]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/char/tty_io.c
tty: Move tty_write_message out of kernel/printk
[linux-2.6-omap-h63xx.git] / drivers / char / tty_io.c
1 /*
2  *  linux/drivers/char/tty_io.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9  * or rs-channels. It also implements echoing, cooked mode etc.
10  *
11  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12  *
13  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14  * tty_struct and tty_queue structures.  Previously there was an array
15  * of 256 tty_struct's which was statically allocated, and the
16  * tty_queue structures were allocated at boot time.  Both are now
17  * dynamically allocated only when the tty is open.
18  *
19  * Also restructured routines so that there is more of a separation
20  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21  * the low-level tty routines (serial.c, pty.c, console.c).  This
22  * makes for cleaner and more compact code.  -TYT, 9/17/92
23  *
24  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25  * which can be dynamically activated and de-activated by the line
26  * discipline handling modules (like SLIP).
27  *
28  * NOTE: pay no attention to the line discipline code (yet); its
29  * interface is still subject to change in this version...
30  * -- TYT, 1/31/92
31  *
32  * Added functionality to the OPOST tty handling.  No delays, but all
33  * other bits should be there.
34  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35  *
36  * Rewrote canonical mode and added more termios flags.
37  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38  *
39  * Reorganized FASYNC support so mouse code can share it.
40  *      -- ctm@ardi.com, 9Sep95
41  *
42  * New TIOCLINUX variants added.
43  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
44  *
45  * Restrict vt switching via ioctl()
46  *      -- grif@cs.ucr.edu, 5-Dec-95
47  *
48  * Move console and virtual terminal code to more appropriate files,
49  * implement CONFIG_VT and generalize console device interface.
50  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51  *
52  * Rewrote init_dev and release_dev to eliminate races.
53  *      -- Bill Hawes <whawes@star.net>, June 97
54  *
55  * Added devfs support.
56  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57  *
58  * Added support for a Unix98-style ptmx device.
59  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60  *
61  * Reduced memory usage for older ARM systems
62  *      -- Russell King <rmk@arm.linux.org.uk>
63  *
64  * Move do_SAK() into process context.  Less stack use in devfs functions.
65  * alloc_tty_struct() always uses kmalloc()
66  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67  */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114
115 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
116         .c_iflag = ICRNL | IXON,
117         .c_oflag = OPOST | ONLCR,
118         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120                    ECHOCTL | ECHOKE | IEXTEN,
121         .c_cc = INIT_C_CC,
122         .c_ispeed = 38400,
123         .c_ospeed = 38400
124 };
125
126 EXPORT_SYMBOL(tty_std_termios);
127
128 /* This list gets poked at by procfs and various bits of boot up code. This
129    could do with some rationalisation such as pulling the tty proc function
130    into this file */
131
132 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
133
134 /* Mutex to protect creating and releasing a tty. This is shared with
135    vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138
139 #ifdef CONFIG_UNIX98_PTYS
140 extern struct tty_driver *ptm_driver;   /* Unix98 pty masters; for /dev/ptmx */
141 static int ptmx_open(struct inode *, struct file *);
142 #endif
143
144 static void initialize_tty_struct(struct tty_struct *tty);
145
146 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
147 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
148 ssize_t redirected_tty_write(struct file *, const char __user *,
149                                                         size_t, loff_t *);
150 static unsigned int tty_poll(struct file *, poll_table *);
151 static int tty_open(struct inode *, struct file *);
152 static int tty_release(struct inode *, struct file *);
153 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
154 #ifdef CONFIG_COMPAT
155 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
156                                 unsigned long arg);
157 #else
158 #define tty_compat_ioctl NULL
159 #endif
160 static int tty_fasync(int fd, struct file *filp, int on);
161 static void release_tty(struct tty_struct *tty, int idx);
162 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
163 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
164
165 /**
166  *      alloc_tty_struct        -       allocate a tty object
167  *
168  *      Return a new empty tty structure. The data fields have not
169  *      been initialized in any way but has been zeroed
170  *
171  *      Locking: none
172  */
173
174 static struct tty_struct *alloc_tty_struct(void)
175 {
176         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
177 }
178
179 /**
180  *      free_tty_struct         -       free a disused tty
181  *      @tty: tty struct to free
182  *
183  *      Free the write buffers, tty queue and tty memory itself.
184  *
185  *      Locking: none. Must be called after tty is definitely unused
186  */
187
188 static inline void free_tty_struct(struct tty_struct *tty)
189 {
190         kfree(tty->write_buf);
191         tty_buffer_free_all(tty);
192         kfree(tty);
193 }
194
195 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
196
197 /**
198  *      tty_name        -       return tty naming
199  *      @tty: tty structure
200  *      @buf: buffer for output
201  *
202  *      Convert a tty structure into a name. The name reflects the kernel
203  *      naming policy and if udev is in use may not reflect user space
204  *
205  *      Locking: none
206  */
207
208 char *tty_name(struct tty_struct *tty, char *buf)
209 {
210         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
211                 strcpy(buf, "NULL tty");
212         else
213                 strcpy(buf, tty->name);
214         return buf;
215 }
216
217 EXPORT_SYMBOL(tty_name);
218
219 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
220                               const char *routine)
221 {
222 #ifdef TTY_PARANOIA_CHECK
223         if (!tty) {
224                 printk(KERN_WARNING
225                         "null TTY for (%d:%d) in %s\n",
226                         imajor(inode), iminor(inode), routine);
227                 return 1;
228         }
229         if (tty->magic != TTY_MAGIC) {
230                 printk(KERN_WARNING
231                         "bad magic number for tty struct (%d:%d) in %s\n",
232                         imajor(inode), iminor(inode), routine);
233                 return 1;
234         }
235 #endif
236         return 0;
237 }
238
239 static int check_tty_count(struct tty_struct *tty, const char *routine)
240 {
241 #ifdef CHECK_TTY_COUNT
242         struct list_head *p;
243         int count = 0;
244
245         file_list_lock();
246         list_for_each(p, &tty->tty_files) {
247                 count++;
248         }
249         file_list_unlock();
250         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
251             tty->driver->subtype == PTY_TYPE_SLAVE &&
252             tty->link && tty->link->count)
253                 count++;
254         if (tty->count != count) {
255                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
256                                     "!= #fd's(%d) in %s\n",
257                        tty->name, tty->count, count, routine);
258                 return count;
259         }
260 #endif
261         return 0;
262 }
263
264 /**
265  *      get_tty_driver          -       find device of a tty
266  *      @dev_t: device identifier
267  *      @index: returns the index of the tty
268  *
269  *      This routine returns a tty driver structure, given a device number
270  *      and also passes back the index number.
271  *
272  *      Locking: caller must hold tty_mutex
273  */
274
275 static struct tty_driver *get_tty_driver(dev_t device, int *index)
276 {
277         struct tty_driver *p;
278
279         list_for_each_entry(p, &tty_drivers, tty_drivers) {
280                 dev_t base = MKDEV(p->major, p->minor_start);
281                 if (device < base || device >= base + p->num)
282                         continue;
283                 *index = device - base;
284                 return p;
285         }
286         return NULL;
287 }
288
289 #ifdef CONFIG_CONSOLE_POLL
290
291 /**
292  *      tty_find_polling_driver -       find device of a polled tty
293  *      @name: name string to match
294  *      @line: pointer to resulting tty line nr
295  *
296  *      This routine returns a tty driver structure, given a name
297  *      and the condition that the tty driver is capable of polled
298  *      operation.
299  */
300 struct tty_driver *tty_find_polling_driver(char *name, int *line)
301 {
302         struct tty_driver *p, *res = NULL;
303         int tty_line = 0;
304         int len;
305         char *str;
306
307         for (str = name; *str; str++)
308                 if ((*str >= '0' && *str <= '9') || *str == ',')
309                         break;
310         if (!*str)
311                 return NULL;
312
313         len = str - name;
314         tty_line = simple_strtoul(str, &str, 10);
315
316         mutex_lock(&tty_mutex);
317         /* Search through the tty devices to look for a match */
318         list_for_each_entry(p, &tty_drivers, tty_drivers) {
319                 if (strncmp(name, p->name, len) != 0)
320                         continue;
321                 if (*str == ',')
322                         str++;
323                 if (*str == '\0')
324                         str = NULL;
325
326                 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
327                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, str)) {
328                         res = p;
329                         *line = tty_line;
330                         break;
331                 }
332         }
333         mutex_unlock(&tty_mutex);
334
335         return res;
336 }
337 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
338 #endif
339
340 /**
341  *      tty_check_change        -       check for POSIX terminal changes
342  *      @tty: tty to check
343  *
344  *      If we try to write to, or set the state of, a terminal and we're
345  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
346  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
347  *
348  *      Locking: ctrl_lock
349  */
350
351 int tty_check_change(struct tty_struct *tty)
352 {
353         unsigned long flags;
354         int ret = 0;
355
356         if (current->signal->tty != tty)
357                 return 0;
358
359         spin_lock_irqsave(&tty->ctrl_lock, flags);
360
361         if (!tty->pgrp) {
362                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
363                 goto out_unlock;
364         }
365         if (task_pgrp(current) == tty->pgrp)
366                 goto out_unlock;
367         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
368         if (is_ignored(SIGTTOU))
369                 goto out;
370         if (is_current_pgrp_orphaned()) {
371                 ret = -EIO;
372                 goto out;
373         }
374         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
375         set_thread_flag(TIF_SIGPENDING);
376         ret = -ERESTARTSYS;
377 out:
378         return ret;
379 out_unlock:
380         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
381         return ret;
382 }
383
384 EXPORT_SYMBOL(tty_check_change);
385
386 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
387                                 size_t count, loff_t *ppos)
388 {
389         return 0;
390 }
391
392 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
393                                  size_t count, loff_t *ppos)
394 {
395         return -EIO;
396 }
397
398 /* No kernel lock held - none needed ;) */
399 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
400 {
401         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
402 }
403
404 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
405                 unsigned long arg)
406 {
407         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
408 }
409
410 static long hung_up_tty_compat_ioctl(struct file *file,
411                                      unsigned int cmd, unsigned long arg)
412 {
413         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
414 }
415
416 static const struct file_operations tty_fops = {
417         .llseek         = no_llseek,
418         .read           = tty_read,
419         .write          = tty_write,
420         .poll           = tty_poll,
421         .unlocked_ioctl = tty_ioctl,
422         .compat_ioctl   = tty_compat_ioctl,
423         .open           = tty_open,
424         .release        = tty_release,
425         .fasync         = tty_fasync,
426 };
427
428 #ifdef CONFIG_UNIX98_PTYS
429 static const struct file_operations ptmx_fops = {
430         .llseek         = no_llseek,
431         .read           = tty_read,
432         .write          = tty_write,
433         .poll           = tty_poll,
434         .unlocked_ioctl = tty_ioctl,
435         .compat_ioctl   = tty_compat_ioctl,
436         .open           = ptmx_open,
437         .release        = tty_release,
438         .fasync         = tty_fasync,
439 };
440 #endif
441
442 static const struct file_operations console_fops = {
443         .llseek         = no_llseek,
444         .read           = tty_read,
445         .write          = redirected_tty_write,
446         .poll           = tty_poll,
447         .unlocked_ioctl = tty_ioctl,
448         .compat_ioctl   = tty_compat_ioctl,
449         .open           = tty_open,
450         .release        = tty_release,
451         .fasync         = tty_fasync,
452 };
453
454 static const struct file_operations hung_up_tty_fops = {
455         .llseek         = no_llseek,
456         .read           = hung_up_tty_read,
457         .write          = hung_up_tty_write,
458         .poll           = hung_up_tty_poll,
459         .unlocked_ioctl = hung_up_tty_ioctl,
460         .compat_ioctl   = hung_up_tty_compat_ioctl,
461         .release        = tty_release,
462 };
463
464 static DEFINE_SPINLOCK(redirect_lock);
465 static struct file *redirect;
466
467 /**
468  *      tty_wakeup      -       request more data
469  *      @tty: terminal
470  *
471  *      Internal and external helper for wakeups of tty. This function
472  *      informs the line discipline if present that the driver is ready
473  *      to receive more output data.
474  */
475
476 void tty_wakeup(struct tty_struct *tty)
477 {
478         struct tty_ldisc *ld;
479
480         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
481                 ld = tty_ldisc_ref(tty);
482                 if (ld) {
483                         if (ld->ops->write_wakeup)
484                                 ld->ops->write_wakeup(tty);
485                         tty_ldisc_deref(ld);
486                 }
487         }
488         wake_up_interruptible(&tty->write_wait);
489 }
490
491 EXPORT_SYMBOL_GPL(tty_wakeup);
492
493 /**
494  *      tty_ldisc_flush -       flush line discipline queue
495  *      @tty: tty
496  *
497  *      Flush the line discipline queue (if any) for this tty. If there
498  *      is no line discipline active this is a no-op.
