]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/char/tty_io.c
pty: If the administrator creates a device for a ptmx slave we should not error
[linux-2.6-omap-h63xx.git] / drivers / char / tty_io.c
1 /*
2  *  linux/drivers/char/tty_io.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9  * or rs-channels. It also implements echoing, cooked mode etc.
10  *
11  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12  *
13  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14  * tty_struct and tty_queue structures.  Previously there was an array
15  * of 256 tty_struct's which was statically allocated, and the
16  * tty_queue structures were allocated at boot time.  Both are now
17  * dynamically allocated only when the tty is open.
18  *
19  * Also restructured routines so that there is more of a separation
20  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21  * the low-level tty routines (serial.c, pty.c, console.c).  This
22  * makes for cleaner and more compact code.  -TYT, 9/17/92
23  *
24  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25  * which can be dynamically activated and de-activated by the line
26  * discipline handling modules (like SLIP).
27  *
28  * NOTE: pay no attention to the line discipline code (yet); its
29  * interface is still subject to change in this version...
30  * -- TYT, 1/31/92
31  *
32  * Added functionality to the OPOST tty handling.  No delays, but all
33  * other bits should be there.
34  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35  *
36  * Rewrote canonical mode and added more termios flags.
37  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38  *
39  * Reorganized FASYNC support so mouse code can share it.
40  *      -- ctm@ardi.com, 9Sep95
41  *
42  * New TIOCLINUX variants added.
43  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
44  *
45  * Restrict vt switching via ioctl()
46  *      -- grif@cs.ucr.edu, 5-Dec-95
47  *
48  * Move console and virtual terminal code to more appropriate files,
49  * implement CONFIG_VT and generalize console device interface.
50  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51  *
52  * Rewrote init_dev and release_dev to eliminate races.
53  *      -- Bill Hawes <whawes@star.net>, June 97
54  *
55  * Added devfs support.
56  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57  *
58  * Added support for a Unix98-style ptmx device.
59  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60  *
61  * Reduced memory usage for older ARM systems
62  *      -- Russell King <rmk@arm.linux.org.uk>
63  *
64  * Move do_SAK() into process context.  Less stack use in devfs functions.
65  * alloc_tty_struct() always uses kmalloc()
66  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67  */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114
115 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
116         .c_iflag = ICRNL | IXON,
117         .c_oflag = OPOST | ONLCR,
118         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120                    ECHOCTL | ECHOKE | IEXTEN,
121         .c_cc = INIT_C_CC,
122         .c_ispeed = 38400,
123         .c_ospeed = 38400
124 };
125
126 EXPORT_SYMBOL(tty_std_termios);
127
128 /* This list gets poked at by procfs and various bits of boot up code. This
129    could do with some rationalisation such as pulling the tty proc function
130    into this file */
131
132 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
133
134 /* Mutex to protect creating and releasing a tty. This is shared with
135    vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138
139 #ifdef CONFIG_UNIX98_PTYS
140 extern struct tty_driver *ptm_driver;   /* Unix98 pty masters; for /dev/ptmx */
141 static int ptmx_open(struct inode *, struct file *);
142 #endif
143
144 static void initialize_tty_struct(struct tty_struct *tty);
145
146 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
147 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
148 ssize_t redirected_tty_write(struct file *, const char __user *,
149                                                         size_t, loff_t *);
150 static unsigned int tty_poll(struct file *, poll_table *);
151 static int tty_open(struct inode *, struct file *);
152 static int tty_release(struct inode *, struct file *);
153 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
154 #ifdef CONFIG_COMPAT
155 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
156                                 unsigned long arg);
157 #else
158 #define tty_compat_ioctl NULL
159 #endif
160 static int tty_fasync(int fd, struct file *filp, int on);
161 static void release_tty(struct tty_struct *tty, int idx);
162 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
163 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
164
165 /**
166  *      alloc_tty_struct        -       allocate a tty object
167  *
168  *      Return a new empty tty structure. The data fields have not
169  *      been initialized in any way but has been zeroed
170  *
171  *      Locking: none
172  */
173
174 static struct tty_struct *alloc_tty_struct(void)
175 {
176         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
177 }
178
179 /**
180  *      free_tty_struct         -       free a disused tty
181  *      @tty: tty struct to free
182  *
183  *      Free the write buffers, tty queue and tty memory itself.
184  *
185  *      Locking: none. Must be called after tty is definitely unused
186  */
187
188 static inline void free_tty_struct(struct tty_struct *tty)
189 {
190         kfree(tty->write_buf);
191         tty_buffer_free_all(tty);
192         kfree(tty);
193 }
194
195 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
196
197 /**
198  *      tty_name        -       return tty naming
199  *      @tty: tty structure
200  *      @buf: buffer for output
201  *
202  *      Convert a tty structure into a name. The name reflects the kernel
203  *      naming policy and if udev is in use may not reflect user space
204  *
205  *      Locking: none
206  */
207
208 char *tty_name(struct tty_struct *tty, char *buf)
209 {
210         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
211                 strcpy(buf, "NULL tty");
212         else
213                 strcpy(buf, tty->name);
214         return buf;
215 }
216
217 EXPORT_SYMBOL(tty_name);
218
219 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
220                               const char *routine)
221 {
222 #ifdef TTY_PARANOIA_CHECK
223         if (!tty) {
224                 printk(KERN_WARNING
225                         "null TTY for (%d:%d) in %s\n",
226                         imajor(inode), iminor(inode), routine);
227                 return 1;
228         }
229         if (tty->magic != TTY_MAGIC) {
230                 printk(KERN_WARNING
231                         "bad magic number for tty struct (%d:%d) in %s\n",
232                         imajor(inode), iminor(inode), routine);
233                 return 1;
234         }
235 #endif
236         return 0;
237 }
238
239 static int check_tty_count(struct tty_struct *tty, const char *routine)
240 {
241 #ifdef CHECK_TTY_COUNT
242         struct list_head *p;
243         int count = 0;
244
245         file_list_lock();
246         list_for_each(p, &tty->tty_files) {
247                 count++;
248         }
249         file_list_unlock();
250         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
251             tty->driver->subtype == PTY_TYPE_SLAVE &&
252             tty->link && tty->link->count)
253                 count++;
254         if (tty->count != count) {
255                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
256                                     "!= #fd's(%d) in %s\n",
257                        tty->name, tty->count, count, routine);
258                 return count;
259         }
260 #endif
261         return 0;
262 }
263
264 /**
265  *      get_tty_driver          -       find device of a tty
266  *      @dev_t: device identifier
267  *      @index: returns the index of the tty
268  *
269  *      This routine returns a tty driver structure, given a device number
270  *      and also passes back the index number.
271  *
272  *      Locking: caller must hold tty_mutex
273  */
274
275 static struct tty_driver *get_tty_driver(dev_t device, int *index)
276 {
277         struct tty_driver *p;
278
279         list_for_each_entry(p, &tty_drivers, tty_drivers) {
280                 dev_t base = MKDEV(p->major, p->minor_start);
281                 if (device < base || device >= base + p->num)
282                         continue;
283                 *index = device - base;
284                 return p;
285         }
286         return NULL;
287 }
288
289 #ifdef CONFIG_CONSOLE_POLL
290
291 /**
292  *      tty_find_polling_driver -       find device of a polled tty
293  *      @name: name string to match
294  *      @line: pointer to resulting tty line nr
295  *
296  *      This routine returns a tty driver structure, given a name
297  *      and the condition that the tty driver is capable of polled
298  *      operation.
299  */
300 struct tty_driver *tty_find_polling_driver(char *name, int *line)
301 {
302         struct tty_driver *p, *res = NULL;
303         int tty_line = 0;
304         int len;
305         char *str;
306
307         for (str = name; *str; str++)
308                 if ((*str >= '0' && *str <= '9') || *str == ',')
309                         break;
310         if (!*str)
311                 return NULL;
312
313         len = str - name;
314         tty_line = simple_strtoul(str, &str, 10);
315
316         mutex_lock(&tty_mutex);
317         /* Search through the tty devices to look for a match */
318         list_for_each_entry(p, &tty_drivers, tty_drivers) {
319                 if (strncmp(name, p->name, len) != 0)
320                         continue;
321                 if (*str == ',')
322                         str++;
323                 if (*str == '\0')
324                         str = NULL;
325
326                 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
327                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, str)) {
328                         res = p;
329                         *line = tty_line;
330                         break;
331                 }
332         }
333         mutex_unlock(&tty_mutex);
334
335         return res;
336 }
337 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
338 #endif
339
340 /**
341  *      tty_check_change        -       check for POSIX terminal changes
342  *      @tty: tty to check
343  *
344  *      If we try to write to, or set the state of, a terminal and we're
345  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
346  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
347  *
348  *      Locking: ctrl_lock
349  */
350
351 int tty_check_change(struct tty_struct *tty)
352 {
353         unsigned long flags;
354         int ret = 0;
355
356         if (current->signal->tty != tty)
357                 return 0;
358
359         spin_lock_irqsave(&tty->ctrl_lock, flags);
360
361         if (!tty->pgrp) {
362                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
363                 goto out_unlock;
364         }
365         if (task_pgrp(current) == tty->pgrp)
366                 goto out_unlock;
367         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
368         if (is_ignored(SIGTTOU))
369                 goto out;
370         if (is_current_pgrp_orphaned()) {
371                 ret = -EIO;
372                 goto out;
373         }
374         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
375         set_thread_flag(TIF_SIGPENDING);
376         ret = -ERESTARTSYS;
377 out:
378         return ret;
379 out_unlock:
380         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
381         return ret;
382 }
383
384 EXPORT_SYMBOL(tty_check_change);
385
386 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
387                                 size_t count, loff_t *ppos)
388 {
389         return 0;
390 }
391
392 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
393                                  size_t count, loff_t *ppos)
394 {
395         return -EIO;
396 }
397
398 /* No kernel lock held - none needed ;) */
399 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
400 {
401         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
402 }
403
404 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
405                 unsigned long arg)
406 {
407         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
408 }
409
410 static long hung_up_tty_compat_ioctl(struct file *file,
411                                      unsigned int cmd, unsigned long arg)
412 {
413         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
414 }
415
416 static const struct file_operations tty_fops = {
417         .llseek         = no_llseek,
418         .read           = tty_read,
419         .write          = tty_write,
420         .poll           = tty_poll,
421         .unlocked_ioctl = tty_ioctl,
422         .compat_ioctl   = tty_compat_ioctl,
423         .open           = tty_open,
424         .release        = tty_release,
425         .fasync         = tty_fasync,
426 };
427
428 #ifdef CONFIG_UNIX98_PTYS
429 static const struct file_operations ptmx_fops = {
430         .llseek         = no_llseek,
431         .read           = tty_read,
432         .write          = tty_write,
433         .poll           = tty_poll,
434         .unlocked_ioctl = tty_ioctl,
435         .compat_ioctl   = tty_compat_ioctl,
436         .open           = ptmx_open,
437         .release        = tty_release,
438         .fasync         = tty_fasync,
439 };
440 #endif
441
442 static const struct file_operations console_fops = {
443         .llseek         = no_llseek,
444         .read           = tty_read,
445         .write          = redirected_tty_write,
446         .poll           = tty_poll,
447         .unlocked_ioctl = tty_ioctl,
448         .compat_ioctl   = tty_compat_ioctl,
449         .open           = tty_open,
450         .release        = tty_release,
451         .fasync         = tty_fasync,
452 };
453
454 static const struct file_operations hung_up_tty_fops = {
455         .llseek         = no_llseek,
456         .read           = hung_up_tty_read,
457         .write          = hung_up_tty_write,
458         .poll           = hung_up_tty_poll,
459         .unlocked_ioctl = hung_up_tty_ioctl,
460         .compat_ioctl   = hung_up_tty_compat_ioctl,
461         .release        = tty_release,
462 };
463
464 static DEFINE_SPINLOCK(redirect_lock);
465 static struct file *redirect;
466
467 /**
468  *      tty_wakeup      -       request more data
469  *      @tty: terminal
470  *
471  *      Internal and external helper for wakeups of tty. This function
472  *      informs the line discipline if present that the driver is ready
473  *      to receive more output data.
474  */
475
476 void tty_wakeup(struct tty_struct *tty)
477 {
478         struct tty_ldisc *ld;
479
480         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
481                 ld = tty_ldisc_ref(tty);
482                 if (ld) {
483                         if (ld->ops->write_wakeup)
484                                 ld->ops->write_wakeup(tty);
485                         tty_ldisc_deref(ld);
486                 }
487         }
488         wake_up_interruptible(&tty->write_wait);
489 }
490
491 EXPORT_SYMBOL_GPL(tty_wakeup);
492
493 /**
494  *      tty_ldisc_flush -       flush line discipline queue
495  *      @tty: tty
496  *
497  *      Flush the line discipline queue (if any) for this tty. If there
498  *      is no line discipline active this is a no-op.
