]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/char/tty_io.c
310e0703e4a1281d172717ae5933e25946d9e253
[linux-2.6-omap-h63xx.git] / drivers / char / tty_io.c
1 /*
2  *  linux/drivers/char/tty_io.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9  * or rs-channels. It also implements echoing, cooked mode etc.
10  *
11  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12  *
13  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14  * tty_struct and tty_queue structures.  Previously there was an array
15  * of 256 tty_struct's which was statically allocated, and the
16  * tty_queue structures were allocated at boot time.  Both are now
17  * dynamically allocated only when the tty is open.
18  *
19  * Also restructured routines so that there is more of a separation
20  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21  * the low-level tty routines (serial.c, pty.c, console.c).  This
22  * makes for cleaner and more compact code.  -TYT, 9/17/92
23  *
24  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25  * which can be dynamically activated and de-activated by the line
26  * discipline handling modules (like SLIP).
27  *
28  * NOTE: pay no attention to the line discipline code (yet); its
29  * interface is still subject to change in this version...
30  * -- TYT, 1/31/92
31  *
32  * Added functionality to the OPOST tty handling.  No delays, but all
33  * other bits should be there.
34  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35  *
36  * Rewrote canonical mode and added more termios flags.
37  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38  *
39  * Reorganized FASYNC support so mouse code can share it.
40  *      -- ctm@ardi.com, 9Sep95
41  *
42  * New TIOCLINUX variants added.
43  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
44  *
45  * Restrict vt switching via ioctl()
46  *      -- grif@cs.ucr.edu, 5-Dec-95
47  *
48  * Move console and virtual terminal code to more appropriate files,
49  * implement CONFIG_VT and generalize console device interface.
50  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51  *
52  * Rewrote init_dev and release_dev to eliminate races.
53  *      -- Bill Hawes <whawes@star.net>, June 97
54  *
55  * Added devfs support.
56  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57  *
58  * Added support for a Unix98-style ptmx device.
59  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60  *
61  * Reduced memory usage for older ARM systems
62  *      -- Russell King <rmk@arm.linux.org.uk>
63  *
64  * Move do_SAK() into process context.  Less stack use in devfs functions.
65  * alloc_tty_struct() always uses kmalloc()
66  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67  */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114
115 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
116         .c_iflag = ICRNL | IXON,
117         .c_oflag = OPOST | ONLCR,
118         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120                    ECHOCTL | ECHOKE | IEXTEN,
121         .c_cc = INIT_C_CC,
122         .c_ispeed = 38400,
123         .c_ospeed = 38400
124 };
125
126 EXPORT_SYMBOL(tty_std_termios);
127
128 /* This list gets poked at by procfs and various bits of boot up code. This
129    could do with some rationalisation such as pulling the tty proc function
130    into this file */
131
132 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
133
134 /* Mutex to protect creating and releasing a tty. This is shared with
135    vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138
139 #ifdef CONFIG_UNIX98_PTYS
140 extern struct tty_driver *ptm_driver;   /* Unix98 pty masters; for /dev/ptmx */
141 static int ptmx_open(struct inode *, struct file *);
142 #endif
143
144 static void initialize_tty_struct(struct tty_struct *tty);
145
146 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
147 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
148 ssize_t redirected_tty_write(struct file *, const char __user *,
149                                                         size_t, loff_t *);
150 static unsigned int tty_poll(struct file *, poll_table *);
151 static int tty_open(struct inode *, struct file *);
152 static int tty_release(struct inode *, struct file *);
153 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
154 #ifdef CONFIG_COMPAT
155 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
156                                 unsigned long arg);
157 #else
158 #define tty_compat_ioctl NULL
159 #endif
160 static int tty_fasync(int fd, struct file *filp, int on);
161 static void release_tty(struct tty_struct *tty, int idx);
162 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
163 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
164
165 /**
166  *      alloc_tty_struct        -       allocate a tty object
167  *
168  *      Return a new empty tty structure. The data fields have not
169  *      been initialized in any way but has been zeroed
170  *
171  *      Locking: none
172  */
173
174 static struct tty_struct *alloc_tty_struct(void)
175 {
176         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
177 }
178
179 /**
180  *      free_tty_struct         -       free a disused tty
181  *      @tty: tty struct to free
182  *
183  *      Free the write buffers, tty queue and tty memory itself.
184  *
185  *      Locking: none. Must be called after tty is definitely unused
186  */
187
188 static inline void free_tty_struct(struct tty_struct *tty)
189 {
190         kfree(tty->write_buf);
191         tty_buffer_free_all(tty);
192         kfree(tty);
193 }
194
195 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
196
197 /**
198  *      tty_name        -       return tty naming
199  *      @tty: tty structure
200  *      @buf: buffer for output
201  *
202  *      Convert a tty structure into a name. The name reflects the kernel
203  *      naming policy and if udev is in use may not reflect user space
204  *
205  *      Locking: none
206  */
207
208 char *tty_name(struct tty_struct *tty, char *buf)
209 {
210         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
211                 strcpy(buf, "NULL tty");
212         else
213                 strcpy(buf, tty->name);
214         return buf;
215 }
216
217 EXPORT_SYMBOL(tty_name);
218
219 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
220                               const char *routine)
221 {
222 #ifdef TTY_PARANOIA_CHECK
223         if (!tty) {
224                 printk(KERN_WARNING
225                         "null TTY for (%d:%d) in %s\n",
226                         imajor(inode), iminor(inode), routine);
227                 return 1;
228         }
229         if (tty->magic != TTY_MAGIC) {
230                 printk(KERN_WARNING
231                         "bad magic number for tty struct (%d:%d) in %s\n",
232                         imajor(inode), iminor(inode), routine);
233                 return 1;
234         }
235 #endif
236         return 0;
237 }
238
239 static int check_tty_count(struct tty_struct *tty, const char *routine)
240 {
241 #ifdef CHECK_TTY_COUNT
242         struct list_head *p;
243         int count = 0;
244
245         file_list_lock();
246         list_for_each(p, &tty->tty_files) {
247                 count++;
248         }
249         file_list_unlock();
250         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
251             tty->driver->subtype == PTY_TYPE_SLAVE &&
252             tty->link && tty->link->count)
253                 count++;
254         if (tty->count != count) {
255                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
256                                     "!= #fd's(%d) in %s\n",
257                        tty->name, tty->count, count, routine);
258                 return count;
259         }
260 #endif
261         return 0;
262 }
263
264 /**
265  *      get_tty_driver          -       find device of a tty
266  *      @dev_t: device identifier
267  *      @index: returns the index of the tty
268  *
269  *      This routine returns a tty driver structure, given a device number
270  *      and also passes back the index number.
271  *
272  *      Locking: caller must hold tty_mutex
273  */
274
275 static struct tty_driver *get_tty_driver(dev_t device, int *index)
276 {
277         struct tty_driver *p;
278
279         list_for_each_entry(p, &tty_drivers, tty_drivers) {
280                 dev_t base = MKDEV(p->major, p->minor_start);
281                 if (device < base || device >= base + p->num)
282                         continue;
283                 *index = device - base;
284                 return p;
285         }
286         return NULL;
287 }
288
289 #ifdef CONFIG_CONSOLE_POLL
290
291 /**
292  *      tty_find_polling_driver -       find device of a polled tty
293  *      @name: name string to match
294  *      @line: pointer to resulting tty line nr
295  *
296  *      This routine returns a tty driver structure, given a name
297  *      and the condition that the tty driver is capable of polled
298  *      operation.
299  */
300 struct tty_driver *tty_find_polling_driver(char *name, int *line)
301 {
302         struct tty_driver *p, *res = NULL;
303         int tty_line = 0;
304         int len;
305         char *str;
306
307         for (str = name; *str; str++)
308                 if ((*str >= '0' && *str <= '9') || *str == ',')
309                         break;
310         if (!*str)
311                 return NULL;
312
313         len = str - name;
314         tty_line = simple_strtoul(str, &str, 10);
315
316         mutex_lock(&tty_mutex);
317         /* Search through the tty devices to look for a match */
318         list_for_each_entry(p, &tty_drivers, tty_drivers) {
319                 if (strncmp(name, p->name, len) != 0)
320                         continue;
321                 if (*str == ',')
322                         str++;
323                 if (*str == '\0')
324                         str = NULL;
325
326                 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
327                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, str)) {
328                         res = p;
329                         *line = tty_line;
330                         break;
331                 }
332         }
333         mutex_unlock(&tty_mutex);
334
335         return res;
336 }
337 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
338 #endif
339
340 /**
341  *      tty_check_change        -       check for POSIX terminal changes
342  *      @tty: tty to check
343  *
344  *      If we try to write to, or set the state of, a terminal and we're
345  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
346  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
347  *
348  *      Locking: ctrl_lock
349  */
350
351 int tty_check_change(struct tty_struct *tty)
352 {
353         unsigned long flags;
354         int ret = 0;
355
356         if (current->signal->tty != tty)
357                 return 0;
358
359         spin_lock_irqsave(&tty->ctrl_lock, flags);
360
361         if (!tty->pgrp) {
362                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
363                 goto out_unlock;
364         }
365         if (task_pgrp(current) == tty->pgrp)
366                 goto out_unlock;
367         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
368         if (is_ignored(SIGTTOU))
369                 goto out;
370         if (is_current_pgrp_orphaned()) {
371                 ret = -EIO;
372                 goto out;
373         }
374         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
375         set_thread_flag(TIF_SIGPENDING);
376         ret = -ERESTARTSYS;
377 out:
378         return ret;
379 out_unlock:
380         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
381         return ret;
382 }
383
384 EXPORT_SYMBOL(tty_check_change);
385
386 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
387                                 size_t count, loff_t *ppos)
388 {
389         return 0;
390 }
391
392 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
393                                  size_t count, loff_t *ppos)
394 {
395         return -EIO;
396 }
397
398 /* No kernel lock held - none needed ;) */
399 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
400 {
401         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
402 }
403
404 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
405                 unsigned long arg)
406 {
407         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
408 }
409
410 static long hung_up_tty_compat_ioctl(struct file *file,
411                                      unsigned int cmd, unsigned long arg)
412 {
413         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
414 }
415
416 static const struct file_operations tty_fops = {
417         .llseek         = no_llseek,
418         .read           = tty_read,
419         .write          = tty_write,
420         .poll           = tty_poll,
421         .unlocked_ioctl = tty_ioctl,
422         .compat_ioctl   = tty_compat_ioctl,
423         .open           = tty_open,
424         .release        = tty_release,
425         .fasync         = tty_fasync,
426 };
427
428 #ifdef CONFIG_UNIX98_PTYS
429 static const struct file_operations ptmx_fops = {
430         .llseek         = no_llseek,
431         .read           = tty_read,
432         .write          = tty_write,
433         .poll           = tty_poll,
434         .unlocked_ioctl = tty_ioctl,
435         .compat_ioctl   = tty_compat_ioctl,
436         .open           = ptmx_open,
437         .release        = tty_release,
438         .fasync         = tty_fasync,
439 };
440 #endif
441
442 static const struct file_operations console_fops = {
443         .llseek         = no_llseek,
444         .read           = tty_read,
445         .write          = redirected_tty_write,
446         .poll           = tty_poll,
447         .unlocked_ioctl = tty_ioctl,
448         .compat_ioctl   = tty_compat_ioctl,
449         .open           = tty_open,
450         .release        = tty_release,
451         .fasync         = tty_fasync,
452 };
453
454 static const struct file_operations hung_up_tty_fops = {
455         .llseek         = no_llseek,
456         .read           = hung_up_tty_read,
457         .write          = hung_up_tty_write,
458         .poll           = hung_up_tty_poll,
459         .unlocked_ioctl = hung_up_tty_ioctl,
460         .compat_ioctl   = hung_up_tty_compat_ioctl,
461         .release        = tty_release,
462 };
463
464 static DEFINE_SPINLOCK(redirect_lock);
465 static struct file *redirect;
466
467 /**
468  *      tty_wakeup      -       request more data
469  *      @tty: terminal
470  *
471  *      Internal and external helper for wakeups of tty. This function
472  *      informs the line discipline if present that the driver is ready
473  *      to receive more output data.