499  */
500
501 void tty_ldisc_flush(struct tty_struct *tty)
502 {
503         struct tty_ldisc *ld = tty_ldisc_ref(tty);
504         if (ld) {
505                 if (ld->ops->flush_buffer)
506                         ld->ops->flush_buffer(tty);
507                 tty_ldisc_deref(ld);
508         }
509         tty_buffer_flush(tty);
510 }
511
512 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
513
514 /**
515  *      tty_reset_termios       -       reset terminal state
516  *      @tty: tty to reset
517  *
518  *      Restore a terminal to the driver default state
519  */
520
521 static void tty_reset_termios(struct tty_struct *tty)
522 {
523         mutex_lock(&tty->termios_mutex);
524         *tty->termios = tty->driver->init_termios;
525         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
526         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
527         mutex_unlock(&tty->termios_mutex);
528 }
529
530 /**
531  *      do_tty_hangup           -       actual handler for hangup events
532  *      @work: tty device
533  *
534  *      This can be called by the "eventd" kernel thread.  That is process
535  *      synchronous but doesn't hold any locks, so we need to make sure we
536  *      have the appropriate locks for what we're doing.
537  *
538  *      The hangup event clears any pending redirections onto the hung up
539  *      device. It ensures future writes will error and it does the needed
540  *      line discipline hangup and signal delivery. The tty object itself
541  *      remains intact.
542  *
543  *      Locking:
544  *              BKL
545  *                redirect lock for undoing redirection
546  *                file list lock for manipulating list of ttys
547  *                tty_ldisc_lock from called functions
548  *                termios_mutex resetting termios data
549  *                tasklist_lock to walk task list for hangup event
550  *                  ->siglock to protect ->signal/->sighand
551  */
552 static void do_tty_hangup(struct work_struct *work)
553 {
554         struct tty_struct *tty =
555                 container_of(work, struct tty_struct, hangup_work);
556         struct file *cons_filp = NULL;
557         struct file *filp, *f = NULL;
558         struct task_struct *p;
559         struct tty_ldisc *ld;
560         int    closecount = 0, n;
561         unsigned long flags;
562         int refs = 0;
563
564         if (!tty)
565                 return;
566
567         /* inuse_filps is protected by the single kernel lock */
568         lock_kernel();
569
570         spin_lock(&redirect_lock);
571         if (redirect && redirect->private_data == tty) {
572                 f = redirect;
573                 redirect = NULL;
574         }
575         spin_unlock(&redirect_lock);
576
577         check_tty_count(tty, "do_tty_hangup");
578         file_list_lock();
579         /* This breaks for file handles being sent over AF_UNIX sockets ? */
580         list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
581                 if (filp->f_op->write == redirected_tty_write)
582                         cons_filp = filp;
583                 if (filp->f_op->write != tty_write)
584                         continue;
585                 closecount++;
586                 tty_fasync(-1, filp, 0);        /* can't block */
587                 filp->f_op = &hung_up_tty_fops;
588         }
589         file_list_unlock();
590         /*
591          * FIXME! What are the locking issues here? This may me overdoing
592          * things... This question is especially important now that we've
593          * removed the irqlock.
594          */
595         ld = tty_ldisc_ref(tty);
596         if (ld != NULL) {
597                 /* We may have no line discipline at this point */
598                 if (ld->ops->flush_buffer)
599                         ld->ops->flush_buffer(tty);
600                 tty_driver_flush_buffer(tty);
601                 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
602                     ld->ops->write_wakeup)
603                         ld->ops->write_wakeup(tty);
604                 if (ld->ops->hangup)
605                         ld->ops->hangup(tty);
606         }
607         /*
608          * FIXME: Once we trust the LDISC code better we can wait here for
609          * ldisc completion and fix the driver call race
610          */
611         wake_up_interruptible(&tty->write_wait);
612         wake_up_interruptible(&tty->read_wait);
613         /*
614          * Shutdown the current line discipline, and reset it to
615          * N_TTY.
616          */
617         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
618                 tty_reset_termios(tty);
619         /* Defer ldisc switch */
620         /* tty_deferred_ldisc_switch(N_TTY);
621
622           This should get done automatically when the port closes and
623           tty_release is called */
624
625         read_lock(&tasklist_lock);
626         if (tty->session) {
627                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
628                         spin_lock_irq(&p->sighand->siglock);
629                         if (p->signal->tty == tty) {
630                                 p->signal->tty = NULL;
631                                 /* We defer the dereferences outside fo
632                                    the tasklist lock */
633                                 refs++;
634                         }
635                         if (!p->signal->leader) {
636                                 spin_unlock_irq(&p->sighand->siglock);
637                                 continue;
638                         }
639                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
640                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
641                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
642                         spin_lock_irqsave(&tty->ctrl_lock, flags);
643                         if (tty->pgrp)
644                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
645                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
646                         spin_unlock_irq(&p->sighand->siglock);
647                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
648         }
649         read_unlock(&tasklist_lock);
650
651         spin_lock_irqsave(&tty->ctrl_lock, flags);
652         tty->flags = 0;
653         put_pid(tty->session);
654         put_pid(tty->pgrp);
655         tty->session = NULL;
656         tty->pgrp = NULL;
657         tty->ctrl_status = 0;
658         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
659
660         /* Account for the p->signal references we killed */
661         while (refs--)
662                 tty_kref_put(tty);
663
664         /*
665          * If one of the devices matches a console pointer, we
666          * cannot just call hangup() because that will cause
667          * tty->count and state->count to go out of sync.
668          * So we just call close() the right number of times.
669          */
670         if (cons_filp) {
671                 if (tty->ops->close)
672                         for (n = 0; n < closecount; n++)
673                                 tty->ops->close(tty, cons_filp);
674         } else if (tty->ops->hangup)
675                 (tty->ops->hangup)(tty);
676         /*
677          * We don't want to have driver/ldisc interactions beyond
678          * the ones we did here. The driver layer expects no
679          * calls after ->hangup() from the ldisc side. However we
680          * can't yet guarantee all that.
681          */
682         set_bit(TTY_HUPPED, &tty->flags);
683         if (ld) {
684                 tty_ldisc_enable(tty);
685                 tty_ldisc_deref(ld);
686         }
687         unlock_kernel();
688         if (f)
689                 fput(f);
690 }
691
692 /**
693  *      tty_hangup              -       trigger a hangup event
694  *      @tty: tty to hangup
695  *
696  *      A carrier loss (virtual or otherwise) has occurred on this like
697  *      schedule a hangup sequence to run after this event.
698  */
699
700 void tty_hangup(struct tty_struct *tty)
701 {
702 #ifdef TTY_DEBUG_HANGUP
703         char    buf[64];
704         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
705 #endif
706         schedule_work(&tty->hangup_work);
707 }
708
709 EXPORT_SYMBOL(tty_hangup);
710
711 /**
712  *      tty_vhangup             -       process vhangup
713  *      @tty: tty to hangup
714  *
715  *      The user has asked via system call for the terminal to be hung up.
716  *      We do this synchronously so that when the syscall returns the process
717  *      is complete. That guarantee is necessary for security reasons.
718  */
719
720 void tty_vhangup(struct tty_struct *tty)
721 {
722 #ifdef TTY_DEBUG_HANGUP
723         char    buf[64];
724
725         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
726 #endif
727         do_tty_hangup(&tty->hangup_work);
728 }
729
730 EXPORT_SYMBOL(tty_vhangup);
731
732 /**
733  *      tty_hung_up_p           -       was tty hung up
734  *      @filp: file pointer of tty
735  *
736  *      Return true if the tty has been subject to a vhangup or a carrier
737  *      loss
738  */
739
740 int tty_hung_up_p(struct file *filp)
741 {
742         return (filp->f_op == &hung_up_tty_fops);
743 }
744
745 EXPORT_SYMBOL(tty_hung_up_p);
746
747 static void session_clear_tty(struct pid *session)
748 {
749         struct task_struct *p;
750         do_each_pid_task(session, PIDTYPE_SID, p) {
751                 proc_clear_tty(p);
752         } while_each_pid_task(session, PIDTYPE_SID, p);
753 }
754
755 /**
756  *      disassociate_ctty       -       disconnect controlling tty
757  *      @on_exit: true if exiting so need to "hang up" the session
758  *
759  *      This function is typically called only by the session leader, when
760  *      it wants to disassociate itself from its controlling tty.
761  *
762  *      It performs the following functions:
763  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
764  *      (2)  Clears the tty from being controlling the session
765  *      (3)  Clears the controlling tty for all processes in the
766  *              session group.
767  *
768  *      The argument on_exit is set to 1 if called when a process is
769  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
770  *
771  *      Locking:
772  *              BKL is taken for hysterical raisins
773  *                tty_mutex is taken to protect tty
774  *                ->siglock is taken to protect ->signal/->sighand
775  *                tasklist_lock is taken to walk process list for sessions
776  *                  ->siglock is taken to protect ->signal/->sighand
777  */
778
779 void disassociate_ctty(int on_exit)
780 {
781         struct tty_struct *tty;
782         struct pid *tty_pgrp = NULL;
783
784
785         mutex_lock(&tty_mutex);
786         tty = get_current_tty();
787         if (tty) {
788                 tty_pgrp = get_pid(tty->pgrp);
789                 mutex_unlock(&tty_mutex);
790                 lock_kernel();
791                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
792                         tty_vhangup(tty);
793                 unlock_kernel();
794                 tty_kref_put(tty);
795         } else if (on_exit) {
796                 struct pid *old_pgrp;
797                 spin_lock_irq(&current->sighand->siglock);
798                 old_pgrp = current->signal->tty_old_pgrp;
799                 current->signal->tty_old_pgrp = NULL;
800                 spin_unlock_irq(&current->sighand->siglock);
801                 if (old_pgrp) {
802                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
803                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
804                         put_pid(old_pgrp);
805                 }
806                 mutex_unlock(&tty_mutex);
807                 return;
808         }
809         if (tty_pgrp) {
810                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
811                 if (!on_exit)
812                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
813                 put_pid(tty_pgrp);
814         }
815
816         spin_lock_irq(&current->sighand->siglock);
817         put_pid(current->signal->tty_old_pgrp);
818         current->signal->tty_old_pgrp = NULL;
819         spin_unlock_irq(&current->sighand->siglock);
820
821         mutex_lock(&tty_mutex);
822         tty = get_current_tty();
823         if (tty) {
824                 unsigned long flags;
825                 spin_lock_irqsave(&tty->ctrl_lock, flags);
826                 put_pid(tty->session);
827                 put_pid(tty->pgrp);
828                 tty->session = NULL;
829                 tty->pgrp = NULL;
830                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
831                 tty_kref_put(tty);
832         } else {
833 #ifdef TTY_DEBUG_HANGUP
834                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
835                        " = NULL", tty);
836 #endif
837         }
838         mutex_unlock(&tty_mutex);
839
840         /* Now clear signal->tty under the lock */
841         read_lock(&tasklist_lock);
842         session_clear_tty(task_session(current));
843         read_unlock(&tasklist_lock);
844 }
845
846 /**
847  *
848  *      no_tty  - Ensure the current process does not have a controlling tty
849  */
850 void no_tty(void)
851 {
852         struct task_struct *tsk = current;
853         lock_kernel();
854         if (tsk->signal->leader)
855                 disassociate_ctty(0);
856         unlock_kernel();
857         proc_clear_tty(tsk);
858 }
859
860
861 /**
862  *      stop_tty        -       propagate flow control
863  *      @tty: tty to stop
864  *
865  *      Perform flow control to the driver. For PTY/TTY pairs we
866  *      must also propagate the TIOCKPKT status. May be called
867  *      on an already stopped device and will not re-call the driver
868  *      method.
869  *
870  *      This functionality is used by both the line disciplines for
871  *      halting incoming flow and by the driver. It may therefore be
872  *      called from any context, may be under the tty atomic_write_lock
873  *      but not always.
