]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/block/cciss.c
[PATCH] cciss: new controller pci/subsystem ids
[linux-2.6-omap-h63xx.git] / drivers / block / cciss.c
1 /*
2  *    Disk Array driver for HP SA 5xxx and 6xxx Controllers
3  *    Copyright 2000, 2005 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; either version 2 of the License, or
8  *    (at your option) any later version.
9  *
10  *    This program is distributed in the hope that it will be useful,
11  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
14  *
15  *    You should have received a copy of the GNU General Public License
16  *    along with this program; if not, write to the Free Software
17  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  *
19  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
20  *
21  */
22
23 #include <linux/config.h>       /* CONFIG_PROC_FS */
24 #include <linux/module.h>
25 #include <linux/interrupt.h>
26 #include <linux/types.h>
27 #include <linux/pci.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/init.h> 
38 #include <linux/hdreg.h>
39 #include <linux/spinlock.h>
40 #include <linux/compat.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43
44 #include <linux/dma-mapping.h>
45 #include <linux/blkdev.h>
46 #include <linux/genhd.h>
47 #include <linux/completion.h>
48
49 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
50 #define DRIVER_NAME "HP CISS Driver (v 2.6.8)"
51 #define DRIVER_VERSION CCISS_DRIVER_VERSION(2,6,8)
52
53 /* Embedded module documentation macros - see modules.h */
54 MODULE_AUTHOR("Hewlett-Packard Company");
55 MODULE_DESCRIPTION("Driver for HP Controller SA5xxx SA6xxx version 2.6.8");
56 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
57                         " SA6i P600 P800 P400 P400i E200 E200i");
58 MODULE_LICENSE("GPL");
59
60 #include "cciss_cmd.h"
61 #include "cciss.h"
62 #include <linux/cciss_ioctl.h>
63
64 /* define the PCI info for the cards we can control */
65 static const struct pci_device_id cciss_pci_device_id[] = {
66         { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,
67                         0x0E11, 0x4070, 0, 0, 0},
68         { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB,
69                         0x0E11, 0x4080, 0, 0, 0},
70         { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB,
71                         0x0E11, 0x4082, 0, 0, 0},
72         { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB,
73                         0x0E11, 0x4083, 0, 0, 0},
74         { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
75                 0x0E11, 0x409A, 0, 0, 0},
76         { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
77                 0x0E11, 0x409B, 0, 0, 0},
78         { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
79                 0x0E11, 0x409C, 0, 0, 0},
80         { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
81                 0x0E11, 0x409D, 0, 0, 0},
82         { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
83                 0x0E11, 0x4091, 0, 0, 0},
84         { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA,
85                 0x103C, 0x3225, 0, 0, 0},
86         { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC,
87                 0x103c, 0x3223, 0, 0, 0},
88         { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC,
89                 0x103c, 0x3234, 0, 0, 0},
90         { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC,
91                 0x103c, 0x3235, 0, 0, 0},
92         { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD,
93                 0x103c, 0x3211, 0, 0, 0},
94         { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD,
95                 0x103c, 0x3212, 0, 0, 0},
96         { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD,
97                 0x103c, 0x3213, 0, 0, 0},
98         { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD,
99                 0x103c, 0x3214, 0, 0, 0},
100         { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD,
101                 0x103c, 0x3215, 0, 0, 0},
102         {0,}
103 };
104 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
105
106 #define NR_PRODUCTS (sizeof(products)/sizeof(struct board_type))
107
108 /*  board_id = Subsystem Device ID & Vendor ID
109  *  product = Marketing Name for the board
110  *  access = Address of the struct of function pointers 
111  */
112 static struct board_type products[] = {
113         { 0x40700E11, "Smart Array 5300", &SA5_access },
114         { 0x40800E11, "Smart Array 5i", &SA5B_access},
115         { 0x40820E11, "Smart Array 532", &SA5B_access},
116         { 0x40830E11, "Smart Array 5312", &SA5B_access},
117         { 0x409A0E11, "Smart Array 641", &SA5_access},
118         { 0x409B0E11, "Smart Array 642", &SA5_access},
119         { 0x409C0E11, "Smart Array 6400", &SA5_access},
120         { 0x409D0E11, "Smart Array 6400 EM", &SA5_access},
121         { 0x40910E11, "Smart Array 6i", &SA5_access},
122         { 0x3225103C, "Smart Array P600", &SA5_access},
123         { 0x3223103C, "Smart Array P800", &SA5_access},
124         { 0x3234103C, "Smart Array P400", &SA5_access},
125         { 0x3235103C, "Smart Array P400i", &SA5_access},
126         { 0x3211103C, "Smart Array E200i", &SA5_access},
127         { 0x3212103C, "Smart Array E200", &SA5_access},
128         { 0x3213103C, "Smart Array E200i", &SA5_access},
129         { 0x3214103C, "Smart Array E200i", &SA5_access},
130         { 0x3215103C, "Smart Array E200i", &SA5_access},
131 };
132
133 /* How long to wait (in millesconds) for board to go into simple mode */
134 #define MAX_CONFIG_WAIT 30000 
135 #define MAX_IOCTL_CONFIG_WAIT 1000
136
137 /*define how many times we will try a command because of bus resets */
138 #define MAX_CMD_RETRIES 3
139
140 #define READ_AHEAD       1024
141 #define NR_CMDS          384 /* #commands that can be outstanding */
142 #define MAX_CTLR        32
143
144 /* Originally cciss driver only supports 8 major numbers */
145 #define MAX_CTLR_ORIG   8
146
147
148 static ctlr_info_t *hba[MAX_CTLR];
149
150 static void do_cciss_request(request_queue_t *q);
151 static int cciss_open(struct inode *inode, struct file *filep);
152 static int cciss_release(struct inode *inode, struct file *filep);
153 static int cciss_ioctl(struct inode *inode, struct file *filep, 
154                 unsigned int cmd, unsigned long arg);
155
156 static int revalidate_allvol(ctlr_info_t *host);
157 static int cciss_revalidate(struct gendisk *disk);
158 static int deregister_disk(struct gendisk *disk);
159 static int register_new_disk(ctlr_info_t *h);
160
161 static void cciss_getgeometry(int cntl_num);
162
163 static void start_io( ctlr_info_t *h);
164 static int sendcmd( __u8 cmd, int ctlr, void *buff, size_t size,
165         unsigned int use_unit_num, unsigned int log_unit, __u8 page_code,
166         unsigned char *scsi3addr, int cmd_type);
167
168 #ifdef CONFIG_PROC_FS
169 static int cciss_proc_get_info(char *buffer, char **start, off_t offset, 
170                 int length, int *eof, void *data);
171 static void cciss_procinit(int i);
172 #else
173 static void cciss_procinit(int i) {}
174 #endif /* CONFIG_PROC_FS */
175
176 #ifdef CONFIG_COMPAT
177 static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg);
178 #endif
179
180 static struct block_device_operations cciss_fops  = {
181         .owner          = THIS_MODULE,
182         .open           = cciss_open, 
183         .release        = cciss_release,
184         .ioctl          = cciss_ioctl,
185 #ifdef CONFIG_COMPAT
186         .compat_ioctl   = cciss_compat_ioctl,
187 #endif
188         .revalidate_disk= cciss_revalidate,
189 };
190
191 /*
192  * Enqueuing and dequeuing functions for cmdlists.