499  */
500
501 void tty_ldisc_flush(struct tty_struct *tty)
502 {
503         struct tty_ldisc *ld = tty_ldisc_ref(tty);
504         if (ld) {
505                 if (ld->ops->flush_buffer)
506                         ld->ops->flush_buffer(tty);
507                 tty_ldisc_deref(ld);
508         }
509         tty_buffer_flush(tty);
510 }
511
512 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
513
514 /**
515  *      tty_reset_termios       -       reset terminal state
516  *      @tty: tty to reset
517  *
518  *      Restore a terminal to the driver default state
519  */
520
521 static void tty_reset_termios(struct tty_struct *tty)
522 {
523         mutex_lock(&tty->termios_mutex);
524         *tty->termios = tty->driver->init_termios;
525         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
526         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
527         mutex_unlock(&tty->termios_mutex);
528 }
529
530 /**
531  *      do_tty_hangup           -       actual handler for hangup events
532  *      @work: tty device
533  *
534  *      This can be called by the "eventd" kernel thread.  That is process
535  *      synchronous but doesn't hold any locks, so we need to make sure we
536  *      have the appropriate locks for what we're doing.
537  *
538  *      The hangup event clears any pending redirections onto the hung up
539  *      device. It ensures future writes will error and it does the needed
540  *      line discipline hangup and signal delivery. The tty object itself
541  *      remains intact.
542  *
543  *      Locking:
544  *              BKL
545  *                redirect lock for undoing redirection
546  *                file list lock for manipulating list of ttys
547  *                tty_ldisc_lock from called functions
548  *                termios_mutex resetting termios data
549  *                tasklist_lock to walk task list for hangup event
550  *                  ->siglock to protect ->signal/->sighand
551  */
552 static void do_tty_hangup(struct work_struct *work)
553 {
554         struct tty_struct *tty =
555                 container_of(work, struct tty_struct, hangup_work);
556         struct file *cons_filp = NULL;
557         struct file *filp, *f = NULL;
558         struct task_struct *p;
559         struct tty_ldisc *ld;
560         int    closecount = 0, n;
561         unsigned long flags;
562         int refs = 0;
563
564         if (!tty)
565                 return;
566
567         /* inuse_filps is protected by the single kernel lock */
568         lock_kernel();
569
570         spin_lock(&redirect_lock);
571         if (redirect && redirect->private_data == tty) {
572                 f = redirect;
573                 redirect = NULL;
574         }
575         spin_unlock(&redirect_lock);
576
577         check_tty_count(tty, "do_tty_hangup");
578         file_list_lock();
579         /* This breaks for file handles being sent over AF_UNIX sockets ? */
580         list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
581                 if (filp->f_op->write == redirected_tty_write)
582                         cons_filp = filp;
583                 if (filp->f_op->write != tty_write)
584                         continue;
585                 closecount++;
586                 tty_fasync(-1, filp, 0);        /* can't block */
587                 filp->f_op = &hung_up_tty_fops;
588         }
589         file_list_unlock();
590         /*
591          * FIXME! What are the locking issues here? This may me overdoing
592          * things... This question is especially important now that we've
593          * removed the irqlock.
594          */
595         ld = tty_ldisc_ref(tty);
596         if (ld != NULL) {
597                 /* We may have no line discipline at this point */
598                 if (ld->ops->flush_buffer)
599                         ld->ops->flush_buffer(tty);
600                 tty_driver_flush_buffer(tty);
601                 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
602                     ld->ops->write_wakeup)
603                         ld->ops->write_wakeup(tty);
604                 if (ld->ops->hangup)
605                         ld->ops->hangup(tty);
606         }
607         /*
608          * FIXME: Once we trust the LDISC code better we can wait here for
609          * ldisc completion and fix the driver call race
610          */
611         wake_up_interruptible(&tty->write_wait);
612         wake_up_interruptible(&tty->read_wait);
613         /*
614          * Shutdown the current line discipline, and reset it to
615          * N_TTY.
616          */
617         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
618                 tty_reset_termios(tty);
619         /* Defer ldisc switch */
620         /* tty_deferred_ldisc_switch(N_TTY);
621
622           This should get done automatically when the port closes and
623           tty_release is called */
624
625         read_lock(&tasklist_lock);
626         if (tty->session) {
627                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
628                         spin_lock_irq(&p->sighand->siglock);
629                         if (p->signal->tty == tty) {
630                                 p->signal->tty = NULL;
631                                 /* We defer the dereferences outside fo
632                                    the tasklist lock */
633                                 refs++;
634                         }
635                         if (!p->signal->leader) {
636                                 spin_unlock_irq(&p->sighand->siglock);
637                                 continue;
638                         }
639                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
640                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
641                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
642                         spin_lock_irqsave(&tty->ctrl_lock, flags);
643                         if (tty->pgrp)
644                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
645                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
646                         spin_unlock_irq(&p->sighand->siglock);
647                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
648         }
649         read_unlock(&tasklist_lock);
650
651         spin_lock_irqsave(&tty->ctrl_lock, flags);
652         tty->flags = 0;
653         put_pid(tty->session);
654         put_pid(tty->pgrp);
655         tty->session = NULL;
656         tty->pgrp = NULL;
657         tty->ctrl_status = 0;
658         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
659
660         /* Account for the p->signal references we killed */
661         while (refs--)
662                 tty_kref_put(tty);
663
664         /*
665          * If one of the devices matches a console pointer, we
666          * cannot just call hangup() because that will cause
667          * tty->count and state->count to go out of sync.
668          * So we just call close() the right number of times.
669          */
670         if (cons_filp) {
671                 if (tty->ops->close)
672                         for (n = 0; n < closecount; n++)
673                                 tty->ops->close(tty, cons_filp);
674         } else if (tty->ops->hangup)
675                 (tty->ops->hangup)(tty);
676         /*
677          * We don't want to have driver/ldisc interactions beyond
678          * the ones we did here. The driver layer expects no
679          * calls after ->hangup() from the ldisc side. However we
680          * can't yet guarantee all that.
681          */
682         set_bit(TTY_HUPPED, &tty->flags);
683         if (ld) {
684                 tty_ldisc_enable(tty);
685                 tty_ldisc_deref(ld);
686         }
687         unlock_kernel();
688         if (f)
689                 fput(f);
690 }
691
692 /**
693  *      tty_hangup              -       trigger a hangup event
694  *      @tty: tty to hangup
695  *
696  *      A carrier loss (virtual or otherwise) has occurred on this like
697  *      schedule a hangup sequence to run after this event.
698  */
699
700 void tty_hangup(struct tty_struct *tty)
701 {
702 #ifdef TTY_DEBUG_HANGUP
703         char    buf[64];
704         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
705 #endif
706         schedule_work(&tty->hangup_work);
707 }
708
709 EXPORT_SYMBOL(tty_hangup);
710
711 /**
712  *      tty_vhangup             -       process vhangup
713  *      @tty: tty to hangup
714  *
715  *      The user has asked via system call for the terminal to be hung up.
716  *      We do this synchronously so that when the syscall returns the process
717  *      is complete. That guarantee is necessary for security reasons.
718  */
719
720 void tty_vhangup(struct tty_struct *tty)
721 {
722 #ifdef TTY_DEBUG_HANGUP
723         char    buf[64];
724
725         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
726 #endif
727         do_tty_hangup(&tty->hangup_work);
728 }
729
730 EXPORT_SYMBOL(tty_vhangup);
731
732 /**
733  *      tty_vhangup_self        -       process vhangup for own ctty
734  *
735  *      Perform a vhangup on the current controlling tty
736  */
737
738 void tty_vhangup_self(void)
739 {
740         struct tty_struct *tty;
741
742         tty = get_current_tty();
743         if (tty) {
744                 tty_vhangup(tty);
745                 tty_kref_put(tty);
746         }
747 }
748
749 /**
750  *      tty_hung_up_p           -       was tty hung up
751  *      @filp: file pointer of tty
752  *
753  *      Return true if the tty has been subject to a vhangup or a carrier
754  *      loss
755  */
756
757 int tty_hung_up_p(struct file *filp)
758 {
759         return (filp->f_op == &hung_up_tty_fops);
760 }
761
762 EXPORT_SYMBOL(tty_hung_up_p);
763
764 static void session_clear_tty(struct pid *session)
765 {
766         struct task_struct *p;
767         do_each_pid_task(session, PIDTYPE_SID, p) {
768                 proc_clear_tty(p);
769         } while_each_pid_task(session, PIDTYPE_SID, p);
770 }
771
772 /**
773  *      disassociate_ctty       -       disconnect controlling tty
774  *      @on_exit: true if exiting so need to "hang up" the session
775  *
776  *      This function is typically called only by the session leader, when
777  *      it wants to disassociate itself from its controlling tty.
778  *
779  *      It performs the following functions:
780  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
781  *      (2)  Clears the tty from being controlling the session
782  *      (3)  Clears the controlling tty for all processes in the
783  *              session group.
784  *
785  *      The argument on_exit is set to 1 if called when a process is
786  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
787  *
788  *      Locking:
789  *              BKL is taken for hysterical raisins
790  *                tty_mutex is taken to protect tty
791  *                ->siglock is taken to protect ->signal/->sighand
792  *                tasklist_lock is taken to walk process list for sessions
793  *                  ->siglock is taken to protect ->signal/->sighand
794  */
795
796 void disassociate_ctty(int on_exit)
797 {
798         struct tty_struct *tty;
799         struct pid *tty_pgrp = NULL;
800
801
802         tty = get_current_tty();
803         if (tty) {
804                 tty_pgrp = get_pid(tty->pgrp);
805                 lock_kernel();
806                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
807                         tty_vhangup(tty);
808                 unlock_kernel();
809                 tty_kref_put(tty);
810         } else if (on_exit) {
811                 struct pid *old_pgrp;
812                 spin_lock_irq(&current->sighand->siglock);
813                 old_pgrp = current->signal->tty_old_pgrp;
814                 current->signal->tty_old_pgrp = NULL;
815                 spin_unlock_irq(&current->sighand->siglock);
816                 if (old_pgrp) {
817                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
818                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
819                         put_pid(old_pgrp);
820                 }
821                 return;
822         }
823         if (tty_pgrp) {
824                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
825                 if (!on_exit)
826                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
827                 put_pid(tty_pgrp);
828         }
829
830         spin_lock_irq(&current->sighand->siglock);
831         put_pid(current->signal->tty_old_pgrp);
832         current->signal->tty_old_pgrp = NULL;
833         spin_unlock_irq(&current->sighand->siglock);
834
835         tty = get_current_tty();
836         if (tty) {
837                 unsigned long flags;
838                 spin_lock_irqsave(&tty->ctrl_lock, flags);
839                 put_pid(tty->session);
840                 put_pid(tty->pgrp);
841                 tty->session = NULL;
842                 tty->pgrp = NULL;
843                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
844                 tty_kref_put(tty);
845         } else {
846 #ifdef TTY_DEBUG_HANGUP
847                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
848                        " = NULL", tty);
849 #endif
850         }
851
852         /* Now clear signal->tty under the lock */
853         read_lock(&tasklist_lock);
854         session_clear_tty(task_session(current));
855         read_unlock(&tasklist_lock);
856 }
857
858 /**
859  *
860  *      no_tty  - Ensure the current process does not have a controlling tty
861  */
862 void no_tty(void)
863 {
864         struct task_struct *tsk = current;
865         lock_kernel();
866         if (tsk->signal->leader)
867                 disassociate_ctty(0);
868         unlock_kernel();
869         proc_clear_tty(tsk);
870 }
871
872
873 /**
874  *      stop_tty        -       propagate flow control
875  *      @tty: tty to stop
876  *
877  *      Perform flow control to the driver. For PTY/TTY pairs we
878  *      must also propagate the TIOCKPKT status. May be called
879  *      on an already stopped device and will not re-call the driver
880  *      method.
881  *
882  *      This functionality is used by both the line disciplines for
883  *      halting incoming flow and by the driver. It may therefore be
884  *      called from any context, may be under the tty atomic_write_lock
885  *      but not always.