874  *
875  *      Locking:
876  *              Uses the tty control lock internally
877  */
878
879 void stop_tty(struct tty_struct *tty)
880 {
881         unsigned long flags;
882         spin_lock_irqsave(&tty->ctrl_lock, flags);
883         if (tty->stopped) {
884                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
885                 return;
886         }
887         tty->stopped = 1;
888         if (tty->link && tty->link->packet) {
889                 tty->ctrl_status &= ~TIOCPKT_START;
890                 tty->ctrl_status |= TIOCPKT_STOP;
891                 wake_up_interruptible(&tty->link->read_wait);
892         }
893         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
894         if (tty->ops->stop)
895                 (tty->ops->stop)(tty);
896 }
897
898 EXPORT_SYMBOL(stop_tty);
899
900 /**
901  *      start_tty       -       propagate flow control
902  *      @tty: tty to start
903  *
904  *      Start a tty that has been stopped if at all possible. Perform
905  *      any necessary wakeups and propagate the TIOCPKT status. If this
906  *      is the tty was previous stopped and is being started then the
907  *      driver start method is invoked and the line discipline woken.
908  *
909  *      Locking:
910  *              ctrl_lock
911  */
912
913 void start_tty(struct tty_struct *tty)
914 {
915         unsigned long flags;
916         spin_lock_irqsave(&tty->ctrl_lock, flags);
917         if (!tty->stopped || tty->flow_stopped) {
918                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
919                 return;
920         }
921         tty->stopped = 0;
922         if (tty->link && tty->link->packet) {
923                 tty->ctrl_status &= ~TIOCPKT_STOP;
924                 tty->ctrl_status |= TIOCPKT_START;
925                 wake_up_interruptible(&tty->link->read_wait);
926         }
927         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
928         if (tty->ops->start)
929                 (tty->ops->start)(tty);
930         /* If we have a running line discipline it may need kicking */
931         tty_wakeup(tty);
932 }
933
934 EXPORT_SYMBOL(start_tty);
935
936 /**
937  *      tty_read        -       read method for tty device files
938  *      @file: pointer to tty file
939  *      @buf: user buffer
940  *      @count: size of user buffer
941  *      @ppos: unused
942  *
943  *      Perform the read system call function on this terminal device. Checks
944  *      for hung up devices before calling the line discipline method.
945  *
946  *      Locking:
947  *              Locks the line discipline internally while needed. Multiple
948  *      read calls may be outstanding in parallel.
949  */
950
951 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
952                         loff_t *ppos)
953 {
954         int i;
955         struct tty_struct *tty;
956         struct inode *inode;
957         struct tty_ldisc *ld;
958
959         tty = (struct tty_struct *)file->private_data;
960         inode = file->f_path.dentry->d_inode;
961         if (tty_paranoia_check(tty, inode, "tty_read"))
962                 return -EIO;
963         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
964                 return -EIO;
965
966         /* We want to wait for the line discipline to sort out in this
967            situation */
968         ld = tty_ldisc_ref_wait(tty);
969         if (ld->ops->read)
970                 i = (ld->ops->read)(tty, file, buf, count);
971         else
972                 i = -EIO;
973         tty_ldisc_deref(ld);
974         if (i > 0)
975                 inode->i_atime = current_fs_time(inode->i_sb);
976         return i;
977 }
978
979 void tty_write_unlock(struct tty_struct *tty)
980 {
981         mutex_unlock(&tty->atomic_write_lock);
982         wake_up_interruptible(&tty->write_wait);
983 }
984
985 int tty_write_lock(struct tty_struct *tty, int ndelay)
986 {
987         if (!mutex_trylock(&tty->atomic_write_lock)) {
988                 if (ndelay)
989                         return -EAGAIN;
990                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
991                         return -ERESTARTSYS;
992         }
993         return 0;
994 }
995
996 /*
997  * Split writes up in sane blocksizes to avoid
998  * denial-of-service type attacks
999  */
1000 static inline ssize_t do_tty_write(
1001         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1002         struct tty_struct *tty,
1003         struct file *file,
1004         const char __user *buf,
1005         size_t count)
1006 {
1007         ssize_t ret, written = 0;
1008         unsigned int chunk;
1009
1010         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1011         if (ret < 0)
1012                 return ret;
1013
1014         /*
1015          * We chunk up writes into a temporary buffer. This
1016          * simplifies low-level drivers immensely, since they
1017          * don't have locking issues and user mode accesses.
1018          *
1019          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1020          * big chunk-size..
1021          *
1022          * The default chunk-size is 2kB, because the NTTY
1023          * layer has problems with bigger chunks. It will
1024          * claim to be able to handle more characters than
1025          * it actually does.
1026          *
1027          * FIXME: This can probably go away now except that 64K chunks
1028          * are too likely to fail unless switched to vmalloc...
1029          */
1030         chunk = 2048;
1031         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1032                 chunk = 65536;
1033         if (count < chunk)
1034                 chunk = count;
1035
1036         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1037         if (tty->write_cnt < chunk) {
1038                 unsigned char *buf;
1039
1040                 if (chunk < 1024)
1041                         chunk = 1024;
1042
1043                 buf = kmalloc(chunk, GFP_KERNEL);
1044                 if (!buf) {
1045                         ret = -ENOMEM;
1046                         goto out;
1047                 }
1048                 kfree(tty->write_buf);
1049                 tty->write_cnt = chunk;
1050                 tty->write_buf = buf;
1051         }
1052
1053         /* Do the write .. */
1054         for (;;) {
1055                 size_t size = count;
1056                 if (size > chunk)
1057                         size = chunk;
1058                 ret = -EFAULT;
1059                 if (copy_from_user(tty->write_buf, buf, size))
1060                         break;
1061                 ret = write(tty, file, tty->write_buf, size);
1062                 if (ret <= 0)
1063                         break;
1064                 written += ret;
1065                 buf += ret;
1066                 count -= ret;
1067                 if (!count)
1068                         break;
1069                 ret = -ERESTARTSYS;
1070                 if (signal_pending(current))
1071                         break;
1072                 cond_resched();
1073         }
1074         if (written) {
1075                 struct inode *inode = file->f_path.dentry->d_inode;
1076                 inode->i_mtime = current_fs_time(inode->i_sb);
1077                 ret = written;
1078         }
1079 out:
1080         tty_write_unlock(tty);
1081         return ret;
1082 }
1083
1084 /**
1085  * tty_write_message - write a message to a certain tty, not just the console.
1086  * @tty: the destination tty_struct
1087  * @msg: the message to write
1088  *
1089  * This is used for messages that need to be redirected to a specific tty.
1090  * We don't put it into the syslog queue right now maybe in the future if
1091  * really needed.
1092  *
1093  * We must still hold the BKL and test the CLOSING flag for the moment.
1094  */
1095
1096 void tty_write_message(struct tty_struct *tty, char *msg)
1097 {
1098         lock_kernel();
1099         if (tty) {
1100                 mutex_lock(&tty->atomic_write_lock);
1101                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags))
1102                         tty->ops->write(tty, msg, strlen(msg));
1103                 tty_write_unlock(tty);
1104         }
1105         unlock_kernel();
1106         return;
1107 }
1108
1109
1110 /**
1111  *      tty_write               -       write method for tty device file
1112  *      @file: tty file pointer
1113  *      @buf: user data to write
1114  *      @count: bytes to write
1115  *      @ppos: unused
1116  *
1117  *      Write data to a tty device via the line discipline.
1118  *
1119  *      Locking:
1120  *              Locks the line discipline as required
1121  *              Writes to the tty driver are serialized by the atomic_write_lock
1122  *      and are then processed in chunks to the device. The line discipline
1123  *      write method will not be involked in parallel for each device
1124  *              The line discipline write method is called under the big
1125  *      kernel lock for historical reasons. New code should not rely on this.
1126  */
1127
1128 static ssize_t tty_write(struct file *file, const char __user *buf,
1129                                                 size_t count, loff_t *ppos)
1130 {
1131         struct tty_struct *tty;
1132         struct inode *inode = file->f_path.dentry->d_inode;
1133         ssize_t ret;
1134         struct tty_ldisc *ld;
1135
1136         tty = (struct tty_struct *)file->private_data;
1137         if (tty_paranoia_check(tty, inode, "tty_write"))
1138                 return -EIO;
1139         if (!tty || !tty->ops->write ||
1140                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1141                         return -EIO;
1142         /* Short term debug to catch buggy drivers */
1143         if (tty->ops->write_room == NULL)
1144                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1145                         tty->driver->name);
1146         ld = tty_ldisc_ref_wait(tty);
1147         if (!ld->ops->write)
1148                 ret = -EIO;
1149         else
1150                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1151         tty_ldisc_deref(ld);
1152         return ret;
1153 }
1154
1155 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1156                                                 size_t count, loff_t *ppos)
1157 {
1158         struct file *p = NULL;
1159
1160         spin_lock(&redirect_lock);
1161         if (redirect) {
1162                 get_file(redirect);
1163                 p = redirect;
1164         }
1165         spin_unlock(&redirect_lock);
1166
1167         if (p) {
1168                 ssize_t res;
1169                 res = vfs_write(p, buf, count, &p->f_pos);
1170                 fput(p);
1171                 return res;
1172         }
1173         return tty_write(file, buf, count, ppos);
1174 }
1175
1176 static char ptychar[] = "pqrstuvwxyzabcde";
1177
1178 /**
1179  *      pty_line_name   -       generate name for a pty
1180  *      @driver: the tty driver in use
1181  *      @index: the minor number
1182  *      @p: output buffer of at least 6 bytes
1183  *
1184  *      Generate a name from a driver reference and write it to the output
1185  *      buffer.
1186  *
1187  *      Locking: None
1188  */
1189 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1190 {
1191         int i = index + driver->name_base;
1192         /* ->name is initialized to "ttyp", but "tty" is expected */
1193         sprintf(p, "%s%c%x",
1194                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1195                 ptychar[i >> 4 & 0xf], i & 0xf);
1196 }
1197
1198 /**
1199  *      pty_line_name   -       generate name for a tty
1200  *      @driver: the tty driver in use
1201  *      @index: the minor number
1202  *      @p: output buffer of at least 7 bytes
1203  *
1204  *      Generate a name from a driver reference and write it to the output
1205  *      buffer.
1206  *
1207  *      Locking: None
1208  */
1209 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1210 {
1211         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1212 }
1213
1214 /**
1215  *      init_dev                -       initialise a tty device
1216  *      @driver: tty driver we are opening a device on
1217  *      @idx: device index
1218  *      @tty: returned tty structure
1219  *
1220  *      Prepare a tty device. This may not be a "new" clean device but
1221  *      could also be an active device. The pty drivers require special
1222  *      handling because of this.
1223  *
1224  *      Locking:
1225  *              The function is called under the tty_mutex, which
1226  *      protects us from the tty struct or driver itself going away.
1227  *
1228  *      On exit the tty device has the line discipline attached and
1229  *      a reference count of 1. If a pair was created for pty/tty use
1230  *      and the other was a pty master then it too has a reference count of 1.
1231  *
1232  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1233  * failed open.  The new code protects the open with a mutex, so it's
1234  * really quite straightforward.  The mutex locking can probably be
1235  * relaxed for the (most common) case of reopening a tty.
1236  */
1237
1238 static int init_dev(struct tty_driver *driver, int idx,
1239         struct tty_struct **ret_tty)
1240 {
1241         struct tty_struct *tty, *o_tty;
1242         struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
1243         struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1244         int retval = 0;
1245
1246         /* check whether we're reopening an existing tty */
1247         if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1248                 tty = devpts_get_tty(idx);
1249                 /*
1250                  * If we don't have a tty here on a slave open, it's because
1251                  * the master already started the close process and there's
1252                  * no relation between devpts file and tty anymore.
1253                  */
1254                 if (!tty && driver->subtype == PTY_TYPE_SLAVE) {
1255                         retval = -EIO;
1256                         goto end_init;
1257                 }
1258                 /*
1259                  * It's safe from now on because init_dev() is called with
1260                  * tty_mutex held and release_dev() won't change tty->count
1261                  * or tty->flags without having to grab tty_mutex
1262                  */
1263                 if (tty && driver->subtype == PTY_TYPE_MASTER)
1264                         tty = tty->link;
1265         } else {
1266                 tty = driver->ttys[idx];
1267         }
1268         if (tty) goto fast_track;
1269
1270         /*
1271          * First time open is complex, especially for PTY devices.
1272          * This code guarantees that either everything succeeds and the
1273          * TTY is ready for operation, or else the table slots are vacated
1274          * and the allocated memory released.  (Except that the termios
1275          * and locked termios may be retained.)