474  */
475
476 void tty_wakeup(struct tty_struct *tty)
477 {
478         struct tty_ldisc *ld;
479
480         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
481                 ld = tty_ldisc_ref(tty);
482                 if (ld) {
483                         if (ld->ops->write_wakeup)
484                                 ld->ops->write_wakeup(tty);
485                         tty_ldisc_deref(ld);
486                 }
487         }
488         wake_up_interruptible(&tty->write_wait);
489 }
490
491 EXPORT_SYMBOL_GPL(tty_wakeup);
492
493 /**
494  *      tty_ldisc_flush -       flush line discipline queue
495  *      @tty: tty
496  *
497  *      Flush the line discipline queue (if any) for this tty. If there
498  *      is no line discipline active this is a no-op.
499  */
500
501 void tty_ldisc_flush(struct tty_struct *tty)
502 {
503         struct tty_ldisc *ld = tty_ldisc_ref(tty);
504         if (ld) {
505                 if (ld->ops->flush_buffer)
506                         ld->ops->flush_buffer(tty);
507                 tty_ldisc_deref(ld);
508         }
509         tty_buffer_flush(tty);
510 }
511
512 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
513
514 /**
515  *      tty_reset_termios       -       reset terminal state
516  *      @tty: tty to reset
517  *
518  *      Restore a terminal to the driver default state
519  */
520
521 static void tty_reset_termios(struct tty_struct *tty)
522 {
523         mutex_lock(&tty->termios_mutex);
524         *tty->termios = tty->driver->init_termios;
525         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
526         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
527         mutex_unlock(&tty->termios_mutex);
528 }
529
530 /**
531  *      do_tty_hangup           -       actual handler for hangup events
532  *      @work: tty device
533  *
534  *      This can be called by the "eventd" kernel thread.  That is process
535  *      synchronous but doesn't hold any locks, so we need to make sure we
536  *      have the appropriate locks for what we're doing.
537  *
538  *      The hangup event clears any pending redirections onto the hung up
539  *      device. It ensures future writes will error and it does the needed
540  *      line discipline hangup and signal delivery. The tty object itself
541  *      remains intact.
542  *
543  *      Locking:
544  *              BKL
545  *                redirect lock for undoing redirection
546  *                file list lock for manipulating list of ttys
547  *                tty_ldisc_lock from called functions
548  *                termios_mutex resetting termios data
549  *                tasklist_lock to walk task list for hangup event
550  *                  ->siglock to protect ->signal/->sighand
551  */
552 static void do_tty_hangup(struct work_struct *work)
553 {
554         struct tty_struct *tty =
555                 container_of(work, struct tty_struct, hangup_work);
556         struct file *cons_filp = NULL;
557         struct file *filp, *f = NULL;
558         struct task_struct *p;
559         struct tty_ldisc *ld;
560         int    closecount = 0, n;
561         unsigned long flags;
562         int refs = 0;
563
564         if (!tty)
565                 return;
566
567         /* inuse_filps is protected by the single kernel lock */
568         lock_kernel();
569
570         spin_lock(&redirect_lock);
571         if (redirect && redirect->private_data == tty) {
572                 f = redirect;
573                 redirect = NULL;
574         }
575         spin_unlock(&redirect_lock);
576
577         check_tty_count(tty, "do_tty_hangup");
578         file_list_lock();
579         /* This breaks for file handles being sent over AF_UNIX sockets ? */
580         list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
581                 if (filp->f_op->write == redirected_tty_write)
582                         cons_filp = filp;
583                 if (filp->f_op->write != tty_write)
584                         continue;
585                 closecount++;
586                 tty_fasync(-1, filp, 0);        /* can't block */
587                 filp->f_op = &hung_up_tty_fops;
588         }
589         file_list_unlock();
590         /*
591          * FIXME! What are the locking issues here? This may me overdoing
592          * things... This question is especially important now that we've
593          * removed the irqlock.
594          */
595         ld = tty_ldisc_ref(tty);
596         if (ld != NULL) {
597                 /* We may have no line discipline at this point */
598                 if (ld->ops->flush_buffer)
599                         ld->ops->flush_buffer(tty);
600                 tty_driver_flush_buffer(tty);
601                 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
602                     ld->ops->write_wakeup)
603                         ld->ops->write_wakeup(tty);
604                 if (ld->ops->hangup)
605                         ld->ops->hangup(tty);
606         }
607         /*
608          * FIXME: Once we trust the LDISC code better we can wait here for
609          * ldisc completion and fix the driver call race
610          */
611         wake_up_interruptible(&tty->write_wait);
612         wake_up_interruptible(&tty->read_wait);
613         /*
614          * Shutdown the current line discipline, and reset it to
615          * N_TTY.
616          */
617         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
618                 tty_reset_termios(tty);
619         /* Defer ldisc switch */
620         /* tty_deferred_ldisc_switch(N_TTY);
621
622           This should get done automatically when the port closes and
623           tty_release is called */
624
625         read_lock(&tasklist_lock);
626         if (tty->session) {
627                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
628                         spin_lock_irq(&p->sighand->siglock);
629                         if (p->signal->tty == tty) {
630                                 p->signal->tty = NULL;
631                                 /* We defer the dereferences outside fo
632                                    the tasklist lock */
633                                 refs++;
634                         }
635                         if (!p->signal->leader) {
636                                 spin_unlock_irq(&p->sighand->siglock);
637                                 continue;
638                         }
639                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
640                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
641                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
642                         spin_lock_irqsave(&tty->ctrl_lock, flags);
643                         if (tty->pgrp)
644                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
645                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
646                         spin_unlock_irq(&p->sighand->siglock);
647                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
648         }
649         read_unlock(&tasklist_lock);
650
651         spin_lock_irqsave(&tty->ctrl_lock, flags);
652         tty->flags = 0;
653         put_pid(tty->session);
654         put_pid(tty->pgrp);
655         tty->session = NULL;
656         tty->pgrp = NULL;
657         tty->ctrl_status = 0;
658         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
659
660         /* Account for the p->signal references we killed */
661         while (refs--)
662                 tty_kref_put(tty);
663
664         /*
665          * If one of the devices matches a console pointer, we
666          * cannot just call hangup() because that will cause
667          * tty->count and state->count to go out of sync.
668          * So we just call close() the right number of times.
669          */
670         if (cons_filp) {
671                 if (tty->ops->close)
672                         for (n = 0; n < closecount; n++)
673                                 tty->ops->close(tty, cons_filp);
674         } else if (tty->ops->hangup)
675                 (tty->ops->hangup)(tty);
676         /*
677          * We don't want to have driver/ldisc interactions beyond
678          * the ones we did here. The driver layer expects no
679          * calls after ->hangup() from the ldisc side. However we
680          * can't yet guarantee all that.
681          */
682         set_bit(TTY_HUPPED, &tty->flags);
683         if (ld) {
684                 tty_ldisc_enable(tty);
685                 tty_ldisc_deref(ld);
686         }
687         unlock_kernel();
688         if (f)
689                 fput(f);
690 }
691
692 /**
693  *      tty_hangup              -       trigger a hangup event
694  *      @tty: tty to hangup
695  *
696  *      A carrier loss (virtual or otherwise) has occurred on this like
697  *      schedule a hangup sequence to run after this event.
698  */
699
700 void tty_hangup(struct tty_struct *tty)
701 {
702 #ifdef TTY_DEBUG_HANGUP
703         char    buf[64];
704         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
705 #endif
706         schedule_work(&tty->hangup_work);
707 }
708
709 EXPORT_SYMBOL(tty_hangup);
710
711 /**
712  *      tty_vhangup             -       process vhangup
713  *      @tty: tty to hangup
714  *
715  *      The user has asked via system call for the terminal to be hung up.
716  *      We do this synchronously so that when the syscall returns the process
717  *      is complete. That guarantee is necessary for security reasons.
718  */
719
720 void tty_vhangup(struct tty_struct *tty)
721 {
722 #ifdef TTY_DEBUG_HANGUP
723         char    buf[64];
724
725         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
726 #endif
727         do_tty_hangup(&tty->hangup_work);
728 }
729
730 EXPORT_SYMBOL(tty_vhangup);
731
732 /**
733  *      tty_hung_up_p           -       was tty hung up
734  *      @filp: file pointer of tty
735  *
736  *      Return true if the tty has been subject to a vhangup or a carrier
737  *      loss
738  */
739
740 int tty_hung_up_p(struct file *filp)
741 {
742         return (filp->f_op == &hung_up_tty_fops);
743 }
744
745 EXPORT_SYMBOL(tty_hung_up_p);
746
747 static void session_clear_tty(struct pid *session)
748 {
749         struct task_struct *p;
750         do_each_pid_task(session, PIDTYPE_SID, p) {
751                 proc_clear_tty(p);
752         } while_each_pid_task(session, PIDTYPE_SID, p);
753 }
754
755 /**
756  *      disassociate_ctty       -       disconnect controlling tty
757  *      @on_exit: true if exiting so need to "hang up" the session
758  *
759  *      This function is typically called only by the session leader, when
760  *      it wants to disassociate itself from its controlling tty.
761  *
762  *      It performs the following functions:
763  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
764  *      (2)  Clears the tty from being controlling the session
765  *      (3)  Clears the controlling tty for all processes in the
766  *              session group.
767  *
768  *      The argument on_exit is set to 1 if called when a process is
769  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
770  *
771  *      Locking:
772  *              BKL is taken for hysterical raisins
773  *                tty_mutex is taken to protect tty
774  *                ->siglock is taken to protect ->signal/->sighand
775  *                tasklist_lock is taken to walk process list for sessions
776  *                  ->siglock is taken to protect ->signal/->sighand
777  */
778
779 void disassociate_ctty(int on_exit)
780 {
781         struct tty_struct *tty;
782         struct pid *tty_pgrp = NULL;
783
784
785         mutex_lock(&tty_mutex);
786         tty = get_current_tty();
787         if (tty) {
788                 tty_pgrp = get_pid(tty->pgrp);
789                 lock_kernel();
790                 mutex_unlock(&tty_mutex);
791                 /* XXX: here we race, there is nothing protecting tty */
792                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
793                         tty_vhangup(tty);
794                 unlock_kernel();
795         } else if (on_exit) {
796                 struct pid *old_pgrp;
797                 spin_lock_irq(&current->sighand->siglock);
798                 old_pgrp = current->signal->tty_old_pgrp;
799                 current->signal->tty_old_pgrp = NULL;
800                 spin_unlock_irq(&current->sighand->siglock);
801                 if (old_pgrp) {
802                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
803                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
804                         put_pid(old_pgrp);
805                 }
806                 mutex_unlock(&tty_mutex);
807                 return;
808         }
809         if (tty_pgrp) {
810                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
811                 if (!on_exit)
812                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
813                 put_pid(tty_pgrp);
814         }
815
816         spin_lock_irq(&current->sighand->siglock);
817         put_pid(current->signal->tty_old_pgrp);
818         current->signal->tty_old_pgrp = NULL;
819         spin_unlock_irq(&current->sighand->siglock);
820
821         mutex_lock(&tty_mutex);
822         /* It is possible that do_tty_hangup has free'd this tty */
823         tty = get_current_tty();
824         if (tty) {
825                 unsigned long flags;
826                 spin_lock_irqsave(&tty->ctrl_lock, flags);
827                 put_pid(tty->session);
828                 put_pid(tty->pgrp);
829                 tty->session = NULL;
830                 tty->pgrp = NULL;
831                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
832         } else {
833 #ifdef TTY_DEBUG_HANGUP
834                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
835                        " = NULL", tty);
836 #endif
837         }
838         mutex_unlock(&tty_mutex);
839
840         /* Now clear signal->tty under the lock */
841         read_lock(&tasklist_lock);
842         session_clear_tty(task_session(current));
843         read_unlock(&tasklist_lock);
844 }
845
846 /**
847  *
848  *      no_tty  - Ensure the current process does not have a controlling tty
849  */
850 void no_tty(void)
851 {
852         struct task_struct *tsk = current;
853         lock_kernel();
854         if (tsk->signal->leader)
855                 disassociate_ctty(0);
856         unlock_kernel();
857         proc_clear_tty(tsk);
858 }
859
860
861 /**
862  *      stop_tty        -       propagate flow control
863  *      @tty: tty to stop
864  *
865  *      Perform flow control to the driver. For PTY/TTY pairs we
866  *      must also propagate the TIOCKPKT status. May be called
867  *      on an already stopped device and will not re-call the driver
868  *      method.
869  *
870  *      This functionality is used by both the line disciplines for
871  *      halting incoming flow and by the driver. It may therefore be
872  *      called from any context, may be under the tty atomic_write_lock
873  *      but not always.