886  *
887  *      Locking:
888  *              Uses the tty control lock internally
889  */
890
891 void stop_tty(struct tty_struct *tty)
892 {
893         unsigned long flags;
894         spin_lock_irqsave(&tty->ctrl_lock, flags);
895         if (tty->stopped) {
896                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
897                 return;
898         }
899         tty->stopped = 1;
900         if (tty->link && tty->link->packet) {
901                 tty->ctrl_status &= ~TIOCPKT_START;
902                 tty->ctrl_status |= TIOCPKT_STOP;
903                 wake_up_interruptible(&tty->link->read_wait);
904         }
905         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
906         if (tty->ops->stop)
907                 (tty->ops->stop)(tty);
908 }
909
910 EXPORT_SYMBOL(stop_tty);
911
912 /**
913  *      start_tty       -       propagate flow control
914  *      @tty: tty to start
915  *
916  *      Start a tty that has been stopped if at all possible. Perform
917  *      any necessary wakeups and propagate the TIOCPKT status. If this
918  *      is the tty was previous stopped and is being started then the
919  *      driver start method is invoked and the line discipline woken.
920  *
921  *      Locking:
922  *              ctrl_lock
923  */
924
925 void start_tty(struct tty_struct *tty)
926 {
927         unsigned long flags;
928         spin_lock_irqsave(&tty->ctrl_lock, flags);
929         if (!tty->stopped || tty->flow_stopped) {
930                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
931                 return;
932         }
933         tty->stopped = 0;
934         if (tty->link && tty->link->packet) {
935                 tty->ctrl_status &= ~TIOCPKT_STOP;
936                 tty->ctrl_status |= TIOCPKT_START;
937                 wake_up_interruptible(&tty->link->read_wait);
938         }
939         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
940         if (tty->ops->start)
941                 (tty->ops->start)(tty);
942         /* If we have a running line discipline it may need kicking */
943         tty_wakeup(tty);
944 }
945
946 EXPORT_SYMBOL(start_tty);
947
948 /**
949  *      tty_read        -       read method for tty device files
950  *      @file: pointer to tty file
951  *      @buf: user buffer
952  *      @count: size of user buffer
953  *      @ppos: unused
954  *
955  *      Perform the read system call function on this terminal device. Checks
956  *      for hung up devices before calling the line discipline method.
957  *
958  *      Locking:
959  *              Locks the line discipline internally while needed. Multiple
960  *      read calls may be outstanding in parallel.
961  */
962
963 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
964                         loff_t *ppos)
965 {
966         int i;
967         struct tty_struct *tty;
968         struct inode *inode;
969         struct tty_ldisc *ld;
970
971         tty = (struct tty_struct *)file->private_data;
972         inode = file->f_path.dentry->d_inode;
973         if (tty_paranoia_check(tty, inode, "tty_read"))
974                 return -EIO;
975         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
976                 return -EIO;
977
978         /* We want to wait for the line discipline to sort out in this
979            situation */
980         ld = tty_ldisc_ref_wait(tty);
981         if (ld->ops->read)
982                 i = (ld->ops->read)(tty, file, buf, count);
983         else
984                 i = -EIO;
985         tty_ldisc_deref(ld);
986         if (i > 0)
987                 inode->i_atime = current_fs_time(inode->i_sb);
988         return i;
989 }
990
991 void tty_write_unlock(struct tty_struct *tty)
992 {
993         mutex_unlock(&tty->atomic_write_lock);
994         wake_up_interruptible(&tty->write_wait);
995 }
996
997 int tty_write_lock(struct tty_struct *tty, int ndelay)
998 {
999         if (!mutex_trylock(&tty->atomic_write_lock)) {
1000                 if (ndelay)
1001                         return -EAGAIN;
1002                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1003                         return -ERESTARTSYS;
1004         }
1005         return 0;
1006 }
1007
1008 /*
1009  * Split writes up in sane blocksizes to avoid
1010  * denial-of-service type attacks
1011  */
1012 static inline ssize_t do_tty_write(
1013         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1014         struct tty_struct *tty,
1015         struct file *file,
1016         const char __user *buf,
1017         size_t count)
1018 {
1019         ssize_t ret, written = 0;
1020         unsigned int chunk;
1021
1022         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1023         if (ret < 0)
1024                 return ret;
1025
1026         /*
1027          * We chunk up writes into a temporary buffer. This
1028          * simplifies low-level drivers immensely, since they
1029          * don't have locking issues and user mode accesses.
1030          *
1031          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1032          * big chunk-size..
1033          *
1034          * The default chunk-size is 2kB, because the NTTY
1035          * layer has problems with bigger chunks. It will
1036          * claim to be able to handle more characters than
1037          * it actually does.
1038          *
1039          * FIXME: This can probably go away now except that 64K chunks
1040          * are too likely to fail unless switched to vmalloc...
1041          */
1042         chunk = 2048;
1043         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1044                 chunk = 65536;
1045         if (count < chunk)
1046                 chunk = count;
1047
1048         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1049         if (tty->write_cnt < chunk) {
1050                 unsigned char *buf;
1051
1052                 if (chunk < 1024)
1053                         chunk = 1024;
1054
1055                 buf = kmalloc(chunk, GFP_KERNEL);
1056                 if (!buf) {
1057                         ret = -ENOMEM;
1058                         goto out;
1059                 }
1060                 kfree(tty->write_buf);
1061                 tty->write_cnt = chunk;
1062                 tty->write_buf = buf;
1063         }
1064
1065         /* Do the write .. */
1066         for (;;) {
1067                 size_t size = count;
1068                 if (size > chunk)
1069                         size = chunk;
1070                 ret = -EFAULT;
1071                 if (copy_from_user(tty->write_buf, buf, size))
1072                         break;
1073                 ret = write(tty, file, tty->write_buf, size);
1074                 if (ret <= 0)
1075                         break;
1076                 written += ret;
1077                 buf += ret;
1078                 count -= ret;
1079                 if (!count)
1080                         break;
1081                 ret = -ERESTARTSYS;
1082                 if (signal_pending(current))
1083                         break;
1084                 cond_resched();
1085         }
1086         if (written) {
1087                 struct inode *inode = file->f_path.dentry->d_inode;
1088                 inode->i_mtime = current_fs_time(inode->i_sb);
1089                 ret = written;
1090         }
1091 out:
1092         tty_write_unlock(tty);
1093         return ret;
1094 }
1095
1096 /**
1097  * tty_write_message - write a message to a certain tty, not just the console.
1098  * @tty: the destination tty_struct
1099  * @msg: the message to write
1100  *
1101  * This is used for messages that need to be redirected to a specific tty.
1102  * We don't put it into the syslog queue right now maybe in the future if
1103  * really needed.
1104  *
1105  * We must still hold the BKL and test the CLOSING flag for the moment.
1106  */
1107
1108 void tty_write_message(struct tty_struct *tty, char *msg)
1109 {
1110         lock_kernel();
1111         if (tty) {
1112                 mutex_lock(&tty->atomic_write_lock);
1113                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags))
1114                         tty->ops->write(tty, msg, strlen(msg));
1115                 tty_write_unlock(tty);
1116         }
1117         unlock_kernel();
1118         return;
1119 }
1120
1121
1122 /**
1123  *      tty_write               -       write method for tty device file
1124  *      @file: tty file pointer
1125  *      @buf: user data to write
1126  *      @count: bytes to write
1127  *      @ppos: unused
1128  *
1129  *      Write data to a tty device via the line discipline.
1130  *
1131  *      Locking:
1132  *              Locks the line discipline as required
1133  *              Writes to the tty driver are serialized by the atomic_write_lock
1134  *      and are then processed in chunks to the device. The line discipline
1135  *      write method will not be involked in parallel for each device
1136  *              The line discipline write method is called under the big
1137  *      kernel lock for historical reasons. New code should not rely on this.
1138  */
1139
1140 static ssize_t tty_write(struct file *file, const char __user *buf,
1141                                                 size_t count, loff_t *ppos)
1142 {
1143         struct tty_struct *tty;
1144         struct inode *inode = file->f_path.dentry->d_inode;
1145         ssize_t ret;
1146         struct tty_ldisc *ld;
1147
1148         tty = (struct tty_struct *)file->private_data;
1149         if (tty_paranoia_check(tty, inode, "tty_write"))
1150                 return -EIO;
1151         if (!tty || !tty->ops->write ||
1152                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1153                         return -EIO;
1154         /* Short term debug to catch buggy drivers */
1155         if (tty->ops->write_room == NULL)
1156                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1157                         tty->driver->name);
1158         ld = tty_ldisc_ref_wait(tty);
1159         if (!ld->ops->write)
1160                 ret = -EIO;
1161         else
1162                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1163         tty_ldisc_deref(ld);
1164         return ret;
1165 }
1166
1167 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1168                                                 size_t count, loff_t *ppos)
1169 {
1170         struct file *p = NULL;
1171
1172         spin_lock(&redirect_lock);
1173         if (redirect) {
1174                 get_file(redirect);
1175                 p = redirect;
1176         }
1177         spin_unlock(&redirect_lock);
1178
1179         if (p) {
1180                 ssize_t res;
1181                 res = vfs_write(p, buf, count, &p->f_pos);
1182                 fput(p);
1183                 return res;
1184         }
1185         return tty_write(file, buf, count, ppos);
1186 }
1187
1188 static char ptychar[] = "pqrstuvwxyzabcde";
1189
1190 /**
1191  *      pty_line_name   -       generate name for a pty
1192  *      @driver: the tty driver in use
1193  *      @index: the minor number
1194  *      @p: output buffer of at least 6 bytes
1195  *
1196  *      Generate a name from a driver reference and write it to the output
1197  *      buffer.
1198  *
1199  *      Locking: None
1200  */
1201 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1202 {
1203         int i = index + driver->name_base;
1204         /* ->name is initialized to "ttyp", but "tty" is expected */
1205         sprintf(p, "%s%c%x",
1206                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1207                 ptychar[i >> 4 & 0xf], i & 0xf);
1208 }
1209
1210 /**
1211  *      pty_line_name   -       generate name for a tty
1212  *      @driver: the tty driver in use
1213  *      @index: the minor number
1214  *      @p: output buffer of at least 7 bytes
1215  *
1216  *      Generate a name from a driver reference and write it to the output
1217  *      buffer.
1218  *
1219  *      Locking: None
1220  */
1221 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1222 {
1223         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1224 }
1225
1226 /**
1227  *      init_dev                -       initialise a tty device
1228  *      @driver: tty driver we are opening a device on
1229  *      @idx: device index
1230  *      @ret_tty: returned tty structure
1231  *      @first_ok: ok to open a new device (used by ptmx)
1232  *
1233  *      Prepare a tty device. This may not be a "new" clean device but
1234  *      could also be an active device. The pty drivers require special
1235  *      handling because of this.
1236  *
1237  *      Locking:
1238  *              The function is called under the tty_mutex, which
1239  *      protects us from the tty struct or driver itself going away.
1240  *
1241  *      On exit the tty device has the line discipline attached and
1242  *      a reference count of 1. If a pair was created for pty/tty use
1243  *      and the other was a pty master then it too has a reference count of 1.
1244  *
1245  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1246  * failed open.  The new code protects the open with a mutex, so it's
1247  * really quite straightforward.  The mutex locking can probably be
1248  * relaxed for the (most common) case of reopening a tty.
1249  */
1250
1251 static int init_dev(struct tty_driver *driver, int idx,
1252         struct tty_struct **ret_tty, int first_ok)
1253 {
1254         struct tty_struct *tty, *o_tty;
1255         struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
1256         struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1257         int retval = 0;
1258
1259         /* check whether we're reopening an existing tty */
1260         if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1261                 tty = devpts_get_tty(idx);
1262                 /*
1263                  * If we don't have a tty here on a slave open, it's because
1264                  * the master already started the close process and there's
1265                  * no relation between devpts file and tty anymore.
1266                  */
1267                 if (!tty && driver->subtype == PTY_TYPE_SLAVE) {
1268                         retval = -EIO;
1269                         goto end_init;
1270                 }
1271                 /*
1272                  * It's safe from now on because init_dev() is called with
1273                  * tty_mutex held and release_dev() won't change tty->count
1274                  * or tty->flags without having to grab tty_mutex
1275                  */
1276                 if (tty && driver->subtype == PTY_TYPE_MASTER)
1277                         tty = tty->link;
1278         } else {
1279                 tty = driver->ttys[idx];
1280         }
1281         if (tty) goto fast_track;
1282
1283         if (driver->subtype == PTY_TYPE_MASTER &&
1284                 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1285                 retval = -EIO;
1286                 goto end_init;
1287         }
1288         /*
1289          * First time open is complex, especially for PTY devices.
1290          * This code guarantees that either everything succeeds and the
1291          * TTY is ready for operation, or else the table slots are vacated
1292          * and the allocated memory released.  (Except that the termios
1293          * and locked termios may be retained.)