193  */
194 static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c)
195 {
196         if (*Qptr == NULL) {
197                 *Qptr = c;
198                 c->next = c->prev = c;
199         } else {
200                 c->prev = (*Qptr)->prev;
201                 c->next = (*Qptr);
202                 (*Qptr)->prev->next = c;
203                 (*Qptr)->prev = c;
204         }
205 }
206
207 static inline CommandList_struct *removeQ(CommandList_struct **Qptr, 
208                                                 CommandList_struct *c)
209 {
210         if (c && c->next != c) {
211                 if (*Qptr == c) *Qptr = c->next;
212                 c->prev->next = c->next;
213                 c->next->prev = c->prev;
214         } else {
215                 *Qptr = NULL;
216         }
217         return c;
218 }
219
220 #include "cciss_scsi.c"         /* For SCSI tape support */
221
222 #ifdef CONFIG_PROC_FS
223
224 /*
225  * Report information about this controller.
226  */
227 #define ENG_GIG 1000000000
228 #define ENG_GIG_FACTOR (ENG_GIG/512)
229 #define RAID_UNKNOWN 6
230 static const char *raid_label[] = {"0","4","1(1+0)","5","5+1","ADG",
231                                            "UNKNOWN"};
232
233 static struct proc_dir_entry *proc_cciss;
234
235 static int cciss_proc_get_info(char *buffer, char **start, off_t offset, 
236                 int length, int *eof, void *data)
237 {
238         off_t pos = 0;
239         off_t len = 0;
240         int size, i, ctlr;
241         ctlr_info_t *h = (ctlr_info_t*)data;
242         drive_info_struct *drv;
243         unsigned long flags;
244         sector_t vol_sz, vol_sz_frac;
245
246         ctlr = h->ctlr;
247
248         /* prevent displaying bogus info during configuration
249          * or deconfiguration of a logical volume
250          */
251         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
252         if (h->busy_configuring) {
253                 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
254         return -EBUSY;
255         }
256         h->busy_configuring = 1;
257         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
258
259         size = sprintf(buffer, "%s: HP %s Controller\n"
260                 "Board ID: 0x%08lx\n"
261                 "Firmware Version: %c%c%c%c\n"
262                 "IRQ: %d\n"
263                 "Logical drives: %d\n"
264                 "Current Q depth: %d\n"
265                 "Current # commands on controller: %d\n"
266                 "Max Q depth since init: %d\n"
267                 "Max # commands on controller since init: %d\n"
268                 "Max SG entries since init: %d\n\n",
269                 h->devname,
270                 h->product_name,
271                 (unsigned long)h->board_id,
272                 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2], h->firm_ver[3],
273                 (unsigned int)h->intr,
274                 h->num_luns, 
275                 h->Qdepth, h->commands_outstanding,
276                 h->maxQsinceinit, h->max_outstanding, h->maxSG);
277
278         pos += size; len += size;
279         cciss_proc_tape_report(ctlr, buffer, &pos, &len);
280         for(i=0; i<=h->highest_lun; i++) {
281
282                 drv = &h->drv[i];
283                 if (drv->block_size == 0)
284                         continue;
285
286                 vol_sz = drv->nr_blocks;
287                 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
288                 vol_sz_frac *= 100;
289                 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
290
291                 if (drv->raid_level > 5)
292                         drv->raid_level = RAID_UNKNOWN;
293                 size = sprintf(buffer+len, "cciss/c%dd%d:"
294                                 "\t%4u.%02uGB\tRAID %s\n",
295                                 ctlr, i, (int)vol_sz, (int)vol_sz_frac,
296                                 raid_label[drv->raid_level]);
297                 pos += size; len += size;
298         }
299
300         *eof = 1;
301         *start = buffer+offset;
302         len -= offset;
303         if (len>length)
304                 len = length;
305         h->busy_configuring = 0;
306         return len;
307 }
308
309 static int 
310 cciss_proc_write(struct file *file, const char __user *buffer, 
311                         unsigned long count, void *data)
312 {
313         unsigned char cmd[80];
314         int len;
315 #ifdef CONFIG_CISS_SCSI_TAPE
316         ctlr_info_t *h = (ctlr_info_t *) data;
317         int rc;
318 #endif
319
320         if (count > sizeof(cmd)-1) return -EINVAL;
321         if (copy_from_user(cmd, buffer, count)) return -EFAULT;
322         cmd[count] = '\0';
323         len = strlen(cmd);      // above 3 lines ensure safety
324         if (len && cmd[len-1] == '\n')
325                 cmd[--len] = '\0';
326 #       ifdef CONFIG_CISS_SCSI_TAPE
327                 if (strcmp("engage scsi", cmd)==0) {
328                         rc = cciss_engage_scsi(h->ctlr);
329                         if (rc != 0) return -rc;
330                         return count;
331                 }
332                 /* might be nice to have "disengage" too, but it's not 
333                    safely possible. (only 1 module use count, lock issues.) */
334 #       endif
335         return -EINVAL;
336 }
337
338 /*
339  * Get us a file in /proc/cciss that says something about each controller.
340  * Create /proc/cciss if it doesn't exist yet.
341  */
342 static void __devinit cciss_procinit(int i)
343 {
344         struct proc_dir_entry *pde;
345
346         if (proc_cciss == NULL) {
347                 proc_cciss = proc_mkdir("cciss", proc_root_driver);
348                 if (!proc_cciss) 
349                         return;
350         }
351
352         pde = create_proc_read_entry(hba[i]->devname, 
353                 S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH, 
354                 proc_cciss, cciss_proc_get_info, hba[i]);
355         pde->write_proc = cciss_proc_write;
356 }
357 #endif /* CONFIG_PROC_FS */
358
359 /* 
360  * For operations that cannot sleep, a command block is allocated at init, 
361  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
362  * which ones are free or in use.  For operations that can wait for kmalloc 
363  * to possible sleep, this routine can be called with get_from_pool set to 0. 
364  * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was. 
365  */ 
366 static CommandList_struct * cmd_alloc(ctlr_info_t *h, int get_from_pool)
367 {
368         CommandList_struct *c;
369         int i; 
370         u64bit temp64;
371         dma_addr_t cmd_dma_handle, err_dma_handle;
372
373         if (!get_from_pool)
374         {
375                 c = (CommandList_struct *) pci_alloc_consistent(
376                         h->pdev, sizeof(CommandList_struct), &cmd_dma_handle); 
377                 if(c==NULL)
378                         return NULL;
379                 memset(c, 0, sizeof(CommandList_struct));
380
381                 c->err_info = (ErrorInfo_struct *)pci_alloc_consistent(
382                                         h->pdev, sizeof(ErrorInfo_struct), 
383                                         &err_dma_handle);
384         
385                 if (c->err_info == NULL)
386                 {
387                         pci_free_consistent(h->pdev, 
388                                 sizeof(CommandList_struct), c, cmd_dma_handle);
389                         return NULL;
390                 }
391                 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
392         } else /* get it out of the controllers pool */ 
393         {
394                 do {
395                         i = find_first_zero_bit(h->cmd_pool_bits, NR_CMDS);
396                         if (i == NR_CMDS)
397                                 return NULL;
398                 } while(test_and_set_bit(i & (BITS_PER_LONG - 1), h->cmd_pool_bits+(i/BITS_PER_LONG)) != 0);
399 #ifdef CCISS_DEBUG
400                 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
401 #endif
402                 c = h->cmd_pool + i;
403                 memset(c, 0, sizeof(CommandList_struct));
404                 cmd_dma_handle = h->cmd_pool_dhandle 
405                                         + i*sizeof(CommandList_struct);
406                 c->err_info = h->errinfo_pool + i;
407                 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
408                 err_dma_handle = h->errinfo_pool_dhandle 
409                                         + i*sizeof(ErrorInfo_struct);
410                 h->nr_allocs++;
411         }
412
413         c->busaddr = (__u32) cmd_dma_handle;
414         temp64.val = (__u64) err_dma_handle;    
415         c->ErrDesc.Addr.lower = temp64.val32.lower;
416         c->ErrDesc.Addr.upper = temp64.val32.upper;
417         c->ErrDesc.Len = sizeof(ErrorInfo_struct);
418         
419         c->ctlr = h->ctlr;
420         return c;
421
422
423 }
424
425 /* 
426  * Frees a command block that was previously allocated with cmd_alloc(). 
