]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/char/tty_io.c
888380f573dcfe622e98303dba398e63ef51c654
[linux-2.6-omap-h63xx.git] / drivers / char / tty_io.c
1 /*
2  *  linux/drivers/char/tty_io.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9  * or rs-channels. It also implements echoing, cooked mode etc.
10  *
11  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12  *
13  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14  * tty_struct and tty_queue structures.  Previously there was an array
15  * of 256 tty_struct's which was statically allocated, and the
16  * tty_queue structures were allocated at boot time.  Both are now
17  * dynamically allocated only when the tty is open.
18  *
19  * Also restructured routines so that there is more of a separation
20  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21  * the low-level tty routines (serial.c, pty.c, console.c).  This
22  * makes for cleaner and more compact code.  -TYT, 9/17/92
23  *
24  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25  * which can be dynamically activated and de-activated by the line
26  * discipline handling modules (like SLIP).
27  *
28  * NOTE: pay no attention to the line discipline code (yet); its
29  * interface is still subject to change in this version...
30  * -- TYT, 1/31/92
31  *
32  * Added functionality to the OPOST tty handling.  No delays, but all
33  * other bits should be there.
34  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35  *
36  * Rewrote canonical mode and added more termios flags.
37  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38  *
39  * Reorganized FASYNC support so mouse code can share it.
40  *      -- ctm@ardi.com, 9Sep95
41  *
42  * New TIOCLINUX variants added.
43  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
44  *
45  * Restrict vt switching via ioctl()
46  *      -- grif@cs.ucr.edu, 5-Dec-95
47  *
48  * Move console and virtual terminal code to more appropriate files,
49  * implement CONFIG_VT and generalize console device interface.
50  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51  *
52  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53  *      -- Bill Hawes <whawes@star.net>, June 97
54  *
55  * Added devfs support.
56  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57  *
58  * Added support for a Unix98-style ptmx device.
59  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60  *
61  * Reduced memory usage for older ARM systems
62  *      -- Russell King <rmk@arm.linux.org.uk>
63  *
64  * Move do_SAK() into process context.  Less stack use in devfs functions.
65  * alloc_tty_struct() always uses kmalloc()
66  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67  */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114
115 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
116         .c_iflag = ICRNL | IXON,
117         .c_oflag = OPOST | ONLCR,
118         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120                    ECHOCTL | ECHOKE | IEXTEN,
121         .c_cc = INIT_C_CC,
122         .c_ispeed = 38400,
123         .c_ospeed = 38400
124 };
125
126 EXPORT_SYMBOL(tty_std_termios);
127
128 /* This list gets poked at by procfs and various bits of boot up code. This
129    could do with some rationalisation such as pulling the tty proc function
130    into this file */
131
132 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
133
134 /* Mutex to protect creating and releasing a tty. This is shared with
135    vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138
139 static void initialize_tty_struct(struct tty_struct *tty);
140
141 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143 ssize_t redirected_tty_write(struct file *, const char __user *,
144                                                         size_t, loff_t *);
145 static unsigned int tty_poll(struct file *, poll_table *);
146 static int tty_open(struct inode *, struct file *);
147 static int tty_release(struct inode *, struct file *);
148 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
149 #ifdef CONFIG_COMPAT
150 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
151                                 unsigned long arg);
152 #else
153 #define tty_compat_ioctl NULL
154 #endif
155 static int tty_fasync(int fd, struct file *filp, int on);
156 static void release_tty(struct tty_struct *tty, int idx);
157 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159
160 /**
161  *      alloc_tty_struct        -       allocate a tty object
162  *
163  *      Return a new empty tty structure. The data fields have not
164  *      been initialized in any way but has been zeroed
165  *
166  *      Locking: none
167  */
168
169 static struct tty_struct *alloc_tty_struct(void)
170 {
171         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
172 }
173
174 /**
175  *      free_tty_struct         -       free a disused tty
176  *      @tty: tty struct to free
177  *
178  *      Free the write buffers, tty queue and tty memory itself.
179  *
180  *      Locking: none. Must be called after tty is definitely unused
181  */
182
183 static inline void free_tty_struct(struct tty_struct *tty)
184 {
185         kfree(tty->write_buf);
186         tty_buffer_free_all(tty);
187         kfree(tty);
188 }
189
190 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
191
192 /**
193  *      tty_name        -       return tty naming
194  *      @tty: tty structure
195  *      @buf: buffer for output
196  *
197  *      Convert a tty structure into a name. The name reflects the kernel
198  *      naming policy and if udev is in use may not reflect user space
199  *
200  *      Locking: none
201  */
202
203 char *tty_name(struct tty_struct *tty, char *buf)
204 {
205         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
206                 strcpy(buf, "NULL tty");
207         else
208                 strcpy(buf, tty->name);
209         return buf;
210 }
211
212 EXPORT_SYMBOL(tty_name);
213
214 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
215                               const char *routine)
216 {
217 #ifdef TTY_PARANOIA_CHECK
218         if (!tty) {
219                 printk(KERN_WARNING
220                         "null TTY for (%d:%d) in %s\n",
221                         imajor(inode), iminor(inode), routine);
222                 return 1;
223         }
224         if (tty->magic != TTY_MAGIC) {
225                 printk(KERN_WARNING
226                         "bad magic number for tty struct (%d:%d) in %s\n",
227                         imajor(inode), iminor(inode), routine);
228                 return 1;
229         }
230 #endif
231         return 0;
232 }
233
234 static int check_tty_count(struct tty_struct *tty, const char *routine)
235 {
236 #ifdef CHECK_TTY_COUNT
237         struct list_head *p;
238         int count = 0;
239
240         file_list_lock();
241         list_for_each(p, &tty->tty_files) {
242                 count++;
243         }
244         file_list_unlock();
245         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
246             tty->driver->subtype == PTY_TYPE_SLAVE &&
247             tty->link && tty->link->count)
248                 count++;
249         if (tty->count != count) {
250                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
251                                     "!= #fd's(%d) in %s\n",
252                        tty->name, tty->count, count, routine);
253                 return count;
254         }
255 #endif
256         return 0;
257 }
258
259 /**
260  *      get_tty_driver          -       find device of a tty
261  *      @dev_t: device identifier
262  *      @index: returns the index of the tty
263  *
264  *      This routine returns a tty driver structure, given a device number
265  *      and also passes back the index number.
266  *
267  *      Locking: caller must hold tty_mutex
268  */
269
270 static struct tty_driver *get_tty_driver(dev_t device, int *index)
271 {
272         struct tty_driver *p;
273
274         list_for_each_entry(p, &tty_drivers, tty_drivers) {
275                 dev_t base = MKDEV(p->major, p->minor_start);
276                 if (device < base || device >= base + p->num)
277                         continue;
278                 *index = device - base;
279                 return tty_driver_kref_get(p);
280         }
281         return NULL;
282 }
283
284 #ifdef CONFIG_CONSOLE_POLL
285
286 /**
287  *      tty_find_polling_driver -       find device of a polled tty
288  *      @name: name string to match
289  *      @line: pointer to resulting tty line nr
290  *
291  *      This routine returns a tty driver structure, given a name
292  *      and the condition that the tty driver is capable of polled
293  *      operation.
294  */
295 struct tty_driver *tty_find_polling_driver(char *name, int *line)
296 {
297         struct tty_driver *p, *res = NULL;
298         int tty_line = 0;
299         int len;
300         char *str;
301
302         for (str = name; *str; str++)
303                 if ((*str >= '0' && *str <= '9') || *str == ',')
304                         break;
305         if (!*str)
306                 return NULL;
307
308         len = str - name;
309         tty_line = simple_strtoul(str, &str, 10);
310
311         mutex_lock(&tty_mutex);
312         /* Search through the tty devices to look for a match */
313         list_for_each_entry(p, &tty_drivers, tty_drivers) {
314                 if (strncmp(name, p->name, len) != 0)
315                         continue;
316                 if (*str == ',')
317                         str++;
318                 if (*str == '\0')
319                         str = NULL;
320
321                 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
322                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, str)) {
323                         res = tty_driver_kref_get(p);
324                         *line = tty_line;
325                         break;
326                 }
327         }
328         mutex_unlock(&tty_mutex);
329
330         return res;
331 }
332 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
333 #endif
334
335 /**
336  *      tty_check_change        -       check for POSIX terminal changes
337  *      @tty: tty to check
338  *
339  *      If we try to write to, or set the state of, a terminal and we're
340  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
341  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
342  *
343  *      Locking: ctrl_lock
344  */
345
346 int tty_check_change(struct tty_struct *tty)
347 {
348         unsigned long flags;
349         int ret = 0;
350
351         if (current->signal->tty != tty)
352                 return 0;
353
354         spin_lock_irqsave(&tty->ctrl_lock, flags);
355
356         if (!tty->pgrp) {
357                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
358                 goto out_unlock;
359         }
360         if (task_pgrp(current) == tty->pgrp)
361                 goto out_unlock;
362         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
363         if (is_ignored(SIGTTOU))
364                 goto out;
365         if (is_current_pgrp_orphaned()) {
366                 ret = -EIO;
367                 goto out;
368         }
369         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
370         set_thread_flag(TIF_SIGPENDING);
371         ret = -ERESTARTSYS;
372 out:
373         return ret;
374 out_unlock:
375         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
376         return ret;
377 }
378
379 EXPORT_SYMBOL(tty_check_change);
380
381 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
382                                 size_t count, loff_t *ppos)
383 {
384         return 0;
385 }
386
387 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
388                                  size_t count, loff_t *ppos)
389 {
390         return -EIO;
391 }
392
393 /* No kernel lock held - none needed ;) */
394 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
395 {
396         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
397 }
398
399 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
400                 unsigned long arg)
401 {
402         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
403 }
404
405 static long hung_up_tty_compat_ioctl(struct file *file,
406                                      unsigned int cmd, unsigned long arg)
407 {
408         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
409 }
410
411 static const struct file_operations tty_fops = {
412         .llseek         = no_llseek,
413         .read           = tty_read,
414         .write          = tty_write,
415         .poll           = tty_poll,
416         .unlocked_ioctl = tty_ioctl,
417         .compat_ioctl   = tty_compat_ioctl,
418         .open           = tty_open,
419         .release        = tty_release,
420         .fasync         = tty_fasync,
421 };
422
423 static const struct file_operations console_fops = {
424         .llseek         = no_llseek,
425         .read           = tty_read,
426         .write          = redirected_tty_write,
427         .poll           = tty_poll,
428         .unlocked_ioctl = tty_ioctl,
429         .compat_ioctl   = tty_compat_ioctl,
430         .open           = tty_open,
431         .release        = tty_release,
432         .fasync         = tty_fasync,
433 };
434
435 static const struct file_operations hung_up_tty_fops = {
436         .llseek         = no_llseek,
437         .read           = hung_up_tty_read,
438         .write          = hung_up_tty_write,
439         .poll           = hung_up_tty_poll,
440         .unlocked_ioctl = hung_up_tty_ioctl,
441         .compat_ioctl   = hung_up_tty_compat_ioctl,
442         .release        = tty_release,
443 };
444
445 static DEFINE_SPINLOCK(redirect_lock);
446 static struct file *redirect;
447
448 /**
449  *      tty_wakeup      -       request more data
450  *      @tty: terminal
451  *
452  *      Internal and external helper for wakeups of tty. This function
453  *      informs the line discipline if present that the driver is ready
454  *      to receive more output data.
455  */
456
457 void tty_wakeup(struct tty_struct *tty)
458 {
459         struct tty_ldisc *ld;
460
461         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
462                 ld = tty_ldisc_ref(tty);
463                 if (ld) {
464                         if (ld->ops->write_wakeup)
465                                 ld->ops->write_wakeup(tty);
466                         tty_ldisc_deref(ld);
467                 }
468         }
469         wake_up_interruptible(&tty->write_wait);
470 }
471
472 EXPORT_SYMBOL_GPL(tty_wakeup);
473
474 /**
475  *      tty_ldisc_flush -       flush line discipline queue
476  *      @tty: tty
477  *
478  *      Flush the line discipline queue (if any) for this tty. If there
479  *      is no line discipline active this is a no-op.