1276          */
1277
1278         if (!try_module_get(driver->owner)) {
1279                 retval = -ENODEV;
1280                 goto end_init;
1281         }
1282
1283         o_tty = NULL;
1284         tp = o_tp = NULL;
1285         ltp = o_ltp = NULL;
1286
1287         tty = alloc_tty_struct();
1288         if (!tty)
1289                 goto fail_no_mem;
1290         initialize_tty_struct(tty);
1291         tty->driver = driver;
1292         tty->ops = driver->ops;
1293         tty->index = idx;
1294         tty_line_name(driver, idx, tty->name);
1295
1296         if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1297                 tp_loc = &tty->termios;
1298                 ltp_loc = &tty->termios_locked;
1299         } else {
1300                 tp_loc = &driver->termios[idx];
1301                 ltp_loc = &driver->termios_locked[idx];
1302         }
1303
1304         if (!*tp_loc) {
1305                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1306                 if (!tp)
1307                         goto free_mem_out;
1308                 *tp = driver->init_termios;
1309         }
1310
1311         if (!*ltp_loc) {
1312                 ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
1313                 if (!ltp)
1314                         goto free_mem_out;
1315         }
1316
1317         if (driver->type == TTY_DRIVER_TYPE_PTY) {
1318                 o_tty = alloc_tty_struct();
1319                 if (!o_tty)
1320                         goto free_mem_out;
1321                 if (!try_module_get(driver->other->owner)) {
1322                         /* This cannot in fact currently happen */
1323                         free_tty_struct(o_tty);
1324                         o_tty = NULL;
1325                         goto free_mem_out;
1326                 }
1327                 initialize_tty_struct(o_tty);
1328                 o_tty->driver = driver->other;
1329                 o_tty->ops = driver->ops;
1330                 o_tty->index = idx;
1331                 tty_line_name(driver->other, idx, o_tty->name);
1332
1333                 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1334                         o_tp_loc = &o_tty->termios;
1335                         o_ltp_loc = &o_tty->termios_locked;
1336                 } else {
1337                         o_tp_loc = &driver->other->termios[idx];
1338                         o_ltp_loc = &driver->other->termios_locked[idx];
1339                 }
1340
1341                 if (!*o_tp_loc) {
1342                         o_tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1343                         if (!o_tp)
1344                                 goto free_mem_out;
1345                         *o_tp = driver->other->init_termios;
1346                 }
1347
1348                 if (!*o_ltp_loc) {
1349                         o_ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
1350                         if (!o_ltp)
1351                                 goto free_mem_out;
1352                 }
1353
1354                 /*
1355                  * Everything allocated ... set up the o_tty structure.
1356                  */
1357                 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM))
1358                         driver->other->ttys[idx] = o_tty;
1359                 if (!*o_tp_loc)
1360                         *o_tp_loc = o_tp;
1361                 if (!*o_ltp_loc)
1362                         *o_ltp_loc = o_ltp;
1363                 o_tty->termios = *o_tp_loc;
1364                 o_tty->termios_locked = *o_ltp_loc;
1365                 driver->other->refcount++;
1366                 if (driver->subtype == PTY_TYPE_MASTER)
1367                         o_tty->count++;
1368
1369                 /* Establish the links in both directions */
1370                 tty->link   = o_tty;
1371                 o_tty->link = tty;
1372         }
1373
1374         /*
1375          * All structures have been allocated, so now we install them.
1376          * Failures after this point use release_tty to clean up, so
1377          * there's no need to null out the local pointers.
1378          */
1379         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM))
1380                 driver->ttys[idx] = tty;
1381
1382         if (!*tp_loc)
1383                 *tp_loc = tp;
1384         if (!*ltp_loc)
1385                 *ltp_loc = ltp;
1386         tty->termios = *tp_loc;
1387         tty->termios_locked = *ltp_loc;
1388         /* Compatibility until drivers always set this */
1389         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1390         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1391         driver->refcount++;
1392         tty->count++;
1393
1394         /*
1395          * Structures all installed ... call the ldisc open routines.
1396          * If we fail here just call release_tty to clean up.  No need
1397          * to decrement the use counts, as release_tty doesn't care.
1398          */
1399
1400         retval = tty_ldisc_setup(tty, o_tty);
1401
1402         if (retval)
1403                 goto release_mem_out;
1404          goto success;
1405
1406         /*
1407          * This fast open can be used if the tty is already open.
1408          * No memory is allocated, and the only failures are from
1409          * attempting to open a closing tty or attempting multiple
1410          * opens on a pty master.
1411          */
1412 fast_track:
1413         if (test_bit(TTY_CLOSING, &tty->flags)) {
1414                 retval = -EIO;
1415                 goto end_init;
1416         }
1417         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1418             driver->subtype == PTY_TYPE_MASTER) {
1419                 /*
1420                  * special case for PTY masters: only one open permitted,
1421                  * and the slave side open count is incremented as well.
1422                  */
1423                 if (tty->count) {
1424                         retval = -EIO;
1425                         goto end_init;
1426                 }
1427                 tty->link->count++;
1428         }
1429         tty->count++;
1430         tty->driver = driver; /* N.B. why do this every time?? */
1431
1432         /* FIXME */
1433         if (!test_bit(TTY_LDISC, &tty->flags))
1434                 printk(KERN_ERR "init_dev but no ldisc\n");
1435 success:
1436         *ret_tty = tty;
1437
1438         /* All paths come through here to release the mutex */
1439 end_init:
1440         return retval;
1441
1442         /* Release locally allocated memory ... nothing placed in slots */
1443 free_mem_out:
1444         kfree(o_tp);
1445         if (o_tty) {
1446                 module_put(o_tty->driver->owner);
1447                 free_tty_struct(o_tty);
1448         }
1449         kfree(ltp);
1450         kfree(tp);
1451         free_tty_struct(tty);
1452
1453 fail_no_mem:
1454         module_put(driver->owner);
1455         retval = -ENOMEM;
1456         goto end_init;
1457
1458         /* call the tty release_tty routine to clean out this slot */
1459 release_mem_out:
1460         if (printk_ratelimit())
1461                 printk(KERN_INFO "init_dev: ldisc open failed, "
1462                                  "clearing slot %d\n", idx);
1463         release_tty(tty, idx);
1464         goto end_init;
1465 }
1466
1467 /**
1468  *      release_one_tty         -       release tty structure memory
1469  *      @kref: kref of tty we are obliterating
1470  *
1471  *      Releases memory associated with a tty structure, and clears out the
1472  *      driver table slots. This function is called when a device is no longer
1473  *      in use. It also gets called when setup of a device fails.
1474  *
1475  *      Locking:
1476  *              tty_mutex - sometimes only
1477  *              takes the file list lock internally when working on the list
1478  *      of ttys that the driver keeps.
1479  */
1480 static void release_one_tty(struct kref *kref)
1481 {
1482         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1483         struct tty_driver *driver = tty->driver;
1484         int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
1485         struct ktermios *tp;
1486         int idx = tty->index;
1487
1488         if (!devpts)
1489                 tty->driver->ttys[idx] = NULL;
1490
1491         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1492                 /* FIXME: Locking on ->termios array */
1493                 tp = tty->termios;
1494                 if (!devpts)
1495                         tty->driver->termios[idx] = NULL;
1496                 kfree(tp);
1497
1498                 tp = tty->termios_locked;
1499                 if (!devpts)
1500                         tty->driver->termios_locked[idx] = NULL;
1501                 kfree(tp);
1502         }
1503
1504
1505         tty->magic = 0;
1506         /* FIXME: locking on tty->driver->refcount */
1507         tty->driver->refcount--;
1508         module_put(driver->owner);
1509
1510         file_list_lock();
1511         list_del_init(&tty->tty_files);
1512         file_list_unlock();
1513
1514         free_tty_struct(tty);
1515 }
1516
1517 /**
1518  *      tty_kref_put            -       release a tty kref
1519  *      @tty: tty device
1520  *
1521  *      Release a reference to a tty device and if need be let the kref
1522  *      layer destruct the object for us
1523  */
1524
1525 void tty_kref_put(struct tty_struct *tty)
1526 {
1527         if (tty)
1528                 kref_put(&tty->kref, release_one_tty);
1529 }
1530 EXPORT_SYMBOL(tty_kref_put);
1531
1532 /**
1533  *      release_tty             -       release tty structure memory
1534  *
1535  *      Release both @tty and a possible linked partner (think pty pair),
1536  *      and decrement the refcount of the backing module.
1537  *
1538  *      Locking:
1539  *              tty_mutex - sometimes only
1540  *              takes the file list lock internally when working on the list
1541  *      of ttys that the driver keeps.
1542  *              FIXME: should we require tty_mutex is held here ??
1543  *
1544  */
1545 static void release_tty(struct tty_struct *tty, int idx)
1546 {
1547         /* This should always be true but check for the moment */
1548         WARN_ON(tty->index != idx);
1549
1550         if (tty->link)
1551                 tty_kref_put(tty->link);
1552         tty_kref_put(tty);
1553 }
1554
1555 /*
1556  * Even releasing the tty structures is a tricky business.. We have
1557  * to be very careful that the structures are all released at the
1558  * same time, as interrupts might otherwise get the wrong pointers.
1559  *
1560  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1561  * lead to double frees or releasing memory still in use.
1562  */
1563 static void release_dev(struct file *filp)
1564 {
1565         struct tty_struct *tty, *o_tty;
1566         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1567         int     devpts;
1568         int     idx;
1569         char    buf[64];
1570
1571         tty = (struct tty_struct *)filp->private_data;
1572         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode,
1573                                                         "release_dev"))
1574                 return;
1575
1576         check_tty_count(tty, "release_dev");
1577
1578         tty_fasync(-1, filp, 0);
1579
1580         idx = tty->index;
1581         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1582                       tty->driver->subtype == PTY_TYPE_MASTER);
1583         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1584         o_tty = tty->link;
1585
1586 #ifdef TTY_PARANOIA_CHECK
1587         if (idx < 0 || idx >= tty->driver->num) {
1588                 printk(KERN_DEBUG "release_dev: bad idx when trying to "
1589                                   "free (%s)\n", tty->name);
1590                 return;
1591         }
1592         if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1593                 if (tty != tty->driver->ttys[idx]) {
1594                         printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
1595                                "for (%s)\n", idx, tty->name);
1596                         return;
1597                 }
1598                 if (tty->termios != tty->driver->termios[idx]) {
1599                         printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
1600                                "for (%s)\n",
1601                                idx, tty->name);
1602                         return;
1603                 }
1604                 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
1605                         printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
1606                                "termios_locked for (%s)\n",
1607                                idx, tty->name);
1608                         return;
1609                 }
1610         }
1611 #endif
1612
1613 #ifdef TTY_DEBUG_HANGUP
1614         printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
1615                tty_name(tty, buf), tty->count);
1616 #endif
1617
1618 #ifdef TTY_PARANOIA_CHECK
1619         if (tty->driver->other &&
1620              !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1621                 if (o_tty != tty->driver->other->ttys[idx]) {
1622                         printk(KERN_DEBUG "release_dev: other->table[%d] "
1623                                           "not o_tty for (%s)\n",
1624                                idx, tty->name);
1625                         return;
1626                 }
1627                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1628                         printk(KERN_DEBUG "release_dev: other->termios[%d] "
1629                                           "not o_termios for (%s)\n",
1630                                idx, tty->name);
1631                         return;
1632                 }
1633                 if (o_tty->termios_locked !=
1634                       tty->driver->other->termios_locked[idx]) {
1635                         printk(KERN_DEBUG "release_dev: other->termios_locked["
1636                                           "%d] not o_termios_locked for (%s)\n",
1637                                idx, tty->name);
1638                         return;
1639                 }
1640                 if (o_tty->link != tty) {
1641                         printk(KERN_DEBUG "release_dev: bad pty pointers\n");
1642                         return;
1643                 }
1644         }
1645 #endif
1646         if (tty->ops->close)
1647                 tty->ops->close(tty, filp);
1648
1649         /*
1650          * Sanity check: if tty->count is going to zero, there shouldn't be
1651          * any waiters on tty->read_wait or tty->write_wait.  We test the
1652          * wait queues and kick everyone out _before_ actually starting to
1653          * close.  This ensures that we won't block while releasing the tty
1654          * structure.
1655          *
1656          * The test for the o_tty closing is necessary, since the master and
1657          * slave sides may close in any order.  If the slave side closes out
1658          * first, its count will be one, since the master side holds an open.
1659          * Thus this test wouldn't be triggered at the time the slave closes,
1660          * so we do it now.
1661          *
1662          * Note that it's possible for the tty to be opened again while we're
1663          * flushing out waiters.  By recalculating the closing flags before
1664          * each iteration we avoid any problems.