427  */
428 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
429 {
430         int i;
431         u64bit temp64;
432
433         if( !got_from_pool)
434         { 
435                 temp64.val32.lower = c->ErrDesc.Addr.lower;
436                 temp64.val32.upper = c->ErrDesc.Addr.upper;
437                 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct), 
438                         c->err_info, (dma_addr_t) temp64.val);
439                 pci_free_consistent(h->pdev, sizeof(CommandList_struct), 
440                         c, (dma_addr_t) c->busaddr);
441         } else 
442         {
443                 i = c - h->cmd_pool;
444                 clear_bit(i&(BITS_PER_LONG-1), h->cmd_pool_bits+(i/BITS_PER_LONG));
445                 h->nr_frees++;
446         }
447 }
448
449 static inline ctlr_info_t *get_host(struct gendisk *disk)
450 {
451         return disk->queue->queuedata; 
452 }
453
454 static inline drive_info_struct *get_drv(struct gendisk *disk)
455 {
456         return disk->private_data;
457 }
458
459 /*
460  * Open.  Make sure the device is really there.
461  */
462 static int cciss_open(struct inode *inode, struct file *filep)
463 {
464         ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
465         drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
466
467 #ifdef CCISS_DEBUG
468         printk(KERN_DEBUG "cciss_open %s\n", inode->i_bdev->bd_disk->disk_name);
469 #endif /* CCISS_DEBUG */ 
470
471         /*
472          * Root is allowed to open raw volume zero even if it's not configured
473          * so array config can still work. Root is also allowed to open any
474          * volume that has a LUN ID, so it can issue IOCTL to reread the
475          * disk information.  I don't think I really like this
476          * but I'm already using way to many device nodes to claim another one
477          * for "raw controller".
478          */
479         if (drv->nr_blocks == 0) {
480                 if (iminor(inode) != 0) {       /* not node 0? */
481                         /* if not node 0 make sure it is a partition = 0 */
482                         if (iminor(inode) & 0x0f) {
483                         return -ENXIO;
484                                 /* if it is, make sure we have a LUN ID */
485                         } else if (drv->LunID == 0) {
486                                 return -ENXIO;
487                         }
488                 }
489                 if (!capable(CAP_SYS_ADMIN))
490                         return -EPERM;
491         }
492         drv->usage_count++;
493         host->usage_count++;
494         return 0;
495 }
496 /*
497  * Close.  Sync first.
498  */
499 static int cciss_release(struct inode *inode, struct file *filep)
500 {
501         ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
502         drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
503
504 #ifdef CCISS_DEBUG
505         printk(KERN_DEBUG "cciss_release %s\n", inode->i_bdev->bd_disk->disk_name);
506 #endif /* CCISS_DEBUG */
507
508         drv->usage_count--;
509         host->usage_count--;
510         return 0;
511 }
512
513 #ifdef CONFIG_COMPAT
514
515 static int do_ioctl(struct file *f, unsigned cmd, unsigned long arg)
516 {
517         int ret;
518         lock_kernel();
519         ret = cciss_ioctl(f->f_dentry->d_inode, f, cmd, arg);
520         unlock_kernel();
521         return ret;
522 }
523
524 static int cciss_ioctl32_passthru(struct file *f, unsigned cmd, unsigned long arg);
525 static int cciss_ioctl32_big_passthru(struct file *f, unsigned cmd, unsigned long arg);
526
527 static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg)
528 {
529         switch (cmd) {
530         case CCISS_GETPCIINFO:
531         case CCISS_GETINTINFO:
532         case CCISS_SETINTINFO:
533         case CCISS_GETNODENAME:
534         case CCISS_SETNODENAME:
535         case CCISS_GETHEARTBEAT:
536         case CCISS_GETBUSTYPES:
537         case CCISS_GETFIRMVER:
538         case CCISS_GETDRIVVER:
539         case CCISS_REVALIDVOLS:
540         case CCISS_DEREGDISK:
541         case CCISS_REGNEWDISK:
542         case CCISS_REGNEWD:
543         case CCISS_RESCANDISK:
544         case CCISS_GETLUNINFO:
545                 return do_ioctl(f, cmd, arg);
546
547         case CCISS_PASSTHRU32:
548                 return cciss_ioctl32_passthru(f, cmd, arg);
549         case CCISS_BIG_PASSTHRU32:
550                 return cciss_ioctl32_big_passthru(f, cmd, arg);
551
552         default:
553                 return -ENOIOCTLCMD;
554         }
555 }
556
557 static int cciss_ioctl32_passthru(struct file *f, unsigned cmd, unsigned long arg)
558 {
559         IOCTL32_Command_struct __user *arg32 =
560                 (IOCTL32_Command_struct __user *) arg;
561         IOCTL_Command_struct arg64;
562         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
563         int err;
564         u32 cp;
565
566         err = 0;
567         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, sizeof(arg64.LUN_info));
568         err |= copy_from_user(&arg64.Request, &arg32->Request, sizeof(arg64.Request));
569         err |= copy_from_user(&arg64.error_info, &arg32->error_info, sizeof(arg64.error_info));
570         err |= get_user(arg64.buf_size, &arg32->buf_size);
571         err |= get_user(cp, &arg32->buf);
572         arg64.buf = compat_ptr(cp);
573         err |= copy_to_user(p, &arg64, sizeof(arg64));
574
575         if (err)
576                 return -EFAULT;
577
578         err = do_ioctl(f, CCISS_PASSTHRU, (unsigned long) p);
579         if (err)
580                 return err;
581         err |= copy_in_user(&arg32->error_info, &p->error_info, sizeof(arg32->error_info));
582         if (err)
583                 return -EFAULT;
584         return err;
585 }
586
587 static int cciss_ioctl32_big_passthru(struct file *file, unsigned cmd, unsigned long arg)
588 {
589         BIG_IOCTL32_Command_struct __user *arg32 =
590                 (BIG_IOCTL32_Command_struct __user *) arg;
591         BIG_IOCTL_Command_struct arg64;
592         BIG_IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
593         int err;
594         u32 cp;
595
596         err = 0;
597         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, sizeof(arg64.LUN_info));
598         err |= copy_from_user(&arg64.Request, &arg32->Request, sizeof(arg64.Request));
599         err |= copy_from_user(&arg64.error_info, &arg32->error_info, sizeof(arg64.error_info));
600         err |= get_user(arg64.buf_size, &arg32->buf_size);
601         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
602         err |= get_user(cp, &arg32->buf);
603         arg64.buf = compat_ptr(cp);
604         err |= copy_to_user(p, &arg64, sizeof(arg64));
605
606         if (err)
607                  return -EFAULT;
608
609         err = do_ioctl(file, CCISS_BIG_PASSTHRU, (unsigned long) p);
610         if (err)
611                 return err;
612         err |= copy_in_user(&arg32->error_info, &p->error_info, sizeof(arg32->error_info));
613         if (err)
614                 return -EFAULT;
615         return err;
616 }
617 #endif
618 /*
619  * ioctl 
620  */
621 static int cciss_ioctl(struct inode *inode, struct file *filep, 
622                 unsigned int cmd, unsigned long arg)
623 {
624         struct block_device *bdev = inode->i_bdev;
625         struct gendisk *disk = bdev->bd_disk;
626         ctlr_info_t *host = get_host(disk);
627         drive_info_struct *drv = get_drv(disk);
628         int ctlr = host->ctlr;