480  */
481
482 void tty_ldisc_flush(struct tty_struct *tty)
483 {
484         struct tty_ldisc *ld = tty_ldisc_ref(tty);
485         if (ld) {
486                 if (ld->ops->flush_buffer)
487                         ld->ops->flush_buffer(tty);
488                 tty_ldisc_deref(ld);
489         }
490         tty_buffer_flush(tty);
491 }
492
493 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
494
495 /**
496  *      tty_reset_termios       -       reset terminal state
497  *      @tty: tty to reset
498  *
499  *      Restore a terminal to the driver default state
500  */
501
502 static void tty_reset_termios(struct tty_struct *tty)
503 {
504         mutex_lock(&tty->termios_mutex);
505         *tty->termios = tty->driver->init_termios;
506         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
507         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
508         mutex_unlock(&tty->termios_mutex);
509 }
510
511 /**
512  *      do_tty_hangup           -       actual handler for hangup events
513  *      @work: tty device
514  *
515  *      This can be called by the "eventd" kernel thread.  That is process
516  *      synchronous but doesn't hold any locks, so we need to make sure we
517  *      have the appropriate locks for what we're doing.
518  *
519  *      The hangup event clears any pending redirections onto the hung up
520  *      device. It ensures future writes will error and it does the needed
521  *      line discipline hangup and signal delivery. The tty object itself
522  *      remains intact.
523  *
524  *      Locking:
525  *              BKL
526  *                redirect lock for undoing redirection
527  *                file list lock for manipulating list of ttys
528  *                tty_ldisc_lock from called functions
529  *                termios_mutex resetting termios data
530  *                tasklist_lock to walk task list for hangup event
531  *                  ->siglock to protect ->signal/->sighand
532  */
533 static void do_tty_hangup(struct work_struct *work)
534 {
535         struct tty_struct *tty =
536                 container_of(work, struct tty_struct, hangup_work);
537         struct file *cons_filp = NULL;
538         struct file *filp, *f = NULL;
539         struct task_struct *p;
540         struct tty_ldisc *ld;
541         int    closecount = 0, n;
542         unsigned long flags;
543         int refs = 0;
544
545         if (!tty)
546                 return;
547
548         /* inuse_filps is protected by the single kernel lock */
549         lock_kernel();
550
551         spin_lock(&redirect_lock);
552         if (redirect && redirect->private_data == tty) {
553                 f = redirect;
554                 redirect = NULL;
555         }
556         spin_unlock(&redirect_lock);
557
558         check_tty_count(tty, "do_tty_hangup");
559         file_list_lock();
560         /* This breaks for file handles being sent over AF_UNIX sockets ? */
561         list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
562                 if (filp->f_op->write == redirected_tty_write)
563                         cons_filp = filp;
564                 if (filp->f_op->write != tty_write)
565                         continue;
566                 closecount++;
567                 tty_fasync(-1, filp, 0);        /* can't block */
568                 filp->f_op = &hung_up_tty_fops;
569         }
570         file_list_unlock();
571         /*
572          * FIXME! What are the locking issues here? This may me overdoing
573          * things... This question is especially important now that we've
574          * removed the irqlock.
575          */
576         ld = tty_ldisc_ref(tty);
577         if (ld != NULL) {
578                 /* We may have no line discipline at this point */
579                 if (ld->ops->flush_buffer)
580                         ld->ops->flush_buffer(tty);
581                 tty_driver_flush_buffer(tty);
582                 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
583                     ld->ops->write_wakeup)
584                         ld->ops->write_wakeup(tty);
585                 if (ld->ops->hangup)
586                         ld->ops->hangup(tty);
587         }
588         /*
589          * FIXME: Once we trust the LDISC code better we can wait here for
590          * ldisc completion and fix the driver call race
591          */
592         wake_up_interruptible(&tty->write_wait);
593         wake_up_interruptible(&tty->read_wait);
594         /*
595          * Shutdown the current line discipline, and reset it to
596          * N_TTY.
597          */
598         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
599                 tty_reset_termios(tty);
600         /* Defer ldisc switch */
601         /* tty_deferred_ldisc_switch(N_TTY);
602
603           This should get done automatically when the port closes and
604           tty_release is called */
605
606         read_lock(&tasklist_lock);
607         if (tty->session) {
608                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
609                         spin_lock_irq(&p->sighand->siglock);
610                         if (p->signal->tty == tty) {
611                                 p->signal->tty = NULL;
612                                 /* We defer the dereferences outside fo
613                                    the tasklist lock */
614                                 refs++;
615                         }
616                         if (!p->signal->leader) {
617                                 spin_unlock_irq(&p->sighand->siglock);
618                                 continue;
619                         }
620                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
621                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
622                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
623                         spin_lock_irqsave(&tty->ctrl_lock, flags);
624                         if (tty->pgrp)
625                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
626                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
627                         spin_unlock_irq(&p->sighand->siglock);
628                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
629         }
630         read_unlock(&tasklist_lock);
631
632         spin_lock_irqsave(&tty->ctrl_lock, flags);
633         tty->flags = 0;
634         put_pid(tty->session);
635         put_pid(tty->pgrp);
636         tty->session = NULL;
637         tty->pgrp = NULL;
638         tty->ctrl_status = 0;
639         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
640
641         /* Account for the p->signal references we killed */
642         while (refs--)
643                 tty_kref_put(tty);
644
645         /*
646          * If one of the devices matches a console pointer, we
647          * cannot just call hangup() because that will cause
648          * tty->count and state->count to go out of sync.
649          * So we just call close() the right number of times.
650          */
651         if (cons_filp) {
652                 if (tty->ops->close)
653                         for (n = 0; n < closecount; n++)
654                                 tty->ops->close(tty, cons_filp);
655         } else if (tty->ops->hangup)
656                 (tty->ops->hangup)(tty);
657         /*
658          * We don't want to have driver/ldisc interactions beyond
659          * the ones we did here. The driver layer expects no
660          * calls after ->hangup() from the ldisc side. However we
661          * can't yet guarantee all that.
662          */
663         set_bit(TTY_HUPPED, &tty->flags);
664         if (ld) {
665                 tty_ldisc_enable(tty);
666                 tty_ldisc_deref(ld);
667         }
668         unlock_kernel();
669         if (f)
670                 fput(f);
671 }
672
673 /**
674  *      tty_hangup              -       trigger a hangup event
675  *      @tty: tty to hangup
676  *
677  *      A carrier loss (virtual or otherwise) has occurred on this like
678  *      schedule a hangup sequence to run after this event.
679  */
680
681 void tty_hangup(struct tty_struct *tty)
682 {
683 #ifdef TTY_DEBUG_HANGUP
684         char    buf[64];
685         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
686 #endif
687         schedule_work(&tty->hangup_work);
688 }
689
690 EXPORT_SYMBOL(tty_hangup);
691
692 /**
693  *      tty_vhangup             -       process vhangup
694  *      @tty: tty to hangup
695  *
696  *      The user has asked via system call for the terminal to be hung up.
697  *      We do this synchronously so that when the syscall returns the process
698  *      is complete. That guarantee is necessary for security reasons.
699  */
700
701 void tty_vhangup(struct tty_struct *tty)
702 {
703 #ifdef TTY_DEBUG_HANGUP
704         char    buf[64];
705
706         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
707 #endif
708         do_tty_hangup(&tty->hangup_work);
709 }
710
711 EXPORT_SYMBOL(tty_vhangup);
712
713 /**
714  *      tty_vhangup_self        -       process vhangup for own ctty
715  *
716  *      Perform a vhangup on the current controlling tty
717  */
718
719 void tty_vhangup_self(void)
720 {
721         struct tty_struct *tty;
722
723         tty = get_current_tty();
724         if (tty) {
725                 tty_vhangup(tty);
726                 tty_kref_put(tty);
727         }
728 }
729
730 /**
731  *      tty_hung_up_p           -       was tty hung up
732  *      @filp: file pointer of tty
733  *
734  *      Return true if the tty has been subject to a vhangup or a carrier
735  *      loss
736  */
737
738 int tty_hung_up_p(struct file *filp)
739 {
740         return (filp->f_op == &hung_up_tty_fops);
741 }
742
743 EXPORT_SYMBOL(tty_hung_up_p);
744
745 static void session_clear_tty(struct pid *session)
746 {
747         struct task_struct *p;
748         do_each_pid_task(session, PIDTYPE_SID, p) {
749                 proc_clear_tty(p);
750         } while_each_pid_task(session, PIDTYPE_SID, p);
751 }
752
753 /**
754  *      disassociate_ctty       -       disconnect controlling tty
755  *      @on_exit: true if exiting so need to "hang up" the session
756  *
757  *      This function is typically called only by the session leader, when
758  *      it wants to disassociate itself from its controlling tty.
759  *
760  *      It performs the following functions:
761  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
762  *      (2)  Clears the tty from being controlling the session
763  *      (3)  Clears the controlling tty for all processes in the
764  *              session group.
765  *
766  *      The argument on_exit is set to 1 if called when a process is
767  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
768  *
769  *      Locking:
770  *              BKL is taken for hysterical raisins
771  *                tty_mutex is taken to protect tty
772  *                ->siglock is taken to protect ->signal/->sighand
773  *                tasklist_lock is taken to walk process list for sessions
774  *                  ->siglock is taken to protect ->signal/->sighand
775  */
776
777 void disassociate_ctty(int on_exit)
778 {
779         struct tty_struct *tty;
780         struct pid *tty_pgrp = NULL;
781
782
783         tty = get_current_tty();
784         if (tty) {
785                 tty_pgrp = get_pid(tty->pgrp);
786                 lock_kernel();
787                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
788                         tty_vhangup(tty);
789                 unlock_kernel();
790                 tty_kref_put(tty);
791         } else if (on_exit) {
792                 struct pid *old_pgrp;
793                 spin_lock_irq(&current->sighand->siglock);
794                 old_pgrp = current->signal->tty_old_pgrp;
795                 current->signal->tty_old_pgrp = NULL;
796                 spin_unlock_irq(&current->sighand->siglock);
797                 if (old_pgrp) {
798                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
799                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
800                         put_pid(old_pgrp);
801                 }
802                 return;
803         }
804         if (tty_pgrp) {
805                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
806                 if (!on_exit)
807                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
808                 put_pid(tty_pgrp);
809         }
810
811         spin_lock_irq(&current->sighand->siglock);
812         put_pid(current->signal->tty_old_pgrp);
813         current->signal->tty_old_pgrp = NULL;
814         spin_unlock_irq(&current->sighand->siglock);
815
816         tty = get_current_tty();
817         if (tty) {
818                 unsigned long flags;
819                 spin_lock_irqsave(&tty->ctrl_lock, flags);
820                 put_pid(tty->session);
821                 put_pid(tty->pgrp);
822                 tty->session = NULL;
823                 tty->pgrp = NULL;
824                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
825                 tty_kref_put(tty);
826         } else {
827 #ifdef TTY_DEBUG_HANGUP
828                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
829                        " = NULL", tty);
830 #endif
831         }
832
833         /* Now clear signal->tty under the lock */
834         read_lock(&tasklist_lock);
835         session_clear_tty(task_session(current));
836         read_unlock(&tasklist_lock);
837 }
838
839 /**
840  *
841  *      no_tty  - Ensure the current process does not have a controlling tty
842  */
843 void no_tty(void)
844 {
845         struct task_struct *tsk = current;
846         lock_kernel();
847         if (tsk->signal->leader)
848                 disassociate_ctty(0);
849         unlock_kernel();
850         proc_clear_tty(tsk);
851 }
852
853
854 /**
855  *      stop_tty        -       propagate flow control
856  *      @tty: tty to stop
857  *
858  *      Perform flow control to the driver. For PTY/TTY pairs we
859  *      must also propagate the TIOCKPKT status. May be called
860  *      on an already stopped device and will not re-call the driver
861  *      method.
862  *
863  *      This functionality is used by both the line disciplines for
864  *      halting incoming flow and by the driver. It may therefore be
865  *      called from any context, may be under the tty atomic_write_lock
866  *      but not always.
867  *
868  *      Locking:
869  *              Uses the tty control lock internally
870  */
871
872 void stop_tty(struct tty_struct *tty)
873 {
874         unsigned long flags;
875         spin_lock_irqsave(&tty->ctrl_lock, flags);
876         if (tty->stopped) {
877                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
878                 return;
879         }
880         tty->stopped = 1;
881         if (tty->link && tty->link->packet) {
882                 tty->ctrl_status &= ~TIOCPKT_START;
883                 tty->ctrl_status |= TIOCPKT_STOP;
884                 wake_up_interruptible(&tty->link->read_wait);
885         }
886         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
887         if (tty->ops->stop)
888                 (tty->ops->stop)(tty);
889 }
890
891 EXPORT_SYMBOL(stop_tty);
892
893 /**
894  *      start_tty       -       propagate flow control
895  *      @tty: tty to start
896  *
897  *      Start a tty that has been stopped if at all possible. Perform
898  *      any necessary wakeups and propagate the TIOCPKT status. If this
899  *      is the tty was previous stopped and is being started then the
900  *      driver start method is invoked and the line discipline woken.