1294          */
1295
1296         if (!try_module_get(driver->owner)) {
1297                 retval = -ENODEV;
1298                 goto end_init;
1299         }
1300
1301         o_tty = NULL;
1302         tp = o_tp = NULL;
1303         ltp = o_ltp = NULL;
1304
1305         tty = alloc_tty_struct();
1306         if (!tty)
1307                 goto fail_no_mem;
1308         initialize_tty_struct(tty);
1309         tty->driver = driver;
1310         tty->ops = driver->ops;
1311         tty->index = idx;
1312         tty_line_name(driver, idx, tty->name);
1313
1314         if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1315                 tp_loc = &tty->termios;
1316                 ltp_loc = &tty->termios_locked;
1317         } else {
1318                 tp_loc = &driver->termios[idx];
1319                 ltp_loc = &driver->termios_locked[idx];
1320         }
1321
1322         if (!*tp_loc) {
1323                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1324                 if (!tp)
1325                         goto free_mem_out;
1326                 *tp = driver->init_termios;
1327         }
1328
1329         if (!*ltp_loc) {
1330                 ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
1331                 if (!ltp)
1332                         goto free_mem_out;
1333         }
1334
1335         if (driver->type == TTY_DRIVER_TYPE_PTY) {
1336                 o_tty = alloc_tty_struct();
1337                 if (!o_tty)
1338                         goto free_mem_out;
1339                 if (!try_module_get(driver->other->owner)) {
1340                         /* This cannot in fact currently happen */
1341                         free_tty_struct(o_tty);
1342                         o_tty = NULL;
1343                         goto free_mem_out;
1344                 }
1345                 initialize_tty_struct(o_tty);
1346                 o_tty->driver = driver->other;
1347                 o_tty->ops = driver->ops;
1348                 o_tty->index = idx;
1349                 tty_line_name(driver->other, idx, o_tty->name);
1350
1351                 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1352                         o_tp_loc = &o_tty->termios;
1353                         o_ltp_loc = &o_tty->termios_locked;
1354                 } else {
1355                         o_tp_loc = &driver->other->termios[idx];
1356                         o_ltp_loc = &driver->other->termios_locked[idx];
1357                 }
1358
1359                 if (!*o_tp_loc) {
1360                         o_tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1361                         if (!o_tp)
1362                                 goto free_mem_out;
1363                         *o_tp = driver->other->init_termios;
1364                 }
1365
1366                 if (!*o_ltp_loc) {
1367                         o_ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
1368                         if (!o_ltp)
1369                                 goto free_mem_out;
1370                 }
1371
1372                 /*
1373                  * Everything allocated ... set up the o_tty structure.
1374                  */
1375                 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM))
1376                         driver->other->ttys[idx] = o_tty;
1377                 if (!*o_tp_loc)
1378                         *o_tp_loc = o_tp;
1379                 if (!*o_ltp_loc)
1380                         *o_ltp_loc = o_ltp;
1381                 o_tty->termios = *o_tp_loc;
1382                 o_tty->termios_locked = *o_ltp_loc;
1383                 driver->other->refcount++;
1384                 if (driver->subtype == PTY_TYPE_MASTER)
1385                         o_tty->count++;
1386
1387                 /* Establish the links in both directions */
1388                 tty->link   = o_tty;
1389                 o_tty->link = tty;
1390         }
1391
1392         /*
1393          * All structures have been allocated, so now we install them.
1394          * Failures after this point use release_tty to clean up, so
1395          * there's no need to null out the local pointers.
1396          */
1397         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM))
1398                 driver->ttys[idx] = tty;
1399
1400         if (!*tp_loc)
1401                 *tp_loc = tp;
1402         if (!*ltp_loc)
1403                 *ltp_loc = ltp;
1404         tty->termios = *tp_loc;
1405         tty->termios_locked = *ltp_loc;
1406         /* Compatibility until drivers always set this */
1407         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1408         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1409         driver->refcount++;
1410         tty->count++;
1411
1412         /*
1413          * Structures all installed ... call the ldisc open routines.
1414          * If we fail here just call release_tty to clean up.  No need
1415          * to decrement the use counts, as release_tty doesn't care.
1416          */
1417
1418         retval = tty_ldisc_setup(tty, o_tty);
1419
1420         if (retval)
1421                 goto release_mem_out;
1422         goto success;
1423
1424         /*
1425          * This fast open can be used if the tty is already open.
1426          * No memory is allocated, and the only failures are from
1427          * attempting to open a closing tty or attempting multiple
1428          * opens on a pty master.
1429          */
1430 fast_track:
1431         if (test_bit(TTY_CLOSING, &tty->flags)) {
1432                 retval = -EIO;
1433                 goto end_init;
1434         }
1435         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1436             driver->subtype == PTY_TYPE_MASTER) {
1437                 /*
1438                  * special case for PTY masters: only one open permitted,
1439                  * and the slave side open count is incremented as well.
1440                  */
1441                 if (tty->count) {
1442                         retval = -EIO;
1443                         goto end_init;
1444                 }
1445                 tty->link->count++;
1446         }
1447         tty->count++;
1448         tty->driver = driver; /* N.B. why do this every time?? */
1449
1450         /* FIXME */
1451         if (!test_bit(TTY_LDISC, &tty->flags))
1452                 printk(KERN_ERR "init_dev but no ldisc\n");
1453 success:
1454         *ret_tty = tty;
1455
1456         /* All paths come through here to release the mutex */
1457 end_init:
1458         return retval;
1459
1460         /* Release locally allocated memory ... nothing placed in slots */
1461 free_mem_out:
1462         kfree(o_tp);
1463         if (o_tty) {
1464                 module_put(o_tty->driver->owner);
1465                 free_tty_struct(o_tty);
1466         }
1467         kfree(ltp);
1468         kfree(tp);
1469         free_tty_struct(tty);
1470
1471 fail_no_mem:
1472         module_put(driver->owner);
1473         retval = -ENOMEM;
1474         goto end_init;
1475
1476         /* call the tty release_tty routine to clean out this slot */
1477 release_mem_out:
1478         if (printk_ratelimit())
1479                 printk(KERN_INFO "init_dev: ldisc open failed, "
1480                                  "clearing slot %d\n", idx);
1481         release_tty(tty, idx);
1482         goto end_init;
1483 }
1484
1485 /**
1486  *      release_one_tty         -       release tty structure memory
1487  *      @kref: kref of tty we are obliterating
1488  *
1489  *      Releases memory associated with a tty structure, and clears out the
1490  *      driver table slots. This function is called when a device is no longer
1491  *      in use. It also gets called when setup of a device fails.
1492  *
1493  *      Locking:
1494  *              tty_mutex - sometimes only
1495  *              takes the file list lock internally when working on the list
1496  *      of ttys that the driver keeps.
1497  */
1498 static void release_one_tty(struct kref *kref)
1499 {
1500         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1501         struct tty_driver *driver = tty->driver;
1502         int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
1503         struct ktermios *tp;
1504         int idx = tty->index;
1505
1506         if (!devpts)
1507                 tty->driver->ttys[idx] = NULL;
1508
1509         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1510                 /* FIXME: Locking on ->termios array */
1511                 tp = tty->termios;
1512                 if (!devpts)
1513                         tty->driver->termios[idx] = NULL;
1514                 kfree(tp);
1515
1516                 tp = tty->termios_locked;
1517                 if (!devpts)
1518                         tty->driver->termios_locked[idx] = NULL;
1519                 kfree(tp);
1520         }
1521
1522
1523         tty->magic = 0;
1524         /* FIXME: locking on tty->driver->refcount */
1525         tty->driver->refcount--;
1526         module_put(driver->owner);
1527
1528         file_list_lock();
1529         list_del_init(&tty->tty_files);
1530         file_list_unlock();
1531
1532         free_tty_struct(tty);
1533 }
1534
1535 /**
1536  *      tty_kref_put            -       release a tty kref
1537  *      @tty: tty device
1538  *
1539  *      Release a reference to a tty device and if need be let the kref
1540  *      layer destruct the object for us
1541  */
1542
1543 void tty_kref_put(struct tty_struct *tty)
1544 {
1545         if (tty)
1546                 kref_put(&tty->kref, release_one_tty);
1547 }
1548 EXPORT_SYMBOL(tty_kref_put);
1549
1550 /**
1551  *      release_tty             -       release tty structure memory
1552  *
1553  *      Release both @tty and a possible linked partner (think pty pair),
1554  *      and decrement the refcount of the backing module.
1555  *
1556  *      Locking:
1557  *              tty_mutex - sometimes only
1558  *              takes the file list lock internally when working on the list
1559  *      of ttys that the driver keeps.
1560  *              FIXME: should we require tty_mutex is held here ??
1561  *
1562  */
1563 static void release_tty(struct tty_struct *tty, int idx)
1564 {
1565         /* This should always be true but check for the moment */
1566         WARN_ON(tty->index != idx);
1567
1568         if (tty->link)
1569                 tty_kref_put(tty->link);
1570         tty_kref_put(tty);
1571 }
1572
1573 /*
1574  * Even releasing the tty structures is a tricky business.. We have
1575  * to be very careful that the structures are all released at the
1576  * same time, as interrupts might otherwise get the wrong pointers.
1577  *
1578  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1579  * lead to double frees or releasing memory still in use.
1580  */
1581 static void release_dev(struct file *filp)
1582 {
1583         struct tty_struct *tty, *o_tty;
1584         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1585         int     devpts;
1586         int     idx;
1587         char    buf[64];
1588
1589         tty = (struct tty_struct *)filp->private_data;
1590         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode,
1591                                                         "release_dev"))
1592                 return;
1593
1594         check_tty_count(tty, "release_dev");
1595
1596         tty_fasync(-1, filp, 0);
1597
1598         idx = tty->index;
1599         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1600                       tty->driver->subtype == PTY_TYPE_MASTER);
1601         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1602         o_tty = tty->link;
1603
1604 #ifdef TTY_PARANOIA_CHECK
1605         if (idx < 0 || idx >= tty->driver->num) {
1606                 printk(KERN_DEBUG "release_dev: bad idx when trying to "
1607                                   "free (%s)\n", tty->name);
1608                 return;
1609         }
1610         if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1611                 if (tty != tty->driver->ttys[idx]) {
1612                         printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
1613                                "for (%s)\n", idx, tty->name);
1614                         return;
1615                 }
1616                 if (tty->termios != tty->driver->termios[idx]) {
1617                         printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
1618                                "for (%s)\n",
1619                                idx, tty->name);
1620                         return;
1621                 }
1622                 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
1623                         printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
1624                                "termios_locked for (%s)\n",
1625                                idx, tty->name);
1626                         return;
1627                 }
1628         }
1629 #endif
1630
1631 #ifdef TTY_DEBUG_HANGUP
1632         printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
1633                tty_name(tty, buf), tty->count);
1634 #endif
1635
1636 #ifdef TTY_PARANOIA_CHECK
1637         if (tty->driver->other &&
1638              !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1639                 if (o_tty != tty->driver->other->ttys[idx]) {
1640                         printk(KERN_DEBUG "release_dev: other->table[%d] "
1641                                           "not o_tty for (%s)\n",
1642                                idx, tty->name);
1643                         return;
1644                 }
1645                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1646                         printk(KERN_DEBUG "release_dev: other->termios[%d] "
1647                                           "not o_termios for (%s)\n",
1648                                idx, tty->name);
1649                         return;
1650                 }
1651                 if (o_tty->termios_locked !=
1652                       tty->driver->other->termios_locked[idx]) {
1653                         printk(KERN_DEBUG "release_dev: other->termios_locked["
1654                                           "%d] not o_termios_locked for (%s)\n",
1655                                idx, tty->name);
1656                         return;
1657                 }
1658                 if (o_tty->link != tty) {
1659                         printk(KERN_DEBUG "release_dev: bad pty pointers\n");
1660                         return;
1661                 }
1662         }
1663 #endif
1664         if (tty->ops->close)
1665                 tty->ops->close(tty, filp);
1666
1667         /*
1668          * Sanity check: if tty->count is going to zero, there shouldn't be
1669          * any waiters on tty->read_wait or tty->write_wait.  We test the
1670          * wait queues and kick everyone out _before_ actually starting to
1671          * close.  This ensures that we won't block while releasing the tty
1672          * structure.
1673          *
1674          * The test for the o_tty closing is necessary, since the master and
1675          * slave sides may close in any order.  If the slave side closes out
1676          * first, its count will be one, since the master side holds an open.
1677          * Thus this test wouldn't be triggered at the time the slave closes,
1678          * so we do it now.
1679          *
1680          * Note that it's possible for the tty to be opened again while we're
1681          * flushing out waiters.  By recalculating the closing flags before
1682          * each iteration we avoid any problems.