629         void __user *argp = (void __user *)arg;
630
631 #ifdef CCISS_DEBUG
632         printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
633 #endif /* CCISS_DEBUG */ 
634         
635         switch(cmd) {
636         case HDIO_GETGEO:
637         {
638                 struct hd_geometry driver_geo;
639                 if (drv->cylinders) {
640                         driver_geo.heads = drv->heads;
641                         driver_geo.sectors = drv->sectors;
642                         driver_geo.cylinders = drv->cylinders;
643                 } else
644                         return -ENXIO;
645                 driver_geo.start= get_start_sect(inode->i_bdev);
646                 if (copy_to_user(argp, &driver_geo, sizeof(struct hd_geometry)))
647                         return  -EFAULT;
648                 return(0);
649         }
650
651         case CCISS_GETPCIINFO:
652         {
653                 cciss_pci_info_struct pciinfo;
654
655                 if (!arg) return -EINVAL;
656                 pciinfo.domain = pci_domain_nr(host->pdev->bus);
657                 pciinfo.bus = host->pdev->bus->number;
658                 pciinfo.dev_fn = host->pdev->devfn;
659                 pciinfo.board_id = host->board_id;
660                 if (copy_to_user(argp, &pciinfo,  sizeof( cciss_pci_info_struct )))
661                         return  -EFAULT;
662                 return(0);
663         }       
664         case CCISS_GETINTINFO:
665         {
666                 cciss_coalint_struct intinfo;
667                 if (!arg) return -EINVAL;
668                 intinfo.delay = readl(&host->cfgtable->HostWrite.CoalIntDelay);
669                 intinfo.count = readl(&host->cfgtable->HostWrite.CoalIntCount);
670                 if (copy_to_user(argp, &intinfo, sizeof( cciss_coalint_struct )))
671                         return -EFAULT;
672                 return(0);
673         }
674         case CCISS_SETINTINFO:
675         {
676                 cciss_coalint_struct intinfo;
677                 unsigned long flags;
678                 int i;
679
680                 if (!arg) return -EINVAL;       
681                 if (!capable(CAP_SYS_ADMIN)) return -EPERM;
682                 if (copy_from_user(&intinfo, argp, sizeof( cciss_coalint_struct)))
683                         return -EFAULT;
684                 if ( (intinfo.delay == 0 ) && (intinfo.count == 0))
685
686                 {
687 //                      printk("cciss_ioctl: delay and count cannot be 0\n");
688                         return( -EINVAL);
689                 }
690                 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
691                 /* Update the field, and then ring the doorbell */ 
692                 writel( intinfo.delay, 
693                         &(host->cfgtable->HostWrite.CoalIntDelay));
694                 writel( intinfo.count, 
695                         &(host->cfgtable->HostWrite.CoalIntCount));
696                 writel( CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
697
698                 for(i=0;i<MAX_IOCTL_CONFIG_WAIT;i++) {
699                         if (!(readl(host->vaddr + SA5_DOORBELL) 
700                                         & CFGTBL_ChangeReq))
701                                 break;
702                         /* delay and try again */
703                         udelay(1000);
704                 }       
705                 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
706                 if (i >= MAX_IOCTL_CONFIG_WAIT)
707                         return -EAGAIN;
708                 return(0);
709         }
710         case CCISS_GETNODENAME:
711         {
712                 NodeName_type NodeName;
713                 int i; 
714
715                 if (!arg) return -EINVAL;
716                 for(i=0;i<16;i++)
717                         NodeName[i] = readb(&host->cfgtable->ServerName[i]);
718                 if (copy_to_user(argp, NodeName, sizeof( NodeName_type)))
719                         return  -EFAULT;
720                 return(0);
721         }
722         case CCISS_SETNODENAME:
723         {
724                 NodeName_type NodeName;
725                 unsigned long flags;
726                 int i;
727
728                 if (!arg) return -EINVAL;
729                 if (!capable(CAP_SYS_ADMIN)) return -EPERM;
730                 
731                 if (copy_from_user(NodeName, argp, sizeof( NodeName_type)))
732                         return -EFAULT;
733
734                 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
735
736                         /* Update the field, and then ring the doorbell */ 
737                 for(i=0;i<16;i++)
738                         writeb( NodeName[i], &host->cfgtable->ServerName[i]);
739                         
740                 writel( CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
741
742                 for(i=0;i<MAX_IOCTL_CONFIG_WAIT;i++) {
743                         if (!(readl(host->vaddr + SA5_DOORBELL) 
744                                         & CFGTBL_ChangeReq))
745                                 break;
746                         /* delay and try again */
747                         udelay(1000);
748                 }       
749                 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
750                 if (i >= MAX_IOCTL_CONFIG_WAIT)
751                         return -EAGAIN;
752                 return(0);
753         }
754
755         case CCISS_GETHEARTBEAT:
756         {
757                 Heartbeat_type heartbeat;
758
759                 if (!arg) return -EINVAL;
760                 heartbeat = readl(&host->cfgtable->HeartBeat);
761                 if (copy_to_user(argp, &heartbeat, sizeof( Heartbeat_type)))
762                         return -EFAULT;
763                 return(0);
764         }
765         case CCISS_GETBUSTYPES:
766         {
767                 BusTypes_type BusTypes;
768
769                 if (!arg) return -EINVAL;
770                 BusTypes = readl(&host->cfgtable->BusTypes);
771                 if (copy_to_user(argp, &BusTypes, sizeof( BusTypes_type) ))
772                         return  -EFAULT;
773                 return(0);
774         }
775         case CCISS_GETFIRMVER:
776         {
777                 FirmwareVer_type firmware;
778
779                 if (!arg) return -EINVAL;
780                 memcpy(firmware, host->firm_ver, 4);
781
782                 if (copy_to_user(argp, firmware, sizeof( FirmwareVer_type)))
783                         return -EFAULT;
784                 return(0);
785         }
786         case CCISS_GETDRIVVER:
787         {
788                 DriverVer_type DriverVer = DRIVER_VERSION;
789
790                 if (!arg) return -EINVAL;
791
792                 if (copy_to_user(argp, &DriverVer, sizeof( DriverVer_type) ))
793                         return -EFAULT;
794                 return(0);
795         }
796
797         case CCISS_REVALIDVOLS:
798                 if (bdev != bdev->bd_contains || drv != host->drv)
799                         return -ENXIO;
800                 return revalidate_allvol(host);
801
802         case CCISS_GETLUNINFO: {
803                 LogvolInfo_struct luninfo;
804                 
805                 luninfo.LunID = drv->LunID;
806                 luninfo.num_opens = drv->usage_count;
807                 luninfo.num_parts = 0;
808                 if (copy_to_user(argp, &luninfo,
809                                 sizeof(LogvolInfo_struct)))
810                         return -EFAULT;