901  *
902  *      Locking:
903  *              ctrl_lock
904  */
905
906 void start_tty(struct tty_struct *tty)
907 {
908         unsigned long flags;
909         spin_lock_irqsave(&tty->ctrl_lock, flags);
910         if (!tty->stopped || tty->flow_stopped) {
911                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
912                 return;
913         }
914         tty->stopped = 0;
915         if (tty->link && tty->link->packet) {
916                 tty->ctrl_status &= ~TIOCPKT_STOP;
917                 tty->ctrl_status |= TIOCPKT_START;
918                 wake_up_interruptible(&tty->link->read_wait);
919         }
920         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
921         if (tty->ops->start)
922                 (tty->ops->start)(tty);
923         /* If we have a running line discipline it may need kicking */
924         tty_wakeup(tty);
925 }
926
927 EXPORT_SYMBOL(start_tty);
928
929 /**
930  *      tty_read        -       read method for tty device files
931  *      @file: pointer to tty file
932  *      @buf: user buffer
933  *      @count: size of user buffer
934  *      @ppos: unused
935  *
936  *      Perform the read system call function on this terminal device. Checks
937  *      for hung up devices before calling the line discipline method.
938  *
939  *      Locking:
940  *              Locks the line discipline internally while needed. Multiple
941  *      read calls may be outstanding in parallel.
942  */
943
944 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
945                         loff_t *ppos)
946 {
947         int i;
948         struct tty_struct *tty;
949         struct inode *inode;
950         struct tty_ldisc *ld;
951
952         tty = (struct tty_struct *)file->private_data;
953         inode = file->f_path.dentry->d_inode;
954         if (tty_paranoia_check(tty, inode, "tty_read"))
955                 return -EIO;
956         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
957                 return -EIO;
958
959         /* We want to wait for the line discipline to sort out in this
960            situation */
961         ld = tty_ldisc_ref_wait(tty);
962         if (ld->ops->read)
963                 i = (ld->ops->read)(tty, file, buf, count);
964         else
965                 i = -EIO;
966         tty_ldisc_deref(ld);
967         if (i > 0)
968                 inode->i_atime = current_fs_time(inode->i_sb);
969         return i;
970 }
971
972 void tty_write_unlock(struct tty_struct *tty)
973 {
974         mutex_unlock(&tty->atomic_write_lock);
975         wake_up_interruptible(&tty->write_wait);
976 }
977
978 int tty_write_lock(struct tty_struct *tty, int ndelay)
979 {
980         if (!mutex_trylock(&tty->atomic_write_lock)) {
981                 if (ndelay)
982                         return -EAGAIN;
983                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
984                         return -ERESTARTSYS;
985         }
986         return 0;
987 }
988
989 /*
990  * Split writes up in sane blocksizes to avoid
991  * denial-of-service type attacks
992  */
993 static inline ssize_t do_tty_write(
994         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
995         struct tty_struct *tty,
996         struct file *file,
997         const char __user *buf,
998         size_t count)
999 {
1000         ssize_t ret, written = 0;
1001         unsigned int chunk;
1002
1003         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1004         if (ret < 0)
1005                 return ret;
1006
1007         /*
1008          * We chunk up writes into a temporary buffer. This
1009          * simplifies low-level drivers immensely, since they
1010          * don't have locking issues and user mode accesses.
1011          *
1012          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1013          * big chunk-size..
1014          *
1015          * The default chunk-size is 2kB, because the NTTY
1016          * layer has problems with bigger chunks. It will
1017          * claim to be able to handle more characters than
1018          * it actually does.
1019          *
1020          * FIXME: This can probably go away now except that 64K chunks
1021          * are too likely to fail unless switched to vmalloc...
1022          */
1023         chunk = 2048;
1024         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1025                 chunk = 65536;
1026         if (count < chunk)
1027                 chunk = count;
1028
1029         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1030         if (tty->write_cnt < chunk) {
1031                 unsigned char *buf;
1032
1033                 if (chunk < 1024)
1034                         chunk = 1024;
1035
1036                 buf = kmalloc(chunk, GFP_KERNEL);
1037                 if (!buf) {
1038                         ret = -ENOMEM;
1039                         goto out;
1040                 }
1041                 kfree(tty->write_buf);
1042                 tty->write_cnt = chunk;
1043                 tty->write_buf = buf;
1044         }
1045
1046         /* Do the write .. */
1047         for (;;) {
1048                 size_t size = count;
1049                 if (size > chunk)
1050                         size = chunk;
1051                 ret = -EFAULT;
1052                 if (copy_from_user(tty->write_buf, buf, size))
1053                         break;
1054                 ret = write(tty, file, tty->write_buf, size);
1055                 if (ret <= 0)
1056                         break;
1057                 written += ret;
1058                 buf += ret;
1059                 count -= ret;
1060                 if (!count)
1061                         break;
1062                 ret = -ERESTARTSYS;
1063                 if (signal_pending(current))
1064                         break;
1065                 cond_resched();
1066         }
1067         if (written) {
1068                 struct inode *inode = file->f_path.dentry->d_inode;
1069                 inode->i_mtime = current_fs_time(inode->i_sb);
1070                 ret = written;
1071         }
1072 out:
1073         tty_write_unlock(tty);
1074         return ret;
1075 }
1076
1077 /**
1078  * tty_write_message - write a message to a certain tty, not just the console.
1079  * @tty: the destination tty_struct
1080  * @msg: the message to write
1081  *
1082  * This is used for messages that need to be redirected to a specific tty.
1083  * We don't put it into the syslog queue right now maybe in the future if
1084  * really needed.
1085  *
1086  * We must still hold the BKL and test the CLOSING flag for the moment.
1087  */
1088
1089 void tty_write_message(struct tty_struct *tty, char *msg)
1090 {
1091         lock_kernel();
1092         if (tty) {
1093                 mutex_lock(&tty->atomic_write_lock);
1094                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags))
1095                         tty->ops->write(tty, msg, strlen(msg));
1096                 tty_write_unlock(tty);
1097         }
1098         unlock_kernel();
1099         return;
1100 }
1101
1102
1103 /**
1104  *      tty_write               -       write method for tty device file
1105  *      @file: tty file pointer
1106  *      @buf: user data to write
1107  *      @count: bytes to write
1108  *      @ppos: unused
1109  *
1110  *      Write data to a tty device via the line discipline.
1111  *
1112  *      Locking:
1113  *              Locks the line discipline as required
1114  *              Writes to the tty driver are serialized by the atomic_write_lock
1115  *      and are then processed in chunks to the device. The line discipline
1116  *      write method will not be involked in parallel for each device
1117  *              The line discipline write method is called under the big
1118  *      kernel lock for historical reasons. New code should not rely on this.
1119  */
1120
1121 static ssize_t tty_write(struct file *file, const char __user *buf,
1122                                                 size_t count, loff_t *ppos)
1123 {
1124         struct tty_struct *tty;
1125         struct inode *inode = file->f_path.dentry->d_inode;
1126         ssize_t ret;
1127         struct tty_ldisc *ld;
1128
1129         tty = (struct tty_struct *)file->private_data;
1130         if (tty_paranoia_check(tty, inode, "tty_write"))
1131                 return -EIO;
1132         if (!tty || !tty->ops->write ||
1133                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1134                         return -EIO;
1135         /* Short term debug to catch buggy drivers */
1136         if (tty->ops->write_room == NULL)
1137                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1138                         tty->driver->name);
1139         ld = tty_ldisc_ref_wait(tty);
1140         if (!ld->ops->write)
1141                 ret = -EIO;
1142         else
1143                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1144         tty_ldisc_deref(ld);
1145         return ret;
1146 }
1147
1148 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1149                                                 size_t count, loff_t *ppos)
1150 {
1151         struct file *p = NULL;
1152
1153         spin_lock(&redirect_lock);
1154         if (redirect) {
1155                 get_file(redirect);
1156                 p = redirect;
1157         }
1158         spin_unlock(&redirect_lock);
1159
1160         if (p) {
1161                 ssize_t res;
1162                 res = vfs_write(p, buf, count, &p->f_pos);
1163                 fput(p);
1164                 return res;
1165         }
1166         return tty_write(file, buf, count, ppos);
1167 }
1168
1169 static char ptychar[] = "pqrstuvwxyzabcde";
1170
1171 /**
1172  *      pty_line_name   -       generate name for a pty
1173  *      @driver: the tty driver in use
1174  *      @index: the minor number
1175  *      @p: output buffer of at least 6 bytes
1176  *
1177  *      Generate a name from a driver reference and write it to the output
1178  *      buffer.
1179  *
1180  *      Locking: None
1181  */
1182 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1183 {
1184         int i = index + driver->name_base;
1185         /* ->name is initialized to "ttyp", but "tty" is expected */
1186         sprintf(p, "%s%c%x",
1187                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1188                 ptychar[i >> 4 & 0xf], i & 0xf);
1189 }
1190
1191 /**
1192  *      tty_line_name   -       generate name for a tty
1193  *      @driver: the tty driver in use
1194  *      @index: the minor number
1195  *      @p: output buffer of at least 7 bytes
1196  *
1197  *      Generate a name from a driver reference and write it to the output
1198  *      buffer.
1199  *
1200  *      Locking: None
1201  */
1202 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1203 {
1204         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1205 }
1206
1207 /**
1208  *      tty_driver_lookup_tty() - find an existing tty, if any
1209  *      @driver: the driver for the tty
1210  *      @idx:    the minor number
1211  *
1212  *      Return the tty, if found or ERR_PTR() otherwise.
1213  *
1214  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1215  *      be held until the 'fast-open' is also done. Will change once we
1216  *      have refcounting in the driver and per driver locking
1217  */
1218 struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, int idx)
1219 {
1220         struct tty_struct *tty;
1221
1222         if (driver->ops->lookup)
1223                 return driver->ops->lookup(driver, idx);
1224
1225         tty = driver->ttys[idx];
1226         return tty;
1227 }
1228
1229 /**
1230  *      tty_driver_install_tty() - install a tty entry in the driver
1231  *      @driver: the driver for the tty
1232  *      @tty: the tty
1233  *
1234  *      Install a tty object into the driver tables. The tty->index field
1235  *      will be set by the time this is called.
1236  *
1237  *      Locking: tty_mutex for now
1238  */
1239 static int tty_driver_install_tty(struct tty_driver *driver,
1240                                                 struct tty_struct *tty)
1241 {
1242         if (driver->ops->install)
1243                 return driver->ops->install(driver, tty);
1244         driver->ttys[tty->index] = tty;
1245         return 0;
1246 }
1247
1248 /**
1249  *      tty_driver_remove_tty() - remove a tty from the driver tables
1250  *      @driver: the driver for the tty
1251  *      @idx:    the minor number
1252  *
1253  *      Remvoe a tty object from the driver tables. The tty->index field
1254  *      will be set by the time this is called.
1255  *
1256  *      Locking: tty_mutex for now
1257  */
1258 static void tty_driver_remove_tty(struct tty_driver *driver,
1259                                                 struct tty_struct *tty)
1260 {
1261         if (driver->ops->remove)
1262                 driver->ops->remove(driver, tty);
1263         else
1264                 driver->ttys[tty->index] = NULL;
1265 }
1266
1267 /*
1268  *      tty_reopen()    - fast re-open of an open tty
1269  *      @tty    - the tty to open
1270  *
1271  *      Return 0 on success, -errno on error.
1272  *
1273  *      Locking: tty_mutex must be held from the time the tty was found
1274  *               till this open completes.
1275  */
1276 static int tty_reopen(struct tty_struct *tty)
1277 {
1278         struct tty_driver *driver = tty->driver;
1279
1280         if (test_bit(TTY_CLOSING, &tty->flags))
1281                 return -EIO;
1282
1283         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1284             driver->subtype == PTY_TYPE_MASTER) {
1285                 /*
1286                  * special case for PTY masters: only one open permitted,
1287                  * and the slave side open count is incremented as well.
1288                  */
1289                 if (tty->count)
1290                         return -EIO;
1291
1292                 tty->link->count++;
1293         }
1294         tty->count++;
1295         tty->driver = driver; /* N.B. why do this every time?? */
1296
1297         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1298
1299         return 0;
1300 }
1301
1302 /**
1303  *      tty_init_dev            -       initialise a tty device
1304  *      @driver: tty driver we are opening a device on
1305  *      @idx: device index
1306  *      @ret_tty: returned tty structure
1307  *      @first_ok: ok to open a new device (used by ptmx)
1308  *
1309  *      Prepare a tty device. This may not be a "new" clean device but
1310  *      could also be an active device. The pty drivers require special
1311  *      handling because of this.