1683          */
1684         while (1) {
1685                 /* Guard against races with tty->count changes elsewhere and
1686                    opens on /dev/tty */
1687
1688                 mutex_lock(&tty_mutex);
1689                 tty_closing = tty->count <= 1;
1690                 o_tty_closing = o_tty &&
1691                         (o_tty->count <= (pty_master ? 1 : 0));
1692                 do_sleep = 0;
1693
1694                 if (tty_closing) {
1695                         if (waitqueue_active(&tty->read_wait)) {
1696                                 wake_up(&tty->read_wait);
1697                                 do_sleep++;
1698                         }
1699                         if (waitqueue_active(&tty->write_wait)) {
1700                                 wake_up(&tty->write_wait);
1701                                 do_sleep++;
1702                         }
1703                 }
1704                 if (o_tty_closing) {
1705                         if (waitqueue_active(&o_tty->read_wait)) {
1706                                 wake_up(&o_tty->read_wait);
1707                                 do_sleep++;
1708                         }
1709                         if (waitqueue_active(&o_tty->write_wait)) {
1710                                 wake_up(&o_tty->write_wait);
1711                                 do_sleep++;
1712                         }
1713                 }
1714                 if (!do_sleep)
1715                         break;
1716
1717                 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
1718                                     "active!\n", tty_name(tty, buf));
1719                 mutex_unlock(&tty_mutex);
1720                 schedule();
1721         }
1722
1723         /*
1724          * The closing flags are now consistent with the open counts on
1725          * both sides, and we've completed the last operation that could
1726          * block, so it's safe to proceed with closing.
1727          */
1728         if (pty_master) {
1729                 if (--o_tty->count < 0) {
1730                         printk(KERN_WARNING "release_dev: bad pty slave count "
1731                                             "(%d) for %s\n",
1732                                o_tty->count, tty_name(o_tty, buf));
1733                         o_tty->count = 0;
1734                 }
1735         }
1736         if (--tty->count < 0) {
1737                 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
1738                        tty->count, tty_name(tty, buf));
1739                 tty->count = 0;
1740         }
1741
1742         /*
1743          * We've decremented tty->count, so we need to remove this file
1744          * descriptor off the tty->tty_files list; this serves two
1745          * purposes:
1746          *  - check_tty_count sees the correct number of file descriptors
1747          *    associated with this tty.
1748          *  - do_tty_hangup no longer sees this file descriptor as
1749          *    something that needs to be handled for hangups.
1750          */
1751         file_kill(filp);
1752         filp->private_data = NULL;
1753
1754         /*
1755          * Perform some housekeeping before deciding whether to return.
1756          *
1757          * Set the TTY_CLOSING flag if this was the last open.  In the
1758          * case of a pty we may have to wait around for the other side
1759          * to close, and TTY_CLOSING makes sure we can't be reopened.
1760          */
1761         if (tty_closing)
1762                 set_bit(TTY_CLOSING, &tty->flags);
1763         if (o_tty_closing)
1764                 set_bit(TTY_CLOSING, &o_tty->flags);
1765
1766         /*
1767          * If _either_ side is closing, make sure there aren't any
1768          * processes that still think tty or o_tty is their controlling
1769          * tty.
1770          */
1771         if (tty_closing || o_tty_closing) {
1772                 read_lock(&tasklist_lock);
1773                 session_clear_tty(tty->session);
1774                 if (o_tty)
1775                         session_clear_tty(o_tty->session);
1776                 read_unlock(&tasklist_lock);
1777         }
1778
1779         mutex_unlock(&tty_mutex);
1780
1781         /* check whether both sides are closing ... */
1782         if (!tty_closing || (o_tty && !o_tty_closing))
1783                 return;
1784
1785 #ifdef TTY_DEBUG_HANGUP
1786         printk(KERN_DEBUG "freeing tty structure...");
1787 #endif
1788         /*
1789          * Ask the line discipline code to release its structures
1790          */
1791         tty_ldisc_release(tty, o_tty);
1792         /*
1793          * The release_tty function takes care of the details of clearing
1794          * the slots and preserving the termios structure.
1795          */
1796         release_tty(tty, idx);
1797
1798         /* Make this pty number available for reallocation */
1799         if (devpts)
1800                 devpts_kill_index(idx);
1801 }
1802
1803 /**
1804  *      __tty_open              -       open a tty device
1805  *      @inode: inode of device file
1806  *      @filp: file pointer to tty
1807  *
1808  *      tty_open and tty_release keep up the tty count that contains the
1809  *      number of opens done on a tty. We cannot use the inode-count, as
1810  *      different inodes might point to the same tty.
1811  *
1812  *      Open-counting is needed for pty masters, as well as for keeping
1813  *      track of serial lines: DTR is dropped when the last close happens.
1814  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1815  *
1816  *      The termios state of a pty is reset on first open so that
1817  *      settings don't persist across reuse.
1818  *
1819  *      Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
1820  *               tty->count should protect the rest.
1821  *               ->siglock protects ->signal/->sighand
1822  */
1823
1824 static int __tty_open(struct inode *inode, struct file *filp)
1825 {
1826         struct tty_struct *tty;
1827         int noctty, retval;
1828         struct tty_driver *driver;
1829         int index;
1830         dev_t device = inode->i_rdev;
1831         unsigned short saved_flags = filp->f_flags;
1832
1833         nonseekable_open(inode, filp);
1834
1835 retry_open:
1836         noctty = filp->f_flags & O_NOCTTY;
1837         index  = -1;
1838         retval = 0;
1839
1840         mutex_lock(&tty_mutex);
1841
1842         if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1843                 tty = get_current_tty();
1844                 if (!tty) {
1845                         mutex_unlock(&tty_mutex);
1846                         return -ENXIO;
1847                 }
1848                 driver = tty->driver;
1849                 index = tty->index;
1850                 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1851                 /* noctty = 1; */
1852                 /* FIXME: Should we take a driver reference ? */
1853                 tty_kref_put(tty);
1854                 goto got_driver;
1855         }
1856 #ifdef CONFIG_VT
1857         if (device == MKDEV(TTY_MAJOR, 0)) {
1858                 extern struct tty_driver *console_driver;
1859                 driver = console_driver;
1860                 index = fg_console;
1861                 noctty = 1;
1862                 goto got_driver;
1863         }
1864 #endif
1865         if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1866                 driver = console_device(&index);
1867                 if (driver) {
1868                         /* Don't let /dev/console block */
1869                         filp->f_flags |= O_NONBLOCK;
1870                         noctty = 1;
1871                         goto got_driver;
1872                 }
1873                 mutex_unlock(&tty_mutex);
1874                 return -ENODEV;
1875         }
1876
1877         driver = get_tty_driver(device, &index);
1878         if (!driver) {
1879                 mutex_unlock(&tty_mutex);
1880                 return -ENODEV;
1881         }
1882 got_driver:
1883         retval = init_dev(driver, index, &tty, 0);
1884         mutex_unlock(&tty_mutex);
1885         if (retval)
1886                 return retval;
1887
1888         filp->private_data = tty;
1889         file_move(filp, &tty->tty_files);
1890         check_tty_count(tty, "tty_open");
1891         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1892             tty->driver->subtype == PTY_TYPE_MASTER)
1893                 noctty = 1;
1894 #ifdef TTY_DEBUG_HANGUP
1895         printk(KERN_DEBUG "opening %s...", tty->name);
1896 #endif
1897         if (!retval) {
1898                 if (tty->ops->open)
1899                         retval = tty->ops->open(tty, filp);
1900                 else
1901                         retval = -ENODEV;
1902         }
1903         filp->f_flags = saved_flags;
1904
1905         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1906                                                 !capable(CAP_SYS_ADMIN))
1907                 retval = -EBUSY;
1908
1909         if (retval) {
1910 #ifdef TTY_DEBUG_HANGUP
1911                 printk(KERN_DEBUG "error %d in opening %s...", retval,
1912                        tty->name);
1913 #endif
1914                 release_dev(filp);
1915                 if (retval != -ERESTARTSYS)
1916                         return retval;
1917                 if (signal_pending(current))
1918                         return retval;
1919                 schedule();
1920                 /*
1921                  * Need to reset f_op in case a hangup happened.
1922                  */
1923                 if (filp->f_op == &hung_up_tty_fops)
1924                         filp->f_op = &tty_fops;
1925                 goto retry_open;
1926         }
1927
1928         mutex_lock(&tty_mutex);
1929         spin_lock_irq(&current->sighand->siglock);
1930         if (!noctty &&
1931             current->signal->leader &&
1932             !current->signal->tty &&
1933             tty->session == NULL)
1934                 __proc_set_tty(current, tty);
1935         spin_unlock_irq(&current->sighand->siglock);
1936         mutex_unlock(&tty_mutex);
1937         return 0;
1938 }
1939
1940 /* BKL pushdown: scary code avoidance wrapper */
1941 static int tty_open(struct inode *inode, struct file *filp)
1942 {
1943         int ret;
1944
1945         lock_kernel();
1946         ret = __tty_open(inode, filp);
1947         unlock_kernel();
1948         return ret;
1949 }
1950
1951
1952
1953 #ifdef CONFIG_UNIX98_PTYS
1954 /**
1955  *      ptmx_open               -       open a unix 98 pty master
1956  *      @inode: inode of device file
1957  *      @filp: file pointer to tty
1958  *
1959  *      Allocate a unix98 pty master device from the ptmx driver.
1960  *
1961  *      Locking: tty_mutex protects theinit_dev work. tty->count should
1962  *              protect the rest.
1963  *              allocated_ptys_lock handles the list of free pty numbers
1964  */
1965
1966 static int __ptmx_open(struct inode *inode, struct file *filp)
1967 {
1968         struct tty_struct *tty;
1969         int retval;
1970         int index;
1971
1972         nonseekable_open(inode, filp);
1973
1974         /* find a device that is not in use. */
1975         index = devpts_new_index();
1976         if (index < 0)
1977                 return index;
1978
1979         mutex_lock(&tty_mutex);
1980         retval = init_dev(ptm_driver, index, &tty, 1);
1981         mutex_unlock(&tty_mutex);
1982
1983         if (retval)
1984                 goto out;
1985
1986         set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
1987         filp->private_data = tty;
1988         file_move(filp, &tty->tty_files);
1989
1990         retval = devpts_pty_new(tty->link);
1991         if (retval)
1992                 goto out1;
1993
1994         check_tty_count(tty, "ptmx_open");
1995         retval = ptm_driver->ops->open(tty, filp);
1996         if (!retval)
1997                 return 0;
1998 out1:
1999         release_dev(filp);
2000         return retval;
2001 out:
2002         devpts_kill_index(index);
2003         return retval;
2004 }
2005
2006 static int ptmx_open(struct inode *inode, struct file *filp)
2007 {
2008         int ret;
2009
2010         lock_kernel();
2011         ret = __ptmx_open(inode, filp);
2012         unlock_kernel();
2013         return ret;
2014 }
2015 #endif
2016
2017 /**
2018  *      tty_release             -       vfs callback for close
2019  *      @inode: inode of tty
2020  *      @filp: file pointer for handle to tty
2021  *
2022  *      Called the last time each file handle is closed that references
2023  *      this tty. There may however be several such references.
2024  *
2025  *      Locking:
2026  *              Takes bkl. See release_dev
2027  */
2028
2029 static int tty_release(struct inode *inode, struct file *filp)
2030 {
2031         lock_kernel();
2032         release_dev(filp);
2033         unlock_kernel();
2034         return 0;
2035 }
2036
2037 /**
2038  *      tty_poll        -       check tty status
2039  *      @filp: file being polled
2040  *      @wait: poll wait structures to update
2041  *
2042  *      Call the line discipline polling method to obtain the poll
2043  *      status of the device.
2044  *
2045  *      Locking: locks called line discipline but ldisc poll method
2046  *      may be re-entered freely by other callers.