811                 return(0);
812         }
813         case CCISS_DEREGDISK:
814                 return deregister_disk(disk);
815
816         case CCISS_REGNEWD:
817                 return register_new_disk(host);
818
819         case CCISS_PASSTHRU:
820         {
821                 IOCTL_Command_struct iocommand;
822                 CommandList_struct *c;
823                 char    *buff = NULL;
824                 u64bit  temp64;
825                 unsigned long flags;
826                 DECLARE_COMPLETION(wait);
827
828                 if (!arg) return -EINVAL;
829         
830                 if (!capable(CAP_SYS_RAWIO)) return -EPERM;
831
832                 if (copy_from_user(&iocommand, argp, sizeof( IOCTL_Command_struct) ))
833                         return -EFAULT;
834                 if((iocommand.buf_size < 1) && 
835                                 (iocommand.Request.Type.Direction != XFER_NONE))
836                 {       
837                         return -EINVAL;
838                 } 
839 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
840                 /* Check kmalloc limits */
841                 if(iocommand.buf_size > 128000)
842                         return -EINVAL;
843 #endif
844                 if(iocommand.buf_size > 0)
845                 {
846                         buff =  kmalloc(iocommand.buf_size, GFP_KERNEL);
847                         if( buff == NULL) 
848                                 return -EFAULT;
849                 }
850                 if (iocommand.Request.Type.Direction == XFER_WRITE)
851                 {
852                         /* Copy the data into the buffer we created */ 
853                         if (copy_from_user(buff, iocommand.buf, iocommand.buf_size))
854                         {
855                                 kfree(buff);
856                                 return -EFAULT;
857                         }
858                 } else {
859                         memset(buff, 0, iocommand.buf_size);
860                 }
861                 if ((c = cmd_alloc(host , 0)) == NULL)
862                 {
863                         kfree(buff);
864                         return -ENOMEM;
865                 }
866                         // Fill in the command type 
867                 c->cmd_type = CMD_IOCTL_PEND;
868                         // Fill in Command Header 
869                 c->Header.ReplyQueue = 0;  // unused in simple mode
870                 if( iocommand.buf_size > 0)     // buffer to fill 
871                 {
872                         c->Header.SGList = 1;
873                         c->Header.SGTotal= 1;
874                 } else  // no buffers to fill  
875                 {
876                         c->Header.SGList = 0;
877                         c->Header.SGTotal= 0;
878                 }
879                 c->Header.LUN = iocommand.LUN_info;
880                 c->Header.Tag.lower = c->busaddr;  // use the kernel address the cmd block for tag
881                 
882                 // Fill in Request block 
883                 c->Request = iocommand.Request; 
884         
885                 // Fill in the scatter gather information
886                 if (iocommand.buf_size > 0 ) 
887                 {
888                         temp64.val = pci_map_single( host->pdev, buff,
889                                         iocommand.buf_size, 
890                                 PCI_DMA_BIDIRECTIONAL); 
891                         c->SG[0].Addr.lower = temp64.val32.lower;
892                         c->SG[0].Addr.upper = temp64.val32.upper;
893                         c->SG[0].Len = iocommand.buf_size;
894                         c->SG[0].Ext = 0;  // we are not chaining
895                 }
896                 c->waiting = &wait;
897
898                 /* Put the request on the tail of the request queue */
899                 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
900                 addQ(&host->reqQ, c);
901                 host->Qdepth++;
902                 start_io(host);
903                 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
904
905                 wait_for_completion(&wait);
906
907                 /* unlock the buffers from DMA */
908                 temp64.val32.lower = c->SG[0].Addr.lower;
909                 temp64.val32.upper = c->SG[0].Addr.upper;
910                 pci_unmap_single( host->pdev, (dma_addr_t) temp64.val,
911                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
912
913                 /* Copy the error information out */ 
914                 iocommand.error_info = *(c->err_info);
915                 if ( copy_to_user(argp, &iocommand, sizeof( IOCTL_Command_struct) ) )
916                 {
917                         kfree(buff);
918                         cmd_free(host, c, 0);
919                         return( -EFAULT);       
920                 }       
921
922                 if (iocommand.Request.Type.Direction == XFER_READ)
923                 {
924                         /* Copy the data out of the buffer we created */
925                         if (copy_to_user(iocommand.buf, buff, iocommand.buf_size))
926                         {
927                                 kfree(buff);
928                                 cmd_free(host, c, 0);
929                                 return -EFAULT;
930                         }
931                 }
932                 kfree(buff);
933                 cmd_free(host, c, 0);
934                 return(0);
935         } 
936         case CCISS_BIG_PASSTHRU: {
937                 BIG_IOCTL_Command_struct *ioc;
938                 CommandList_struct *c;
939                 unsigned char **buff = NULL;
940                 int     *buff_size = NULL;
941                 u64bit  temp64;
942                 unsigned long flags;
943                 BYTE sg_used = 0;
944                 int status = 0;
945                 int i;
946                 DECLARE_COMPLETION(wait);
947                 __u32   left;
948                 __u32   sz;
949                 BYTE    __user *data_ptr;
950
951                 if (!arg)
952                         return -EINVAL;
953                 if (!capable(CAP_SYS_RAWIO))
954                         return -EPERM;
955                 ioc = (BIG_IOCTL_Command_struct *) 
956                         kmalloc(sizeof(*ioc), GFP_KERNEL);
957                 if (!ioc) {
958                         status = -ENOMEM;
959                         goto cleanup1;
960                 }
961                 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
962                         status = -EFAULT;
963                         goto cleanup1;
964                 }
965                 if ((ioc->buf_size < 1) &&
966                         (ioc->Request.Type.Direction != XFER_NONE)) {
967                                 status = -EINVAL;
968                                 goto cleanup1;
969                 }
970                 /* Check kmalloc limits  using all SGs */
971                 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
972                         status = -EINVAL;
973                         goto cleanup1;
974                 }
975                 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
976                         status = -EINVAL;
977                         goto cleanup1;
978                 }
979                 buff = (unsigned char **) kmalloc(MAXSGENTRIES * 
980                                 sizeof(char *), GFP_KERNEL);