1312  *
1313  *      Locking:
1314  *              The function is called under the tty_mutex, which
1315  *      protects us from the tty struct or driver itself going away.
1316  *
1317  *      On exit the tty device has the line discipline attached and
1318  *      a reference count of 1. If a pair was created for pty/tty use
1319  *      and the other was a pty master then it too has a reference count of 1.
1320  *
1321  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1322  * failed open.  The new code protects the open with a mutex, so it's
1323  * really quite straightforward.  The mutex locking can probably be
1324  * relaxed for the (most common) case of reopening a tty.
1325  */
1326
1327 int tty_init_dev(struct tty_driver *driver, int idx,
1328         struct tty_struct **ret_tty, int first_ok)
1329 {
1330         struct tty_struct *tty, *o_tty;
1331         struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
1332         struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1333         int retval = 0;
1334
1335         /* check whether we're reopening an existing tty */
1336         tty = tty_driver_lookup_tty(driver, idx);
1337         if (IS_ERR(tty)) {
1338                 retval = PTR_ERR(tty);
1339                 goto end_init;
1340         }
1341
1342         if (tty) {
1343                 retval = tty_reopen(tty);
1344                 if (retval)
1345                         return retval;
1346                 *ret_tty = tty;
1347                 return 0;
1348         }
1349
1350         /* Check if pty master is being opened multiple times */
1351         if (driver->subtype == PTY_TYPE_MASTER &&
1352                 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1353                 retval = -EIO;
1354                 goto end_init;
1355         }
1356         /*
1357          * First time open is complex, especially for PTY devices.
1358          * This code guarantees that either everything succeeds and the
1359          * TTY is ready for operation, or else the table slots are vacated
1360          * and the allocated memory released.  (Except that the termios
1361          * and locked termios may be retained.)
1362          */
1363
1364         if (!try_module_get(driver->owner)) {
1365                 retval = -ENODEV;
1366                 goto end_init;
1367         }
1368
1369         o_tty = NULL;
1370         tp = o_tp = NULL;
1371         ltp = o_ltp = NULL;
1372
1373         tty = alloc_tty_struct();
1374         if (!tty)
1375                 goto fail_no_mem;
1376         initialize_tty_struct(tty);
1377         tty->driver = driver;
1378         tty->ops = driver->ops;
1379         tty->index = idx;
1380         tty_line_name(driver, idx, tty->name);
1381
1382         if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1383                 tp_loc = &tty->termios;
1384                 ltp_loc = &tty->termios_locked;
1385         } else {
1386                 tp_loc = &driver->termios[idx];
1387                 ltp_loc = &driver->termios_locked[idx];
1388         }
1389
1390         if (!*tp_loc) {
1391                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1392                 if (!tp)
1393                         goto free_mem_out;
1394                 *tp = driver->init_termios;
1395         }
1396
1397         if (!*ltp_loc) {
1398                 ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
1399                 if (!ltp)
1400                         goto free_mem_out;
1401         }
1402
1403         if (driver->type == TTY_DRIVER_TYPE_PTY) {
1404                 o_tty = alloc_tty_struct();
1405                 if (!o_tty)
1406                         goto free_mem_out;
1407                 if (!try_module_get(driver->other->owner)) {
1408                         /* This cannot in fact currently happen */
1409                         free_tty_struct(o_tty);
1410                         o_tty = NULL;
1411                         goto free_mem_out;
1412                 }
1413                 initialize_tty_struct(o_tty);
1414                 o_tty->driver = driver->other;
1415                 o_tty->ops = driver->ops;
1416                 o_tty->index = idx;
1417                 tty_line_name(driver->other, idx, o_tty->name);
1418
1419                 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1420                         o_tp_loc = &o_tty->termios;
1421                         o_ltp_loc = &o_tty->termios_locked;
1422                 } else {
1423                         o_tp_loc = &driver->other->termios[idx];
1424                         o_ltp_loc = &driver->other->termios_locked[idx];
1425                 }
1426
1427                 if (!*o_tp_loc) {
1428                         o_tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1429                         if (!o_tp)
1430                                 goto free_mem_out;
1431                         *o_tp = driver->other->init_termios;
1432                 }
1433
1434                 if (!*o_ltp_loc) {
1435                         o_ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
1436                         if (!o_ltp)
1437                                 goto free_mem_out;
1438                 }
1439
1440                 /*
1441                  * Everything allocated ... set up the o_tty structure.
1442                  */
1443                 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM))
1444                         driver->other->ttys[idx] = o_tty;
1445                 if (!*o_tp_loc)
1446                         *o_tp_loc = o_tp;
1447                 if (!*o_ltp_loc)
1448                         *o_ltp_loc = o_ltp;
1449                 o_tty->termios = *o_tp_loc;
1450                 o_tty->termios_locked = *o_ltp_loc;
1451                 tty_driver_kref_get(driver->other);
1452                 if (driver->subtype == PTY_TYPE_MASTER)
1453                         o_tty->count++;
1454
1455                 /* Establish the links in both directions */
1456                 tty->link   = o_tty;
1457                 o_tty->link = tty;
1458         }
1459
1460         /*
1461          * All structures have been allocated, so now we install them.
1462          * Failures after this point use release_tty to clean up, so
1463          * there's no need to null out the local pointers.
1464          */
1465
1466         if (!*tp_loc)
1467                 *tp_loc = tp;
1468         if (!*ltp_loc)
1469                 *ltp_loc = ltp;
1470         tty->termios = *tp_loc;
1471         tty->termios_locked = *ltp_loc;
1472         /* Compatibility until drivers always set this */
1473         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1474         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1475         tty_driver_kref_get(driver);
1476         tty->count++;
1477
1478         if (tty_driver_install_tty(driver, tty) < 0)
1479                 goto release_mem_out;
1480
1481         /*
1482          * Structures all installed ... call the ldisc open routines.
1483          * If we fail here just call release_tty to clean up.  No need
1484          * to decrement the use counts, as release_tty doesn't care.
1485          */
1486
1487         retval = tty_ldisc_setup(tty, o_tty);
1488
1489         if (retval)
1490                 goto release_mem_out;
1491
1492         *ret_tty = tty;
1493         /* All paths come through here to release the mutex */
1494 end_init:
1495         return retval;
1496
1497         /* Release locally allocated memory ... nothing placed in slots */
1498 free_mem_out:
1499         kfree(o_tp);
1500         if (o_tty) {
1501                 module_put(o_tty->driver->owner);
1502                 free_tty_struct(o_tty);
1503         }
1504         kfree(ltp);
1505         kfree(tp);
1506         free_tty_struct(tty);
1507
1508 fail_no_mem:
1509         module_put(driver->owner);
1510         retval = -ENOMEM;
1511         goto end_init;
1512
1513         /* call the tty release_tty routine to clean out this slot */
1514 release_mem_out:
1515         if (printk_ratelimit())
1516                 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1517                                  "clearing slot %d\n", idx);
1518         release_tty(tty, idx);
1519         goto end_init;
1520 }
1521
1522 void tty_free_termios(struct tty_struct *tty)
1523 {
1524         struct ktermios *tp;
1525         int idx = tty->index;
1526         /* Kill this flag and push into drivers for locking etc */
1527         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1528                 /* FIXME: Locking on ->termios array */
1529                 tp = tty->termios;
1530                 tty->driver->termios[idx] = NULL;
1531                 kfree(tp);
1532
1533                 tp = tty->termios_locked;
1534                 tty->driver->termios_locked[idx] = NULL;
1535                 kfree(tp);
1536         }
1537 }
1538 EXPORT_SYMBOL(tty_free_termios);
1539
1540 void tty_shutdown(struct tty_struct *tty)
1541 {
1542         tty_driver_remove_tty(tty->driver, tty);
1543         tty_free_termios(tty);
1544 }
1545 EXPORT_SYMBOL(tty_shutdown);
1546
1547 /**
1548  *      release_one_tty         -       release tty structure memory
1549  *      @kref: kref of tty we are obliterating
1550  *
1551  *      Releases memory associated with a tty structure, and clears out the
1552  *      driver table slots. This function is called when a device is no longer
1553  *      in use. It also gets called when setup of a device fails.
1554  *
1555  *      Locking:
1556  *              tty_mutex - sometimes only
1557  *              takes the file list lock internally when working on the list
1558  *      of ttys that the driver keeps.
1559  */
1560 static void release_one_tty(struct kref *kref)
1561 {
1562         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1563         struct tty_driver *driver = tty->driver;
1564
1565         if (tty->ops->shutdown)
1566                 tty->ops->shutdown(tty);
1567         else
1568                 tty_shutdown(tty);
1569         tty->magic = 0;
1570         tty_driver_kref_put(driver);
1571         module_put(driver->owner);
1572
1573         file_list_lock();
1574         list_del_init(&tty->tty_files);
1575         file_list_unlock();
1576
1577         free_tty_struct(tty);
1578 }
1579
1580 /**
1581  *      tty_kref_put            -       release a tty kref
1582  *      @tty: tty device
1583  *
1584  *      Release a reference to a tty device and if need be let the kref
1585  *      layer destruct the object for us
1586  */
1587
1588 void tty_kref_put(struct tty_struct *tty)
1589 {
1590         if (tty)
1591                 kref_put(&tty->kref, release_one_tty);
1592 }
1593 EXPORT_SYMBOL(tty_kref_put);
1594
1595 /**
1596  *      release_tty             -       release tty structure memory
1597  *
1598  *      Release both @tty and a possible linked partner (think pty pair),
1599  *      and decrement the refcount of the backing module.
1600  *
1601  *      Locking:
1602  *              tty_mutex - sometimes only
1603  *              takes the file list lock internally when working on the list
1604  *      of ttys that the driver keeps.
1605  *              FIXME: should we require tty_mutex is held here ??
1606  *
1607  */
1608 static void release_tty(struct tty_struct *tty, int idx)
1609 {
1610         /* This should always be true but check for the moment */
1611         WARN_ON(tty->index != idx);
1612
1613         if (tty->link)
1614                 tty_kref_put(tty->link);
1615         tty_kref_put(tty);
1616 }
1617
1618 /*
1619  * Even releasing the tty structures is a tricky business.. We have
1620  * to be very careful that the structures are all released at the
1621  * same time, as interrupts might otherwise get the wrong pointers.
1622  *
1623  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1624  * lead to double frees or releasing memory still in use.
1625  */
1626 void tty_release_dev(struct file *filp)
1627 {
1628         struct tty_struct *tty, *o_tty;
1629         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1630         int     devpts;
1631         int     idx;
1632         char    buf[64];
1633
1634         tty = (struct tty_struct *)filp->private_data;
1635         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode,
1636                                                         "tty_release_dev"))
1637                 return;
1638
1639         check_tty_count(tty, "tty_release_dev");
1640
1641         tty_fasync(-1, filp, 0);
1642
1643         idx = tty->index;
1644         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1645                       tty->driver->subtype == PTY_TYPE_MASTER);
1646         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1647         o_tty = tty->link;
1648
1649 #ifdef TTY_PARANOIA_CHECK
1650         if (idx < 0 || idx >= tty->driver->num) {
1651                 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1652                                   "free (%s)\n", tty->name);
1653                 return;
1654         }
1655         if (!devpts) {
1656                 if (tty != tty->driver->ttys[idx]) {
1657                         printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1658                                "for (%s)\n", idx, tty->name);
1659                         return;
1660                 }
1661                 if (tty->termios != tty->driver->termios[idx]) {
1662                         printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1663                                "for (%s)\n",
1664                                idx, tty->name);
1665                         return;
1666                 }
1667                 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
1668                         printk(KERN_DEBUG "tty_release_dev: driver.termios_locked[%d] not "
1669                                "termios_locked for (%s)\n",
1670                                idx, tty->name);
1671                         return;
1672                 }
1673         }
1674 #endif
1675
1676 #ifdef TTY_DEBUG_HANGUP
1677         printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1678                tty_name(tty, buf), tty->count);
1679 #endif
1680
1681 #ifdef TTY_PARANOIA_CHECK
1682         if (tty->driver->other &&
1683              !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1684                 if (o_tty != tty->driver->other->ttys[idx]) {
1685                         printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1686                                           "not o_tty for (%s)\n",
1687                                idx, tty->name);
1688                         return;
1689                 }
1690                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1691                         printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1692                                           "not o_termios for (%s)\n",
1693                                idx, tty->name);
1694                         return;
1695                 }
1696                 if (o_tty->termios_locked !=
1697                       tty->driver->other->termios_locked[idx]) {
1698                         printk(KERN_DEBUG "tty_release_dev: other->termios_locked["
1699                                           "%d] not o_termios_locked for (%s)\n",
1700                                idx, tty->name);
1701                         return;
1702                 }
1703                 if (o_tty->link != tty) {
1704                         printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1705                         return;
1706                 }
1707         }
1708 #endif
1709         if (tty->ops->close)
1710                 tty->ops->close(tty, filp);
1711
1712         /*
1713          * Sanity check: if tty->count is going to zero, there shouldn't be
1714          * any waiters on tty->read_wait or tty->write_wait.  We test the
1715          * wait queues and kick everyone out _before_ actually starting to
1716          * close.  This ensures that we won't block while releasing the tty
1717          * structure.
