3123  * Initialize the console device. This is called *early*, so
3124  * we can't necessarily depend on lots of kernel help here.
3125  * Just do some early initializations, and do the complex setup
3126  * later.
3127  */
3128 void __init console_init(void)
3129 {
3130         initcall_t *call;
3131
3132         /* Setup the default TTY line discipline. */
3133         tty_ldisc_begin();
3134
3135         /*
3136          * set up the console device so that later boot sequences can
3137          * inform about problems etc..
3138          */
3139         call = __con_initcall_start;
3140         while (call < __con_initcall_end) {
3141                 (*call)();
3142                 call++;
3143         }
3144 }
3145
3146 static int __init tty_class_init(void)
3147 {
3148         tty_class = class_create(THIS_MODULE, "tty");
3149         if (IS_ERR(tty_class))
3150                 return PTR_ERR(tty_class);
3151         return 0;
3152 }
3153
3154 postcore_initcall(tty_class_init);
3155
3156 /* 3/2004 jmc: why do these devices exist? */
3157
3158 static struct cdev tty_cdev, console_cdev;
3159
3160 /*
3161  * Ok, now we can initialize the rest of the tty devices and can count
3162  * on memory allocations, interrupts etc..
3163  */
3164 static int __init tty_init(void)
3165 {
3166         cdev_init(&tty_cdev, &tty_fops);
3167         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3168             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3169                 panic("Couldn't register /dev/tty driver\n");
3170         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3171                               "tty");
3172
3173         cdev_init(&console_cdev, &console_fops);
3174         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3175             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3176                 panic("Couldn't register /dev/console driver\n");
3177         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3178                               "console");
3179
3180 #ifdef CONFIG_VT
3181         vty_init(&console_fops);
3182 #endif
3183         return 0;
3184 }
3185 module_init(tty_init);