874  *
875  *      Locking:
876  *              Uses the tty control lock internally
877  */
878
879 void stop_tty(struct tty_struct *tty)
880 {
881         unsigned long flags;
882         spin_lock_irqsave(&tty->ctrl_lock, flags);
883         if (tty->stopped) {
884                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
885                 return;
886         }
887         tty->stopped = 1;
888         if (tty->link && tty->link->packet) {
889                 tty->ctrl_status &= ~TIOCPKT_START;
890                 tty->ctrl_status |= TIOCPKT_STOP;
891                 wake_up_interruptible(&tty->link->read_wait);
892         }
893         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
894         if (tty->ops->stop)
895                 (tty->ops->stop)(tty);
896 }
897
898 EXPORT_SYMBOL(stop_tty);
899
900 /**
901  *      start_tty       -       propagate flow control
902  *      @tty: tty to start
903  *
904  *      Start a tty that has been stopped if at all possible. Perform
905  *      any necessary wakeups and propagate the TIOCPKT status. If this
906  *      is the tty was previous stopped and is being started then the
907  *      driver start method is invoked and the line discipline woken.
908  *
909  *      Locking:
910  *              ctrl_lock
911  */
912
913 void start_tty(struct tty_struct *tty)
914 {
915         unsigned long flags;
916         spin_lock_irqsave(&tty->ctrl_lock, flags);
917         if (!tty->stopped || tty->flow_stopped) {
918                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
919                 return;
920         }
921         tty->stopped = 0;
922         if (tty->link && tty->link->packet) {
923                 tty->ctrl_status &= ~TIOCPKT_STOP;
924                 tty->ctrl_status |= TIOCPKT_START;
925                 wake_up_interruptible(&tty->link->read_wait);
926         }
927         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
928         if (tty->ops->start)
929                 (tty->ops->start)(tty);
930         /* If we have a running line discipline it may need kicking */
931         tty_wakeup(tty);
932 }
933
934 EXPORT_SYMBOL(start_tty);
935
936 /**
937  *      tty_read        -       read method for tty device files
938  *      @file: pointer to tty file
939  *      @buf: user buffer
940  *      @count: size of user buffer
941  *      @ppos: unused
942  *
943  *      Perform the read system call function on this terminal device. Checks
944  *      for hung up devices before calling the line discipline method.
945  *
946  *      Locking:
947  *              Locks the line discipline internally while needed. Multiple
948  *      read calls may be outstanding in parallel.
949  */
950
951 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
952                         loff_t *ppos)
953 {
954         int i;
955         struct tty_struct *tty;
956         struct inode *inode;
957         struct tty_ldisc *ld;
958
959         tty = (struct tty_struct *)file->private_data;
960         inode = file->f_path.dentry->d_inode;
961         if (tty_paranoia_check(tty, inode, "tty_read"))
962                 return -EIO;
963         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
964                 return -EIO;
965
966         /* We want to wait for the line discipline to sort out in this
967            situation */
968         ld = tty_ldisc_ref_wait(tty);
969         if (ld->ops->read)
970                 i = (ld->ops->read)(tty, file, buf, count);
971         else
972                 i = -EIO;
973         tty_ldisc_deref(ld);
974         if (i > 0)
975                 inode->i_atime = current_fs_time(inode->i_sb);
976         return i;
977 }
978
979 void tty_write_unlock(struct tty_struct *tty)
980 {
981         mutex_unlock(&tty->atomic_write_lock);
982         wake_up_interruptible(&tty->write_wait);
983 }
984
985 int tty_write_lock(struct tty_struct *tty, int ndelay)
986 {
987         if (!mutex_trylock(&tty->atomic_write_lock)) {
988                 if (ndelay)
989                         return -EAGAIN;
990                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
991                         return -ERESTARTSYS;
992         }
993         return 0;
994 }
995
996 /*
997  * Split writes up in sane blocksizes to avoid
998  * denial-of-service type attacks
999  */
1000 static inline ssize_t do_tty_write(
1001         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1002         struct tty_struct *tty,
1003         struct file *file,
1004         const char __user *buf,
1005         size_t count)
1006 {
1007         ssize_t ret, written = 0;
1008         unsigned int chunk;
1009
1010         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1011         if (ret < 0)
1012                 return ret;
1013
1014         /*
1015          * We chunk up writes into a temporary buffer. This
1016          * simplifies low-level drivers immensely, since they
1017          * don't have locking issues and user mode accesses.
1018          *
1019          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1020          * big chunk-size..
1021          *
1022          * The default chunk-size is 2kB, because the NTTY
1023          * layer has problems with bigger chunks. It will
1024          * claim to be able to handle more characters than
1025          * it actually does.
1026          *
1027          * FIXME: This can probably go away now except that 64K chunks
1028          * are too likely to fail unless switched to vmalloc...
1029          */
1030         chunk = 2048;
1031         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1032                 chunk = 65536;
1033         if (count < chunk)
1034                 chunk = count;
1035
1036         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1037         if (tty->write_cnt < chunk) {
1038                 unsigned char *buf;
1039
1040                 if (chunk < 1024)
1041                         chunk = 1024;
1042
1043                 buf = kmalloc(chunk, GFP_KERNEL);
1044                 if (!buf) {
1045                         ret = -ENOMEM;
1046                         goto out;
1047                 }
1048                 kfree(tty->write_buf);
1049                 tty->write_cnt = chunk;
1050                 tty->write_buf = buf;
1051         }
1052
1053         /* Do the write .. */
1054         for (;;) {
1055                 size_t size = count;
1056                 if (size > chunk)
1057                         size = chunk;
1058                 ret = -EFAULT;
1059                 if (copy_from_user(tty->write_buf, buf, size))
1060                         break;
1061                 ret = write(tty, file, tty->write_buf, size);
1062                 if (ret <= 0)
1063                         break;
1064                 written += ret;
1065                 buf += ret;
1066                 count -= ret;
1067                 if (!count)
1068                         break;
1069                 ret = -ERESTARTSYS;
1070                 if (signal_pending(current))
1071                         break;
1072                 cond_resched();
1073         }
1074         if (written) {
1075                 struct inode *inode = file->f_path.dentry->d_inode;
1076                 inode->i_mtime = current_fs_time(inode->i_sb);
1077                 ret = written;
1078         }
1079 out:
1080         tty_write_unlock(tty);
1081         return ret;
1082 }
1083
1084
1085 /**
1086  *      tty_write               -       write method for tty device file
1087  *      @file: tty file pointer
1088  *      @buf: user data to write
1089  *      @count: bytes to write
1090  *      @ppos: unused
1091  *
1092  *      Write data to a tty device via the line discipline.
1093  *
1094  *      Locking:
1095  *              Locks the line discipline as required
1096  *              Writes to the tty driver are serialized by the atomic_write_lock
1097  *      and are then processed in chunks to the device. The line discipline
1098  *      write method will not be involked in parallel for each device
1099  *              The line discipline write method is called under the big
1100  *      kernel lock for historical reasons. New code should not rely on this.
1101  */
1102
1103 static ssize_t tty_write(struct file *file, const char __user *buf,
1104                                                 size_t count, loff_t *ppos)
1105 {
1106         struct tty_struct *tty;
1107         struct inode *inode = file->f_path.dentry->d_inode;
1108         ssize_t ret;
1109         struct tty_ldisc *ld;
1110
1111         tty = (struct tty_struct *)file->private_data;
1112         if (tty_paranoia_check(tty, inode, "tty_write"))
1113                 return -EIO;
1114         if (!tty || !tty->ops->write ||
1115                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1116                         return -EIO;
1117         /* Short term debug to catch buggy drivers */
1118         if (tty->ops->write_room == NULL)
1119                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1120                         tty->driver->name);
1121         ld = tty_ldisc_ref_wait(tty);
1122         if (!ld->ops->write)
1123                 ret = -EIO;
1124         else
1125                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1126         tty_ldisc_deref(ld);
1127         return ret;
1128 }
1129
1130 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1131                                                 size_t count, loff_t *ppos)
1132 {
1133         struct file *p = NULL;
1134
1135         spin_lock(&redirect_lock);
1136         if (redirect) {
1137                 get_file(redirect);
1138                 p = redirect;
1139         }
1140         spin_unlock(&redirect_lock);
1141
1142         if (p) {
1143                 ssize_t res;
1144                 res = vfs_write(p, buf, count, &p->f_pos);
1145                 fput(p);
1146                 return res;
1147         }
1148         return tty_write(file, buf, count, ppos);
1149 }
1150
1151 static char ptychar[] = "pqrstuvwxyzabcde";
1152
1153 /**
1154  *      pty_line_name   -       generate name for a pty
1155  *      @driver: the tty driver in use
1156  *      @index: the minor number
1157  *      @p: output buffer of at least 6 bytes
1158  *
1159  *      Generate a name from a driver reference and write it to the output
1160  *      buffer.
1161  *
1162  *      Locking: None
1163  */
1164 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1165 {
1166         int i = index + driver->name_base;
1167         /* ->name is initialized to "ttyp", but "tty" is expected */
1168         sprintf(p, "%s%c%x",
1169                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1170                 ptychar[i >> 4 & 0xf], i & 0xf);
1171 }
1172
1173 /**
1174  *      pty_line_name   -       generate name for a tty
1175  *      @driver: the tty driver in use
1176  *      @index: the minor number
1177  *      @p: output buffer of at least 7 bytes
1178  *
1179  *      Generate a name from a driver reference and write it to the output
1180  *      buffer.
1181  *
1182  *      Locking: None
1183  */
1184 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1185 {
1186         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1187 }
1188
1189 /**
1190  *      init_dev                -       initialise a tty device
1191  *      @driver: tty driver we are opening a device on
1192  *      @idx: device index
1193  *      @tty: returned tty structure
1194  *
1195  *      Prepare a tty device. This may not be a "new" clean device but
1196  *      could also be an active device. The pty drivers require special
1197  *      handling because of this.
1198  *
1199  *      Locking:
1200  *              The function is called under the tty_mutex, which
1201  *      protects us from the tty struct or driver itself going away.
1202  *
1203  *      On exit the tty device has the line discipline attached and
1204  *      a reference count of 1. If a pair was created for pty/tty use
1205  *      and the other was a pty master then it too has a reference count of 1.
1206  *
1207  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1208  * failed open.  The new code protects the open with a mutex, so it's
1209  * really quite straightforward.  The mutex locking can probably be
1210  * relaxed for the (most common) case of reopening a tty.
1211  */
1212
1213 static int init_dev(struct tty_driver *driver, int idx,
1214         struct tty_struct **ret_tty)
1215 {
1216         struct tty_struct *tty, *o_tty;
1217         struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
1218         struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1219         int retval = 0;
1220
1221         /* check whether we're reopening an existing tty */
1222         if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1223                 tty = devpts_get_tty(idx);
1224                 /*
1225                  * If we don't have a tty here on a slave open, it's because
1226                  * the master already started the close process and there's
1227                  * no relation between devpts file and tty anymore.
1228                  */
1229                 if (!tty && driver->subtype == PTY_TYPE_SLAVE) {
1230                         retval = -EIO;
1231                         goto end_init;
1232                 }
1233                 /*
1234                  * It's safe from now on because init_dev() is called with
1235                  * tty_mutex held and release_dev() won't change tty->count
1236                  * or tty->flags without having to grab tty_mutex
1237                  */
1238                 if (tty && driver->subtype == PTY_TYPE_MASTER)
1239                         tty = tty->link;
1240         } else {
1241                 tty = driver->ttys[idx];
1242         }
1243         if (tty) goto fast_track;
1244
1245         /*
1246          * First time open is complex, especially for PTY devices.
1247          * This code guarantees that either everything succeeds and the
1248          * TTY is ready for operation, or else the table slots are vacated
1249          * and the allocated memory released.  (Except that the termios
1250          * and locked termios may be retained.)