1718          *
1719          * The test for the o_tty closing is necessary, since the master and
1720          * slave sides may close in any order.  If the slave side closes out
1721          * first, its count will be one, since the master side holds an open.
1722          * Thus this test wouldn't be triggered at the time the slave closes,
1723          * so we do it now.
1724          *
1725          * Note that it's possible for the tty to be opened again while we're
1726          * flushing out waiters.  By recalculating the closing flags before
1727          * each iteration we avoid any problems.
1728          */
1729         while (1) {
1730                 /* Guard against races with tty->count changes elsewhere and
1731                    opens on /dev/tty */
1732
1733                 mutex_lock(&tty_mutex);
1734                 tty_closing = tty->count <= 1;
1735                 o_tty_closing = o_tty &&
1736                         (o_tty->count <= (pty_master ? 1 : 0));
1737                 do_sleep = 0;
1738
1739                 if (tty_closing) {
1740                         if (waitqueue_active(&tty->read_wait)) {
1741                                 wake_up(&tty->read_wait);
1742                                 do_sleep++;
1743                         }
1744                         if (waitqueue_active(&tty->write_wait)) {
1745                                 wake_up(&tty->write_wait);
1746                                 do_sleep++;
1747                         }
1748                 }
1749                 if (o_tty_closing) {
1750                         if (waitqueue_active(&o_tty->read_wait)) {
1751                                 wake_up(&o_tty->read_wait);
1752                                 do_sleep++;
1753                         }
1754                         if (waitqueue_active(&o_tty->write_wait)) {
1755                                 wake_up(&o_tty->write_wait);
1756                                 do_sleep++;
1757                         }
1758                 }
1759                 if (!do_sleep)
1760                         break;
1761
1762                 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1763                                     "active!\n", tty_name(tty, buf));
1764                 mutex_unlock(&tty_mutex);
1765                 schedule();
1766         }
1767
1768         /*
1769          * The closing flags are now consistent with the open counts on
1770          * both sides, and we've completed the last operation that could
1771          * block, so it's safe to proceed with closing.
1772          */
1773         if (pty_master) {
1774                 if (--o_tty->count < 0) {
1775                         printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1776                                             "(%d) for %s\n",
1777                                o_tty->count, tty_name(o_tty, buf));
1778                         o_tty->count = 0;
1779                 }
1780         }
1781         if (--tty->count < 0) {
1782                 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1783                        tty->count, tty_name(tty, buf));
1784                 tty->count = 0;
1785         }
1786
1787         /*
1788          * We've decremented tty->count, so we need to remove this file
1789          * descriptor off the tty->tty_files list; this serves two
1790          * purposes:
1791          *  - check_tty_count sees the correct number of file descriptors
1792          *    associated with this tty.
1793          *  - do_tty_hangup no longer sees this file descriptor as
1794          *    something that needs to be handled for hangups.
1795          */
1796         file_kill(filp);
1797         filp->private_data = NULL;
1798
1799         /*
1800          * Perform some housekeeping before deciding whether to return.
1801          *
1802          * Set the TTY_CLOSING flag if this was the last open.  In the
1803          * case of a pty we may have to wait around for the other side
1804          * to close, and TTY_CLOSING makes sure we can't be reopened.
1805          */
1806         if (tty_closing)
1807                 set_bit(TTY_CLOSING, &tty->flags);
1808         if (o_tty_closing)
1809                 set_bit(TTY_CLOSING, &o_tty->flags);
1810
1811         /*
1812          * If _either_ side is closing, make sure there aren't any
1813          * processes that still think tty or o_tty is their controlling
1814          * tty.
1815          */
1816         if (tty_closing || o_tty_closing) {
1817                 read_lock(&tasklist_lock);
1818                 session_clear_tty(tty->session);
1819                 if (o_tty)
1820                         session_clear_tty(o_tty->session);
1821                 read_unlock(&tasklist_lock);
1822         }
1823
1824         mutex_unlock(&tty_mutex);
1825
1826         /* check whether both sides are closing ... */
1827         if (!tty_closing || (o_tty && !o_tty_closing))
1828                 return;
1829
1830 #ifdef TTY_DEBUG_HANGUP
1831         printk(KERN_DEBUG "freeing tty structure...");
1832 #endif
1833         /*
1834          * Ask the line discipline code to release its structures
1835          */
1836         tty_ldisc_release(tty, o_tty);
1837         /*
1838          * The release_tty function takes care of the details of clearing
1839          * the slots and preserving the termios structure.
1840          */
1841         release_tty(tty, idx);
1842
1843         /* Make this pty number available for reallocation */
1844         if (devpts)
1845                 devpts_kill_index(idx);
1846 }
1847
1848 /**
1849  *      __tty_open              -       open a tty device
1850  *      @inode: inode of device file
1851  *      @filp: file pointer to tty
1852  *
1853  *      tty_open and tty_release keep up the tty count that contains the
1854  *      number of opens done on a tty. We cannot use the inode-count, as
1855  *      different inodes might point to the same tty.
1856  *
1857  *      Open-counting is needed for pty masters, as well as for keeping
1858  *      track of serial lines: DTR is dropped when the last close happens.
1859  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1860  *
1861  *      The termios state of a pty is reset on first open so that
1862  *      settings don't persist across reuse.
1863  *
1864  *      Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1865  *               tty->count should protect the rest.
1866  *               ->siglock protects ->signal/->sighand
1867  */
1868
1869 static int __tty_open(struct inode *inode, struct file *filp)
1870 {
1871         struct tty_struct *tty;
1872         int noctty, retval;
1873         struct tty_driver *driver;
1874         int index;
1875         dev_t device = inode->i_rdev;
1876         unsigned short saved_flags = filp->f_flags;
1877
1878         nonseekable_open(inode, filp);
1879
1880 retry_open:
1881         noctty = filp->f_flags & O_NOCTTY;
1882         index  = -1;
1883         retval = 0;
1884
1885         mutex_lock(&tty_mutex);
1886
1887         if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1888                 tty = get_current_tty();
1889                 if (!tty) {
1890                         mutex_unlock(&tty_mutex);
1891                         return -ENXIO;
1892                 }
1893                 driver = tty_driver_kref_get(tty->driver);
1894                 index = tty->index;
1895                 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1896                 /* noctty = 1; */
1897                 /* FIXME: Should we take a driver reference ? */
1898                 tty_kref_put(tty);
1899                 goto got_driver;
1900         }
1901 #ifdef CONFIG_VT
1902         if (device == MKDEV(TTY_MAJOR, 0)) {
1903                 extern struct tty_driver *console_driver;
1904                 driver = tty_driver_kref_get(console_driver);
1905                 index = fg_console;
1906                 noctty = 1;
1907                 goto got_driver;
1908         }
1909 #endif
1910         if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1911                 driver = tty_driver_kref_get(console_device(&index));
1912                 if (driver) {
1913                         /* Don't let /dev/console block */
1914                         filp->f_flags |= O_NONBLOCK;
1915                         noctty = 1;
1916                         goto got_driver;
1917                 }
1918                 mutex_unlock(&tty_mutex);
1919                 return -ENODEV;
1920         }
1921
1922         driver = get_tty_driver(device, &index);
1923         if (!driver) {
1924                 mutex_unlock(&tty_mutex);
1925                 return -ENODEV;
1926         }
1927 got_driver:
1928         retval = tty_init_dev(driver, index, &tty, 0);
1929         mutex_unlock(&tty_mutex);
1930         tty_driver_kref_put(driver);
1931         if (retval)
1932                 return retval;
1933
1934         filp->private_data = tty;
1935         file_move(filp, &tty->tty_files);
1936         check_tty_count(tty, "tty_open");
1937         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1938             tty->driver->subtype == PTY_TYPE_MASTER)
1939                 noctty = 1;
1940 #ifdef TTY_DEBUG_HANGUP
1941         printk(KERN_DEBUG "opening %s...", tty->name);
1942 #endif
1943         if (!retval) {
1944                 if (tty->ops->open)
1945                         retval = tty->ops->open(tty, filp);
1946                 else
1947                         retval = -ENODEV;
1948         }
1949         filp->f_flags = saved_flags;
1950
1951         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1952                                                 !capable(CAP_SYS_ADMIN))
1953                 retval = -EBUSY;
1954
1955         if (retval) {
1956 #ifdef TTY_DEBUG_HANGUP
1957                 printk(KERN_DEBUG "error %d in opening %s...", retval,
1958                        tty->name);
1959 #endif
1960                 tty_release_dev(filp);
1961                 if (retval != -ERESTARTSYS)
1962                         return retval;
1963                 if (signal_pending(current))
1964                         return retval;
1965                 schedule();
1966                 /*
1967                  * Need to reset f_op in case a hangup happened.
1968                  */
1969                 if (filp->f_op == &hung_up_tty_fops)
1970                         filp->f_op = &tty_fops;
1971                 goto retry_open;
1972         }
1973
1974         mutex_lock(&tty_mutex);
1975         spin_lock_irq(&current->sighand->siglock);
1976         if (!noctty &&
1977             current->signal->leader &&
1978             !current->signal->tty &&
1979             tty->session == NULL)
1980                 __proc_set_tty(current, tty);
1981         spin_unlock_irq(&current->sighand->siglock);
1982         mutex_unlock(&tty_mutex);
1983         return 0;
1984 }
1985
1986 /* BKL pushdown: scary code avoidance wrapper */
1987 static int tty_open(struct inode *inode, struct file *filp)
1988 {
1989         int ret;
1990
1991         lock_kernel();
1992         ret = __tty_open(inode, filp);
1993         unlock_kernel();
1994         return ret;
1995 }
1996
1997
1998
1999
2000 /**
2001  *      tty_release             -       vfs callback for close
2002  *      @inode: inode of tty
2003  *      @filp: file pointer for handle to tty
2004  *
2005  *      Called the last time each file handle is closed that references
2006  *      this tty. There may however be several such references.
2007  *
2008  *      Locking:
2009  *              Takes bkl. See tty_release_dev
2010  */
2011
2012 static int tty_release(struct inode *inode, struct file *filp)
2013 {
2014         lock_kernel();
2015         tty_release_dev(filp);
2016         unlock_kernel();
2017         return 0;
2018 }
2019
2020 /**
2021  *      tty_poll        -       check tty status
2022  *      @filp: file being polled
2023  *      @wait: poll wait structures to update
2024  *
2025  *      Call the line discipline polling method to obtain the poll
2026  *      status of the device.
2027  *
2028  *      Locking: locks called line discipline but ldisc poll method
2029  *      may be re-entered freely by other callers.
2030  */
2031
2032 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2033 {
2034         struct tty_struct *tty;
2035         struct tty_ldisc *ld;
2036         int ret = 0;
2037
2038         tty = (struct tty_struct *)filp->private_data;
2039         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2040                 return 0;
2041
2042         ld = tty_ldisc_ref_wait(tty);
2043         if (ld->ops->poll)
2044                 ret = (ld->ops->poll)(tty, filp, wait);
2045         tty_ldisc_deref(ld);
2046         return ret;
2047 }
2048
2049 static int tty_fasync(int fd, struct file *filp, int on)
2050 {
2051         struct tty_struct *tty;
2052         unsigned long flags;
2053         int retval = 0;
2054
2055         lock_kernel();
2056         tty = (struct tty_struct *)filp->private_data;
2057         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2058                 goto out;
2059
2060         retval = fasync_helper(fd, filp, on, &tty->fasync);
2061         if (retval <= 0)
2062                 goto out;
2063
2064         if (on) {
2065                 enum pid_type type;
2066                 struct pid *pid;
2067                 if (!waitqueue_active(&tty->read_wait))
2068                         tty->minimum_to_wake = 1;
2069                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2070                 if (tty->pgrp) {
2071                         pid = tty->pgrp;
2072                         type = PIDTYPE_PGID;
2073                 } else {
2074                         pid = task_pid(current);
2075                         type = PIDTYPE_PID;
2076                 }
2077                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2078                 retval = __f_setown(filp, pid, type, 0);
2079                 if (retval)
2080                         goto out;
2081         } else {
2082                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2083                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2084         }
2085         retval = 0;
2086 out:
2087         unlock_kernel();
2088         return retval;
2089 }
2090
2091 /**
2092  *      tiocsti                 -       fake input character
2093  *      @tty: tty to fake input into
2094  *      @p: pointer to character
2095  *
2096  *      Fake input to a tty device. Does the necessary locking and
2097  *      input management.