2047  */
2048
2049 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2050 {
2051         struct tty_struct *tty;
2052         struct tty_ldisc *ld;
2053         int ret = 0;
2054
2055         tty = (struct tty_struct *)filp->private_data;
2056         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2057                 return 0;
2058
2059         ld = tty_ldisc_ref_wait(tty);
2060         if (ld->ops->poll)
2061                 ret = (ld->ops->poll)(tty, filp, wait);
2062         tty_ldisc_deref(ld);
2063         return ret;
2064 }
2065
2066 static int tty_fasync(int fd, struct file *filp, int on)
2067 {
2068         struct tty_struct *tty;
2069         unsigned long flags;
2070         int retval = 0;
2071
2072         lock_kernel();
2073         tty = (struct tty_struct *)filp->private_data;
2074         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2075                 goto out;
2076
2077         retval = fasync_helper(fd, filp, on, &tty->fasync);
2078         if (retval <= 0)
2079                 goto out;
2080
2081         if (on) {
2082                 enum pid_type type;
2083                 struct pid *pid;
2084                 if (!waitqueue_active(&tty->read_wait))
2085                         tty->minimum_to_wake = 1;
2086                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2087                 if (tty->pgrp) {
2088                         pid = tty->pgrp;
2089                         type = PIDTYPE_PGID;
2090                 } else {
2091                         pid = task_pid(current);
2092                         type = PIDTYPE_PID;
2093                 }
2094                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2095                 retval = __f_setown(filp, pid, type, 0);
2096                 if (retval)
2097                         goto out;
2098         } else {
2099                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2100                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2101         }
2102         retval = 0;
2103 out:
2104         unlock_kernel();
2105         return retval;
2106 }
2107
2108 /**
2109  *      tiocsti                 -       fake input character
2110  *      @tty: tty to fake input into
2111  *      @p: pointer to character
2112  *
2113  *      Fake input to a tty device. Does the necessary locking and
2114  *      input management.
2115  *
2116  *      FIXME: does not honour flow control ??
2117  *
2118  *      Locking:
2119  *              Called functions take tty_ldisc_lock
2120  *              current->signal->tty check is safe without locks
2121  *
2122  *      FIXME: may race normal receive processing
2123  */
2124
2125 static int tiocsti(struct tty_struct *tty, char __user *p)
2126 {
2127         char ch, mbz = 0;
2128         struct tty_ldisc *ld;
2129
2130         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2131                 return -EPERM;
2132         if (get_user(ch, p))
2133                 return -EFAULT;
2134         ld = tty_ldisc_ref_wait(tty);
2135         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2136         tty_ldisc_deref(ld);
2137         return 0;
2138 }
2139
2140 /**
2141  *      tiocgwinsz              -       implement window query ioctl
2142  *      @tty; tty
2143  *      @arg: user buffer for result
2144  *
2145  *      Copies the kernel idea of the window size into the user buffer.
2146  *
2147  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2148  *              is consistent.
2149  */
2150
2151 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2152 {
2153         int err;
2154
2155         mutex_lock(&tty->termios_mutex);
2156         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2157         mutex_unlock(&tty->termios_mutex);
2158
2159         return err ? -EFAULT: 0;
2160 }
2161
2162 /**
2163  *      tty_do_resize           -       resize event
2164  *      @tty: tty being resized
2165  *      @real_tty: real tty (not the same as tty if using a pty/tty pair)
2166  *      @rows: rows (character)
2167  *      @cols: cols (character)
2168  *
2169  *      Update the termios variables and send the neccessary signals to
2170  *      peform a terminal resize correctly
2171  */
2172
2173 int tty_do_resize(struct tty_struct *tty, struct tty_struct *real_tty,
2174                                         struct winsize *ws)
2175 {
2176         struct pid *pgrp, *rpgrp;
2177         unsigned long flags;
2178
2179         /* For a PTY we need to lock the tty side */
2180         mutex_lock(&real_tty->termios_mutex);
2181         if (!memcmp(ws, &real_tty->winsize, sizeof(*ws)))
2182                 goto done;
2183         /* Get the PID values and reference them so we can
2184            avoid holding the tty ctrl lock while sending signals */
2185         spin_lock_irqsave(&tty->ctrl_lock, flags);
2186         pgrp = get_pid(tty->pgrp);
2187         rpgrp = get_pid(real_tty->pgrp);
2188         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2189
2190         if (pgrp)
2191                 kill_pgrp(pgrp, SIGWINCH, 1);
2192         if (rpgrp != pgrp && rpgrp)
2193                 kill_pgrp(rpgrp, SIGWINCH, 1);
2194
2195         put_pid(pgrp);
2196         put_pid(rpgrp);
2197
2198         tty->winsize = *ws;
2199         real_tty->winsize = *ws;
2200 done:
2201         mutex_unlock(&real_tty->termios_mutex);
2202         return 0;
2203 }
2204
2205 /**
2206  *      tiocswinsz              -       implement window size set ioctl
2207  *      @tty; tty
2208  *      @arg: user buffer for result
2209  *
2210  *      Copies the user idea of the window size to the kernel. Traditionally
2211  *      this is just advisory information but for the Linux console it
2212  *      actually has driver level meaning and triggers a VC resize.
2213  *
2214  *      Locking:
2215  *              Driver dependant. The default do_resize method takes the
2216  *      tty termios mutex and ctrl_lock. The console takes its own lock
2217  *      then calls into the default method.
2218  */
2219
2220 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2221         struct winsize __user *arg)
2222 {
2223         struct winsize tmp_ws;
2224         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2225                 return -EFAULT;
2226
2227         if (tty->ops->resize)
2228                 return tty->ops->resize(tty, real_tty, &tmp_ws);
2229         else
2230                 return tty_do_resize(tty, real_tty, &tmp_ws);
2231 }
2232
2233 /**
2234  *      tioccons        -       allow admin to move logical console
2235  *      @file: the file to become console
2236  *
2237  *      Allow the adminstrator to move the redirected console device
2238  *
2239  *      Locking: uses redirect_lock to guard the redirect information
2240  */
2241
2242 static int tioccons(struct file *file)
2243 {
2244         if (!capable(CAP_SYS_ADMIN))
2245                 return -EPERM;
2246         if (file->f_op->write == redirected_tty_write) {
2247                 struct file *f;
2248                 spin_lock(&redirect_lock);
2249                 f = redirect;
2250                 redirect = NULL;
2251                 spin_unlock(&redirect_lock);
2252                 if (f)
2253                         fput(f);
2254                 return 0;
2255         }
2256         spin_lock(&redirect_lock);
2257         if (redirect) {
2258                 spin_unlock(&redirect_lock);
2259                 return -EBUSY;
2260         }
2261         get_file(file);
2262         redirect = file;
2263         spin_unlock(&redirect_lock);
2264         return 0;
2265 }
2266
2267 /**
2268  *      fionbio         -       non blocking ioctl
2269  *      @file: file to set blocking value
2270  *      @p: user parameter
2271  *
2272  *      Historical tty interfaces had a blocking control ioctl before
2273  *      the generic functionality existed. This piece of history is preserved
2274  *      in the expected tty API of posix OS's.
2275  *
2276  *      Locking: none, the open fle handle ensures it won't go away.
2277  */
2278
2279 static int fionbio(struct file *file, int __user *p)
2280 {
2281         int nonblock;
2282
2283         if (get_user(nonblock, p))
2284                 return -EFAULT;
2285
2286         /* file->f_flags is still BKL protected in the fs layer - vomit */
2287         lock_kernel();
2288         if (nonblock)
2289                 file->f_flags |= O_NONBLOCK;
2290         else
2291                 file->f_flags &= ~O_NONBLOCK;
2292         unlock_kernel();
2293         return 0;
2294 }
2295
2296 /**
2297  *      tiocsctty       -       set controlling tty
2298  *      @tty: tty structure
2299  *      @arg: user argument
2300  *
2301  *      This ioctl is used to manage job control. It permits a session
2302  *      leader to set this tty as the controlling tty for the session.
2303  *
2304  *      Locking:
2305  *              Takes tty_mutex() to protect tty instance
2306  *              Takes tasklist_lock internally to walk sessions
2307  *              Takes ->siglock() when updating signal->tty
2308  */
2309
2310 static int tiocsctty(struct tty_struct *tty, int arg)
2311 {
2312         int ret = 0;
2313         if (current->signal->leader && (task_session(current) == tty->session))
2314                 return ret;
2315
2316         mutex_lock(&tty_mutex);
2317         /*
2318          * The process must be a session leader and
2319          * not have a controlling tty already.
2320          */
2321         if (!current->signal->leader || current->signal->tty) {
2322                 ret = -EPERM;
2323                 goto unlock;
2324         }
2325
2326         if (tty->session) {
2327                 /*
2328                  * This tty is already the controlling
2329                  * tty for another session group!
2330                  */
2331                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2332                         /*
2333                          * Steal it away
2334                          */
2335                         read_lock(&tasklist_lock);
2336                         session_clear_tty(tty->session);
2337                         read_unlock(&tasklist_lock);
2338                 } else {
2339                         ret = -EPERM;
2340                         goto unlock;
2341                 }
2342         }
2343         proc_set_tty(current, tty);
2344 unlock:
2345         mutex_unlock(&tty_mutex);
2346         return ret;
2347 }
2348
2349 /**
2350  *      tty_get_pgrp    -       return a ref counted pgrp pid
2351  *      @tty: tty to read
2352  *
2353  *      Returns a refcounted instance of the pid struct for the process
2354  *      group controlling the tty.
2355  */
2356
2357 struct pid *tty_get_pgrp(struct tty_struct *tty)
2358 {
2359         unsigned long flags;
2360         struct pid *pgrp;
2361
2362         spin_lock_irqsave(&tty->ctrl_lock, flags);
2363         pgrp = get_pid(tty->pgrp);
2364         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2365
2366         return pgrp;
2367 }
2368 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2369
2370 /**
2371  *      tiocgpgrp               -       get process group
2372  *      @tty: tty passed by user
2373  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2374  *      @p: returned pid
2375  *
2376  *      Obtain the process group of the tty. If there is no process group
2377  *      return an error.
2378  *
2379  *      Locking: none. Reference to current->signal->tty is safe.
2380  */
2381
2382 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2383 {
2384         struct pid *pid;
2385         int ret;
2386         /*
2387          * (tty == real_tty) is a cheap way of
2388          * testing if the tty is NOT a master pty.
2389          */
2390         if (tty == real_tty && current->signal->tty != real_tty)
2391                 return -ENOTTY;
2392         pid = tty_get_pgrp(real_tty);
2393         ret =  put_user(pid_vnr(pid), p);
2394         put_pid(pid);
2395         return ret;
2396 }
2397
2398 /**
2399  *      tiocspgrp               -       attempt to set process group
2400  *      @tty: tty passed by user
2401  *      @real_tty: tty side device matching tty passed by user
2402  *      @p: pid pointer
2403  *
2404  *      Set the process group of the tty to the session passed. Only
2405  *      permitted where the tty session is our session.
2406  *
2407  *      Locking: RCU, ctrl lock
2408  */
2409
2410 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2411 {
2412         struct pid *pgrp;
2413         pid_t pgrp_nr;
2414         int retval = tty_check_change(real_tty);
2415         unsigned long flags;
2416
2417         if (retval == -EIO)
2418                 return -ENOTTY;
2419         if (retval)
2420                 return retval;
2421         if (!current->signal->tty ||
2422             (current->signal->tty != real_tty) ||
2423             (real_tty->session != task_session(current)))
2424                 return -ENOTTY;
2425         if (get_user(pgrp_nr, p))
2426                 return -EFAULT;
2427         if (pgrp_nr < 0)
2428                 return -EINVAL;
2429         rcu_read_lock();
2430         pgrp = find_vpid(pgrp_nr);
2431         retval = -ESRCH;
2432         if (!pgrp)
2433                 goto out_unlock;
2434         retval = -EPERM;
2435         if (session_of_pgrp(pgrp) != task_session(current))
2436                 goto out_unlock;
2437         retval = 0;
2438         spin_lock_irqsave(&tty->ctrl_lock, flags);
2439         put_pid(real_tty->pgrp);
2440         real_tty->pgrp = get_pid(pgrp);
2441         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2442 out_unlock:
2443         rcu_read_unlock();
2444         return retval;
2445 }
2446
2447 /**
2448  *      tiocgsid                -       get session id
2449  *      @tty: tty passed by user
2450  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2451  *      @p: pointer to returned session id
2452  *
2453  *      Obtain the session id of the tty. If there is no session
2454  *      return an error.
2455  *
2456  *      Locking: none. Reference to current->signal->tty is safe.
2457  */
2458
2459 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2460 {
2461         /*
2462          * (tty == real_tty) is a cheap way of
2463          * testing if the tty is NOT a master pty.
2464         */
2465         if (tty == real_tty && current->signal->tty != real_tty)
2466                 return -ENOTTY;
2467         if (!real_tty->session)
2468                 return -ENOTTY;
2469         return put_user(pid_vnr(real_tty->session), p);
2470 }
2471
2472 /**
2473  *      tiocsetd        -       set line discipline
2474  *      @tty: tty device
2475  *      @p: pointer to user data
2476  *
2477  *      Set the line discipline according to user request.