1251          */
1252
1253         if (!try_module_get(driver->owner)) {
1254                 retval = -ENODEV;
1255                 goto end_init;
1256         }
1257
1258         o_tty = NULL;
1259         tp = o_tp = NULL;
1260         ltp = o_ltp = NULL;
1261
1262         tty = alloc_tty_struct();
1263         if (!tty)
1264                 goto fail_no_mem;
1265         initialize_tty_struct(tty);
1266         tty->driver = driver;
1267         tty->ops = driver->ops;
1268         tty->index = idx;
1269         tty_line_name(driver, idx, tty->name);
1270
1271         if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1272                 tp_loc = &tty->termios;
1273                 ltp_loc = &tty->termios_locked;
1274         } else {
1275                 tp_loc = &driver->termios[idx];
1276                 ltp_loc = &driver->termios_locked[idx];
1277         }
1278
1279         if (!*tp_loc) {
1280                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1281                 if (!tp)
1282                         goto free_mem_out;
1283                 *tp = driver->init_termios;
1284         }
1285
1286         if (!*ltp_loc) {
1287                 ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
1288                 if (!ltp)
1289                         goto free_mem_out;
1290         }
1291
1292         if (driver->type == TTY_DRIVER_TYPE_PTY) {
1293                 o_tty = alloc_tty_struct();
1294                 if (!o_tty)
1295                         goto free_mem_out;
1296                 initialize_tty_struct(o_tty);
1297                 o_tty->driver = driver->other;
1298                 o_tty->ops = driver->ops;
1299                 o_tty->index = idx;
1300                 tty_line_name(driver->other, idx, o_tty->name);
1301
1302                 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1303                         o_tp_loc = &o_tty->termios;
1304                         o_ltp_loc = &o_tty->termios_locked;
1305                 } else {
1306                         o_tp_loc = &driver->other->termios[idx];
1307                         o_ltp_loc = &driver->other->termios_locked[idx];
1308                 }
1309
1310                 if (!*o_tp_loc) {
1311                         o_tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1312                         if (!o_tp)
1313                                 goto free_mem_out;
1314                         *o_tp = driver->other->init_termios;
1315                 }
1316
1317                 if (!*o_ltp_loc) {
1318                         o_ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
1319                         if (!o_ltp)
1320                                 goto free_mem_out;
1321                 }
1322
1323                 /*
1324                  * Everything allocated ... set up the o_tty structure.
1325                  */
1326                 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM))
1327                         driver->other->ttys[idx] = o_tty;
1328                 if (!*o_tp_loc)
1329                         *o_tp_loc = o_tp;
1330                 if (!*o_ltp_loc)
1331                         *o_ltp_loc = o_ltp;
1332                 o_tty->termios = *o_tp_loc;
1333                 o_tty->termios_locked = *o_ltp_loc;
1334                 driver->other->refcount++;
1335                 if (driver->subtype == PTY_TYPE_MASTER)
1336                         o_tty->count++;
1337
1338                 /* Establish the links in both directions */
1339                 tty->link   = o_tty;
1340                 o_tty->link = tty;
1341         }
1342
1343         /*
1344          * All structures have been allocated, so now we install them.
1345          * Failures after this point use release_tty to clean up, so
1346          * there's no need to null out the local pointers.
1347          */
1348         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM))
1349                 driver->ttys[idx] = tty;
1350
1351         if (!*tp_loc)
1352                 *tp_loc = tp;
1353         if (!*ltp_loc)
1354                 *ltp_loc = ltp;
1355         tty->termios = *tp_loc;
1356         tty->termios_locked = *ltp_loc;
1357         /* Compatibility until drivers always set this */
1358         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1359         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1360         driver->refcount++;
1361         tty->count++;
1362
1363         /*
1364          * Structures all installed ... call the ldisc open routines.
1365          * If we fail here just call release_tty to clean up.  No need
1366          * to decrement the use counts, as release_tty doesn't care.
1367          */
1368
1369         retval = tty_ldisc_setup(tty, o_tty);
1370
1371         if (retval)
1372                 goto release_mem_out;
1373          goto success;
1374
1375         /*
1376          * This fast open can be used if the tty is already open.
1377          * No memory is allocated, and the only failures are from
1378          * attempting to open a closing tty or attempting multiple
1379          * opens on a pty master.
1380          */
1381 fast_track:
1382         if (test_bit(TTY_CLOSING, &tty->flags)) {
1383                 retval = -EIO;
1384                 goto end_init;
1385         }
1386         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1387             driver->subtype == PTY_TYPE_MASTER) {
1388                 /*
1389                  * special case for PTY masters: only one open permitted,
1390                  * and the slave side open count is incremented as well.
1391                  */
1392                 if (tty->count) {
1393                         retval = -EIO;
1394                         goto end_init;
1395                 }
1396                 tty->link->count++;
1397         }
1398         tty->count++;
1399         tty->driver = driver; /* N.B. why do this every time?? */
1400
1401         /* FIXME */
1402         if (!test_bit(TTY_LDISC, &tty->flags))
1403                 printk(KERN_ERR "init_dev but no ldisc\n");
1404 success:
1405         *ret_tty = tty;
1406
1407         /* All paths come through here to release the mutex */
1408 end_init:
1409         return retval;
1410
1411         /* Release locally allocated memory ... nothing placed in slots */
1412 free_mem_out:
1413         kfree(o_tp);
1414         if (o_tty)
1415                 free_tty_struct(o_tty);
1416         kfree(ltp);
1417         kfree(tp);
1418         free_tty_struct(tty);
1419
1420 fail_no_mem:
1421         module_put(driver->owner);
1422         retval = -ENOMEM;
1423         goto end_init;
1424
1425         /* call the tty release_tty routine to clean out this slot */
1426 release_mem_out:
1427         if (printk_ratelimit())
1428                 printk(KERN_INFO "init_dev: ldisc open failed, "
1429                                  "clearing slot %d\n", idx);
1430         release_tty(tty, idx);
1431         goto end_init;
1432 }
1433
1434 /**
1435  *      release_one_tty         -       release tty structure memory
1436  *      @kref: kref of tty we are obliterating
1437  *
1438  *      Releases memory associated with a tty structure, and clears out the
1439  *      driver table slots. This function is called when a device is no longer
1440  *      in use. It also gets called when setup of a device fails.
1441  *
1442  *      Locking:
1443  *              tty_mutex - sometimes only
1444  *              takes the file list lock internally when working on the list
1445  *      of ttys that the driver keeps.
1446  */
1447 static void release_one_tty(struct kref *kref)
1448 {
1449         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1450         int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
1451         struct ktermios *tp;
1452         int idx = tty->index;
1453
1454         if (!devpts)
1455                 tty->driver->ttys[idx] = NULL;
1456
1457         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1458                 /* FIXME: Locking on ->termios array */
1459                 tp = tty->termios;
1460                 if (!devpts)
1461                         tty->driver->termios[idx] = NULL;
1462                 kfree(tp);
1463
1464                 tp = tty->termios_locked;
1465                 if (!devpts)
1466                         tty->driver->termios_locked[idx] = NULL;
1467                 kfree(tp);
1468         }
1469
1470
1471         tty->magic = 0;
1472         /* FIXME: locking on tty->driver->refcount */
1473         tty->driver->refcount--;
1474
1475         file_list_lock();
1476         list_del_init(&tty->tty_files);
1477         file_list_unlock();
1478
1479         free_tty_struct(tty);
1480 }
1481
1482 /**
1483  *      tty_kref_put            -       release a tty kref
1484  *      @tty: tty device
1485  *
1486  *      Release a reference to a tty device and if need be let the kref
1487  *      layer destruct the object for us
1488  */
1489
1490 void tty_kref_put(struct tty_struct *tty)
1491 {
1492         if (tty)
1493                 kref_put(&tty->kref, release_one_tty);
1494 }
1495 EXPORT_SYMBOL(tty_kref_put);
1496
1497 /**
1498  *      release_tty             -       release tty structure memory
1499  *
1500  *      Release both @tty and a possible linked partner (think pty pair),
1501  *      and decrement the refcount of the backing module.
1502  *
1503  *      Locking:
1504  *              tty_mutex - sometimes only
1505  *              takes the file list lock internally when working on the list
1506  *      of ttys that the driver keeps.
1507  *              FIXME: should we require tty_mutex is held here ??
1508  *
1509  *      FIXME: We want to defer the module put of the driver to the
1510  *      destructor.
1511  */
1512 static void release_tty(struct tty_struct *tty, int idx)
1513 {
1514         struct tty_driver *driver = tty->driver;
1515
1516         /* This should always be true but check for the moment */
1517         WARN_ON(tty->index != idx);
1518
1519         if (tty->link)
1520                 tty_kref_put(tty->link);
1521         tty_kref_put(tty);
1522         module_put(driver->owner);
1523 }
1524
1525 /*
1526  * Even releasing the tty structures is a tricky business.. We have
1527  * to be very careful that the structures are all released at the
1528  * same time, as interrupts might otherwise get the wrong pointers.
1529  *
1530  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1531  * lead to double frees or releasing memory still in use.
1532  */
1533 static void release_dev(struct file *filp)
1534 {
1535         struct tty_struct *tty, *o_tty;
1536         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1537         int     devpts;
1538         int     idx;
1539         char    buf[64];
1540
1541         tty = (struct tty_struct *)filp->private_data;
1542         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode,
1543                                                         "release_dev"))
1544                 return;
1545
1546         check_tty_count(tty, "release_dev");
1547
1548         tty_fasync(-1, filp, 0);
1549
1550         idx = tty->index;
1551         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1552                       tty->driver->subtype == PTY_TYPE_MASTER);
1553         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1554         o_tty = tty->link;
1555
1556 #ifdef TTY_PARANOIA_CHECK
1557         if (idx < 0 || idx >= tty->driver->num) {
1558                 printk(KERN_DEBUG "release_dev: bad idx when trying to "
1559                                   "free (%s)\n", tty->name);
1560                 return;
1561         }
1562         if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1563                 if (tty != tty->driver->ttys[idx]) {
1564                         printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
1565                                "for (%s)\n", idx, tty->name);
1566                         return;
1567                 }
1568                 if (tty->termios != tty->driver->termios[idx]) {
1569                         printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
1570                                "for (%s)\n",
1571                                idx, tty->name);
1572                         return;
1573                 }
1574                 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
1575                         printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
1576                                "termios_locked for (%s)\n",
1577                                idx, tty->name);
1578                         return;
1579                 }
1580         }
1581 #endif
1582
1583 #ifdef TTY_DEBUG_HANGUP
1584         printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
1585                tty_name(tty, buf), tty->count);
1586 #endif
1587
1588 #ifdef TTY_PARANOIA_CHECK
1589         if (tty->driver->other &&
1590              !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1591                 if (o_tty != tty->driver->other->ttys[idx]) {
1592                         printk(KERN_DEBUG "release_dev: other->table[%d] "
1593                                           "not o_tty for (%s)\n",
1594                                idx, tty->name);
1595                         return;
1596                 }
1597                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1598                         printk(KERN_DEBUG "release_dev: other->termios[%d] "
1599                                           "not o_termios for (%s)\n",
1600                                idx, tty->name);
1601                         return;
1602                 }
1603                 if (o_tty->termios_locked !=
1604                       tty->driver->other->termios_locked[idx]) {
1605                         printk(KERN_DEBUG "release_dev: other->termios_locked["
1606                                           "%d] not o_termios_locked for (%s)\n",
1607                                idx, tty->name);
1608                         return;
1609                 }
1610                 if (o_tty->link != tty) {
1611                         printk(KERN_DEBUG "release_dev: bad pty pointers\n");
1612                         return;
1613                 }
1614         }
1615 #endif
1616         if (tty->ops->close)
1617                 tty->ops->close(tty, filp);
1618
1619         /*
1620          * Sanity check: if tty->count is going to zero, there shouldn't be
1621          * any waiters on tty->read_wait or tty->write_wait.  We test the
1622          * wait queues and kick everyone out _before_ actually starting to
1623          * close.  This ensures that we won't block while releasing the tty
1624          * structure.
1625          *
1626          * The test for the o_tty closing is necessary, since the master and
1627          * slave sides may close in any order.  If the slave side closes out
1628          * first, its count will be one, since the master side holds an open.
1629          * Thus this test wouldn't be triggered at the time the slave closes,
1630          * so we do it now.
1631          *
1632          * Note that it's possible for the tty to be opened again while we're
1633          * flushing out waiters.  By recalculating the closing flags before
1634          * each iteration we avoid any problems.