2098  *
2099  *      FIXME: does not honour flow control ??
2100  *
2101  *      Locking:
2102  *              Called functions take tty_ldisc_lock
2103  *              current->signal->tty check is safe without locks
2104  *
2105  *      FIXME: may race normal receive processing
2106  */
2107
2108 static int tiocsti(struct tty_struct *tty, char __user *p)
2109 {
2110         char ch, mbz = 0;
2111         struct tty_ldisc *ld;
2112
2113         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2114                 return -EPERM;
2115         if (get_user(ch, p))
2116                 return -EFAULT;
2117         ld = tty_ldisc_ref_wait(tty);
2118         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2119         tty_ldisc_deref(ld);
2120         return 0;
2121 }
2122
2123 /**
2124  *      tiocgwinsz              -       implement window query ioctl
2125  *      @tty; tty
2126  *      @arg: user buffer for result
2127  *
2128  *      Copies the kernel idea of the window size into the user buffer.
2129  *
2130  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2131  *              is consistent.
2132  */
2133
2134 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2135 {
2136         int err;
2137
2138         mutex_lock(&tty->termios_mutex);
2139         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2140         mutex_unlock(&tty->termios_mutex);
2141
2142         return err ? -EFAULT: 0;
2143 }
2144
2145 /**
2146  *      tty_do_resize           -       resize event
2147  *      @tty: tty being resized
2148  *      @real_tty: real tty (not the same as tty if using a pty/tty pair)
2149  *      @rows: rows (character)
2150  *      @cols: cols (character)
2151  *
2152  *      Update the termios variables and send the neccessary signals to
2153  *      peform a terminal resize correctly
2154  */
2155
2156 int tty_do_resize(struct tty_struct *tty, struct tty_struct *real_tty,
2157                                         struct winsize *ws)
2158 {
2159         struct pid *pgrp, *rpgrp;
2160         unsigned long flags;
2161
2162         /* For a PTY we need to lock the tty side */
2163         mutex_lock(&real_tty->termios_mutex);
2164         if (!memcmp(ws, &real_tty->winsize, sizeof(*ws)))
2165                 goto done;
2166         /* Get the PID values and reference them so we can
2167            avoid holding the tty ctrl lock while sending signals */
2168         spin_lock_irqsave(&tty->ctrl_lock, flags);
2169         pgrp = get_pid(tty->pgrp);
2170         rpgrp = get_pid(real_tty->pgrp);
2171         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2172
2173         if (pgrp)
2174                 kill_pgrp(pgrp, SIGWINCH, 1);
2175         if (rpgrp != pgrp && rpgrp)
2176                 kill_pgrp(rpgrp, SIGWINCH, 1);
2177
2178         put_pid(pgrp);
2179         put_pid(rpgrp);
2180
2181         tty->winsize = *ws;
2182         real_tty->winsize = *ws;
2183 done:
2184         mutex_unlock(&real_tty->termios_mutex);
2185         return 0;
2186 }
2187
2188 /**
2189  *      tiocswinsz              -       implement window size set ioctl
2190  *      @tty; tty
2191  *      @arg: user buffer for result
2192  *
2193  *      Copies the user idea of the window size to the kernel. Traditionally
2194  *      this is just advisory information but for the Linux console it
2195  *      actually has driver level meaning and triggers a VC resize.
2196  *
2197  *      Locking:
2198  *              Driver dependant. The default do_resize method takes the
2199  *      tty termios mutex and ctrl_lock. The console takes its own lock
2200  *      then calls into the default method.
2201  */
2202
2203 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2204         struct winsize __user *arg)
2205 {
2206         struct winsize tmp_ws;
2207         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2208                 return -EFAULT;
2209
2210         if (tty->ops->resize)
2211                 return tty->ops->resize(tty, real_tty, &tmp_ws);
2212         else
2213                 return tty_do_resize(tty, real_tty, &tmp_ws);
2214 }
2215
2216 /**
2217  *      tioccons        -       allow admin to move logical console
2218  *      @file: the file to become console
2219  *
2220  *      Allow the adminstrator to move the redirected console device
2221  *
2222  *      Locking: uses redirect_lock to guard the redirect information
2223  */
2224
2225 static int tioccons(struct file *file)
2226 {
2227         if (!capable(CAP_SYS_ADMIN))
2228                 return -EPERM;
2229         if (file->f_op->write == redirected_tty_write) {
2230                 struct file *f;
2231                 spin_lock(&redirect_lock);
2232                 f = redirect;
2233                 redirect = NULL;
2234                 spin_unlock(&redirect_lock);
2235                 if (f)
2236                         fput(f);
2237                 return 0;
2238         }
2239         spin_lock(&redirect_lock);
2240         if (redirect) {
2241                 spin_unlock(&redirect_lock);
2242                 return -EBUSY;
2243         }
2244         get_file(file);
2245         redirect = file;
2246         spin_unlock(&redirect_lock);
2247         return 0;
2248 }
2249
2250 /**
2251  *      fionbio         -       non blocking ioctl
2252  *      @file: file to set blocking value
2253  *      @p: user parameter
2254  *
2255  *      Historical tty interfaces had a blocking control ioctl before
2256  *      the generic functionality existed. This piece of history is preserved
2257  *      in the expected tty API of posix OS's.
2258  *
2259  *      Locking: none, the open fle handle ensures it won't go away.
2260  */
2261
2262 static int fionbio(struct file *file, int __user *p)
2263 {
2264         int nonblock;
2265
2266         if (get_user(nonblock, p))
2267                 return -EFAULT;
2268
2269         /* file->f_flags is still BKL protected in the fs layer - vomit */
2270         lock_kernel();
2271         if (nonblock)
2272                 file->f_flags |= O_NONBLOCK;
2273         else
2274                 file->f_flags &= ~O_NONBLOCK;
2275         unlock_kernel();
2276         return 0;
2277 }
2278
2279 /**
2280  *      tiocsctty       -       set controlling tty
2281  *      @tty: tty structure
2282  *      @arg: user argument
2283  *
2284  *      This ioctl is used to manage job control. It permits a session
2285  *      leader to set this tty as the controlling tty for the session.
2286  *
2287  *      Locking:
2288  *              Takes tty_mutex() to protect tty instance
2289  *              Takes tasklist_lock internally to walk sessions
2290  *              Takes ->siglock() when updating signal->tty
2291  */
2292
2293 static int tiocsctty(struct tty_struct *tty, int arg)
2294 {
2295         int ret = 0;
2296         if (current->signal->leader && (task_session(current) == tty->session))
2297                 return ret;
2298
2299         mutex_lock(&tty_mutex);
2300         /*
2301          * The process must be a session leader and
2302          * not have a controlling tty already.
2303          */
2304         if (!current->signal->leader || current->signal->tty) {
2305                 ret = -EPERM;
2306                 goto unlock;
2307         }
2308
2309         if (tty->session) {
2310                 /*
2311                  * This tty is already the controlling
2312                  * tty for another session group!
2313                  */
2314                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2315                         /*
2316                          * Steal it away
2317                          */
2318                         read_lock(&tasklist_lock);
2319                         session_clear_tty(tty->session);
2320                         read_unlock(&tasklist_lock);
2321                 } else {
2322                         ret = -EPERM;
2323                         goto unlock;
2324                 }
2325         }
2326         proc_set_tty(current, tty);
2327 unlock:
2328         mutex_unlock(&tty_mutex);
2329         return ret;
2330 }
2331
2332 /**
2333  *      tty_get_pgrp    -       return a ref counted pgrp pid
2334  *      @tty: tty to read
2335  *
2336  *      Returns a refcounted instance of the pid struct for the process
2337  *      group controlling the tty.
2338  */
2339
2340 struct pid *tty_get_pgrp(struct tty_struct *tty)
2341 {
2342         unsigned long flags;
2343         struct pid *pgrp;
2344
2345         spin_lock_irqsave(&tty->ctrl_lock, flags);
2346         pgrp = get_pid(tty->pgrp);
2347         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2348
2349         return pgrp;
2350 }
2351 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2352
2353 /**
2354  *      tiocgpgrp               -       get process group
2355  *      @tty: tty passed by user
2356  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2357  *      @p: returned pid
2358  *
2359  *      Obtain the process group of the tty. If there is no process group
2360  *      return an error.
2361  *
2362  *      Locking: none. Reference to current->signal->tty is safe.
2363  */
2364
2365 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2366 {
2367         struct pid *pid;
2368         int ret;
2369         /*
2370          * (tty == real_tty) is a cheap way of
2371          * testing if the tty is NOT a master pty.
2372          */
2373         if (tty == real_tty && current->signal->tty != real_tty)
2374                 return -ENOTTY;
2375         pid = tty_get_pgrp(real_tty);
2376         ret =  put_user(pid_vnr(pid), p);
2377         put_pid(pid);
2378         return ret;
2379 }
2380
2381 /**
2382  *      tiocspgrp               -       attempt to set process group
2383  *      @tty: tty passed by user
2384  *      @real_tty: tty side device matching tty passed by user
2385  *      @p: pid pointer
2386  *
2387  *      Set the process group of the tty to the session passed. Only
2388  *      permitted where the tty session is our session.
2389  *
2390  *      Locking: RCU, ctrl lock
2391  */
2392
2393 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2394 {
2395         struct pid *pgrp;
2396         pid_t pgrp_nr;
2397         int retval = tty_check_change(real_tty);
2398         unsigned long flags;
2399
2400         if (retval == -EIO)
2401                 return -ENOTTY;
2402         if (retval)
2403                 return retval;
2404         if (!current->signal->tty ||
2405             (current->signal->tty != real_tty) ||
2406             (real_tty->session != task_session(current)))
2407                 return -ENOTTY;
2408         if (get_user(pgrp_nr, p))
2409                 return -EFAULT;
2410         if (pgrp_nr < 0)
2411                 return -EINVAL;
2412         rcu_read_lock();
2413         pgrp = find_vpid(pgrp_nr);
2414         retval = -ESRCH;
2415         if (!pgrp)
2416                 goto out_unlock;
2417         retval = -EPERM;
2418         if (session_of_pgrp(pgrp) != task_session(current))
2419                 goto out_unlock;
2420         retval = 0;
2421         spin_lock_irqsave(&tty->ctrl_lock, flags);
2422         put_pid(real_tty->pgrp);
2423         real_tty->pgrp = get_pid(pgrp);
2424         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2425 out_unlock:
2426         rcu_read_unlock();
2427         return retval;
2428 }
2429
2430 /**
2431  *      tiocgsid                -       get session id
2432  *      @tty: tty passed by user
2433  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2434  *      @p: pointer to returned session id
2435  *
2436  *      Obtain the session id of the tty. If there is no session
2437  *      return an error.
2438  *
2439  *      Locking: none. Reference to current->signal->tty is safe.
2440  */
2441
2442 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2443 {
2444         /*
2445          * (tty == real_tty) is a cheap way of
2446          * testing if the tty is NOT a master pty.
2447         */
2448         if (tty == real_tty && current->signal->tty != real_tty)
2449                 return -ENOTTY;
2450         if (!real_tty->session)
2451                 return -ENOTTY;
2452         return put_user(pid_vnr(real_tty->session), p);
2453 }
2454
2455 /**
2456  *      tiocsetd        -       set line discipline
2457  *      @tty: tty device
2458  *      @p: pointer to user data
2459  *
2460  *      Set the line discipline according to user request.
2461  *
2462  *      Locking: see tty_set_ldisc, this function is just a helper
2463  */
2464
2465 static int tiocsetd(struct tty_struct *tty, int __user *p)
2466 {
2467         int ldisc;
2468         int ret;
2469
2470         if (get_user(ldisc, p))
2471                 return -EFAULT;
2472
2473         lock_kernel();
2474         ret = tty_set_ldisc(tty, ldisc);
2475         unlock_kernel();
2476
2477         return ret;
2478 }
2479
2480 /**
2481  *      send_break      -       performed time break
2482  *      @tty: device to break on
2483  *      @duration: timeout in mS
2484  *
2485  *      Perform a timed break on hardware that lacks its own driver level
2486  *      timed break functionality.