981                 if (!buff) {
982                         status = -ENOMEM;
983                         goto cleanup1;
984                 }
985                 memset(buff, 0, MAXSGENTRIES);
986                 buff_size = (int *) kmalloc(MAXSGENTRIES * sizeof(int), 
987                                         GFP_KERNEL);
988                 if (!buff_size) {
989                         status = -ENOMEM;
990                         goto cleanup1;
991                 }
992                 left = ioc->buf_size;
993                 data_ptr = ioc->buf;
994                 while (left) {
995                         sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
996                         buff_size[sg_used] = sz;
997                         buff[sg_used] = kmalloc(sz, GFP_KERNEL);
998                         if (buff[sg_used] == NULL) {
999                                 status = -ENOMEM;
1000                                 goto cleanup1;
1001                         }
1002                         if (ioc->Request.Type.Direction == XFER_WRITE &&
1003                                 copy_from_user(buff[sg_used], data_ptr, sz)) {
1004                                         status = -ENOMEM;
1005                                         goto cleanup1;                  
1006                         } else {
1007                                 memset(buff[sg_used], 0, sz);
1008                         }
1009                         left -= sz;
1010                         data_ptr += sz;
1011                         sg_used++;
1012                 }
1013                 if ((c = cmd_alloc(host , 0)) == NULL) {
1014                         status = -ENOMEM;
1015                         goto cleanup1;  
1016                 }
1017                 c->cmd_type = CMD_IOCTL_PEND;
1018                 c->Header.ReplyQueue = 0;
1019                 
1020                 if( ioc->buf_size > 0) {
1021                         c->Header.SGList = sg_used;
1022                         c->Header.SGTotal= sg_used;
1023                 } else { 
1024                         c->Header.SGList = 0;
1025                         c->Header.SGTotal= 0;
1026                 }
1027                 c->Header.LUN = ioc->LUN_info;
1028                 c->Header.Tag.lower = c->busaddr;
1029                 
1030                 c->Request = ioc->Request;
1031                 if (ioc->buf_size > 0 ) {
1032                         int i;
1033                         for(i=0; i<sg_used; i++) {
1034                                 temp64.val = pci_map_single( host->pdev, buff[i],
1035                                         buff_size[i],
1036                                         PCI_DMA_BIDIRECTIONAL);
1037                                 c->SG[i].Addr.lower = temp64.val32.lower;
1038                                 c->SG[i].Addr.upper = temp64.val32.upper;
1039                                 c->SG[i].Len = buff_size[i];
1040                                 c->SG[i].Ext = 0;  /* we are not chaining */
1041                         }
1042                 }
1043                 c->waiting = &wait;
1044                 /* Put the request on the tail of the request queue */
1045                 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1046                 addQ(&host->reqQ, c);
1047                 host->Qdepth++;
1048                 start_io(host);
1049                 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1050                 wait_for_completion(&wait);
1051                 /* unlock the buffers from DMA */
1052                 for(i=0; i<sg_used; i++) {
1053                         temp64.val32.lower = c->SG[i].Addr.lower;
1054                         temp64.val32.upper = c->SG[i].Addr.upper;
1055                         pci_unmap_single( host->pdev, (dma_addr_t) temp64.val,
1056                                 buff_size[i], PCI_DMA_BIDIRECTIONAL);
1057                 }
1058                 /* Copy the error information out */
1059                 ioc->error_info = *(c->err_info);
1060                 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1061                         cmd_free(host, c, 0);
1062                         status = -EFAULT;
1063                         goto cleanup1;
1064                 }
1065                 if (ioc->Request.Type.Direction == XFER_READ) {
1066                         /* Copy the data out of the buffer we created */
1067                         BYTE __user *ptr = ioc->buf;
1068                         for(i=0; i< sg_used; i++) {
1069                                 if (copy_to_user(ptr, buff[i], buff_size[i])) {
1070                                         cmd_free(host, c, 0);
1071                                         status = -EFAULT;
1072                                         goto cleanup1;
1073                                 }
1074                                 ptr += buff_size[i];
1075                         }
1076                 }
1077                 cmd_free(host, c, 0);
1078                 status = 0;
1079 cleanup1:
1080                 if (buff) {
1081                         for(i=0; i<sg_used; i++)
1082                                 if(buff[i] != NULL)
1083                                         kfree(buff[i]);
1084                         kfree(buff);
1085                 }
1086                 if (buff_size)
1087                         kfree(buff_size);
1088                 if (ioc)
1089                         kfree(ioc);
1090                 return(status);
1091         }
1092         default:
1093                 return -ENOTTY;
1094         }
1095         
1096 }
1097
1098 /*
1099  * revalidate_allvol is for online array config utilities.  After a
1100  * utility reconfigures the drives in the array, it can use this function
1101  * (through an ioctl) to make the driver zap any previous disk structs for
1102  * that controller and get new ones.
1103  *
1104  * Right now I'm using the getgeometry() function to do this, but this
1105  * function should probably be finer grained and allow you to revalidate one
1106  * particualar logical volume (instead of all of them on a particular
1107  * controller).
1108  */
1109 static int revalidate_allvol(ctlr_info_t *host)
1110 {
1111         int ctlr = host->ctlr, i;
1112         unsigned long flags;
1113
1114         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1115         if (host->usage_count > 1) {
1116                 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1117                 printk(KERN_WARNING "cciss: Device busy for volume"
1118                         " revalidation (usage=%d)\n", host->usage_count);
1119                 return -EBUSY;
1120         }
1121         host->usage_count++;
1122         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1123
1124         for(i=0; i< NWD; i++) {
1125                 struct gendisk *disk = host->gendisk[i];
1126                 if (disk->flags & GENHD_FL_UP)
1127                         del_gendisk(disk);
1128         }
1129
1130         /*
1131          * Set the partition and block size structures for all volumes
1132          * on this controller to zero.  We will reread all of this data
1133          */
1134         memset(host->drv,        0, sizeof(drive_info_struct)
1135                                                 * CISS_MAX_LUN);
1136         /*
1137          * Tell the array controller not to give us any interrupts while
1138          * we check the new geometry.  Then turn interrupts back on when
1139          * we're done.