1665          */
1666         while (1) {
1667                 /* Guard against races with tty->count changes elsewhere and
1668                    opens on /dev/tty */
1669
1670                 mutex_lock(&tty_mutex);
1671                 tty_closing = tty->count <= 1;
1672                 o_tty_closing = o_tty &&
1673                         (o_tty->count <= (pty_master ? 1 : 0));
1674                 do_sleep = 0;
1675
1676                 if (tty_closing) {
1677                         if (waitqueue_active(&tty->read_wait)) {
1678                                 wake_up(&tty->read_wait);
1679                                 do_sleep++;
1680                         }
1681                         if (waitqueue_active(&tty->write_wait)) {
1682                                 wake_up(&tty->write_wait);
1683                                 do_sleep++;
1684                         }
1685                 }
1686                 if (o_tty_closing) {
1687                         if (waitqueue_active(&o_tty->read_wait)) {
1688                                 wake_up(&o_tty->read_wait);
1689                                 do_sleep++;
1690                         }
1691                         if (waitqueue_active(&o_tty->write_wait)) {
1692                                 wake_up(&o_tty->write_wait);
1693                                 do_sleep++;
1694                         }
1695                 }
1696                 if (!do_sleep)
1697                         break;
1698
1699                 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
1700                                     "active!\n", tty_name(tty, buf));
1701                 mutex_unlock(&tty_mutex);
1702                 schedule();
1703         }
1704
1705         /*
1706          * The closing flags are now consistent with the open counts on
1707          * both sides, and we've completed the last operation that could
1708          * block, so it's safe to proceed with closing.
1709          */
1710         if (pty_master) {
1711                 if (--o_tty->count < 0) {
1712                         printk(KERN_WARNING "release_dev: bad pty slave count "
1713                                             "(%d) for %s\n",
1714                                o_tty->count, tty_name(o_tty, buf));
1715                         o_tty->count = 0;
1716                 }
1717         }
1718         if (--tty->count < 0) {
1719                 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
1720                        tty->count, tty_name(tty, buf));
1721                 tty->count = 0;
1722         }
1723
1724         /*
1725          * We've decremented tty->count, so we need to remove this file
1726          * descriptor off the tty->tty_files list; this serves two
1727          * purposes:
1728          *  - check_tty_count sees the correct number of file descriptors
1729          *    associated with this tty.
1730          *  - do_tty_hangup no longer sees this file descriptor as
1731          *    something that needs to be handled for hangups.
1732          */
1733         file_kill(filp);
1734         filp->private_data = NULL;
1735
1736         /*
1737          * Perform some housekeeping before deciding whether to return.
1738          *
1739          * Set the TTY_CLOSING flag if this was the last open.  In the
1740          * case of a pty we may have to wait around for the other side
1741          * to close, and TTY_CLOSING makes sure we can't be reopened.
1742          */
1743         if (tty_closing)
1744                 set_bit(TTY_CLOSING, &tty->flags);
1745         if (o_tty_closing)
1746                 set_bit(TTY_CLOSING, &o_tty->flags);
1747
1748         /*
1749          * If _either_ side is closing, make sure there aren't any
1750          * processes that still think tty or o_tty is their controlling
1751          * tty.
1752          */
1753         if (tty_closing || o_tty_closing) {
1754                 read_lock(&tasklist_lock);
1755                 session_clear_tty(tty->session);
1756                 if (o_tty)
1757                         session_clear_tty(o_tty->session);
1758                 read_unlock(&tasklist_lock);
1759         }
1760
1761         mutex_unlock(&tty_mutex);
1762
1763         /* check whether both sides are closing ... */
1764         if (!tty_closing || (o_tty && !o_tty_closing))
1765                 return;
1766
1767 #ifdef TTY_DEBUG_HANGUP
1768         printk(KERN_DEBUG "freeing tty structure...");
1769 #endif
1770         /*
1771          * Ask the line discipline code to release its structures
1772          */
1773         tty_ldisc_release(tty, o_tty);
1774         /*
1775          * The release_tty function takes care of the details of clearing
1776          * the slots and preserving the termios structure.
1777          */
1778         release_tty(tty, idx);
1779
1780         /* Make this pty number available for reallocation */
1781         if (devpts)
1782                 devpts_kill_index(idx);
1783 }
1784
1785 /**
1786  *      tty_open                -       open a tty device
1787  *      @inode: inode of device file
1788  *      @filp: file pointer to tty
1789  *
1790  *      tty_open and tty_release keep up the tty count that contains the
1791  *      number of opens done on a tty. We cannot use the inode-count, as
1792  *      different inodes might point to the same tty.
1793  *
1794  *      Open-counting is needed for pty masters, as well as for keeping
1795  *      track of serial lines: DTR is dropped when the last close happens.
1796  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1797  *
1798  *      The termios state of a pty is reset on first open so that
1799  *      settings don't persist across reuse.
1800  *
1801  *      Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
1802  *               tty->count should protect the rest.
1803  *               ->siglock protects ->signal/->sighand
1804  */
1805
1806 static int __tty_open(struct inode *inode, struct file *filp)
1807 {
1808         struct tty_struct *tty;
1809         int noctty, retval;
1810         struct tty_driver *driver;
1811         int index;
1812         dev_t device = inode->i_rdev;
1813         unsigned short saved_flags = filp->f_flags;
1814
1815         nonseekable_open(inode, filp);
1816
1817 retry_open:
1818         noctty = filp->f_flags & O_NOCTTY;
1819         index  = -1;
1820         retval = 0;
1821
1822         mutex_lock(&tty_mutex);
1823
1824         if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1825                 tty = get_current_tty();
1826                 if (!tty) {
1827                         mutex_unlock(&tty_mutex);
1828                         return -ENXIO;
1829                 }
1830                 driver = tty->driver;
1831                 index = tty->index;
1832                 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1833                 /* noctty = 1; */
1834                 /* FIXME: Should we take a driver reference ? */
1835                 tty_kref_put(tty);
1836                 goto got_driver;
1837         }
1838 #ifdef CONFIG_VT
1839         if (device == MKDEV(TTY_MAJOR, 0)) {
1840                 extern struct tty_driver *console_driver;
1841                 driver = console_driver;
1842                 index = fg_console;
1843                 noctty = 1;
1844                 goto got_driver;
1845         }
1846 #endif
1847         if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1848                 driver = console_device(&index);
1849                 if (driver) {
1850                         /* Don't let /dev/console block */
1851                         filp->f_flags |= O_NONBLOCK;
1852                         noctty = 1;
1853                         goto got_driver;
1854                 }
1855                 mutex_unlock(&tty_mutex);
1856                 return -ENODEV;
1857         }
1858
1859         driver = get_tty_driver(device, &index);
1860         if (!driver) {
1861                 mutex_unlock(&tty_mutex);
1862                 return -ENODEV;
1863         }
1864 got_driver:
1865         retval = init_dev(driver, index, &tty);
1866         mutex_unlock(&tty_mutex);
1867         if (retval)
1868                 return retval;
1869
1870         filp->private_data = tty;
1871         file_move(filp, &tty->tty_files);
1872         check_tty_count(tty, "tty_open");
1873         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1874             tty->driver->subtype == PTY_TYPE_MASTER)
1875                 noctty = 1;
1876 #ifdef TTY_DEBUG_HANGUP
1877         printk(KERN_DEBUG "opening %s...", tty->name);
1878 #endif
1879         if (!retval) {
1880                 if (tty->ops->open)
1881                         retval = tty->ops->open(tty, filp);
1882                 else
1883                         retval = -ENODEV;
1884         }
1885         filp->f_flags = saved_flags;
1886
1887         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1888                                                 !capable(CAP_SYS_ADMIN))
1889                 retval = -EBUSY;
1890
1891         if (retval) {
1892 #ifdef TTY_DEBUG_HANGUP
1893                 printk(KERN_DEBUG "error %d in opening %s...", retval,
1894                        tty->name);
1895 #endif
1896                 release_dev(filp);
1897                 if (retval != -ERESTARTSYS)
1898                         return retval;
1899                 if (signal_pending(current))
1900                         return retval;
1901                 schedule();
1902                 /*
1903                  * Need to reset f_op in case a hangup happened.
1904                  */
1905                 if (filp->f_op == &hung_up_tty_fops)
1906                         filp->f_op = &tty_fops;
1907                 goto retry_open;
1908         }
1909
1910         mutex_lock(&tty_mutex);
1911         spin_lock_irq(&current->sighand->siglock);
1912         if (!noctty &&
1913             current->signal->leader &&
1914             !current->signal->tty &&
1915             tty->session == NULL)
1916                 __proc_set_tty(current, tty);
1917         spin_unlock_irq(&current->sighand->siglock);
1918         mutex_unlock(&tty_mutex);
1919         return 0;
1920 }
1921
1922 /* BKL pushdown: scary code avoidance wrapper */
1923 static int tty_open(struct inode *inode, struct file *filp)
1924 {
1925         int ret;
1926
1927         lock_kernel();
1928         ret = __tty_open(inode, filp);
1929         unlock_kernel();
1930         return ret;
1931 }
1932
1933
1934
1935 #ifdef CONFIG_UNIX98_PTYS
1936 /**
1937  *      ptmx_open               -       open a unix 98 pty master
1938  *      @inode: inode of device file
1939  *      @filp: file pointer to tty
1940  *
1941  *      Allocate a unix98 pty master device from the ptmx driver.
1942  *
1943  *      Locking: tty_mutex protects theinit_dev work. tty->count should
1944  *              protect the rest.
1945  *              allocated_ptys_lock handles the list of free pty numbers
1946  */
1947
1948 static int __ptmx_open(struct inode *inode, struct file *filp)
1949 {
1950         struct tty_struct *tty;
1951         int retval;
1952         int index;
1953
1954         nonseekable_open(inode, filp);
1955
1956         /* find a device that is not in use. */
1957         index = devpts_new_index();
1958         if (index < 0)
1959                 return index;
1960
1961         mutex_lock(&tty_mutex);
1962         retval = init_dev(ptm_driver, index, &tty);
1963         mutex_unlock(&tty_mutex);
1964
1965         if (retval)
1966                 goto out;
1967
1968         set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
1969         filp->private_data = tty;
1970         file_move(filp, &tty->tty_files);
1971
1972         retval = devpts_pty_new(tty->link);
1973         if (retval)
1974                 goto out1;
1975
1976         check_tty_count(tty, "ptmx_open");
1977         retval = ptm_driver->ops->open(tty, filp);
1978         if (!retval)
1979                 return 0;
1980 out1:
1981         release_dev(filp);
1982         return retval;
1983 out:
1984         devpts_kill_index(index);
1985         return retval;
1986 }
1987
1988 static int ptmx_open(struct inode *inode, struct file *filp)
1989 {
1990         int ret;
1991
1992         lock_kernel();
1993         ret = __ptmx_open(inode, filp);
1994         unlock_kernel();
1995         return ret;
1996 }
1997 #endif
1998
1999 /**
2000  *      tty_release             -       vfs callback for close
2001  *      @inode: inode of tty
2002  *      @filp: file pointer for handle to tty
2003  *
2004  *      Called the last time each file handle is closed that references
2005  *      this tty. There may however be several such references.
2006  *
2007  *      Locking:
2008  *              Takes bkl. See release_dev
2009  */
2010
2011 static int tty_release(struct inode *inode, struct file *filp)
2012 {
2013         lock_kernel();
2014         release_dev(filp);
2015         unlock_kernel();
2016         return 0;
2017 }
2018
2019 /**
2020  *      tty_poll        -       check tty status
2021  *      @filp: file being polled
2022  *      @wait: poll wait structures to update
2023  *
2024  *      Call the line discipline polling method to obtain the poll
2025  *      status of the device.
2026  *
2027  *      Locking: locks called line discipline but ldisc poll method
2028  *      may be re-entered freely by other callers.
2029  */
2030
2031 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2032 {
2033         struct tty_struct *tty;
2034         struct tty_ldisc *ld;
2035         int ret = 0;
2036
2037         tty = (struct tty_struct *)filp->private_data;
2038         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2039                 return 0;
2040
2041         ld = tty_ldisc_ref_wait(tty);
2042         if (ld->ops->poll)
2043                 ret = (ld->ops->poll)(tty, filp, wait);
2044         tty_ldisc_deref(ld);
2045         return ret;
2046 }
2047
2048 static int tty_fasync(int fd, struct file *filp, int on)
2049 {
2050         struct tty_struct *tty;
2051         unsigned long flags;
2052         int retval = 0;
2053
2054         lock_kernel();
2055         tty = (struct tty_struct *)filp->private_data;
2056         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2057                 goto out;
2058
2059         retval = fasync_helper(fd, filp, on, &tty->fasync);
2060         if (retval <= 0)
2061                 goto out;
2062
2063         if (on) {
2064                 enum pid_type type;
2065                 struct pid *pid;
2066                 if (!waitqueue_active(&tty->read_wait))
2067                         tty->minimum_to_wake = 1;
2068                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2069                 if (tty->pgrp) {
2070                         pid = tty->pgrp;
2071                         type = PIDTYPE_PGID;
2072                 } else {
2073                         pid = task_pid(current);
2074                         type = PIDTYPE_PID;
2075                 }
2076                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2077                 retval = __f_setown(filp, pid, type, 0);
2078                 if (retval)
2079                         goto out;
2080         } else {
2081                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2082                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2083         }
2084         retval = 0;
2085 out:
2086         unlock_kernel();
2087         return retval;
2088 }
2089
2090 /**
2091  *      tiocsti                 -       fake input character
2092  *      @tty: tty to fake input into
2093  *      @p: pointer to character
2094  *
2095  *      Fake input to a tty device. Does the necessary locking and
2096  *      input management.