2487  *
2488  *      Locking:
2489  *              atomic_write_lock serializes
2490  *
2491  */
2492
2493 static int send_break(struct tty_struct *tty, unsigned int duration)
2494 {
2495         int retval;
2496
2497         if (tty->ops->break_ctl == NULL)
2498                 return 0;
2499
2500         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2501                 retval = tty->ops->break_ctl(tty, duration);
2502         else {
2503                 /* Do the work ourselves */
2504                 if (tty_write_lock(tty, 0) < 0)
2505                         return -EINTR;
2506                 retval = tty->ops->break_ctl(tty, -1);
2507                 if (retval)
2508                         goto out;
2509                 if (!signal_pending(current))
2510                         msleep_interruptible(duration);
2511                 retval = tty->ops->break_ctl(tty, 0);
2512 out:
2513                 tty_write_unlock(tty);
2514                 if (signal_pending(current))
2515                         retval = -EINTR;
2516         }
2517         return retval;
2518 }
2519
2520 /**
2521  *      tty_tiocmget            -       get modem status
2522  *      @tty: tty device
2523  *      @file: user file pointer
2524  *      @p: pointer to result
2525  *
2526  *      Obtain the modem status bits from the tty driver if the feature
2527  *      is supported. Return -EINVAL if it is not available.
2528  *
2529  *      Locking: none (up to the driver)
2530  */
2531
2532 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2533 {
2534         int retval = -EINVAL;
2535
2536         if (tty->ops->tiocmget) {
2537                 retval = tty->ops->tiocmget(tty, file);
2538
2539                 if (retval >= 0)
2540                         retval = put_user(retval, p);
2541         }
2542         return retval;
2543 }
2544
2545 /**
2546  *      tty_tiocmset            -       set modem status
2547  *      @tty: tty device
2548  *      @file: user file pointer
2549  *      @cmd: command - clear bits, set bits or set all
2550  *      @p: pointer to desired bits
2551  *
2552  *      Set the modem status bits from the tty driver if the feature
2553  *      is supported. Return -EINVAL if it is not available.
2554  *
2555  *      Locking: none (up to the driver)
2556  */
2557
2558 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2559              unsigned __user *p)
2560 {
2561         int retval;
2562         unsigned int set, clear, val;
2563
2564         if (tty->ops->tiocmset == NULL)
2565                 return -EINVAL;
2566
2567         retval = get_user(val, p);
2568         if (retval)
2569                 return retval;
2570         set = clear = 0;
2571         switch (cmd) {
2572         case TIOCMBIS:
2573                 set = val;
2574                 break;
2575         case TIOCMBIC:
2576                 clear = val;
2577                 break;
2578         case TIOCMSET:
2579                 set = val;
2580                 clear = ~val;
2581                 break;
2582         }
2583         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2584         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2585         return tty->ops->tiocmset(tty, file, set, clear);
2586 }
2587
2588 /*
2589  * Split this up, as gcc can choke on it otherwise..
2590  */
2591 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2592 {
2593         struct tty_struct *tty, *real_tty;
2594         void __user *p = (void __user *)arg;
2595         int retval;
2596         struct tty_ldisc *ld;
2597         struct inode *inode = file->f_dentry->d_inode;
2598
2599         tty = (struct tty_struct *)file->private_data;
2600         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2601                 return -EINVAL;
2602
2603         real_tty = tty;
2604         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2605             tty->driver->subtype == PTY_TYPE_MASTER)
2606                 real_tty = tty->link;
2607
2608
2609         /*
2610          * Factor out some common prep work
2611          */
2612         switch (cmd) {
2613         case TIOCSETD:
2614         case TIOCSBRK:
2615         case TIOCCBRK:
2616         case TCSBRK:
2617         case TCSBRKP:
2618                 retval = tty_check_change(tty);
2619                 if (retval)
2620                         return retval;
2621                 if (cmd != TIOCCBRK) {
2622                         tty_wait_until_sent(tty, 0);
2623                         if (signal_pending(current))
2624                                 return -EINTR;
2625                 }
2626                 break;
2627         }
2628
2629         /*
2630          *      Now do the stuff.
2631          */
2632         switch (cmd) {
2633         case TIOCSTI:
2634                 return tiocsti(tty, p);
2635         case TIOCGWINSZ:
2636                 return tiocgwinsz(real_tty, p);
2637         case TIOCSWINSZ:
2638                 return tiocswinsz(tty, real_tty, p);
2639         case TIOCCONS:
2640                 return real_tty != tty ? -EINVAL : tioccons(file);
2641         case FIONBIO:
2642                 return fionbio(file, p);
2643         case TIOCEXCL:
2644                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2645                 return 0;
2646         case TIOCNXCL:
2647                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2648                 return 0;
2649         case TIOCNOTTY:
2650                 if (current->signal->tty != tty)
2651                         return -ENOTTY;
2652                 no_tty();
2653                 return 0;
2654         case TIOCSCTTY:
2655                 return tiocsctty(tty, arg);
2656         case TIOCGPGRP:
2657                 return tiocgpgrp(tty, real_tty, p);
2658         case TIOCSPGRP:
2659                 return tiocspgrp(tty, real_tty, p);
2660         case TIOCGSID:
2661                 return tiocgsid(tty, real_tty, p);
2662         case TIOCGETD:
2663                 return put_user(tty->ldisc.ops->num, (int __user *)p);
2664         case TIOCSETD:
2665                 return tiocsetd(tty, p);
2666         /*
2667          * Break handling
2668          */
2669         case TIOCSBRK:  /* Turn break on, unconditionally */
2670                 if (tty->ops->break_ctl)
2671                         return tty->ops->break_ctl(tty, -1);
2672                 return 0;
2673         case TIOCCBRK:  /* Turn break off, unconditionally */
2674                 if (tty->ops->break_ctl)
2675                         return tty->ops->break_ctl(tty, 0);
2676                 return 0;
2677         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2678                 /* non-zero arg means wait for all output data
2679                  * to be sent (performed above) but don't send break.
2680                  * This is used by the tcdrain() termios function.
2681                  */
2682                 if (!arg)
2683                         return send_break(tty, 250);
2684                 return 0;
2685         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2686                 return send_break(tty, arg ? arg*100 : 250);
2687
2688         case TIOCMGET:
2689                 return tty_tiocmget(tty, file, p);
2690         case TIOCMSET:
2691         case TIOCMBIC:
2692         case TIOCMBIS:
2693                 return tty_tiocmset(tty, file, cmd, p);
2694         case TCFLSH:
2695                 switch (arg) {
2696                 case TCIFLUSH:
2697                 case TCIOFLUSH:
2698                 /* flush tty buffer and allow ldisc to process ioctl */
2699                         tty_buffer_flush(tty);
2700                         break;
2701                 }
2702                 break;
2703         }
2704         if (tty->ops->ioctl) {
2705                 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2706                 if (retval != -ENOIOCTLCMD)
2707                         return retval;
2708         }
2709         ld = tty_ldisc_ref_wait(tty);
2710         retval = -EINVAL;
2711         if (ld->ops->ioctl) {
2712                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2713                 if (retval == -ENOIOCTLCMD)
2714                         retval = -EINVAL;
2715         }
2716         tty_ldisc_deref(ld);
2717         return retval;
2718 }
2719
2720 #ifdef CONFIG_COMPAT
2721 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2722                                 unsigned long arg)
2723 {
2724         struct inode *inode = file->f_dentry->d_inode;
2725         struct tty_struct *tty = file->private_data;
2726         struct tty_ldisc *ld;
2727         int retval = -ENOIOCTLCMD;
2728
2729         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2730                 return -EINVAL;
2731
2732         if (tty->ops->compat_ioctl) {
2733                 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2734                 if (retval != -ENOIOCTLCMD)
2735                         return retval;
2736         }
2737
2738         ld = tty_ldisc_ref_wait(tty);
2739         if (ld->ops->compat_ioctl)
2740                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2741         tty_ldisc_deref(ld);
2742
2743         return retval;
2744 }
2745 #endif
2746
2747 /*
2748  * This implements the "Secure Attention Key" ---  the idea is to
2749  * prevent trojan horses by killing all processes associated with this
2750  * tty when the user hits the "Secure Attention Key".  Required for
2751  * super-paranoid applications --- see the Orange Book for more details.
2752  *
2753  * This code could be nicer; ideally it should send a HUP, wait a few
2754  * seconds, then send a INT, and then a KILL signal.  But you then
2755  * have to coordinate with the init process, since all processes associated
2756  * with the current tty must be dead before the new getty is allowed
2757  * to spawn.
2758  *
2759  * Now, if it would be correct ;-/ The current code has a nasty hole -
2760  * it doesn't catch files in flight. We may send the descriptor to ourselves
2761  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2762  *
2763  * Nasty bug: do_SAK is being called in interrupt context.  This can
2764  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2765  */
2766 void __do_SAK(struct tty_struct *tty)
2767 {
2768 #ifdef TTY_SOFT_SAK
2769         tty_hangup(tty);
2770 #else
2771         struct task_struct *g, *p;
2772         struct pid *session;
2773         int             i;
2774         struct file     *filp;
2775         struct fdtable *fdt;
2776
2777         if (!tty)
2778                 return;
2779         session = tty->session;
2780
2781         tty_ldisc_flush(tty);
2782
2783         tty_driver_flush_buffer(tty);
2784
2785         read_lock(&tasklist_lock);
2786         /* Kill the entire session */
2787         do_each_pid_task(session, PIDTYPE_SID, p) {
2788                 printk(KERN_NOTICE "SAK: killed process %d"
2789                         " (%s): task_session_nr(p)==tty->session\n",
2790                         task_pid_nr(p), p->comm);
2791                 send_sig(SIGKILL, p, 1);
2792         } while_each_pid_task(session, PIDTYPE_SID, p);
2793         /* Now kill any processes that happen to have the
2794          * tty open.
2795          */
2796         do_each_thread(g, p) {
2797                 if (p->signal->tty == tty) {
2798                         printk(KERN_NOTICE "SAK: killed process %d"
2799                             " (%s): task_session_nr(p)==tty->session\n",
2800                             task_pid_nr(p), p->comm);
2801                         send_sig(SIGKILL, p, 1);
2802                         continue;
2803                 }
2804                 task_lock(p);
2805                 if (p->files) {
2806                         /*
2807                          * We don't take a ref to the file, so we must
2808                          * hold ->file_lock instead.
2809                          */
2810                         spin_lock(&p->files->file_lock);
2811                         fdt = files_fdtable(p->files);
2812                         for (i = 0; i < fdt->max_fds; i++) {
2813                                 filp = fcheck_files(p->files, i);
2814                                 if (!filp)
2815                                         continue;
2816                                 if (filp->f_op->read == tty_read &&
2817                                     filp->private_data == tty) {
2818                                         printk(KERN_NOTICE "SAK: killed process %d"
2819                                             " (%s): fd#%d opened to the tty\n",
2820                                             task_pid_nr(p), p->comm, i);
2821                                         force_sig(SIGKILL, p);
2822                                         break;
2823                                 }
2824                         }
2825                         spin_unlock(&p->files->file_lock);
2826                 }
2827                 task_unlock(p);
2828         } while_each_thread(g, p);
2829         read_unlock(&tasklist_lock);
2830 #endif
2831 }
2832
2833 static void do_SAK_work(struct work_struct *work)
2834 {
2835         struct tty_struct *tty =
2836                 container_of(work, struct tty_struct, SAK_work);
2837         __do_SAK(tty);
2838 }
2839
2840 /*
2841  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2842  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2843  * the values which we write to it will be identical to the values which it
2844  * already has. --akpm
2845  */
2846 void do_SAK(struct tty_struct *tty)
2847 {
2848         if (!tty)
2849                 return;
2850         schedule_work(&tty->SAK_work);
2851 }
2852
2853 EXPORT_SYMBOL(do_SAK);
2854
2855 /**
2856  *      initialize_tty_struct
2857  *      @tty: tty to initialize
2858  *
2859  *      This subroutine initializes a tty structure that has been newly
2860  *      allocated.