1635          */
1636         while (1) {
1637                 /* Guard against races with tty->count changes elsewhere and
1638                    opens on /dev/tty */
1639
1640                 mutex_lock(&tty_mutex);
1641                 tty_closing = tty->count <= 1;
1642                 o_tty_closing = o_tty &&
1643                         (o_tty->count <= (pty_master ? 1 : 0));
1644                 do_sleep = 0;
1645
1646                 if (tty_closing) {
1647                         if (waitqueue_active(&tty->read_wait)) {
1648                                 wake_up(&tty->read_wait);
1649                                 do_sleep++;
1650                         }
1651                         if (waitqueue_active(&tty->write_wait)) {
1652                                 wake_up(&tty->write_wait);
1653                                 do_sleep++;
1654                         }
1655                 }
1656                 if (o_tty_closing) {
1657                         if (waitqueue_active(&o_tty->read_wait)) {
1658                                 wake_up(&o_tty->read_wait);
1659                                 do_sleep++;
1660                         }
1661                         if (waitqueue_active(&o_tty->write_wait)) {
1662                                 wake_up(&o_tty->write_wait);
1663                                 do_sleep++;
1664                         }
1665                 }
1666                 if (!do_sleep)
1667                         break;
1668
1669                 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
1670                                     "active!\n", tty_name(tty, buf));
1671                 mutex_unlock(&tty_mutex);
1672                 schedule();
1673         }
1674
1675         /*
1676          * The closing flags are now consistent with the open counts on
1677          * both sides, and we've completed the last operation that could
1678          * block, so it's safe to proceed with closing.
1679          */
1680         if (pty_master) {
1681                 if (--o_tty->count < 0) {
1682                         printk(KERN_WARNING "release_dev: bad pty slave count "
1683                                             "(%d) for %s\n",
1684                                o_tty->count, tty_name(o_tty, buf));
1685                         o_tty->count = 0;
1686                 }
1687         }
1688         if (--tty->count < 0) {
1689                 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
1690                        tty->count, tty_name(tty, buf));
1691                 tty->count = 0;
1692         }
1693
1694         /*
1695          * We've decremented tty->count, so we need to remove this file
1696          * descriptor off the tty->tty_files list; this serves two
1697          * purposes:
1698          *  - check_tty_count sees the correct number of file descriptors
1699          *    associated with this tty.
1700          *  - do_tty_hangup no longer sees this file descriptor as
1701          *    something that needs to be handled for hangups.
1702          */
1703         file_kill(filp);
1704         filp->private_data = NULL;
1705
1706         /*
1707          * Perform some housekeeping before deciding whether to return.
1708          *
1709          * Set the TTY_CLOSING flag if this was the last open.  In the
1710          * case of a pty we may have to wait around for the other side
1711          * to close, and TTY_CLOSING makes sure we can't be reopened.
1712          */
1713         if (tty_closing)
1714                 set_bit(TTY_CLOSING, &tty->flags);
1715         if (o_tty_closing)
1716                 set_bit(TTY_CLOSING, &o_tty->flags);
1717
1718         /*
1719          * If _either_ side is closing, make sure there aren't any
1720          * processes that still think tty or o_tty is their controlling
1721          * tty.
1722          */
1723         if (tty_closing || o_tty_closing) {
1724                 read_lock(&tasklist_lock);
1725                 session_clear_tty(tty->session);
1726                 if (o_tty)
1727                         session_clear_tty(o_tty->session);
1728                 read_unlock(&tasklist_lock);
1729         }
1730
1731         mutex_unlock(&tty_mutex);
1732
1733         /* check whether both sides are closing ... */
1734         if (!tty_closing || (o_tty && !o_tty_closing))
1735                 return;
1736
1737 #ifdef TTY_DEBUG_HANGUP
1738         printk(KERN_DEBUG "freeing tty structure...");
1739 #endif
1740         /*
1741          * Ask the line discipline code to release its structures
1742          */
1743         tty_ldisc_release(tty, o_tty);
1744         /*
1745          * The release_tty function takes care of the details of clearing
1746          * the slots and preserving the termios structure.
1747          */
1748         release_tty(tty, idx);
1749
1750         /* Make this pty number available for reallocation */
1751         if (devpts)
1752                 devpts_kill_index(idx);
1753 }
1754
1755 /**
1756  *      tty_open                -       open a tty device
1757  *      @inode: inode of device file
1758  *      @filp: file pointer to tty
1759  *
1760  *      tty_open and tty_release keep up the tty count that contains the
1761  *      number of opens done on a tty. We cannot use the inode-count, as
1762  *      different inodes might point to the same tty.
1763  *
1764  *      Open-counting is needed for pty masters, as well as for keeping
1765  *      track of serial lines: DTR is dropped when the last close happens.
1766  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1767  *
1768  *      The termios state of a pty is reset on first open so that
1769  *      settings don't persist across reuse.
1770  *
1771  *      Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
1772  *               tty->count should protect the rest.
1773  *               ->siglock protects ->signal/->sighand
1774  */
1775
1776 static int __tty_open(struct inode *inode, struct file *filp)
1777 {
1778         struct tty_struct *tty;
1779         int noctty, retval;
1780         struct tty_driver *driver;
1781         int index;
1782         dev_t device = inode->i_rdev;
1783         unsigned short saved_flags = filp->f_flags;
1784
1785         nonseekable_open(inode, filp);
1786
1787 retry_open:
1788         noctty = filp->f_flags & O_NOCTTY;
1789         index  = -1;
1790         retval = 0;
1791
1792         mutex_lock(&tty_mutex);
1793
1794         if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1795                 tty = get_current_tty();
1796                 if (!tty) {
1797                         mutex_unlock(&tty_mutex);
1798                         return -ENXIO;
1799                 }
1800                 driver = tty->driver;
1801                 index = tty->index;
1802                 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1803                 /* noctty = 1; */
1804                 goto got_driver;
1805         }
1806 #ifdef CONFIG_VT
1807         if (device == MKDEV(TTY_MAJOR, 0)) {
1808                 extern struct tty_driver *console_driver;
1809                 driver = console_driver;
1810                 index = fg_console;
1811                 noctty = 1;
1812                 goto got_driver;
1813         }
1814 #endif
1815         if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1816                 driver = console_device(&index);
1817                 if (driver) {
1818                         /* Don't let /dev/console block */
1819                         filp->f_flags |= O_NONBLOCK;
1820                         noctty = 1;
1821                         goto got_driver;
1822                 }
1823                 mutex_unlock(&tty_mutex);
1824                 return -ENODEV;
1825         }
1826
1827         driver = get_tty_driver(device, &index);
1828         if (!driver) {
1829                 mutex_unlock(&tty_mutex);
1830                 return -ENODEV;
1831         }
1832 got_driver:
1833         retval = init_dev(driver, index, &tty);
1834         mutex_unlock(&tty_mutex);
1835         if (retval)
1836                 return retval;
1837
1838         filp->private_data = tty;
1839         file_move(filp, &tty->tty_files);
1840         check_tty_count(tty, "tty_open");
1841         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1842             tty->driver->subtype == PTY_TYPE_MASTER)
1843                 noctty = 1;
1844 #ifdef TTY_DEBUG_HANGUP
1845         printk(KERN_DEBUG "opening %s...", tty->name);
1846 #endif
1847         if (!retval) {
1848                 if (tty->ops->open)
1849                         retval = tty->ops->open(tty, filp);
1850                 else
1851                         retval = -ENODEV;
1852         }
1853         filp->f_flags = saved_flags;
1854
1855         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1856                                                 !capable(CAP_SYS_ADMIN))
1857                 retval = -EBUSY;
1858
1859         if (retval) {
1860 #ifdef TTY_DEBUG_HANGUP
1861                 printk(KERN_DEBUG "error %d in opening %s...", retval,
1862                        tty->name);
1863 #endif
1864                 release_dev(filp);
1865                 if (retval != -ERESTARTSYS)
1866                         return retval;
1867                 if (signal_pending(current))
1868                         return retval;
1869                 schedule();
1870                 /*
1871                  * Need to reset f_op in case a hangup happened.
1872                  */
1873                 if (filp->f_op == &hung_up_tty_fops)
1874                         filp->f_op = &tty_fops;
1875                 goto retry_open;
1876         }
1877
1878         mutex_lock(&tty_mutex);
1879         spin_lock_irq(&current->sighand->siglock);
1880         if (!noctty &&
1881             current->signal->leader &&
1882             !current->signal->tty &&
1883             tty->session == NULL)
1884                 __proc_set_tty(current, tty);
1885         spin_unlock_irq(&current->sighand->siglock);
1886         mutex_unlock(&tty_mutex);
1887         return 0;
1888 }
1889
1890 /* BKL pushdown: scary code avoidance wrapper */
1891 static int tty_open(struct inode *inode, struct file *filp)
1892 {
1893         int ret;
1894
1895         lock_kernel();
1896         ret = __tty_open(inode, filp);
1897         unlock_kernel();
1898         return ret;
1899 }
1900
1901
1902
1903 #ifdef CONFIG_UNIX98_PTYS
1904 /**
1905  *      ptmx_open               -       open a unix 98 pty master
1906  *      @inode: inode of device file
1907  *      @filp: file pointer to tty
1908  *
1909  *      Allocate a unix98 pty master device from the ptmx driver.
1910  *
1911  *      Locking: tty_mutex protects theinit_dev work. tty->count should
1912  *              protect the rest.
1913  *              allocated_ptys_lock handles the list of free pty numbers
1914  */
1915
1916 static int __ptmx_open(struct inode *inode, struct file *filp)
1917 {
1918         struct tty_struct *tty;
1919         int retval;
1920         int index;
1921
1922         nonseekable_open(inode, filp);
1923
1924         /* find a device that is not in use. */
1925         index = devpts_new_index();
1926         if (index < 0)
1927                 return index;
1928
1929         mutex_lock(&tty_mutex);
1930         retval = init_dev(ptm_driver, index, &tty);
1931         mutex_unlock(&tty_mutex);
1932
1933         if (retval)
1934                 goto out;
1935
1936         set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
1937         filp->private_data = tty;
1938         file_move(filp, &tty->tty_files);
1939
1940         retval = devpts_pty_new(tty->link);
1941         if (retval)
1942                 goto out1;
1943
1944         check_tty_count(tty, "ptmx_open");
1945         retval = ptm_driver->ops->open(tty, filp);
1946         if (!retval)
1947                 return 0;
1948 out1:
1949         release_dev(filp);
1950         return retval;
1951 out:
1952         devpts_kill_index(index);
1953         return retval;
1954 }
1955
1956 static int ptmx_open(struct inode *inode, struct file *filp)
1957 {
1958         int ret;
1959
1960         lock_kernel();
1961         ret = __ptmx_open(inode, filp);
1962         unlock_kernel();
1963         return ret;
1964 }
1965 #endif
1966
1967 /**
1968  *      tty_release             -       vfs callback for close
1969  *      @inode: inode of tty
1970  *      @filp: file pointer for handle to tty
1971  *
1972  *      Called the last time each file handle is closed that references
1973  *      this tty. There may however be several such references.
1974  *
1975  *      Locking:
1976  *              Takes bkl. See release_dev
1977  */
1978
1979 static int tty_release(struct inode *inode, struct file *filp)
1980 {
1981         lock_kernel();
1982         release_dev(filp);
1983         unlock_kernel();
1984         return 0;
1985 }
1986
1987 /**
1988  *      tty_poll        -       check tty status
1989  *      @filp: file being polled
1990  *      @wait: poll wait structures to update
1991  *
1992  *      Call the line discipline polling method to obtain the poll
1993  *      status of the device.
1994  *
1995  *      Locking: locks called line discipline but ldisc poll method
1996  *      may be re-entered freely by other callers.
1997  */
1998
1999 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2000 {
2001         struct tty_struct *tty;
2002         struct tty_ldisc *ld;
2003         int ret = 0;
2004
2005         tty = (struct tty_struct *)filp->private_data;
2006         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2007                 return 0;
2008
2009         ld = tty_ldisc_ref_wait(tty);
2010         if (ld->ops->poll)
2011                 ret = (ld->ops->poll)(tty, filp, wait);
2012         tty_ldisc_deref(ld);
2013         return ret;
2014 }
2015
2016 static int tty_fasync(int fd, struct file *filp, int on)
2017 {
2018         struct tty_struct *tty;
2019         unsigned long flags;
2020         int retval = 0;
2021
2022         lock_kernel();
2023         tty = (struct tty_struct *)filp->private_data;
2024         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2025                 goto out;
2026
2027         retval = fasync_helper(fd, filp, on, &tty->fasync);
2028         if (retval <= 0)
2029                 goto out;
2030
2031         if (on) {
2032                 enum pid_type type;
2033                 struct pid *pid;
2034                 if (!waitqueue_active(&tty->read_wait))
2035                         tty->minimum_to_wake = 1;
2036                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2037                 if (tty->pgrp) {
2038                         pid = tty->pgrp;
2039                         type = PIDTYPE_PGID;
2040                 } else {
2041                         pid = task_pid(current);
2042                         type = PIDTYPE_PID;
2043                 }
2044                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2045                 retval = __f_setown(filp, pid, type, 0);
2046                 if (retval)
2047                         goto out;
2048         } else {
2049                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2050                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2051         }
2052         retval = 0;
2053 out:
2054         unlock_kernel();
2055         return retval;
2056 }
2057
2058 /**
2059  *      tiocsti                 -       fake input character
2060  *      @tty: tty to fake input into
2061  *      @p: pointer to character
2062  *
2063  *      Fake input to a tty device. Does the necessary locking and
2064  *      input management.