2478  *
2479  *      Locking: see tty_set_ldisc, this function is just a helper
2480  */
2481
2482 static int tiocsetd(struct tty_struct *tty, int __user *p)
2483 {
2484         int ldisc;
2485         int ret;
2486
2487         if (get_user(ldisc, p))
2488                 return -EFAULT;
2489
2490         lock_kernel();
2491         ret = tty_set_ldisc(tty, ldisc);
2492         unlock_kernel();
2493
2494         return ret;
2495 }
2496
2497 /**
2498  *      send_break      -       performed time break
2499  *      @tty: device to break on
2500  *      @duration: timeout in mS
2501  *
2502  *      Perform a timed break on hardware that lacks its own driver level
2503  *      timed break functionality.
2504  *
2505  *      Locking:
2506  *              atomic_write_lock serializes
2507  *
2508  */
2509
2510 static int send_break(struct tty_struct *tty, unsigned int duration)
2511 {
2512         int retval;
2513
2514         if (tty->ops->break_ctl == NULL)
2515                 return 0;
2516
2517         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2518                 retval = tty->ops->break_ctl(tty, duration);
2519         else {
2520                 /* Do the work ourselves */
2521                 if (tty_write_lock(tty, 0) < 0)
2522                         return -EINTR;
2523                 retval = tty->ops->break_ctl(tty, -1);
2524                 if (retval)
2525                         goto out;
2526                 if (!signal_pending(current))
2527                         msleep_interruptible(duration);
2528                 retval = tty->ops->break_ctl(tty, 0);
2529 out:
2530                 tty_write_unlock(tty);
2531                 if (signal_pending(current))
2532                         retval = -EINTR;
2533         }
2534         return retval;
2535 }
2536
2537 /**
2538  *      tty_tiocmget            -       get modem status
2539  *      @tty: tty device
2540  *      @file: user file pointer
2541  *      @p: pointer to result
2542  *
2543  *      Obtain the modem status bits from the tty driver if the feature
2544  *      is supported. Return -EINVAL if it is not available.
2545  *
2546  *      Locking: none (up to the driver)
2547  */
2548
2549 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2550 {
2551         int retval = -EINVAL;
2552
2553         if (tty->ops->tiocmget) {
2554                 retval = tty->ops->tiocmget(tty, file);
2555
2556                 if (retval >= 0)
2557                         retval = put_user(retval, p);
2558         }
2559         return retval;
2560 }
2561
2562 /**
2563  *      tty_tiocmset            -       set modem status
2564  *      @tty: tty device
2565  *      @file: user file pointer
2566  *      @cmd: command - clear bits, set bits or set all
2567  *      @p: pointer to desired bits
2568  *
2569  *      Set the modem status bits from the tty driver if the feature
2570  *      is supported. Return -EINVAL if it is not available.
2571  *
2572  *      Locking: none (up to the driver)
2573  */
2574
2575 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2576              unsigned __user *p)
2577 {
2578         int retval;
2579         unsigned int set, clear, val;
2580
2581         if (tty->ops->tiocmset == NULL)
2582                 return -EINVAL;
2583
2584         retval = get_user(val, p);
2585         if (retval)
2586                 return retval;
2587         set = clear = 0;
2588         switch (cmd) {
2589         case TIOCMBIS:
2590                 set = val;
2591                 break;
2592         case TIOCMBIC:
2593                 clear = val;
2594                 break;
2595         case TIOCMSET:
2596                 set = val;
2597                 clear = ~val;
2598                 break;
2599         }
2600         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2601         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2602         return tty->ops->tiocmset(tty, file, set, clear);
2603 }
2604
2605 /*
2606  * Split this up, as gcc can choke on it otherwise..
2607  */
2608 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2609 {
2610         struct tty_struct *tty, *real_tty;
2611         void __user *p = (void __user *)arg;
2612         int retval;
2613         struct tty_ldisc *ld;
2614         struct inode *inode = file->f_dentry->d_inode;
2615
2616         tty = (struct tty_struct *)file->private_data;
2617         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2618                 return -EINVAL;
2619
2620         real_tty = tty;
2621         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2622             tty->driver->subtype == PTY_TYPE_MASTER)
2623                 real_tty = tty->link;
2624
2625
2626         /*
2627          * Factor out some common prep work
2628          */
2629         switch (cmd) {
2630         case TIOCSETD:
2631         case TIOCSBRK:
2632         case TIOCCBRK:
2633         case TCSBRK:
2634         case TCSBRKP:
2635                 retval = tty_check_change(tty);
2636                 if (retval)
2637                         return retval;
2638                 if (cmd != TIOCCBRK) {
2639                         tty_wait_until_sent(tty, 0);
2640                         if (signal_pending(current))
2641                                 return -EINTR;
2642                 }
2643                 break;
2644         }
2645
2646         /*
2647          *      Now do the stuff.
2648          */
2649         switch (cmd) {
2650         case TIOCSTI:
2651                 return tiocsti(tty, p);
2652         case TIOCGWINSZ:
2653                 return tiocgwinsz(real_tty, p);
2654         case TIOCSWINSZ:
2655                 return tiocswinsz(tty, real_tty, p);
2656         case TIOCCONS:
2657                 return real_tty != tty ? -EINVAL : tioccons(file);
2658         case FIONBIO:
2659                 return fionbio(file, p);
2660         case TIOCEXCL:
2661                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2662                 return 0;
2663         case TIOCNXCL:
2664                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2665                 return 0;
2666         case TIOCNOTTY:
2667                 if (current->signal->tty != tty)
2668                         return -ENOTTY;
2669                 no_tty();
2670                 return 0;
2671         case TIOCSCTTY:
2672                 return tiocsctty(tty, arg);
2673         case TIOCGPGRP:
2674                 return tiocgpgrp(tty, real_tty, p);
2675         case TIOCSPGRP:
2676                 return tiocspgrp(tty, real_tty, p);
2677         case TIOCGSID:
2678                 return tiocgsid(tty, real_tty, p);
2679         case TIOCGETD:
2680                 return put_user(tty->ldisc.ops->num, (int __user *)p);
2681         case TIOCSETD:
2682                 return tiocsetd(tty, p);
2683         /*
2684          * Break handling
2685          */
2686         case TIOCSBRK:  /* Turn break on, unconditionally */
2687                 if (tty->ops->break_ctl)
2688                         return tty->ops->break_ctl(tty, -1);
2689                 return 0;
2690         case TIOCCBRK:  /* Turn break off, unconditionally */
2691                 if (tty->ops->break_ctl)
2692                         return tty->ops->break_ctl(tty, 0);
2693                 return 0;
2694         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2695                 /* non-zero arg means wait for all output data
2696                  * to be sent (performed above) but don't send break.
2697                  * This is used by the tcdrain() termios function.
2698                  */
2699                 if (!arg)
2700                         return send_break(tty, 250);
2701                 return 0;
2702         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2703                 return send_break(tty, arg ? arg*100 : 250);
2704
2705         case TIOCMGET:
2706                 return tty_tiocmget(tty, file, p);
2707         case TIOCMSET:
2708         case TIOCMBIC:
2709         case TIOCMBIS:
2710                 return tty_tiocmset(tty, file, cmd, p);
2711         case TCFLSH:
2712                 switch (arg) {
2713                 case TCIFLUSH:
2714                 case TCIOFLUSH:
2715                 /* flush tty buffer and allow ldisc to process ioctl */
2716                         tty_buffer_flush(tty);
2717                         break;
2718                 }
2719                 break;
2720         }
2721         if (tty->ops->ioctl) {
2722                 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2723                 if (retval != -ENOIOCTLCMD)
2724                         return retval;
2725         }
2726         ld = tty_ldisc_ref_wait(tty);
2727         retval = -EINVAL;
2728         if (ld->ops->ioctl) {
2729                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2730                 if (retval == -ENOIOCTLCMD)
2731                         retval = -EINVAL;
2732         }
2733         tty_ldisc_deref(ld);
2734         return retval;
2735 }
2736
2737 #ifdef CONFIG_COMPAT
2738 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2739                                 unsigned long arg)
2740 {
2741         struct inode *inode = file->f_dentry->d_inode;
2742         struct tty_struct *tty = file->private_data;
2743         struct tty_ldisc *ld;
2744         int retval = -ENOIOCTLCMD;
2745
2746         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2747                 return -EINVAL;
2748
2749         if (tty->ops->compat_ioctl) {
2750                 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2751                 if (retval != -ENOIOCTLCMD)
2752                         return retval;
2753         }
2754
2755         ld = tty_ldisc_ref_wait(tty);
2756         if (ld->ops->compat_ioctl)
2757                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2758         tty_ldisc_deref(ld);
2759
2760         return retval;
2761 }
2762 #endif
2763
2764 /*
2765  * This implements the "Secure Attention Key" ---  the idea is to
2766  * prevent trojan horses by killing all processes associated with this
2767  * tty when the user hits the "Secure Attention Key".  Required for
2768  * super-paranoid applications --- see the Orange Book for more details.
2769  *
2770  * This code could be nicer; ideally it should send a HUP, wait a few
2771  * seconds, then send a INT, and then a KILL signal.  But you then
2772  * have to coordinate with the init process, since all processes associated
2773  * with the current tty must be dead before the new getty is allowed
2774  * to spawn.
2775  *
2776  * Now, if it would be correct ;-/ The current code has a nasty hole -
2777  * it doesn't catch files in flight. We may send the descriptor to ourselves
2778  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2779  *
2780  * Nasty bug: do_SAK is being called in interrupt context.  This can
2781  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2782  */
2783 void __do_SAK(struct tty_struct *tty)
2784 {
2785 #ifdef TTY_SOFT_SAK
2786         tty_hangup(tty);
2787 #else
2788         struct task_struct *g, *p;
2789         struct pid *session;
2790         int             i;
2791         struct file     *filp;
2792         struct fdtable *fdt;
2793
2794         if (!tty)
2795                 return;
2796         session = tty->session;
2797
2798         tty_ldisc_flush(tty);
2799
2800         tty_driver_flush_buffer(tty);
2801
2802         read_lock(&tasklist_lock);
2803         /* Kill the entire session */
2804         do_each_pid_task(session, PIDTYPE_SID, p) {
2805                 printk(KERN_NOTICE "SAK: killed process %d"
2806                         " (%s): task_session_nr(p)==tty->session\n",
2807                         task_pid_nr(p), p->comm);
2808                 send_sig(SIGKILL, p, 1);
2809         } while_each_pid_task(session, PIDTYPE_SID, p);
2810         /* Now kill any processes that happen to have the
2811          * tty open.
2812          */
2813         do_each_thread(g, p) {
2814                 if (p->signal->tty == tty) {
2815                         printk(KERN_NOTICE "SAK: killed process %d"
2816                             " (%s): task_session_nr(p)==tty->session\n",
2817                             task_pid_nr(p), p->comm);
2818                         send_sig(SIGKILL, p, 1);
2819                         continue;
2820                 }
2821                 task_lock(p);
2822                 if (p->files) {
2823                         /*
2824                          * We don't take a ref to the file, so we must
2825                          * hold ->file_lock instead.
2826                          */
2827                         spin_lock(&p->files->file_lock);
2828                         fdt = files_fdtable(p->files);
2829                         for (i = 0; i < fdt->max_fds; i++) {
2830                                 filp = fcheck_files(p->files, i);
2831                                 if (!filp)
2832                                         continue;
2833                                 if (filp->f_op->read == tty_read &&
2834                                     filp->private_data == tty) {
2835                                         printk(KERN_NOTICE "SAK: killed process %d"
2836                                             " (%s): fd#%d opened to the tty\n",
2837                                             task_pid_nr(p), p->comm, i);
2838                                         force_sig(SIGKILL, p);
2839                                         break;
2840                                 }
2841                         }
2842                         spin_unlock(&p->files->file_lock);
2843                 }
2844                 task_unlock(p);
2845         } while_each_thread(g, p);
2846         read_unlock(&tasklist_lock);
2847 #endif
2848 }
2849
2850 static void do_SAK_work(struct work_struct *work)
2851 {
2852         struct tty_struct *tty =
2853                 container_of(work, struct tty_struct, SAK_work);
2854         __do_SAK(tty);
2855 }
2856
2857 /*
2858  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2859  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2860  * the values which we write to it will be identical to the values which it
2861  * already has. --akpm
2862  */
2863 void do_SAK(struct tty_struct *tty)
2864 {
2865         if (!tty)
2866                 return;
2867         schedule_work(&tty->SAK_work);
2868 }
2869
2870 EXPORT_SYMBOL(do_SAK);
2871
2872 /**
2873  *      initialize_tty_struct
2874  *      @tty: tty to initialize
2875  *
2876  *      This subroutine initializes a tty structure that has been newly
2877  *      allocated.