2861  *
2862  *      Locking: none - tty in question must not be exposed at this point
2863  */
2864
2865 static void initialize_tty_struct(struct tty_struct *tty)
2866 {
2867         memset(tty, 0, sizeof(struct tty_struct));
2868         kref_init(&tty->kref);
2869         tty->magic = TTY_MAGIC;
2870         tty_ldisc_init(tty);
2871         tty->session = NULL;
2872         tty->pgrp = NULL;
2873         tty->overrun_time = jiffies;
2874         tty->buf.head = tty->buf.tail = NULL;
2875         tty_buffer_init(tty);
2876         mutex_init(&tty->termios_mutex);
2877         init_waitqueue_head(&tty->write_wait);
2878         init_waitqueue_head(&tty->read_wait);
2879         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2880         mutex_init(&tty->atomic_read_lock);
2881         mutex_init(&tty->atomic_write_lock);
2882         spin_lock_init(&tty->read_lock);
2883         spin_lock_init(&tty->ctrl_lock);
2884         INIT_LIST_HEAD(&tty->tty_files);
2885         INIT_WORK(&tty->SAK_work, do_SAK_work);
2886 }
2887
2888 /**
2889  *      tty_put_char    -       write one character to a tty
2890  *      @tty: tty
2891  *      @ch: character
2892  *
2893  *      Write one byte to the tty using the provided put_char method
2894  *      if present. Returns the number of characters successfully output.
2895  *
2896  *      Note: the specific put_char operation in the driver layer may go
2897  *      away soon. Don't call it directly, use this method
2898  */
2899
2900 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2901 {
2902         if (tty->ops->put_char)
2903                 return tty->ops->put_char(tty, ch);
2904         return tty->ops->write(tty, &ch, 1);
2905 }
2906 EXPORT_SYMBOL_GPL(tty_put_char);
2907
2908 struct class *tty_class;
2909
2910 /**
2911  *      tty_register_device - register a tty device
2912  *      @driver: the tty driver that describes the tty device
2913  *      @index: the index in the tty driver for this tty device
2914  *      @device: a struct device that is associated with this tty device.
2915  *              This field is optional, if there is no known struct device
2916  *              for this tty device it can be set to NULL safely.
2917  *
2918  *      Returns a pointer to the struct device for this tty device
2919  *      (or ERR_PTR(-EFOO) on error).
2920  *
2921  *      This call is required to be made to register an individual tty device
2922  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2923  *      that bit is not set, this function should not be called by a tty
2924  *      driver.
2925  *
2926  *      Locking: ??
2927  */
2928
2929 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2930                                    struct device *device)
2931 {
2932         char name[64];
2933         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2934
2935         if (index >= driver->num) {
2936                 printk(KERN_ERR "Attempt to register invalid tty line number "
2937                        " (%d).\n", index);
2938                 return ERR_PTR(-EINVAL);
2939         }
2940
2941         if (driver->type == TTY_DRIVER_TYPE_PTY)
2942                 pty_line_name(driver, index, name);
2943         else
2944                 tty_line_name(driver, index, name);
2945
2946         return device_create_drvdata(tty_class, device, dev, NULL, name);
2947 }
2948 EXPORT_SYMBOL(tty_register_device);
2949
2950 /**
2951  *      tty_unregister_device - unregister a tty device
2952  *      @driver: the tty driver that describes the tty device
2953  *      @index: the index in the tty driver for this tty device
2954  *
2955  *      If a tty device is registered with a call to tty_register_device() then
2956  *      this function must be called when the tty device is gone.
2957  *
2958  *      Locking: ??
2959  */
2960
2961 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2962 {
2963         device_destroy(tty_class,
2964                 MKDEV(driver->major, driver->minor_start) + index);
2965 }
2966 EXPORT_SYMBOL(tty_unregister_device);
2967
2968 struct tty_driver *alloc_tty_driver(int lines)
2969 {
2970         struct tty_driver *driver;
2971
2972         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2973         if (driver) {
2974                 kref_init(&driver->kref);
2975                 driver->magic = TTY_DRIVER_MAGIC;
2976                 driver->num = lines;
2977                 /* later we'll move allocation of tables here */
2978         }
2979         return driver;
2980 }
2981 EXPORT_SYMBOL(alloc_tty_driver);
2982
2983 static void destruct_tty_driver(struct kref *kref)
2984 {
2985         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2986         int i;
2987         struct ktermios *tp;
2988         void *p;
2989
2990         if (driver->flags & TTY_DRIVER_INSTALLED) {
2991                 /*
2992                  * Free the termios and termios_locked structures because
2993                  * we don't want to get memory leaks when modular tty
2994                  * drivers are removed from the kernel.
2995                  */
2996                 for (i = 0; i < driver->num; i++) {
2997                         tp = driver->termios[i];
2998                         if (tp) {
2999                                 driver->termios[i] = NULL;
3000                                 kfree(tp);
3001                         }
3002                         tp = driver->termios_locked[i];
3003                         if (tp) {
3004                                 driver->termios_locked[i] = NULL;
3005                                 kfree(tp);
3006                         }
3007                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3008                                 tty_unregister_device(driver, i);
3009                 }
3010                 p = driver->ttys;
3011                 proc_tty_unregister_driver(driver);
3012                 driver->ttys = NULL;
3013                 driver->termios = driver->termios_locked = NULL;
3014                 kfree(p);
3015                 cdev_del(&driver->cdev);
3016         }
3017         kfree(driver);
3018 }
3019
3020 void tty_driver_kref_put(struct tty_driver *driver)
3021 {
3022         kref_put(&driver->kref, destruct_tty_driver);
3023 }
3024 EXPORT_SYMBOL(tty_driver_kref_put);
3025
3026 void tty_set_operations(struct tty_driver *driver,
3027                         const struct tty_operations *op)
3028 {
3029         driver->ops = op;
3030 };
3031 EXPORT_SYMBOL(tty_set_operations);
3032
3033 void put_tty_driver(struct tty_driver *d)
3034 {
3035         tty_driver_kref_put(d);
3036 }
3037 EXPORT_SYMBOL(put_tty_driver);
3038
3039 /*
3040  * Called by a tty driver to register itself.
3041  */
3042 int tty_register_driver(struct tty_driver *driver)
3043 {
3044         int error;
3045         int i;
3046         dev_t dev;
3047         void **p = NULL;
3048
3049         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3050                 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3051                 if (!p)
3052                         return -ENOMEM;
3053         }
3054
3055         if (!driver->major) {
3056                 error = alloc_chrdev_region(&dev, driver->minor_start,
3057                                                 driver->num, driver->name);
3058                 if (!error) {
3059                         driver->major = MAJOR(dev);
3060                         driver->minor_start = MINOR(dev);
3061                 }
3062         } else {
3063                 dev = MKDEV(driver->major, driver->minor_start);
3064                 error = register_chrdev_region(dev, driver->num, driver->name);
3065         }
3066         if (error < 0) {
3067                 kfree(p);
3068                 return error;
3069         }
3070
3071         if (p) {
3072                 driver->ttys = (struct tty_struct **)p;
3073                 driver->termios = (struct ktermios **)(p + driver->num);
3074                 driver->termios_locked = (struct ktermios **)
3075                                                         (p + driver->num * 2);
3076         } else {
3077                 driver->ttys = NULL;
3078                 driver->termios = NULL;
3079                 driver->termios_locked = NULL;
3080         }
3081
3082         cdev_init(&driver->cdev, &tty_fops);
3083         driver->cdev.owner = driver->owner;
3084         error = cdev_add(&driver->cdev, dev, driver->num);
3085         if (error) {
3086                 unregister_chrdev_region(dev, driver->num);
3087                 driver->ttys = NULL;
3088                 driver->termios = driver->termios_locked = NULL;
3089                 kfree(p);
3090                 return error;
3091         }
3092
3093         mutex_lock(&tty_mutex);
3094         list_add(&driver->tty_drivers, &tty_drivers);
3095         mutex_unlock(&tty_mutex);
3096
3097         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3098                 for (i = 0; i < driver->num; i++)
3099                     tty_register_device(driver, i, NULL);
3100         }
3101         proc_tty_register_driver(driver);
3102         driver->flags |= TTY_DRIVER_INSTALLED;
3103         return 0;
3104 }
3105
3106 EXPORT_SYMBOL(tty_register_driver);
3107
3108 /*
3109  * Called by a tty driver to unregister itself.
3110  */
3111 int tty_unregister_driver(struct tty_driver *driver)
3112 {
3113 #if 0
3114         /* FIXME */
3115         if (driver->refcount)
3116                 return -EBUSY;
3117 #endif
3118         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3119                                 driver->num);
3120         mutex_lock(&tty_mutex);
3121         list_del(&driver->tty_drivers);
3122         mutex_unlock(&tty_mutex);
3123         return 0;
3124 }
3125
3126 EXPORT_SYMBOL(tty_unregister_driver);
3127
3128 dev_t tty_devnum(struct tty_struct *tty)
3129 {
3130         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3131 }
3132 EXPORT_SYMBOL(tty_devnum);
3133
3134 void proc_clear_tty(struct task_struct *p)
3135 {
3136         struct tty_struct *tty;
3137         spin_lock_irq(&p->sighand->siglock);
3138         tty = p->signal->tty;
3139         p->signal->tty = NULL;
3140         spin_unlock_irq(&p->sighand->siglock);
3141         tty_kref_put(tty);
3142 }
3143
3144 /* Called under the sighand lock */
3145
3146 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3147 {
3148         if (tty) {
3149                 unsigned long flags;
3150                 /* We should not have a session or pgrp to put here but.... */
3151                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3152                 put_pid(tty->session);
3153                 put_pid(tty->pgrp);
3154                 tty->pgrp = get_pid(task_pgrp(tsk));
3155                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3156                 tty->session = get_pid(task_session(tsk));
3157                 if (tsk->signal->tty) {
3158                         printk(KERN_DEBUG "tty not NULL!!\n");
3159                         tty_kref_put(tsk->signal->tty);
3160                 }
3161         }
3162         put_pid(tsk->signal->tty_old_pgrp);
3163         tsk->signal->tty = tty_kref_get(tty);
3164         tsk->signal->tty_old_pgrp = NULL;
3165 }
3166
3167 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3168 {
3169         spin_lock_irq(&tsk->sighand->siglock);
3170         __proc_set_tty(tsk, tty);
3171         spin_unlock_irq(&tsk->sighand->siglock);
3172 }
3173
3174 struct tty_struct *get_current_tty(void)
3175 {
3176         struct tty_struct *tty;
3177         unsigned long flags;
3178
3179         spin_lock_irqsave(&current->sighand->siglock, flags);
3180         tty = tty_kref_get(current->signal->tty);
3181         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3182         return tty;
3183 }
3184 EXPORT_SYMBOL_GPL(get_current_tty);
3185
3186 void tty_default_fops(struct file_operations *fops)
3187 {
3188         *fops = tty_fops;
3189 }
3190
3191 /*
3192  * Initialize the console device. This is called *early*, so
3193  * we can't necessarily depend on lots of kernel help here.
3194  * Just do some early initializations, and do the complex setup
3195  * later.
3196  */
3197 void __init console_init(void)
3198 {
3199         initcall_t *call;
3200
3201         /* Setup the default TTY line discipline. */
3202         tty_ldisc_begin();
3203
3204         /*
3205          * set up the console device so that later boot sequences can
3206          * inform about problems etc..
3207          */
3208         call = __con_initcall_start;
3209         while (call < __con_initcall_end) {
3210                 (*call)();
3211                 call++;
3212         }
3213 }
3214
3215 static int __init tty_class_init(void)
3216 {
3217         tty_class = class_create(THIS_MODULE, "tty");
3218         if (IS_ERR(tty_class))
3219                 return PTR_ERR(tty_class);
3220         return 0;
3221 }
3222
3223 postcore_initcall(tty_class_init);
3224
3225 /* 3/2004 jmc: why do these devices exist? */
3226
3227 static struct cdev tty_cdev, console_cdev;
3228
3229 /*
3230  * Ok, now we can initialize the rest of the tty devices and can count
3231  * on memory allocations, interrupts etc..
3232  */
3233 static int __init tty_init(void)
3234 {
3235         cdev_init(&tty_cdev, &tty_fops);
3236         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3237             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3238                 panic("Couldn't register /dev/tty driver\n");
3239         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3240                               "tty");
3241
3242         cdev_init(&console_cdev, &console_fops);
3243         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3244             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3245                 panic("Couldn't register /dev/console driver\n");
3246         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3247                               "console");
3248
3249 #ifdef CONFIG_VT
3250         vty_init(&console_fops);
3251 #endif
3252         return 0;
3253 }
3254 module_init(tty_init);