1140          */
1141         host->access.set_intr_mask(host, CCISS_INTR_OFF);
1142         cciss_getgeometry(ctlr);
1143         host->access.set_intr_mask(host, CCISS_INTR_ON);
1144
1145         /* Loop through each real device */ 
1146         for (i = 0; i < NWD; i++) {
1147                 struct gendisk *disk = host->gendisk[i];
1148                 drive_info_struct *drv = &(host->drv[i]);
1149                 /* we must register the controller even if no disks exist */
1150                 /* this is for the online array utilities */
1151                 if (!drv->heads && i)
1152                         continue;
1153                 blk_queue_hardsect_size(drv->queue, drv->block_size);
1154                 set_capacity(disk, drv->nr_blocks);
1155                 add_disk(disk);
1156         }
1157         host->usage_count--;
1158         return 0;
1159 }
1160
1161 static int deregister_disk(struct gendisk *disk)
1162 {
1163         unsigned long flags;
1164         ctlr_info_t *h = get_host(disk);
1165         drive_info_struct *drv = get_drv(disk);
1166         int ctlr = h->ctlr;
1167
1168         if (!capable(CAP_SYS_RAWIO))
1169                 return -EPERM;
1170
1171         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1172         /* make sure logical volume is NOT is use */
1173         if( drv->usage_count > 1) {
1174                 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1175                 return -EBUSY;
1176         }
1177         drv->usage_count++;
1178         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1179
1180         /* invalidate the devices and deregister the disk */ 
1181         if (disk->flags & GENHD_FL_UP)
1182                 del_gendisk(disk);
1183         /* check to see if it was the last disk */
1184         if (drv == h->drv + h->highest_lun) {
1185                 /* if so, find the new hightest lun */
1186                 int i, newhighest =-1;
1187                 for(i=0; i<h->highest_lun; i++) {
1188                         /* if the disk has size > 0, it is available */
1189                         if (h->drv[i].nr_blocks)
1190                                 newhighest = i;
1191                 }
1192                 h->highest_lun = newhighest;
1193                                 
1194         }
1195         --h->num_luns;
1196         /* zero out the disk size info */ 
1197         drv->nr_blocks = 0;
1198         drv->block_size = 0;
1199         drv->cylinders = 0;
1200         drv->LunID = 0;
1201         return(0);
1202 }
1203 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
1204         size_t size,
1205         unsigned int use_unit_num, /* 0: address the controller,
1206                                       1: address logical volume log_unit,
1207                                       2: periph device address is scsi3addr */
1208         unsigned int log_unit, __u8 page_code, unsigned char *scsi3addr,
1209         int cmd_type)
1210 {
1211         ctlr_info_t *h= hba[ctlr];
1212         u64bit buff_dma_handle;
1213         int status = IO_OK;
1214
1215         c->cmd_type = CMD_IOCTL_PEND;
1216         c->Header.ReplyQueue = 0;
1217         if( buff != NULL) {
1218                 c->Header.SGList = 1;
1219                 c->Header.SGTotal= 1;
1220         } else {
1221                 c->Header.SGList = 0;
1222                 c->Header.SGTotal= 0;
1223         }
1224         c->Header.Tag.lower = c->busaddr;
1225
1226         c->Request.Type.Type = cmd_type;
1227         if (cmd_type == TYPE_CMD) {
1228                 switch(cmd) {
1229                 case  CISS_INQUIRY:
1230                         /* If the logical unit number is 0 then, this is going
1231                         to controller so It's a physical command
1232                         mode = 0 target = 0.  So we have nothing to write.
1233                         otherwise, if use_unit_num == 1,
1234                         mode = 1(volume set addressing) target = LUNID
1235                         otherwise, if use_unit_num == 2,
1236                         mode = 0(periph dev addr) target = scsi3addr */
1237                         if (use_unit_num == 1) {
1238                                 c->Header.LUN.LogDev.VolId=
1239                                         h->drv[log_unit].LunID;
1240                                 c->Header.LUN.LogDev.Mode = 1;
1241                         } else if (use_unit_num == 2) {
1242                                 memcpy(c->Header.LUN.LunAddrBytes,scsi3addr,8);
1243                                 c->Header.LUN.LogDev.Mode = 0;
1244                         }
1245                         /* are we trying to read a vital product page */
1246                         if(page_code != 0) {
1247                                 c->Request.CDB[1] = 0x01;
1248                                 c->Request.CDB[2] = page_code;
1249                         }
1250                         c->Request.CDBLen = 6;
1251                         c->Request.Type.Attribute = ATTR_SIMPLE;  
1252                         c->Request.Type.Direction = XFER_READ;
1253                         c->Request.Timeout = 0;
1254                         c->Request.CDB[0] =  CISS_INQUIRY;
1255                         c->Request.CDB[4] = size  & 0xFF;  
1256                 break;
1257                 case CISS_REPORT_LOG:
1258                 case CISS_REPORT_PHYS:
1259                         /* Talking to controller so It's a physical command
1260                            mode = 00 target = 0.  Nothing to write.
1261                         */
1262                         c->Request.CDBLen = 12;
1263                         c->Request.Type.Attribute = ATTR_SIMPLE;
1264                         c->Request.Type.Direction = XFER_READ;
1265                         c->Request.Timeout = 0;
1266                         c->Request.CDB[0] = cmd;
1267                         c->Request.CDB[6] = (size >> 24) & 0xFF;  //MSB
1268                         c->Request.CDB[7] = (size >> 16) & 0xFF;
1269                         c->Request.CDB[8] = (size >> 8) & 0xFF;
1270                         c->Request.CDB[9] = size & 0xFF;
1271                         break;
1272
1273                 case CCISS_READ_CAPACITY:
1274                         c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1275                         c->Header.LUN.LogDev.Mode = 1;
1276                         c->Request.CDBLen = 10;
1277                         c->Request.Type.Attribute = ATTR_SIMPLE;
1278                         c->Request.Type.Direction = XFER_READ;
1279                         c->Request.Timeout = 0;
1280                         c->Request.CDB[0] = cmd;
1281                 break;
1282                 case CCISS_CACHE_FLUSH:
1283                         c->Request.CDBLen = 12;
1284                         c->Request.Type.Attribute = ATTR_SIMPLE;
1285                         c->Request.Type.Direction = XFER_WRITE;
1286                         c->Request.Timeout = 0;
1287                         c->Request.CDB[0] = BMIC_WRITE;
1288                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
1289                 break;
1290                 default:
1291                         printk(KERN_WARNING
1292                                 "cciss%d:  Unknown Command 0x%c\n", ctlr, cmd);
1293                         return(IO_ERROR);
1294                 }
1295         } else if (cmd_type == TYPE_MSG) {
1296                 switch (cmd) {
1297                 case 3: /* No-Op message */
1298                         c->Request.CDBLen = 1;
1299                         c->Request.Type.Attribute = ATTR_SIMPLE;
1300                         c->Request.Type.Direction = XFER_WRITE;
1301                         c->Request.Timeout = 0;
1302                         c->Request.CDB[0] = cmd;
1303                         break;
1304                 default:
1305                         printk(KERN_WARNING
1306                                 "cciss%d: unknown message type %d\n",
1307                                 ctlr, cmd);
1308                         return IO_ERROR;
1309                 }
1310         } else {
1311                 printk(KERN_WARNING
1312                         "cciss%d: unknown command type %d\n", ctlr, cmd_type);
1313                 return IO_ERROR;
1314         }
1315         /* Fill in the scatter gather information */
1316         if (size > 0) {
1317                 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
1318                         buff, size, PCI_DMA_BIDIRECTIONAL);
1319                 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
1320                 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
1321                 c->SG[0].Len = size;
1322                 c->SG[0].Ext = 0;  /* we are not chaining */
1323         }
1324         return status;
1325 }
1326 static int sendcmd_withirq(__u8 cmd,
1327         int     ctlr,
1328         void    *buff,
1329         size_t  size,
1330         unsigned int use_unit_num,
1331         unsigned int log_unit,
1332         __u8    page_code,
1333         int cmd_type)
1334 {
1335         ctlr_info_t *h = hba[ctlr];
1336         CommandList_struct *c;
1337         u64bit  buff_dma_handle;
1338         unsigned long flags;
1339         int return_status;
1340         DECLARE_COMPLETION(wait);
1341         