2065  *
2066  *      FIXME: does not honour flow control ??
2067  *
2068  *      Locking:
2069  *              Called functions take tty_ldisc_lock
2070  *              current->signal->tty check is safe without locks
2071  *
2072  *      FIXME: may race normal receive processing
2073  */
2074
2075 static int tiocsti(struct tty_struct *tty, char __user *p)
2076 {
2077         char ch, mbz = 0;
2078         struct tty_ldisc *ld;
2079
2080         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2081                 return -EPERM;
2082         if (get_user(ch, p))
2083                 return -EFAULT;
2084         ld = tty_ldisc_ref_wait(tty);
2085         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2086         tty_ldisc_deref(ld);
2087         return 0;
2088 }
2089
2090 /**
2091  *      tiocgwinsz              -       implement window query ioctl
2092  *      @tty; tty
2093  *      @arg: user buffer for result
2094  *
2095  *      Copies the kernel idea of the window size into the user buffer.
2096  *
2097  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2098  *              is consistent.
2099  */
2100
2101 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2102 {
2103         int err;
2104
2105         mutex_lock(&tty->termios_mutex);
2106         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2107         mutex_unlock(&tty->termios_mutex);
2108
2109         return err ? -EFAULT: 0;
2110 }
2111
2112 /**
2113  *      tty_do_resize           -       resize event
2114  *      @tty: tty being resized
2115  *      @real_tty: real tty (not the same as tty if using a pty/tty pair)
2116  *      @rows: rows (character)
2117  *      @cols: cols (character)
2118  *
2119  *      Update the termios variables and send the neccessary signals to
2120  *      peform a terminal resize correctly
2121  */
2122
2123 int tty_do_resize(struct tty_struct *tty, struct tty_struct *real_tty,
2124                                         struct winsize *ws)
2125 {
2126         struct pid *pgrp, *rpgrp;
2127         unsigned long flags;
2128
2129         /* For a PTY we need to lock the tty side */
2130         mutex_lock(&real_tty->termios_mutex);
2131         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2132                 goto done;
2133         /* Get the PID values and reference them so we can
2134            avoid holding the tty ctrl lock while sending signals */
2135         spin_lock_irqsave(&tty->ctrl_lock, flags);
2136         pgrp = get_pid(tty->pgrp);
2137         rpgrp = get_pid(real_tty->pgrp);
2138         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2139
2140         if (pgrp)
2141                 kill_pgrp(pgrp, SIGWINCH, 1);
2142         if (rpgrp != pgrp && rpgrp)
2143                 kill_pgrp(rpgrp, SIGWINCH, 1);
2144
2145         put_pid(pgrp);
2146         put_pid(rpgrp);
2147
2148         tty->winsize = *ws;
2149         real_tty->winsize = *ws;
2150 done:
2151         mutex_unlock(&real_tty->termios_mutex);
2152         return 0;
2153 }
2154
2155 /**
2156  *      tiocswinsz              -       implement window size set ioctl
2157  *      @tty; tty
2158  *      @arg: user buffer for result
2159  *
2160  *      Copies the user idea of the window size to the kernel. Traditionally
2161  *      this is just advisory information but for the Linux console it
2162  *      actually has driver level meaning and triggers a VC resize.
2163  *
2164  *      Locking:
2165  *              Driver dependant. The default do_resize method takes the
2166  *      tty termios mutex and ctrl_lock. The console takes its own lock
2167  *      then calls into the default method.
2168  */
2169
2170 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2171         struct winsize __user *arg)
2172 {
2173         struct winsize tmp_ws;
2174         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2175                 return -EFAULT;
2176
2177         if (tty->ops->resize)
2178                 return tty->ops->resize(tty, real_tty, &tmp_ws);
2179         else
2180                 return tty_do_resize(tty, real_tty, &tmp_ws);
2181 }
2182
2183 /**
2184  *      tioccons        -       allow admin to move logical console
2185  *      @file: the file to become console
2186  *
2187  *      Allow the adminstrator to move the redirected console device
2188  *
2189  *      Locking: uses redirect_lock to guard the redirect information
2190  */
2191
2192 static int tioccons(struct file *file)
2193 {
2194         if (!capable(CAP_SYS_ADMIN))
2195                 return -EPERM;
2196         if (file->f_op->write == redirected_tty_write) {
2197                 struct file *f;
2198                 spin_lock(&redirect_lock);
2199                 f = redirect;
2200                 redirect = NULL;
2201                 spin_unlock(&redirect_lock);
2202                 if (f)
2203                         fput(f);
2204                 return 0;
2205         }
2206         spin_lock(&redirect_lock);
2207         if (redirect) {
2208                 spin_unlock(&redirect_lock);
2209                 return -EBUSY;
2210         }
2211         get_file(file);
2212         redirect = file;
2213         spin_unlock(&redirect_lock);
2214         return 0;
2215 }
2216
2217 /**
2218  *      fionbio         -       non blocking ioctl
2219  *      @file: file to set blocking value
2220  *      @p: user parameter
2221  *
2222  *      Historical tty interfaces had a blocking control ioctl before
2223  *      the generic functionality existed. This piece of history is preserved
2224  *      in the expected tty API of posix OS's.
2225  *
2226  *      Locking: none, the open fle handle ensures it won't go away.
2227  */
2228
2229 static int fionbio(struct file *file, int __user *p)
2230 {
2231         int nonblock;
2232
2233         if (get_user(nonblock, p))
2234                 return -EFAULT;
2235
2236         /* file->f_flags is still BKL protected in the fs layer - vomit */
2237         lock_kernel();
2238         if (nonblock)
2239                 file->f_flags |= O_NONBLOCK;
2240         else
2241                 file->f_flags &= ~O_NONBLOCK;
2242         unlock_kernel();
2243         return 0;
2244 }
2245
2246 /**
2247  *      tiocsctty       -       set controlling tty
2248  *      @tty: tty structure
2249  *      @arg: user argument
2250  *
2251  *      This ioctl is used to manage job control. It permits a session
2252  *      leader to set this tty as the controlling tty for the session.
2253  *
2254  *      Locking:
2255  *              Takes tty_mutex() to protect tty instance
2256  *              Takes tasklist_lock internally to walk sessions
2257  *              Takes ->siglock() when updating signal->tty
2258  */
2259
2260 static int tiocsctty(struct tty_struct *tty, int arg)
2261 {
2262         int ret = 0;
2263         if (current->signal->leader && (task_session(current) == tty->session))
2264                 return ret;
2265
2266         mutex_lock(&tty_mutex);
2267         /*
2268          * The process must be a session leader and
2269          * not have a controlling tty already.
2270          */
2271         if (!current->signal->leader || current->signal->tty) {
2272                 ret = -EPERM;
2273                 goto unlock;
2274         }
2275
2276         if (tty->session) {
2277                 /*
2278                  * This tty is already the controlling
2279                  * tty for another session group!
2280                  */
2281                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2282                         /*
2283                          * Steal it away
2284                          */
2285                         read_lock(&tasklist_lock);
2286                         session_clear_tty(tty->session);
2287                         read_unlock(&tasklist_lock);
2288                 } else {
2289                         ret = -EPERM;
2290                         goto unlock;
2291                 }
2292         }
2293         proc_set_tty(current, tty);
2294 unlock:
2295         mutex_unlock(&tty_mutex);
2296         return ret;
2297 }
2298
2299 /**
2300  *      tty_get_pgrp    -       return a ref counted pgrp pid
2301  *      @tty: tty to read
2302  *
2303  *      Returns a refcounted instance of the pid struct for the process
2304  *      group controlling the tty.
2305  */
2306
2307 struct pid *tty_get_pgrp(struct tty_struct *tty)
2308 {
2309         unsigned long flags;
2310         struct pid *pgrp;
2311
2312         spin_lock_irqsave(&tty->ctrl_lock, flags);
2313         pgrp = get_pid(tty->pgrp);
2314         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2315
2316         return pgrp;
2317 }
2318 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2319
2320 /**
2321  *      tiocgpgrp               -       get process group
2322  *      @tty: tty passed by user
2323  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2324  *      @p: returned pid
2325  *
2326  *      Obtain the process group of the tty. If there is no process group
2327  *      return an error.
2328  *
2329  *      Locking: none. Reference to current->signal->tty is safe.
2330  */
2331
2332 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2333 {
2334         struct pid *pid;
2335         int ret;
2336         /*
2337          * (tty == real_tty) is a cheap way of
2338          * testing if the tty is NOT a master pty.
2339          */
2340         if (tty == real_tty && current->signal->tty != real_tty)
2341                 return -ENOTTY;
2342         pid = tty_get_pgrp(real_tty);
2343         ret =  put_user(pid_vnr(pid), p);
2344         put_pid(pid);
2345         return ret;
2346 }
2347
2348 /**
2349  *      tiocspgrp               -       attempt to set process group
2350  *      @tty: tty passed by user
2351  *      @real_tty: tty side device matching tty passed by user
2352  *      @p: pid pointer
2353  *
2354  *      Set the process group of the tty to the session passed. Only
2355  *      permitted where the tty session is our session.
2356  *
2357  *      Locking: RCU, ctrl lock
2358  */
2359
2360 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2361 {
2362         struct pid *pgrp;
2363         pid_t pgrp_nr;
2364         int retval = tty_check_change(real_tty);
2365         unsigned long flags;
2366
2367         if (retval == -EIO)
2368                 return -ENOTTY;
2369         if (retval)
2370                 return retval;
2371         if (!current->signal->tty ||
2372             (current->signal->tty != real_tty) ||
2373             (real_tty->session != task_session(current)))
2374                 return -ENOTTY;
2375         if (get_user(pgrp_nr, p))
2376                 return -EFAULT;
2377         if (pgrp_nr < 0)
2378                 return -EINVAL;
2379         rcu_read_lock();
2380         pgrp = find_vpid(pgrp_nr);
2381         retval = -ESRCH;
2382         if (!pgrp)
2383                 goto out_unlock;
2384         retval = -EPERM;
2385         if (session_of_pgrp(pgrp) != task_session(current))
2386                 goto out_unlock;
2387         retval = 0;
2388         spin_lock_irqsave(&tty->ctrl_lock, flags);
2389         put_pid(real_tty->pgrp);
2390         real_tty->pgrp = get_pid(pgrp);
2391         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2392 out_unlock:
2393         rcu_read_unlock();
2394         return retval;
2395 }
2396
2397 /**
2398  *      tiocgsid                -       get session id
2399  *      @tty: tty passed by user
2400  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2401  *      @p: pointer to returned session id
2402  *
2403  *      Obtain the session id of the tty. If there is no session
2404  *      return an error.
2405  *
2406  *      Locking: none. Reference to current->signal->tty is safe.
2407  */
2408
2409 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2410 {
2411         /*
2412          * (tty == real_tty) is a cheap way of
2413          * testing if the tty is NOT a master pty.
2414         */
2415         if (tty == real_tty && current->signal->tty != real_tty)
2416                 return -ENOTTY;
2417         if (!real_tty->session)
2418                 return -ENOTTY;
2419         return put_user(pid_vnr(real_tty->session), p);
2420 }
2421
2422 /**
2423  *      tiocsetd        -       set line discipline
2424  *      @tty: tty device
2425  *      @p: pointer to user data
2426  *
2427  *      Set the line discipline according to user request.
2428  *
2429  *      Locking: see tty_set_ldisc, this function is just a helper
2430  */
2431
2432 static int tiocsetd(struct tty_struct *tty, int __user *p)
2433 {
2434         int ldisc;
2435         int ret;
2436
2437         if (get_user(ldisc, p))
2438                 return -EFAULT;
2439
2440         lock_kernel();
2441         ret = tty_set_ldisc(tty, ldisc);
2442         unlock_kernel();
2443
2444         return ret;
2445 }
2446
2447 /**
2448  *      send_break      -       performed time break
2449  *      @tty: device to break on
2450  *      @duration: timeout in mS
2451  *
2452  *      Perform a timed break on hardware that lacks its own driver level
2453  *      timed break functionality.