2097  *
2098  *      FIXME: does not honour flow control ??
2099  *
2100  *      Locking:
2101  *              Called functions take tty_ldisc_lock
2102  *              current->signal->tty check is safe without locks
2103  *
2104  *      FIXME: may race normal receive processing
2105  */
2106
2107 static int tiocsti(struct tty_struct *tty, char __user *p)
2108 {
2109         char ch, mbz = 0;
2110         struct tty_ldisc *ld;
2111
2112         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2113                 return -EPERM;
2114         if (get_user(ch, p))
2115                 return -EFAULT;
2116         ld = tty_ldisc_ref_wait(tty);
2117         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2118         tty_ldisc_deref(ld);
2119         return 0;
2120 }
2121
2122 /**
2123  *      tiocgwinsz              -       implement window query ioctl
2124  *      @tty; tty
2125  *      @arg: user buffer for result
2126  *
2127  *      Copies the kernel idea of the window size into the user buffer.
2128  *
2129  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2130  *              is consistent.
2131  */
2132
2133 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2134 {
2135         int err;
2136
2137         mutex_lock(&tty->termios_mutex);
2138         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2139         mutex_unlock(&tty->termios_mutex);
2140
2141         return err ? -EFAULT: 0;
2142 }
2143
2144 /**
2145  *      tty_do_resize           -       resize event
2146  *      @tty: tty being resized
2147  *      @real_tty: real tty (not the same as tty if using a pty/tty pair)
2148  *      @rows: rows (character)
2149  *      @cols: cols (character)
2150  *
2151  *      Update the termios variables and send the neccessary signals to
2152  *      peform a terminal resize correctly
2153  */
2154
2155 int tty_do_resize(struct tty_struct *tty, struct tty_struct *real_tty,
2156                                         struct winsize *ws)
2157 {
2158         struct pid *pgrp, *rpgrp;
2159         unsigned long flags;
2160
2161         /* For a PTY we need to lock the tty side */
2162         mutex_lock(&real_tty->termios_mutex);
2163         if (!memcmp(ws, &real_tty->winsize, sizeof(*ws)))
2164                 goto done;
2165         /* Get the PID values and reference them so we can
2166            avoid holding the tty ctrl lock while sending signals */
2167         spin_lock_irqsave(&tty->ctrl_lock, flags);
2168         pgrp = get_pid(tty->pgrp);
2169         rpgrp = get_pid(real_tty->pgrp);
2170         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2171
2172         if (pgrp)
2173                 kill_pgrp(pgrp, SIGWINCH, 1);
2174         if (rpgrp != pgrp && rpgrp)
2175                 kill_pgrp(rpgrp, SIGWINCH, 1);
2176
2177         put_pid(pgrp);
2178         put_pid(rpgrp);
2179
2180         tty->winsize = *ws;
2181         real_tty->winsize = *ws;
2182 done:
2183         mutex_unlock(&real_tty->termios_mutex);
2184         return 0;
2185 }
2186
2187 /**
2188  *      tiocswinsz              -       implement window size set ioctl
2189  *      @tty; tty
2190  *      @arg: user buffer for result
2191  *
2192  *      Copies the user idea of the window size to the kernel. Traditionally
2193  *      this is just advisory information but for the Linux console it
2194  *      actually has driver level meaning and triggers a VC resize.
2195  *
2196  *      Locking:
2197  *              Driver dependant. The default do_resize method takes the
2198  *      tty termios mutex and ctrl_lock. The console takes its own lock
2199  *      then calls into the default method.
2200  */
2201
2202 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2203         struct winsize __user *arg)
2204 {
2205         struct winsize tmp_ws;
2206         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2207                 return -EFAULT;
2208
2209         if (tty->ops->resize)
2210                 return tty->ops->resize(tty, real_tty, &tmp_ws);
2211         else
2212                 return tty_do_resize(tty, real_tty, &tmp_ws);
2213 }
2214
2215 /**
2216  *      tioccons        -       allow admin to move logical console
2217  *      @file: the file to become console
2218  *
2219  *      Allow the adminstrator to move the redirected console device
2220  *
2221  *      Locking: uses redirect_lock to guard the redirect information
2222  */
2223
2224 static int tioccons(struct file *file)
2225 {
2226         if (!capable(CAP_SYS_ADMIN))
2227                 return -EPERM;
2228         if (file->f_op->write == redirected_tty_write) {
2229                 struct file *f;
2230                 spin_lock(&redirect_lock);
2231                 f = redirect;
2232                 redirect = NULL;
2233                 spin_unlock(&redirect_lock);
2234                 if (f)
2235                         fput(f);
2236                 return 0;
2237         }
2238         spin_lock(&redirect_lock);
2239         if (redirect) {
2240                 spin_unlock(&redirect_lock);
2241                 return -EBUSY;
2242         }
2243         get_file(file);
2244         redirect = file;
2245         spin_unlock(&redirect_lock);
2246         return 0;
2247 }
2248
2249 /**
2250  *      fionbio         -       non blocking ioctl
2251  *      @file: file to set blocking value
2252  *      @p: user parameter
2253  *
2254  *      Historical tty interfaces had a blocking control ioctl before
2255  *      the generic functionality existed. This piece of history is preserved
2256  *      in the expected tty API of posix OS's.
2257  *
2258  *      Locking: none, the open fle handle ensures it won't go away.
2259  */
2260
2261 static int fionbio(struct file *file, int __user *p)
2262 {
2263         int nonblock;
2264
2265         if (get_user(nonblock, p))
2266                 return -EFAULT;
2267
2268         /* file->f_flags is still BKL protected in the fs layer - vomit */
2269         lock_kernel();
2270         if (nonblock)
2271                 file->f_flags |= O_NONBLOCK;
2272         else
2273                 file->f_flags &= ~O_NONBLOCK;
2274         unlock_kernel();
2275         return 0;
2276 }
2277
2278 /**
2279  *      tiocsctty       -       set controlling tty
2280  *      @tty: tty structure
2281  *      @arg: user argument
2282  *
2283  *      This ioctl is used to manage job control. It permits a session
2284  *      leader to set this tty as the controlling tty for the session.
2285  *
2286  *      Locking:
2287  *              Takes tty_mutex() to protect tty instance
2288  *              Takes tasklist_lock internally to walk sessions
2289  *              Takes ->siglock() when updating signal->tty
2290  */
2291
2292 static int tiocsctty(struct tty_struct *tty, int arg)
2293 {
2294         int ret = 0;
2295         if (current->signal->leader && (task_session(current) == tty->session))
2296                 return ret;
2297
2298         mutex_lock(&tty_mutex);
2299         /*
2300          * The process must be a session leader and
2301          * not have a controlling tty already.
2302          */
2303         if (!current->signal->leader || current->signal->tty) {
2304                 ret = -EPERM;
2305                 goto unlock;
2306         }
2307
2308         if (tty->session) {
2309                 /*
2310                  * This tty is already the controlling
2311                  * tty for another session group!
2312                  */
2313                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2314                         /*
2315                          * Steal it away
2316                          */
2317                         read_lock(&tasklist_lock);
2318                         session_clear_tty(tty->session);
2319                         read_unlock(&tasklist_lock);
2320                 } else {
2321                         ret = -EPERM;
2322                         goto unlock;
2323                 }
2324         }
2325         proc_set_tty(current, tty);
2326 unlock:
2327         mutex_unlock(&tty_mutex);
2328         return ret;
2329 }
2330
2331 /**
2332  *      tty_get_pgrp    -       return a ref counted pgrp pid
2333  *      @tty: tty to read
2334  *
2335  *      Returns a refcounted instance of the pid struct for the process
2336  *      group controlling the tty.
2337  */
2338
2339 struct pid *tty_get_pgrp(struct tty_struct *tty)
2340 {
2341         unsigned long flags;
2342         struct pid *pgrp;
2343
2344         spin_lock_irqsave(&tty->ctrl_lock, flags);
2345         pgrp = get_pid(tty->pgrp);
2346         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2347
2348         return pgrp;
2349 }
2350 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2351
2352 /**
2353  *      tiocgpgrp               -       get process group
2354  *      @tty: tty passed by user
2355  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2356  *      @p: returned pid
2357  *
2358  *      Obtain the process group of the tty. If there is no process group
2359  *      return an error.
2360  *
2361  *      Locking: none. Reference to current->signal->tty is safe.
2362  */
2363
2364 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2365 {
2366         struct pid *pid;
2367         int ret;
2368         /*
2369          * (tty == real_tty) is a cheap way of
2370          * testing if the tty is NOT a master pty.
2371          */
2372         if (tty == real_tty && current->signal->tty != real_tty)
2373                 return -ENOTTY;
2374         pid = tty_get_pgrp(real_tty);
2375         ret =  put_user(pid_vnr(pid), p);
2376         put_pid(pid);
2377         return ret;
2378 }
2379
2380 /**
2381  *      tiocspgrp               -       attempt to set process group
2382  *      @tty: tty passed by user
2383  *      @real_tty: tty side device matching tty passed by user
2384  *      @p: pid pointer
2385  *
2386  *      Set the process group of the tty to the session passed. Only
2387  *      permitted where the tty session is our session.
2388  *
2389  *      Locking: RCU, ctrl lock
2390  */
2391
2392 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2393 {
2394         struct pid *pgrp;
2395         pid_t pgrp_nr;
2396         int retval = tty_check_change(real_tty);
2397         unsigned long flags;
2398
2399         if (retval == -EIO)
2400                 return -ENOTTY;
2401         if (retval)
2402                 return retval;
2403         if (!current->signal->tty ||
2404             (current->signal->tty != real_tty) ||
2405             (real_tty->session != task_session(current)))
2406                 return -ENOTTY;
2407         if (get_user(pgrp_nr, p))
2408                 return -EFAULT;
2409         if (pgrp_nr < 0)
2410                 return -EINVAL;
2411         rcu_read_lock();
2412         pgrp = find_vpid(pgrp_nr);
2413         retval = -ESRCH;
2414         if (!pgrp)
2415                 goto out_unlock;
2416         retval = -EPERM;
2417         if (session_of_pgrp(pgrp) != task_session(current))
2418                 goto out_unlock;
2419         retval = 0;
2420         spin_lock_irqsave(&tty->ctrl_lock, flags);
2421         put_pid(real_tty->pgrp);
2422         real_tty->pgrp = get_pid(pgrp);
2423         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2424 out_unlock:
2425         rcu_read_unlock();
2426         return retval;
2427 }
2428
2429 /**
2430  *      tiocgsid                -       get session id
2431  *      @tty: tty passed by user
2432  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2433  *      @p: pointer to returned session id
2434  *
2435  *      Obtain the session id of the tty. If there is no session
2436  *      return an error.
2437  *
2438  *      Locking: none. Reference to current->signal->tty is safe.
2439  */
2440
2441 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2442 {
2443         /*
2444          * (tty == real_tty) is a cheap way of
2445          * testing if the tty is NOT a master pty.
2446         */
2447         if (tty == real_tty && current->signal->tty != real_tty)
2448                 return -ENOTTY;
2449         if (!real_tty->session)
2450                 return -ENOTTY;
2451         return put_user(pid_vnr(real_tty->session), p);
2452 }
2453
2454 /**
2455  *      tiocsetd        -       set line discipline
2456  *      @tty: tty device
2457  *      @p: pointer to user data
2458  *
2459  *      Set the line discipline according to user request.
2460  *
2461  *      Locking: see tty_set_ldisc, this function is just a helper
2462  */
2463
2464 static int tiocsetd(struct tty_struct *tty, int __user *p)
2465 {
2466         int ldisc;
2467         int ret;
2468
2469         if (get_user(ldisc, p))
2470                 return -EFAULT;
2471
2472         lock_kernel();
2473         ret = tty_set_ldisc(tty, ldisc);
2474         unlock_kernel();
2475
2476         return ret;
2477 }
2478
2479 /**
2480  *      send_break      -       performed time break
2481  *      @tty: device to break on
2482  *      @duration: timeout in mS
2483  *
2484  *      Perform a timed break on hardware that lacks its own driver level
2485  *      timed break functionality.