2878  *
2879  *      Locking: none - tty in question must not be exposed at this point
2880  */
2881
2882 static void initialize_tty_struct(struct tty_struct *tty)
2883 {
2884         memset(tty, 0, sizeof(struct tty_struct));
2885         kref_init(&tty->kref);
2886         tty->magic = TTY_MAGIC;
2887         tty_ldisc_init(tty);
2888         tty->session = NULL;
2889         tty->pgrp = NULL;
2890         tty->overrun_time = jiffies;
2891         tty->buf.head = tty->buf.tail = NULL;
2892         tty_buffer_init(tty);
2893         mutex_init(&tty->termios_mutex);
2894         init_waitqueue_head(&tty->write_wait);
2895         init_waitqueue_head(&tty->read_wait);
2896         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2897         mutex_init(&tty->atomic_read_lock);
2898         mutex_init(&tty->atomic_write_lock);
2899         spin_lock_init(&tty->read_lock);
2900         spin_lock_init(&tty->ctrl_lock);
2901         INIT_LIST_HEAD(&tty->tty_files);
2902         INIT_WORK(&tty->SAK_work, do_SAK_work);
2903 }
2904
2905 /**
2906  *      tty_put_char    -       write one character to a tty
2907  *      @tty: tty
2908  *      @ch: character
2909  *
2910  *      Write one byte to the tty using the provided put_char method
2911  *      if present. Returns the number of characters successfully output.
2912  *
2913  *      Note: the specific put_char operation in the driver layer may go
2914  *      away soon. Don't call it directly, use this method
2915  */
2916
2917 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2918 {
2919         if (tty->ops->put_char)
2920                 return tty->ops->put_char(tty, ch);
2921         return tty->ops->write(tty, &ch, 1);
2922 }
2923
2924 EXPORT_SYMBOL_GPL(tty_put_char);
2925
2926 static struct class *tty_class;
2927
2928 /**
2929  *      tty_register_device - register a tty device
2930  *      @driver: the tty driver that describes the tty device
2931  *      @index: the index in the tty driver for this tty device
2932  *      @device: a struct device that is associated with this tty device.
2933  *              This field is optional, if there is no known struct device
2934  *              for this tty device it can be set to NULL safely.
2935  *
2936  *      Returns a pointer to the struct device for this tty device
2937  *      (or ERR_PTR(-EFOO) on error).
2938  *
2939  *      This call is required to be made to register an individual tty device
2940  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2941  *      that bit is not set, this function should not be called by a tty
2942  *      driver.
2943  *
2944  *      Locking: ??
2945  */
2946
2947 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2948                                    struct device *device)
2949 {
2950         char name[64];
2951         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2952
2953         if (index >= driver->num) {
2954                 printk(KERN_ERR "Attempt to register invalid tty line number "
2955                        " (%d).\n", index);
2956                 return ERR_PTR(-EINVAL);
2957         }
2958
2959         if (driver->type == TTY_DRIVER_TYPE_PTY)
2960                 pty_line_name(driver, index, name);
2961         else
2962                 tty_line_name(driver, index, name);
2963
2964         return device_create_drvdata(tty_class, device, dev, NULL, name);
2965 }
2966
2967 /**
2968  *      tty_unregister_device - unregister a tty device
2969  *      @driver: the tty driver that describes the tty device
2970  *      @index: the index in the tty driver for this tty device
2971  *
2972  *      If a tty device is registered with a call to tty_register_device() then
2973  *      this function must be called when the tty device is gone.
2974  *
2975  *      Locking: ??
2976  */
2977
2978 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2979 {
2980         device_destroy(tty_class,
2981                 MKDEV(driver->major, driver->minor_start) + index);
2982 }
2983
2984 EXPORT_SYMBOL(tty_register_device);
2985 EXPORT_SYMBOL(tty_unregister_device);
2986
2987 struct tty_driver *alloc_tty_driver(int lines)
2988 {
2989         struct tty_driver *driver;
2990
2991         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2992         if (driver) {
2993                 driver->magic = TTY_DRIVER_MAGIC;
2994                 driver->num = lines;
2995                 /* later we'll move allocation of tables here */
2996         }
2997         return driver;
2998 }
2999
3000 void put_tty_driver(struct tty_driver *driver)
3001 {
3002         kfree(driver);
3003 }
3004
3005 void tty_set_operations(struct tty_driver *driver,
3006                         const struct tty_operations *op)
3007 {
3008         driver->ops = op;
3009 };
3010
3011 EXPORT_SYMBOL(alloc_tty_driver);
3012 EXPORT_SYMBOL(put_tty_driver);
3013 EXPORT_SYMBOL(tty_set_operations);
3014
3015 /*
3016  * Called by a tty driver to register itself.
3017  */
3018 int tty_register_driver(struct tty_driver *driver)
3019 {
3020         int error;
3021         int i;
3022         dev_t dev;
3023         void **p = NULL;
3024
3025         if (driver->flags & TTY_DRIVER_INSTALLED)
3026                 return 0;
3027
3028         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3029                 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3030                 if (!p)
3031                         return -ENOMEM;
3032         }
3033
3034         if (!driver->major) {
3035                 error = alloc_chrdev_region(&dev, driver->minor_start,
3036                                                 driver->num, driver->name);
3037                 if (!error) {
3038                         driver->major = MAJOR(dev);
3039                         driver->minor_start = MINOR(dev);
3040                 }
3041         } else {
3042                 dev = MKDEV(driver->major, driver->minor_start);
3043                 error = register_chrdev_region(dev, driver->num, driver->name);
3044         }
3045         if (error < 0) {
3046                 kfree(p);
3047                 return error;
3048         }
3049
3050         if (p) {
3051                 driver->ttys = (struct tty_struct **)p;
3052                 driver->termios = (struct ktermios **)(p + driver->num);
3053                 driver->termios_locked = (struct ktermios **)
3054                                                         (p + driver->num * 2);
3055         } else {
3056                 driver->ttys = NULL;
3057                 driver->termios = NULL;
3058                 driver->termios_locked = NULL;
3059         }
3060
3061         cdev_init(&driver->cdev, &tty_fops);
3062         driver->cdev.owner = driver->owner;
3063         error = cdev_add(&driver->cdev, dev, driver->num);
3064         if (error) {
3065                 unregister_chrdev_region(dev, driver->num);
3066                 driver->ttys = NULL;
3067                 driver->termios = driver->termios_locked = NULL;
3068                 kfree(p);
3069                 return error;
3070         }
3071
3072         mutex_lock(&tty_mutex);
3073         list_add(&driver->tty_drivers, &tty_drivers);
3074         mutex_unlock(&tty_mutex);
3075
3076         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3077                 for (i = 0; i < driver->num; i++)
3078                     tty_register_device(driver, i, NULL);
3079         }
3080         proc_tty_register_driver(driver);
3081         return 0;
3082 }
3083
3084 EXPORT_SYMBOL(tty_register_driver);
3085
3086 /*
3087  * Called by a tty driver to unregister itself.
3088  */
3089 int tty_unregister_driver(struct tty_driver *driver)
3090 {
3091         int i;
3092         struct ktermios *tp;
3093         void *p;
3094
3095         if (driver->refcount)
3096                 return -EBUSY;
3097
3098         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3099                                 driver->num);
3100         mutex_lock(&tty_mutex);
3101         list_del(&driver->tty_drivers);
3102         mutex_unlock(&tty_mutex);
3103
3104         /*
3105          * Free the termios and termios_locked structures because
3106          * we don't want to get memory leaks when modular tty
3107          * drivers are removed from the kernel.
3108          */
3109         for (i = 0; i < driver->num; i++) {
3110                 tp = driver->termios[i];
3111                 if (tp) {
3112                         driver->termios[i] = NULL;
3113                         kfree(tp);
3114                 }
3115                 tp = driver->termios_locked[i];
3116                 if (tp) {
3117                         driver->termios_locked[i] = NULL;
3118                         kfree(tp);
3119                 }
3120                 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3121                         tty_unregister_device(driver, i);
3122         }
3123         p = driver->ttys;
3124         proc_tty_unregister_driver(driver);
3125         driver->ttys = NULL;
3126         driver->termios = driver->termios_locked = NULL;
3127         kfree(p);
3128         cdev_del(&driver->cdev);
3129         return 0;
3130 }
3131 EXPORT_SYMBOL(tty_unregister_driver);
3132
3133 dev_t tty_devnum(struct tty_struct *tty)
3134 {
3135         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3136 }
3137 EXPORT_SYMBOL(tty_devnum);
3138
3139 void proc_clear_tty(struct task_struct *p)
3140 {
3141         struct tty_struct *tty;
3142         spin_lock_irq(&p->sighand->siglock);
3143         tty = p->signal->tty;
3144         p->signal->tty = NULL;
3145         spin_unlock_irq(&p->sighand->siglock);
3146         tty_kref_put(tty);
3147 }
3148
3149 /* Called under the sighand lock */
3150
3151 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3152 {
3153         if (tty) {
3154                 unsigned long flags;
3155                 /* We should not have a session or pgrp to put here but.... */
3156                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3157                 put_pid(tty->session);
3158                 put_pid(tty->pgrp);
3159                 tty->pgrp = get_pid(task_pgrp(tsk));
3160                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3161                 tty->session = get_pid(task_session(tsk));
3162                 if (tsk->signal->tty) {
3163                         printk(KERN_DEBUG "tty not NULL!!\n");
3164                         tty_kref_put(tsk->signal->tty);
3165                 }
3166         }
3167         put_pid(tsk->signal->tty_old_pgrp);
3168         tsk->signal->tty = tty_kref_get(tty);
3169         tsk->signal->tty_old_pgrp = NULL;
3170 }
3171
3172 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3173 {
3174         spin_lock_irq(&tsk->sighand->siglock);
3175         __proc_set_tty(tsk, tty);
3176         spin_unlock_irq(&tsk->sighand->siglock);
3177 }
3178
3179 struct tty_struct *get_current_tty(void)
3180 {
3181         struct tty_struct *tty;
3182         unsigned long flags;
3183
3184         spin_lock_irqsave(&current->sighand->siglock, flags);
3185         tty = tty_kref_get(current->signal->tty);
3186         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3187         return tty;
3188 }
3189 EXPORT_SYMBOL_GPL(get_current_tty);
3190
3191 /*
3192  * Initialize the console device. This is called *early*, so
3193  * we can't necessarily depend on lots of kernel help here.
3194  * Just do some early initializations, and do the complex setup
3195  * later.
3196  */
3197 void __init console_init(void)
3198 {
3199         initcall_t *call;
3200
3201         /* Setup the default TTY line discipline. */
3202         tty_ldisc_begin();
3203
3204         /*
3205          * set up the console device so that later boot sequences can
3206          * inform about problems etc..
3207          */
3208         call = __con_initcall_start;
3209         while (call < __con_initcall_end) {
3210                 (*call)();
3211                 call++;
3212         }
3213 }
3214
3215 static int __init tty_class_init(void)
3216 {
3217         tty_class = class_create(THIS_MODULE, "tty");
3218         if (IS_ERR(tty_class))
3219                 return PTR_ERR(tty_class);
3220         return 0;
3221 }
3222
3223 postcore_initcall(tty_class_init);
3224
3225 /* 3/2004 jmc: why do these devices exist? */
3226
3227 static struct cdev tty_cdev, console_cdev;
3228 #ifdef CONFIG_UNIX98_PTYS
3229 static struct cdev ptmx_cdev;
3230 #endif
3231 #ifdef CONFIG_VT
3232 static struct cdev vc0_cdev;
3233 #endif
3234
3235 /*
3236  * Ok, now we can initialize the rest of the tty devices and can count
3237  * on memory allocations, interrupts etc..
3238  */
3239 static int __init tty_init(void)
3240 {
3241         cdev_init(&tty_cdev, &tty_fops);
3242         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3243             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3244                 panic("Couldn't register /dev/tty driver\n");
3245         device_create_drvdata(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3246                               "tty");
3247
3248         cdev_init(&console_cdev, &console_fops);
3249         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3250             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3251                 panic("Couldn't register /dev/console driver\n");
3252         device_create_drvdata(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3253                               "console");
3254
3255 #ifdef CONFIG_UNIX98_PTYS
3256         cdev_init(&ptmx_cdev, &ptmx_fops);
3257         if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
3258             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
3259                 panic("Couldn't register /dev/ptmx driver\n");
3260         device_create_drvdata(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), NULL, "ptmx");
3261 #endif
3262
3263 #ifdef CONFIG_VT
3264         cdev_init(&vc0_cdev, &console_fops);
3265         if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
3266             register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
3267                 panic("Couldn't register /dev/tty0 driver\n");
3268         device_create_drvdata(tty_class, NULL, MKDEV(TTY_MAJOR, 0), NULL, "tty0");
3269
3270         vty_init();
3271 #endif
3272         return 0;
3273 }
3274 module_init(tty_init);