2454  *
2455  *      Locking:
2456  *              atomic_write_lock serializes
2457  *
2458  */
2459
2460 static int send_break(struct tty_struct *tty, unsigned int duration)
2461 {
2462         int retval;
2463
2464         if (tty->ops->break_ctl == NULL)
2465                 return 0;
2466
2467         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2468                 retval = tty->ops->break_ctl(tty, duration);
2469         else {
2470                 /* Do the work ourselves */
2471                 if (tty_write_lock(tty, 0) < 0)
2472                         return -EINTR;
2473                 retval = tty->ops->break_ctl(tty, -1);
2474                 if (retval)
2475                         goto out;
2476                 if (!signal_pending(current))
2477                         msleep_interruptible(duration);
2478                 retval = tty->ops->break_ctl(tty, 0);
2479 out:
2480                 tty_write_unlock(tty);
2481                 if (signal_pending(current))
2482                         retval = -EINTR;
2483         }
2484         return retval;
2485 }
2486
2487 /**
2488  *      tty_tiocmget            -       get modem status
2489  *      @tty: tty device
2490  *      @file: user file pointer
2491  *      @p: pointer to result
2492  *
2493  *      Obtain the modem status bits from the tty driver if the feature
2494  *      is supported. Return -EINVAL if it is not available.
2495  *
2496  *      Locking: none (up to the driver)
2497  */
2498
2499 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2500 {
2501         int retval = -EINVAL;
2502
2503         if (tty->ops->tiocmget) {
2504                 retval = tty->ops->tiocmget(tty, file);
2505
2506                 if (retval >= 0)
2507                         retval = put_user(retval, p);
2508         }
2509         return retval;
2510 }
2511
2512 /**
2513  *      tty_tiocmset            -       set modem status
2514  *      @tty: tty device
2515  *      @file: user file pointer
2516  *      @cmd: command - clear bits, set bits or set all
2517  *      @p: pointer to desired bits
2518  *
2519  *      Set the modem status bits from the tty driver if the feature
2520  *      is supported. Return -EINVAL if it is not available.
2521  *
2522  *      Locking: none (up to the driver)
2523  */
2524
2525 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2526              unsigned __user *p)
2527 {
2528         int retval;
2529         unsigned int set, clear, val;
2530
2531         if (tty->ops->tiocmset == NULL)
2532                 return -EINVAL;
2533
2534         retval = get_user(val, p);
2535         if (retval)
2536                 return retval;
2537         set = clear = 0;
2538         switch (cmd) {
2539         case TIOCMBIS:
2540                 set = val;
2541                 break;
2542         case TIOCMBIC:
2543                 clear = val;
2544                 break;
2545         case TIOCMSET:
2546                 set = val;
2547                 clear = ~val;
2548                 break;
2549         }
2550         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2551         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2552         return tty->ops->tiocmset(tty, file, set, clear);
2553 }
2554
2555 /*
2556  * Split this up, as gcc can choke on it otherwise..
2557  */
2558 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2559 {
2560         struct tty_struct *tty, *real_tty;
2561         void __user *p = (void __user *)arg;
2562         int retval;
2563         struct tty_ldisc *ld;
2564         struct inode *inode = file->f_dentry->d_inode;
2565
2566         tty = (struct tty_struct *)file->private_data;
2567         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2568                 return -EINVAL;
2569
2570         real_tty = tty;
2571         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2572             tty->driver->subtype == PTY_TYPE_MASTER)
2573                 real_tty = tty->link;
2574
2575
2576         /*
2577          * Factor out some common prep work
2578          */
2579         switch (cmd) {
2580         case TIOCSETD:
2581         case TIOCSBRK:
2582         case TIOCCBRK:
2583         case TCSBRK:
2584         case TCSBRKP:
2585                 retval = tty_check_change(tty);
2586                 if (retval)
2587                         return retval;
2588                 if (cmd != TIOCCBRK) {
2589                         tty_wait_until_sent(tty, 0);
2590                         if (signal_pending(current))
2591                                 return -EINTR;
2592                 }
2593                 break;
2594         }
2595
2596         /*
2597          *      Now do the stuff.
2598          */
2599         switch (cmd) {
2600         case TIOCSTI:
2601                 return tiocsti(tty, p);
2602         case TIOCGWINSZ:
2603                 return tiocgwinsz(tty, p);
2604         case TIOCSWINSZ:
2605                 return tiocswinsz(tty, real_tty, p);
2606         case TIOCCONS:
2607                 return real_tty != tty ? -EINVAL : tioccons(file);
2608         case FIONBIO:
2609                 return fionbio(file, p);
2610         case TIOCEXCL:
2611                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2612                 return 0;
2613         case TIOCNXCL:
2614                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2615                 return 0;
2616         case TIOCNOTTY:
2617                 if (current->signal->tty != tty)
2618                         return -ENOTTY;
2619                 no_tty();
2620                 return 0;
2621         case TIOCSCTTY:
2622                 return tiocsctty(tty, arg);
2623         case TIOCGPGRP:
2624                 return tiocgpgrp(tty, real_tty, p);
2625         case TIOCSPGRP:
2626                 return tiocspgrp(tty, real_tty, p);
2627         case TIOCGSID:
2628                 return tiocgsid(tty, real_tty, p);
2629         case TIOCGETD:
2630                 return put_user(tty->ldisc.ops->num, (int __user *)p);
2631         case TIOCSETD:
2632                 return tiocsetd(tty, p);
2633         /*
2634          * Break handling
2635          */
2636         case TIOCSBRK:  /* Turn break on, unconditionally */
2637                 if (tty->ops->break_ctl)
2638                         return tty->ops->break_ctl(tty, -1);
2639                 return 0;
2640         case TIOCCBRK:  /* Turn break off, unconditionally */
2641                 if (tty->ops->break_ctl)
2642                         return tty->ops->break_ctl(tty, 0);
2643                 return 0;
2644         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2645                 /* non-zero arg means wait for all output data
2646                  * to be sent (performed above) but don't send break.
2647                  * This is used by the tcdrain() termios function.
2648                  */
2649                 if (!arg)
2650                         return send_break(tty, 250);
2651                 return 0;
2652         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2653                 return send_break(tty, arg ? arg*100 : 250);
2654
2655         case TIOCMGET:
2656                 return tty_tiocmget(tty, file, p);
2657         case TIOCMSET:
2658         case TIOCMBIC:
2659         case TIOCMBIS:
2660                 return tty_tiocmset(tty, file, cmd, p);
2661         case TCFLSH:
2662                 switch (arg) {
2663                 case TCIFLUSH:
2664                 case TCIOFLUSH:
2665                 /* flush tty buffer and allow ldisc to process ioctl */
2666                         tty_buffer_flush(tty);
2667                         break;
2668                 }
2669                 break;
2670         }
2671         if (tty->ops->ioctl) {
2672                 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2673                 if (retval != -ENOIOCTLCMD)
2674                         return retval;
2675         }
2676         ld = tty_ldisc_ref_wait(tty);
2677         retval = -EINVAL;
2678         if (ld->ops->ioctl) {
2679                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2680                 if (retval == -ENOIOCTLCMD)
2681                         retval = -EINVAL;
2682         }
2683         tty_ldisc_deref(ld);
2684         return retval;
2685 }
2686
2687 #ifdef CONFIG_COMPAT
2688 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2689                                 unsigned long arg)
2690 {
2691         struct inode *inode = file->f_dentry->d_inode;
2692         struct tty_struct *tty = file->private_data;
2693         struct tty_ldisc *ld;
2694         int retval = -ENOIOCTLCMD;
2695
2696         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2697                 return -EINVAL;
2698
2699         if (tty->ops->compat_ioctl) {
2700                 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2701                 if (retval != -ENOIOCTLCMD)
2702                         return retval;
2703         }
2704
2705         ld = tty_ldisc_ref_wait(tty);
2706         if (ld->ops->compat_ioctl)
2707                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2708         tty_ldisc_deref(ld);
2709
2710         return retval;
2711 }
2712 #endif
2713
2714 /*
2715  * This implements the "Secure Attention Key" ---  the idea is to
2716  * prevent trojan horses by killing all processes associated with this
2717  * tty when the user hits the "Secure Attention Key".  Required for
2718  * super-paranoid applications --- see the Orange Book for more details.
2719  *
2720  * This code could be nicer; ideally it should send a HUP, wait a few
2721  * seconds, then send a INT, and then a KILL signal.  But you then
2722  * have to coordinate with the init process, since all processes associated
2723  * with the current tty must be dead before the new getty is allowed
2724  * to spawn.
2725  *
2726  * Now, if it would be correct ;-/ The current code has a nasty hole -
2727  * it doesn't catch files in flight. We may send the descriptor to ourselves
2728  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2729  *
2730  * Nasty bug: do_SAK is being called in interrupt context.  This can
2731  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2732  */
2733 void __do_SAK(struct tty_struct *tty)
2734 {
2735 #ifdef TTY_SOFT_SAK
2736         tty_hangup(tty);
2737 #else
2738         struct task_struct *g, *p;
2739         struct pid *session;
2740         int             i;
2741         struct file     *filp;
2742         struct fdtable *fdt;
2743
2744         if (!tty)
2745                 return;
2746         session = tty->session;
2747
2748         tty_ldisc_flush(tty);
2749
2750         tty_driver_flush_buffer(tty);
2751
2752         read_lock(&tasklist_lock);
2753         /* Kill the entire session */
2754         do_each_pid_task(session, PIDTYPE_SID, p) {
2755                 printk(KERN_NOTICE "SAK: killed process %d"
2756                         " (%s): task_session_nr(p)==tty->session\n",
2757                         task_pid_nr(p), p->comm);
2758                 send_sig(SIGKILL, p, 1);
2759         } while_each_pid_task(session, PIDTYPE_SID, p);
2760         /* Now kill any processes that happen to have the
2761          * tty open.
2762          */
2763         do_each_thread(g, p) {
2764                 if (p->signal->tty == tty) {
2765                         printk(KERN_NOTICE "SAK: killed process %d"
2766                             " (%s): task_session_nr(p)==tty->session\n",
2767                             task_pid_nr(p), p->comm);
2768                         send_sig(SIGKILL, p, 1);
2769                         continue;
2770                 }
2771                 task_lock(p);
2772                 if (p->files) {
2773                         /*
2774                          * We don't take a ref to the file, so we must
2775                          * hold ->file_lock instead.
2776                          */
2777                         spin_lock(&p->files->file_lock);
2778                         fdt = files_fdtable(p->files);
2779                         for (i = 0; i < fdt->max_fds; i++) {
2780                                 filp = fcheck_files(p->files, i);
2781                                 if (!filp)
2782                                         continue;
2783                                 if (filp->f_op->read == tty_read &&
2784                                     filp->private_data == tty) {
2785                                         printk(KERN_NOTICE "SAK: killed process %d"
2786                                             " (%s): fd#%d opened to the tty\n",
2787                                             task_pid_nr(p), p->comm, i);
2788                                         force_sig(SIGKILL, p);
2789                                         break;
2790                                 }
2791                         }
2792                         spin_unlock(&p->files->file_lock);
2793                 }
2794                 task_unlock(p);
2795         } while_each_thread(g, p);
2796         read_unlock(&tasklist_lock);
2797 #endif
2798 }
2799
2800 static void do_SAK_work(struct work_struct *work)
2801 {
2802         struct tty_struct *tty =
2803                 container_of(work, struct tty_struct, SAK_work);
2804         __do_SAK(tty);
2805 }
2806
2807 /*
2808  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2809  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2810  * the values which we write to it will be identical to the values which it
2811  * already has. --akpm
2812  */
2813 void do_SAK(struct tty_struct *tty)
2814 {
2815         if (!tty)
2816                 return;
2817         schedule_work(&tty->SAK_work);
2818 }
2819
2820 EXPORT_SYMBOL(do_SAK);
2821
2822 /**
2823  *      initialize_tty_struct
2824  *      @tty: tty to initialize
2825  *
2826  *      This subroutine initializes a tty structure that has been newly
2827  *      allocated.