2486  *
2487  *      Locking:
2488  *              atomic_write_lock serializes
2489  *
2490  */
2491
2492 static int send_break(struct tty_struct *tty, unsigned int duration)
2493 {
2494         int retval;
2495
2496         if (tty->ops->break_ctl == NULL)
2497                 return 0;
2498
2499         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2500                 retval = tty->ops->break_ctl(tty, duration);
2501         else {
2502                 /* Do the work ourselves */
2503                 if (tty_write_lock(tty, 0) < 0)
2504                         return -EINTR;
2505                 retval = tty->ops->break_ctl(tty, -1);
2506                 if (retval)
2507                         goto out;
2508                 if (!signal_pending(current))
2509                         msleep_interruptible(duration);
2510                 retval = tty->ops->break_ctl(tty, 0);
2511 out:
2512                 tty_write_unlock(tty);
2513                 if (signal_pending(current))
2514                         retval = -EINTR;
2515         }
2516         return retval;
2517 }
2518
2519 /**
2520  *      tty_tiocmget            -       get modem status
2521  *      @tty: tty device
2522  *      @file: user file pointer
2523  *      @p: pointer to result
2524  *
2525  *      Obtain the modem status bits from the tty driver if the feature
2526  *      is supported. Return -EINVAL if it is not available.
2527  *
2528  *      Locking: none (up to the driver)
2529  */
2530
2531 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2532 {
2533         int retval = -EINVAL;
2534
2535         if (tty->ops->tiocmget) {
2536                 retval = tty->ops->tiocmget(tty, file);
2537
2538                 if (retval >= 0)
2539                         retval = put_user(retval, p);
2540         }
2541         return retval;
2542 }
2543
2544 /**
2545  *      tty_tiocmset            -       set modem status
2546  *      @tty: tty device
2547  *      @file: user file pointer
2548  *      @cmd: command - clear bits, set bits or set all
2549  *      @p: pointer to desired bits
2550  *
2551  *      Set the modem status bits from the tty driver if the feature
2552  *      is supported. Return -EINVAL if it is not available.
2553  *
2554  *      Locking: none (up to the driver)
2555  */
2556
2557 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2558              unsigned __user *p)
2559 {
2560         int retval;
2561         unsigned int set, clear, val;
2562
2563         if (tty->ops->tiocmset == NULL)
2564                 return -EINVAL;
2565
2566         retval = get_user(val, p);
2567         if (retval)
2568                 return retval;
2569         set = clear = 0;
2570         switch (cmd) {
2571         case TIOCMBIS:
2572                 set = val;
2573                 break;
2574         case TIOCMBIC:
2575                 clear = val;
2576                 break;
2577         case TIOCMSET:
2578                 set = val;
2579                 clear = ~val;
2580                 break;
2581         }
2582         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2583         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2584         return tty->ops->tiocmset(tty, file, set, clear);
2585 }
2586
2587 /*
2588  * Split this up, as gcc can choke on it otherwise..
2589  */
2590 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2591 {
2592         struct tty_struct *tty, *real_tty;
2593         void __user *p = (void __user *)arg;
2594         int retval;
2595         struct tty_ldisc *ld;
2596         struct inode *inode = file->f_dentry->d_inode;
2597
2598         tty = (struct tty_struct *)file->private_data;
2599         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2600                 return -EINVAL;
2601
2602         real_tty = tty;
2603         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2604             tty->driver->subtype == PTY_TYPE_MASTER)
2605                 real_tty = tty->link;
2606
2607
2608         /*
2609          * Factor out some common prep work
2610          */
2611         switch (cmd) {
2612         case TIOCSETD:
2613         case TIOCSBRK:
2614         case TIOCCBRK:
2615         case TCSBRK:
2616         case TCSBRKP:
2617                 retval = tty_check_change(tty);
2618                 if (retval)
2619                         return retval;
2620                 if (cmd != TIOCCBRK) {
2621                         tty_wait_until_sent(tty, 0);
2622                         if (signal_pending(current))
2623                                 return -EINTR;
2624                 }
2625                 break;
2626         }
2627
2628         /*
2629          *      Now do the stuff.
2630          */
2631         switch (cmd) {
2632         case TIOCSTI:
2633                 return tiocsti(tty, p);
2634         case TIOCGWINSZ:
2635                 return tiocgwinsz(real_tty, p);
2636         case TIOCSWINSZ:
2637                 return tiocswinsz(tty, real_tty, p);
2638         case TIOCCONS:
2639                 return real_tty != tty ? -EINVAL : tioccons(file);
2640         case FIONBIO:
2641                 return fionbio(file, p);
2642         case TIOCEXCL:
2643                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2644                 return 0;
2645         case TIOCNXCL:
2646                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2647                 return 0;
2648         case TIOCNOTTY:
2649                 if (current->signal->tty != tty)
2650                         return -ENOTTY;
2651                 no_tty();
2652                 return 0;
2653         case TIOCSCTTY:
2654                 return tiocsctty(tty, arg);
2655         case TIOCGPGRP:
2656                 return tiocgpgrp(tty, real_tty, p);
2657         case TIOCSPGRP:
2658                 return tiocspgrp(tty, real_tty, p);
2659         case TIOCGSID:
2660                 return tiocgsid(tty, real_tty, p);
2661         case TIOCGETD:
2662                 return put_user(tty->ldisc.ops->num, (int __user *)p);
2663         case TIOCSETD:
2664                 return tiocsetd(tty, p);
2665         /*
2666          * Break handling
2667          */
2668         case TIOCSBRK:  /* Turn break on, unconditionally */
2669                 if (tty->ops->break_ctl)
2670                         return tty->ops->break_ctl(tty, -1);
2671                 return 0;
2672         case TIOCCBRK:  /* Turn break off, unconditionally */
2673                 if (tty->ops->break_ctl)
2674                         return tty->ops->break_ctl(tty, 0);
2675                 return 0;
2676         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2677                 /* non-zero arg means wait for all output data
2678                  * to be sent (performed above) but don't send break.
2679                  * This is used by the tcdrain() termios function.
2680                  */
2681                 if (!arg)
2682                         return send_break(tty, 250);
2683                 return 0;
2684         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2685                 return send_break(tty, arg ? arg*100 : 250);
2686
2687         case TIOCMGET:
2688                 return tty_tiocmget(tty, file, p);
2689         case TIOCMSET:
2690         case TIOCMBIC:
2691         case TIOCMBIS:
2692                 return tty_tiocmset(tty, file, cmd, p);
2693         case TCFLSH:
2694                 switch (arg) {
2695                 case TCIFLUSH:
2696                 case TCIOFLUSH:
2697                 /* flush tty buffer and allow ldisc to process ioctl */
2698                         tty_buffer_flush(tty);
2699                         break;
2700                 }
2701                 break;
2702         }
2703         if (tty->ops->ioctl) {
2704                 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2705                 if (retval != -ENOIOCTLCMD)
2706                         return retval;
2707         }
2708         ld = tty_ldisc_ref_wait(tty);
2709         retval = -EINVAL;
2710         if (ld->ops->ioctl) {
2711                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2712                 if (retval == -ENOIOCTLCMD)
2713                         retval = -EINVAL;
2714         }
2715         tty_ldisc_deref(ld);
2716         return retval;
2717 }
2718
2719 #ifdef CONFIG_COMPAT
2720 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2721                                 unsigned long arg)
2722 {
2723         struct inode *inode = file->f_dentry->d_inode;
2724         struct tty_struct *tty = file->private_data;
2725         struct tty_ldisc *ld;
2726         int retval = -ENOIOCTLCMD;
2727
2728         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2729                 return -EINVAL;
2730
2731         if (tty->ops->compat_ioctl) {
2732                 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2733                 if (retval != -ENOIOCTLCMD)
2734                         return retval;
2735         }
2736
2737         ld = tty_ldisc_ref_wait(tty);
2738         if (ld->ops->compat_ioctl)
2739                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2740         tty_ldisc_deref(ld);
2741
2742         return retval;
2743 }
2744 #endif
2745
2746 /*
2747  * This implements the "Secure Attention Key" ---  the idea is to
2748  * prevent trojan horses by killing all processes associated with this
2749  * tty when the user hits the "Secure Attention Key".  Required for
2750  * super-paranoid applications --- see the Orange Book for more details.
2751  *
2752  * This code could be nicer; ideally it should send a HUP, wait a few
2753  * seconds, then send a INT, and then a KILL signal.  But you then
2754  * have to coordinate with the init process, since all processes associated
2755  * with the current tty must be dead before the new getty is allowed
2756  * to spawn.
2757  *
2758  * Now, if it would be correct ;-/ The current code has a nasty hole -
2759  * it doesn't catch files in flight. We may send the descriptor to ourselves
2760  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2761  *
2762  * Nasty bug: do_SAK is being called in interrupt context.  This can
2763  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2764  */
2765 void __do_SAK(struct tty_struct *tty)
2766 {
2767 #ifdef TTY_SOFT_SAK
2768         tty_hangup(tty);
2769 #else
2770         struct task_struct *g, *p;
2771         struct pid *session;
2772         int             i;
2773         struct file     *filp;
2774         struct fdtable *fdt;
2775
2776         if (!tty)
2777                 return;
2778         session = tty->session;
2779
2780         tty_ldisc_flush(tty);
2781
2782         tty_driver_flush_buffer(tty);
2783
2784         read_lock(&tasklist_lock);
2785         /* Kill the entire session */
2786         do_each_pid_task(session, PIDTYPE_SID, p) {
2787                 printk(KERN_NOTICE "SAK: killed process %d"
2788                         " (%s): task_session_nr(p)==tty->session\n",
2789                         task_pid_nr(p), p->comm);
2790                 send_sig(SIGKILL, p, 1);
2791         } while_each_pid_task(session, PIDTYPE_SID, p);
2792         /* Now kill any processes that happen to have the
2793          * tty open.
2794          */
2795         do_each_thread(g, p) {
2796                 if (p->signal->tty == tty) {
2797                         printk(KERN_NOTICE "SAK: killed process %d"
2798                             " (%s): task_session_nr(p)==tty->session\n",
2799                             task_pid_nr(p), p->comm);
2800                         send_sig(SIGKILL, p, 1);
2801                         continue;
2802                 }
2803                 task_lock(p);
2804                 if (p->files) {
2805                         /*
2806                          * We don't take a ref to the file, so we must
2807                          * hold ->file_lock instead.
2808                          */
2809                         spin_lock(&p->files->file_lock);
2810                         fdt = files_fdtable(p->files);
2811                         for (i = 0; i < fdt->max_fds; i++) {
2812                                 filp = fcheck_files(p->files, i);
2813                                 if (!filp)
2814                                         continue;
2815                                 if (filp->f_op->read == tty_read &&
2816                                     filp->private_data == tty) {
2817                                         printk(KERN_NOTICE "SAK: killed process %d"
2818                                             " (%s): fd#%d opened to the tty\n",
2819                                             task_pid_nr(p), p->comm, i);
2820                                         force_sig(SIGKILL, p);
2821                                         break;
2822                                 }
2823                         }
2824                         spin_unlock(&p->files->file_lock);
2825                 }
2826                 task_unlock(p);
2827         } while_each_thread(g, p);
2828         read_unlock(&tasklist_lock);
2829 #endif
2830 }
2831
2832 static void do_SAK_work(struct work_struct *work)
2833 {
2834         struct tty_struct *tty =
2835                 container_of(work, struct tty_struct, SAK_work);
2836         __do_SAK(tty);
2837 }
2838
2839 /*
2840  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2841  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2842  * the values which we write to it will be identical to the values which it
2843  * already has. --akpm
2844  */
2845 void do_SAK(struct tty_struct *tty)
2846 {
2847         if (!tty)
2848                 return;
2849         schedule_work(&tty->SAK_work);
2850 }
2851
2852 EXPORT_SYMBOL(do_SAK);
2853
2854 /**
2855  *      initialize_tty_struct
2856  *      @tty: tty to initialize
2857  *
2858  *      This subroutine initializes a tty structure that has been newly
2859  *      allocated.
2860  *
2861  *      Locking: none - tty in question must not be exposed at this point
2862  */
2863
2864 static void initialize_tty_struct(struct tty_struct *tty)
2865 {
2866         memset(tty, 0, sizeof(struct tty_struct));
2867         kref_init(&tty->kref);
2868         tty->magic = TTY_MAGIC;
2869         tty_ldisc_init(tty);
2870         tty->session = NULL;
2871         tty->pgrp = NULL;
2872         tty->overrun_time = jiffies;
2873         tty->buf.head = tty->buf.tail = NULL;
2874         tty_buffer_init(tty);
2875         mutex_init(&tty->termios_mutex);
2876         init_waitqueue_head(&tty->write_wait);
2877         init_waitqueue_head(&tty->read_wait);
2878         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2879         mutex_init(&tty->atomic_read_lock);
2880         mutex_init(&tty->atomic_write_lock);
2881         spin_lock_init(&tty->read_lock);
2882         spin_lock_init(&tty->ctrl_lock);
2883         INIT_LIST_HEAD(&tty->tty_files);
2884         INIT_WORK(&tty->SAK_work, do_SAK_work);
2885 }
2886
2887 /**
2888  *      tty_put_char    -       write one character to a tty
2889  *      @tty: tty
2890  *      @ch: character
2891  *
2892  *      Write one byte to the tty using the provided put_char method
2893  *      if present. Returns the number of characters successfully output.
2894  *
2895  *      Note: the specific put_char operation in the driver layer may go
2896  *      away soon. Don't call it directly, use this method
2897  */
2898
2899 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2900 {
2901         if (tty->ops->put_char)
2902                 return tty->ops->put_char(tty, ch);
2903         return tty->ops->write(tty, &ch, 1);
2904 }
2905
2906 EXPORT_SYMBOL_GPL(tty_put_char);
2907
2908 static struct class *tty_class;
2909
2910 /**
2911  *      tty_register_device - register a tty device
2912  *      @driver: the tty driver that describes the tty device
2913  *      @index: the index in the tty driver for this tty device
2914  *      @device: a struct device that is associated with this tty device.
2915  *              This field is optional, if there is no known struct device
2916  *              for this tty device it can be set to NULL safely.
2917  *
2918  *      Returns a pointer to the struct device for this tty device
2919  *      (or ERR_PTR(-EFOO) on error).
2920  *
2921  *      This call is required to be made to register an individual tty device
2922  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2923  *      that bit is not set, this function should not be called by a tty
2924  *      driver.
2925  *
2926  *      Locking: ??
2927  */
2928
2929 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2930                                    struct device *device)
2931 {
2932         char name[64];
2933         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2934
2935         if (index >= driver->num) {
2936                 printk(KERN_ERR "Attempt to register invalid tty line number "
2937                        " (%d).\n", index);
2938                 return ERR_PTR(-EINVAL);
2939         }
2940
2941         if (driver->type == TTY_DRIVER_TYPE_PTY)
2942                 pty_line_name(driver, index, name);
2943         else
2944                 tty_line_name(driver, index, name);
2945
2946         return device_create_drvdata(tty_class, device, dev, NULL, name);
2947 }
2948
2949 /**
2950  *      tty_unregister_device - unregister a tty device
2951  *      @driver: the tty driver that describes the tty device
2952  *      @index: the index in the tty driver for this tty device
2953  *
2954  *      If a tty device is registered with a call to tty_register_device() then
2955  *      this function must be called when the tty device is gone.
2956  *
2957  *      Locking: ??
2958  */
2959
2960 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2961 {
2962         device_destroy(tty_class,
2963                 MKDEV(driver->major, driver->minor_start) + index);
2964 }
2965
2966 EXPORT_SYMBOL(tty_register_device);
2967 EXPORT_SYMBOL(tty_unregister_device);
2968
2969 struct tty_driver *alloc_tty_driver(int lines)
2970 {
2971         struct tty_driver *driver;
2972
2973         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2974         if (driver) {
2975                 driver->magic = TTY_DRIVER_MAGIC;
2976                 driver->num = lines;
2977                 /* later we'll move allocation of tables here */
2978         }
2979         return driver;
2980 }
2981
2982 void put_tty_driver(struct tty_driver *driver)
2983 {
2984         kfree(driver);
2985 }
2986
2987 void tty_set_operations(struct tty_driver *driver,
2988                         const struct tty_operations *op)
2989 {
2990         driver->ops = op;
2991 };
2992
2993 EXPORT_SYMBOL(alloc_tty_driver);
2994 EXPORT_SYMBOL(put_tty_driver);
2995 EXPORT_SYMBOL(tty_set_operations);
2996
2997 /*
2998  * Called by a tty driver to register itself.
2999  */
3000 int tty_register_driver(struct tty_driver *driver)
3001 {
3002         int error;
3003         int i;
3004         dev_t dev;
3005         void **p = NULL;
3006
3007         if (driver->flags & TTY_DRIVER_INSTALLED)
3008                 return 0;
3009
3010         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3011                 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3012                 if (!p)
3013                         return -ENOMEM;
3014         }
3015
3016         if (!driver->major) {
3017                 error = alloc_chrdev_region(&dev, driver->minor_start,
3018                                                 driver->num, driver->name);
3019                 if (!error) {
3020                         driver->major = MAJOR(dev);
3021                         driver->minor_start = MINOR(dev);
3022                 }
3023         } else {
3024                 dev = MKDEV(driver->major, driver->minor_start);
3025                 error = register_chrdev_region(dev, driver->num, driver->name);
3026         }
3027         if (error < 0) {
3028                 kfree(p);
3029                 return error;
3030         }
3031
3032         if (p) {
3033                 driver->ttys = (struct tty_struct **)p;
3034                 driver->termios = (struct ktermios **)(p + driver->num);
3035                 driver->termios_locked = (struct ktermios **)
3036                                                         (p + driver->num * 2);
3037         } else {
3038                 driver->ttys = NULL;
3039                 driver->termios = NULL;
3040                 driver->termios_locked = NULL;
3041         }
3042
3043         cdev_init(&driver->cdev, &tty_fops);
3044         driver->cdev.owner = driver->owner;
3045         error = cdev_add(&driver->cdev, dev, driver->num);
3046         if (error) {
3047                 unregister_chrdev_region(dev, driver->num);
3048                 driver->ttys = NULL;
3049                 driver->termios = driver->termios_locked = NULL;
3050                 kfree(p);
3051                 return error;
3052         }
3053
3054         mutex_lock(&tty_mutex);
3055         list_add(&driver->tty_drivers, &tty_drivers);
3056         mutex_unlock(&tty_mutex);
3057
3058         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3059                 for (i = 0; i < driver->num; i++)
3060                     tty_register_device(driver, i, NULL);
3061         }
3062         proc_tty_register_driver(driver);
3063         return 0;
3064 }
3065
3066 EXPORT_SYMBOL(tty_register_driver);
3067
3068 /*
3069  * Called by a tty driver to unregister itself.
3070  */
3071 int tty_unregister_driver(struct tty_driver *driver)
3072 {
3073         int i;
3074         struct ktermios *tp;
3075         void *p;
3076
3077         if (driver->refcount)
3078                 return -EBUSY;
3079
3080         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3081                                 driver->num);
3082         mutex_lock(&tty_mutex);
3083         list_del(&driver->tty_drivers);
3084         mutex_unlock(&tty_mutex);
3085
3086         /*
3087          * Free the termios and termios_locked structures because
3088          * we don't want to get memory leaks when modular tty
3089          * drivers are removed from the kernel.
3090          */
3091         for (i = 0; i < driver->num; i++) {
3092                 tp = driver->termios[i];
3093                 if (tp) {
3094                         driver->termios[i] = NULL;
3095                         kfree(tp);
3096                 }
3097                 tp = driver->termios_locked[i];
3098                 if (tp) {
3099                         driver->termios_locked[i] = NULL;
3100                         kfree(tp);
3101                 }
3102                 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3103                         tty_unregister_device(driver, i);
3104         }
3105         p = driver->ttys;
3106         proc_tty_unregister_driver(driver);
3107         driver->ttys = NULL;
3108         driver->termios = driver->termios_locked = NULL;
3109         kfree(p);
3110         cdev_del(&driver->cdev);
3111         return 0;
3112 }
3113 EXPORT_SYMBOL(tty_unregister_driver);
3114
3115 dev_t tty_devnum(struct tty_struct *tty)
3116 {
3117         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3118 }
3119 EXPORT_SYMBOL(tty_devnum);
3120
3121 void proc_clear_tty(struct task_struct *p)
3122 {
3123         struct tty_struct *tty;
3124         spin_lock_irq(&p->sighand->siglock);
3125         tty = p->signal->tty;
3126         p->signal->tty = NULL;
3127         spin_unlock_irq(&p->sighand->siglock);
3128         tty_kref_put(tty);
3129 }
3130
3131 /* Called under the sighand lock */
3132
3133 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3134 {
3135         if (tty) {
3136                 unsigned long flags;
3137                 /* We should not have a session or pgrp to put here but.... */
3138                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3139                 put_pid(tty->session);
3140                 put_pid(tty->pgrp);
3141                 tty->pgrp = get_pid(task_pgrp(tsk));
3142                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3143                 tty->session = get_pid(task_session(tsk));
3144                 if (tsk->signal->tty) {
3145                         printk(KERN_DEBUG "tty not NULL!!\n");
3146                         tty_kref_put(tsk->signal->tty);
3147                 }
3148         }
3149         put_pid(tsk->signal->tty_old_pgrp);
3150         tsk->signal->tty = tty_kref_get(tty);
3151         tsk->signal->tty_old_pgrp = NULL;
3152 }
3153
3154 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3155 {
3156         spin_lock_irq(&tsk->sighand->siglock);
3157         __proc_set_tty(tsk, tty);
3158         spin_unlock_irq(&tsk->sighand->siglock);
3159 }
3160
3161 struct tty_struct *get_current_tty(void)
3162 {
3163         struct tty_struct *tty;
3164         WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
3165         tty = tty_kref_get(current->signal->tty);
3166         /*
3167          * session->tty can be changed/cleared from under us, make sure we
3168          * issue the load. The obtained pointer, when not NULL, is valid as
3169          * long as we hold tty_mutex.
3170          */
3171         barrier();
3172         return tty;
3173 }
3174 EXPORT_SYMBOL_GPL(get_current_tty);
3175
3176 /*
3177  * Initialize the console device. This is called *early*, so
3178  * we can't necessarily depend on lots of kernel help here.
3179  * Just do some early initializations, and do the complex setup
3180  * later.
3181  */
3182 void __init console_init(void)
3183 {
3184         initcall_t *call;
3185
3186         /* Setup the default TTY line discipline. */
3187         tty_ldisc_begin();
3188
3189         /*
3190          * set up the console device so that later boot sequences can
3191          * inform about problems etc..
3192          */
3193         call = __con_initcall_start;
3194         while (call < __con_initcall_end) {
3195                 (*call)();
3196                 call++;
3197         }
3198 }
3199
3200 static int __init tty_class_init(void)
3201 {
3202         tty_class = class_create(THIS_MODULE, "tty");
3203         if (IS_ERR(tty_class))
3204                 return PTR_ERR(tty_class);
3205         return 0;
3206 }
3207
3208 postcore_initcall(tty_class_init);
3209
3210 /* 3/2004 jmc: why do these devices exist? */
3211
3212 static struct cdev tty_cdev, console_cdev;
3213 #ifdef CONFIG_UNIX98_PTYS
3214 static struct cdev ptmx_cdev;
3215 #endif
3216 #ifdef CONFIG_VT
3217 static struct cdev vc0_cdev;
3218 #endif
3219
3220 /*
3221  * Ok, now we can initialize the rest of the tty devices and can count
3222  * on memory allocations, interrupts etc..
3223  */
3224 static int __init tty_init(void)
3225 {
3226         cdev_init(&tty_cdev, &tty_fops);
3227         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3228             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3229                 panic("Couldn't register /dev/tty driver\n");
3230         device_create_drvdata(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3231                               "tty");
3232
3233         cdev_init(&console_cdev, &console_fops);
3234         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3235             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3236                 panic("Couldn't register /dev/console driver\n");
3237         device_create_drvdata(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3238                               "console");
3239
3240 #ifdef CONFIG_UNIX98_PTYS
3241         cdev_init(&ptmx_cdev, &ptmx_fops);
3242         if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
3243             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
3244                 panic("Couldn't register /dev/ptmx driver\n");
3245         device_create_drvdata(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), NULL, "ptmx");
3246 #endif
3247
3248 #ifdef CONFIG_VT
3249         cdev_init(&vc0_cdev, &console_fops);
3250         if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
3251             register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
3252                 panic("Couldn't register /dev/tty0 driver\n");
3253         device_create_drvdata(tty_class, NULL, MKDEV(TTY_MAJOR, 0), NULL, "tty0");
3254
3255         vty_init();
3256 #endif
3257         return 0;
3258 }
3259 module_init(tty_init);