2828  *
2829  *      Locking: none - tty in question must not be exposed at this point
2830  */
2831
2832 static void initialize_tty_struct(struct tty_struct *tty)
2833 {
2834         memset(tty, 0, sizeof(struct tty_struct));
2835         kref_init(&tty->kref);
2836         tty->magic = TTY_MAGIC;
2837         tty_ldisc_init(tty);
2838         tty->session = NULL;
2839         tty->pgrp = NULL;
2840         tty->overrun_time = jiffies;
2841         tty->buf.head = tty->buf.tail = NULL;
2842         tty_buffer_init(tty);
2843         mutex_init(&tty->termios_mutex);
2844         init_waitqueue_head(&tty->write_wait);
2845         init_waitqueue_head(&tty->read_wait);
2846         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2847         mutex_init(&tty->atomic_read_lock);
2848         mutex_init(&tty->atomic_write_lock);
2849         spin_lock_init(&tty->read_lock);
2850         spin_lock_init(&tty->ctrl_lock);
2851         INIT_LIST_HEAD(&tty->tty_files);
2852         INIT_WORK(&tty->SAK_work, do_SAK_work);
2853 }
2854
2855 /**
2856  *      tty_put_char    -       write one character to a tty
2857  *      @tty: tty
2858  *      @ch: character
2859  *
2860  *      Write one byte to the tty using the provided put_char method
2861  *      if present. Returns the number of characters successfully output.
2862  *
2863  *      Note: the specific put_char operation in the driver layer may go
2864  *      away soon. Don't call it directly, use this method
2865  */
2866
2867 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2868 {
2869         if (tty->ops->put_char)
2870                 return tty->ops->put_char(tty, ch);
2871         return tty->ops->write(tty, &ch, 1);
2872 }
2873
2874 EXPORT_SYMBOL_GPL(tty_put_char);
2875
2876 static struct class *tty_class;
2877
2878 /**
2879  *      tty_register_device - register a tty device
2880  *      @driver: the tty driver that describes the tty device
2881  *      @index: the index in the tty driver for this tty device
2882  *      @device: a struct device that is associated with this tty device.
2883  *              This field is optional, if there is no known struct device
2884  *              for this tty device it can be set to NULL safely.
2885  *
2886  *      Returns a pointer to the struct device for this tty device
2887  *      (or ERR_PTR(-EFOO) on error).
2888  *
2889  *      This call is required to be made to register an individual tty device
2890  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2891  *      that bit is not set, this function should not be called by a tty
2892  *      driver.
2893  *
2894  *      Locking: ??
2895  */
2896
2897 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2898                                    struct device *device)
2899 {
2900         char name[64];
2901         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2902
2903         if (index >= driver->num) {
2904                 printk(KERN_ERR "Attempt to register invalid tty line number "
2905                        " (%d).\n", index);
2906                 return ERR_PTR(-EINVAL);
2907         }
2908
2909         if (driver->type == TTY_DRIVER_TYPE_PTY)
2910                 pty_line_name(driver, index, name);
2911         else
2912                 tty_line_name(driver, index, name);
2913
2914         return device_create_drvdata(tty_class, device, dev, NULL, name);
2915 }
2916
2917 /**
2918  *      tty_unregister_device - unregister a tty device
2919  *      @driver: the tty driver that describes the tty device
2920  *      @index: the index in the tty driver for this tty device
2921  *
2922  *      If a tty device is registered with a call to tty_register_device() then
2923  *      this function must be called when the tty device is gone.
2924  *
2925  *      Locking: ??
2926  */
2927
2928 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2929 {
2930         device_destroy(tty_class,
2931                 MKDEV(driver->major, driver->minor_start) + index);
2932 }
2933
2934 EXPORT_SYMBOL(tty_register_device);
2935 EXPORT_SYMBOL(tty_unregister_device);
2936
2937 struct tty_driver *alloc_tty_driver(int lines)
2938 {
2939         struct tty_driver *driver;
2940
2941         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2942         if (driver) {
2943                 driver->magic = TTY_DRIVER_MAGIC;
2944                 driver->num = lines;
2945                 /* later we'll move allocation of tables here */
2946         }
2947         return driver;
2948 }
2949
2950 void put_tty_driver(struct tty_driver *driver)
2951 {
2952         kfree(driver);
2953 }
2954
2955 void tty_set_operations(struct tty_driver *driver,
2956                         const struct tty_operations *op)
2957 {
2958         driver->ops = op;
2959 };
2960
2961 EXPORT_SYMBOL(alloc_tty_driver);
2962 EXPORT_SYMBOL(put_tty_driver);
2963 EXPORT_SYMBOL(tty_set_operations);
2964
2965 /*
2966  * Called by a tty driver to register itself.
2967  */
2968 int tty_register_driver(struct tty_driver *driver)
2969 {
2970         int error;
2971         int i;
2972         dev_t dev;
2973         void **p = NULL;
2974
2975         if (driver->flags & TTY_DRIVER_INSTALLED)
2976                 return 0;
2977
2978         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2979                 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
2980                 if (!p)
2981                         return -ENOMEM;
2982         }
2983
2984         if (!driver->major) {
2985                 error = alloc_chrdev_region(&dev, driver->minor_start,
2986                                                 driver->num, driver->name);
2987                 if (!error) {
2988                         driver->major = MAJOR(dev);
2989                         driver->minor_start = MINOR(dev);
2990                 }
2991         } else {
2992                 dev = MKDEV(driver->major, driver->minor_start);
2993                 error = register_chrdev_region(dev, driver->num, driver->name);
2994         }
2995         if (error < 0) {
2996                 kfree(p);
2997                 return error;
2998         }
2999
3000         if (p) {
3001                 driver->ttys = (struct tty_struct **)p;
3002                 driver->termios = (struct ktermios **)(p + driver->num);
3003                 driver->termios_locked = (struct ktermios **)
3004                                                         (p + driver->num * 2);
3005         } else {
3006                 driver->ttys = NULL;
3007                 driver->termios = NULL;
3008                 driver->termios_locked = NULL;
3009         }
3010
3011         cdev_init(&driver->cdev, &tty_fops);
3012         driver->cdev.owner = driver->owner;
3013         error = cdev_add(&driver->cdev, dev, driver->num);
3014         if (error) {
3015                 unregister_chrdev_region(dev, driver->num);
3016                 driver->ttys = NULL;
3017                 driver->termios = driver->termios_locked = NULL;
3018                 kfree(p);
3019                 return error;
3020         }
3021
3022         mutex_lock(&tty_mutex);
3023         list_add(&driver->tty_drivers, &tty_drivers);
3024         mutex_unlock(&tty_mutex);
3025
3026         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3027                 for (i = 0; i < driver->num; i++)
3028                     tty_register_device(driver, i, NULL);
3029         }
3030         proc_tty_register_driver(driver);
3031         return 0;
3032 }
3033
3034 EXPORT_SYMBOL(tty_register_driver);
3035
3036 /*
3037  * Called by a tty driver to unregister itself.
3038  */
3039 int tty_unregister_driver(struct tty_driver *driver)
3040 {
3041         int i;
3042         struct ktermios *tp;
3043         void *p;
3044
3045         if (driver->refcount)
3046                 return -EBUSY;
3047
3048         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3049                                 driver->num);
3050         mutex_lock(&tty_mutex);
3051         list_del(&driver->tty_drivers);
3052         mutex_unlock(&tty_mutex);
3053
3054         /*
3055          * Free the termios and termios_locked structures because
3056          * we don't want to get memory leaks when modular tty
3057          * drivers are removed from the kernel.
3058          */
3059         for (i = 0; i < driver->num; i++) {
3060                 tp = driver->termios[i];
3061                 if (tp) {
3062                         driver->termios[i] = NULL;
3063                         kfree(tp);
3064                 }
3065                 tp = driver->termios_locked[i];
3066                 if (tp) {
3067                         driver->termios_locked[i] = NULL;
3068                         kfree(tp);
3069                 }
3070                 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3071                         tty_unregister_device(driver, i);
3072         }
3073         p = driver->ttys;
3074         proc_tty_unregister_driver(driver);
3075         driver->ttys = NULL;
3076         driver->termios = driver->termios_locked = NULL;
3077         kfree(p);
3078         cdev_del(&driver->cdev);
3079         return 0;
3080 }
3081 EXPORT_SYMBOL(tty_unregister_driver);
3082
3083 dev_t tty_devnum(struct tty_struct *tty)
3084 {
3085         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3086 }
3087 EXPORT_SYMBOL(tty_devnum);
3088
3089 void proc_clear_tty(struct task_struct *p)
3090 {
3091         struct tty_struct *tty;
3092         spin_lock_irq(&p->sighand->siglock);
3093         tty = p->signal->tty;
3094         p->signal->tty = NULL;
3095         spin_unlock_irq(&p->sighand->siglock);
3096         tty_kref_put(tty);
3097 }
3098
3099 /* Called under the sighand lock */
3100
3101 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3102 {
3103         if (tty) {
3104                 unsigned long flags;
3105                 /* We should not have a session or pgrp to put here but.... */
3106                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3107                 put_pid(tty->session);
3108                 put_pid(tty->pgrp);
3109                 tty->pgrp = get_pid(task_pgrp(tsk));
3110                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3111                 tty->session = get_pid(task_session(tsk));
3112                 if (tsk->signal->tty) {
3113                         printk(KERN_DEBUG "tty not NULL!!\n");
3114                         tty_kref_put(tsk->signal->tty);
3115                 }
3116         }
3117         put_pid(tsk->signal->tty_old_pgrp);
3118         tsk->signal->tty = tty_kref_get(tty);
3119         tsk->signal->tty_old_pgrp = NULL;
3120 }
3121
3122 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3123 {
3124         spin_lock_irq(&tsk->sighand->siglock);
3125         __proc_set_tty(tsk, tty);
3126         spin_unlock_irq(&tsk->sighand->siglock);
3127 }
3128
3129 struct tty_struct *get_current_tty(void)
3130 {
3131         struct tty_struct *tty;
3132         WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
3133         tty = current->signal->tty;
3134         /*
3135          * session->tty can be changed/cleared from under us, make sure we
3136          * issue the load. The obtained pointer, when not NULL, is valid as
3137          * long as we hold tty_mutex.
3138          */
3139         barrier();
3140         return tty;
3141 }
3142 EXPORT_SYMBOL_GPL(get_current_tty);
3143
3144 /*
3145  * Initialize the console device. This is called *early*, so
3146  * we can't necessarily depend on lots of kernel help here.
3147  * Just do some early initializations, and do the complex setup
3148  * later.
3149  */
3150 void __init console_init(void)
3151 {
3152         initcall_t *call;
3153
3154         /* Setup the default TTY line discipline. */
3155         tty_ldisc_begin();
3156
3157         /*
3158          * set up the console device so that later boot sequences can
3159          * inform about problems etc..
3160          */
3161         call = __con_initcall_start;
3162         while (call < __con_initcall_end) {
3163                 (*call)();
3164                 call++;
3165         }
3166 }
3167
3168 static int __init tty_class_init(void)
3169 {
3170         tty_class = class_create(THIS_MODULE, "tty");
3171         if (IS_ERR(tty_class))
3172                 return PTR_ERR(tty_class);
3173         return 0;
3174 }
3175
3176 postcore_initcall(tty_class_init);
3177
3178 /* 3/2004 jmc: why do these devices exist? */
3179
3180 static struct cdev tty_cdev, console_cdev;
3181 #ifdef CONFIG_UNIX98_PTYS
3182 static struct cdev ptmx_cdev;
3183 #endif
3184 #ifdef CONFIG_VT
3185 static struct cdev vc0_cdev;
3186 #endif
3187
3188 /*
3189  * Ok, now we can initialize the rest of the tty devices and can count
3190  * on memory allocations, interrupts etc..
3191  */
3192 static int __init tty_init(void)
3193 {
3194         cdev_init(&tty_cdev, &tty_fops);
3195         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3196             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3197                 panic("Couldn't register /dev/tty driver\n");
3198         device_create_drvdata(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3199                               "tty");
3200
3201         cdev_init(&console_cdev, &console_fops);
3202         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3203             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3204                 panic("Couldn't register /dev/console driver\n");
3205         device_create_drvdata(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3206                               "console");
3207
3208 #ifdef CONFIG_UNIX98_PTYS
3209         cdev_init(&ptmx_cdev, &ptmx_fops);
3210         if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
3211             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
3212                 panic("Couldn't register /dev/ptmx driver\n");
3213         device_create_drvdata(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), NULL, "ptmx");
3214 #endif
3215
3216 #ifdef CONFIG_VT
3217         cdev_init(&vc0_cdev, &console_fops);
3218         if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
3219             register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
3220                 panic("Couldn't register /dev/tty0 driver\n");
3221         device_create_drvdata(tty_class, NULL, MKDEV(TTY_MAJOR, 0), NULL, "tty0");
3222
3223         vty_init();
3224 #endif
3225         return 0;
3226 }
3227 module_init(tty_init);