1342         if ((c = cmd_alloc(h , 0)) == NULL)
1343                 return -ENOMEM;
1344         return_status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
1345                 log_unit, page_code, NULL, cmd_type);
1346         if (return_status != IO_OK) {
1347                 cmd_free(h, c, 0);
1348                 return return_status;
1349         }
1350 resend_cmd2:
1351         c->waiting = &wait;
1352         
1353         /* Put the request on the tail of the queue and send it */
1354         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1355         addQ(&h->reqQ, c);
1356         h->Qdepth++;
1357         start_io(h);
1358         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1359         
1360         wait_for_completion(&wait);
1361
1362         if(c->err_info->CommandStatus != 0) 
1363         { /* an error has occurred */ 
1364                 switch(c->err_info->CommandStatus)
1365                 {
1366                         case CMD_TARGET_STATUS:
1367                                 printk(KERN_WARNING "cciss: cmd %p has "
1368                                         " completed with errors\n", c);
1369                                 if( c->err_info->ScsiStatus)
1370                                 {
1371                                         printk(KERN_WARNING "cciss: cmd %p "
1372                                         "has SCSI Status = %x\n",
1373                                                 c,  
1374                                                 c->err_info->ScsiStatus);
1375                                 }
1376
1377                         break;
1378                         case CMD_DATA_UNDERRUN:
1379                         case CMD_DATA_OVERRUN:
1380                         /* expected for inquire and report lun commands */
1381                         break;
1382                         case CMD_INVALID:
1383                                 printk(KERN_WARNING "cciss: Cmd %p is "
1384                                         "reported invalid\n", c);
1385                                 return_status = IO_ERROR;
1386                         break;
1387                         case CMD_PROTOCOL_ERR:
1388                                 printk(KERN_WARNING "cciss: cmd %p has "
1389                                         "protocol error \n", c);
1390                                 return_status = IO_ERROR;
1391                         break;
1392 case CMD_HARDWARE_ERR:
1393                                 printk(KERN_WARNING "cciss: cmd %p had " 
1394                                         " hardware error\n", c);
1395                                 return_status = IO_ERROR;
1396                         break;
1397                         case CMD_CONNECTION_LOST:
1398                                 printk(KERN_WARNING "cciss: cmd %p had "
1399                                         "connection lost\n", c);
1400                                 return_status = IO_ERROR;
1401                         break;
1402                         case CMD_ABORTED:
1403                                 printk(KERN_WARNING "cciss: cmd %p was "
1404                                         "aborted\n", c);
1405                                 return_status = IO_ERROR;
1406                         break;
1407                         case CMD_ABORT_FAILED:
1408                                 printk(KERN_WARNING "cciss: cmd %p reports "
1409                                         "abort failed\n", c);
1410                                 return_status = IO_ERROR;
1411                         break;
1412                         case CMD_UNSOLICITED_ABORT:
1413                                 printk(KERN_WARNING 
1414                                         "cciss%d: unsolicited abort %p\n",
1415                                         ctlr, c);
1416                                 if (c->retry_count < MAX_CMD_RETRIES) {
1417                                         printk(KERN_WARNING 
1418                                                 "cciss%d: retrying %p\n", 
1419                                                 ctlr, c);
1420                                         c->retry_count++;
1421                                         /* erase the old error information */
1422                                         memset(c->err_info, 0,
1423                                                 sizeof(ErrorInfo_struct));
1424                                         return_status = IO_OK;
1425                                         INIT_COMPLETION(wait);
1426                                         goto resend_cmd2;
1427                                 }
1428                                 return_status = IO_ERROR;
1429                         break;
1430                         default:
1431                                 printk(KERN_WARNING "cciss: cmd %p returned "
1432                                         "unknown status %x\n", c, 
1433                                                 c->err_info->CommandStatus); 
1434                                 return_status = IO_ERROR;
1435                 }
1436         }       
1437         /* unlock the buffers from DMA */
1438         pci_unmap_single( h->pdev, (dma_addr_t) buff_dma_handle.val,
1439                         size, PCI_DMA_BIDIRECTIONAL);
1440         cmd_free(h, c, 0);
1441         return(return_status);
1442
1443 }
1444 static void cciss_geometry_inquiry(int ctlr, int logvol,
1445                         int withirq, unsigned int total_size,
1446                         unsigned int block_size, InquiryData_struct *inq_buff,
1447                         drive_info_struct *drv)
1448 {
1449         int return_code;
1450         memset(inq_buff, 0, sizeof(InquiryData_struct));
1451         if (withirq)
1452                 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
1453                         inq_buff, sizeof(*inq_buff), 1, logvol ,0xC1, TYPE_CMD);
1454         else
1455                 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
1456                         sizeof(*inq_buff), 1, logvol ,0xC1, NULL, TYPE_CMD);
1457         if (return_code == IO_OK) {
1458                 if(inq_buff->data_byte[8] == 0xFF) {
1459                         printk(KERN_WARNING
1460                                 "cciss: reading geometry failed, volume "
1461                                 "does not support reading geometry\n");
1462                         drv->block_size = block_size;
1463                         drv->nr_blocks = total_size;
1464                         drv->heads = 255;
1465                         drv->sectors = 32; // Sectors per track
1466                         drv->cylinders = total_size / 255 / 32;
1467                 } else {
1468                         unsigned int t;
1469
1470                         drv->block_size = block_size;
1471                         drv->nr_blocks = total_size;
1472                         drv->heads = inq_buff->data_byte[6];
1473                         drv->sectors = inq_buff->data_byte[7];
1474                         drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
1475                         drv->cylinders += inq_buff->data_byte[5];
1476                         drv->raid_level = inq_buff->data_byte[8];
1477                         t = drv->heads * drv->sectors;
1478                         if (t > 1) {
1479                                 drv->cylinders = total_size/t;
1480                         }
1481                 }
1482         } else { /* Get geometry failed */
1483                 printk(KERN_WARNING "cciss: reading geometry failed\n");
1484         }
1485         printk(KERN_INFO "      heads= %d, sectors= %d, cylinders= %d\n\n",
1486                 drv->heads, drv->sectors, drv->cylinders);
1487 }
1488 static void
1489 cciss_read_capacity(int ctlr, int logvol, ReadCapdata_struct *buf,
1490                 int withirq, unsigned int *total_size, unsigned int *block_size)
1491 {
1492         int return_code;
1493         memset(buf, 0, sizeof(*buf));
1494         if (withirq)
1495                 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
1496                         ctlr, buf, sizeof(*buf), 1, logvol, 0, TYPE_CMD);
1497         else
1498                 return_code = sendcmd(CCISS_READ_CAPACITY,
1499                         ctlr, buf, sizeof(*buf), 1, logvol, 0, NULL, TYPE_CMD);
1500         if (return_code == IO_OK) {
1501                 *total_size = be32_to_cpu(*((__be32 *) &buf->total_size[0]))+1;
1502                 *block_size = be32_to_cpu(*((__be32 *) &buf->block_size[0]));
1503         } else { /* read capacity command failed */
1504                 printk(KERN_WARNING "cciss: read capacity failed\n");
1505                 *total_size = 0;
1506                 *block_size = BLOCK_SIZE;
1507         }
1508         printk(KERN_INFO "      blocks= %u block_size= %d\n",
1509                 *total_size, *block_size);
1510         return;
1511 }
1512
1513 static int register_new_disk(ctlr_info_t *h)
1514 {
1515         struct gendisk *disk;
1516         int ctlr = h->ctlr;
1517         int i;
1518         int num_luns;
1519         int logvol;
1520         int new_lun_found = 0;
1521         int new_lun_index = 0;
1522         int free_index_found = 0;
1523         int free_index = 0;
1524         ReportLunData_struct *ld_buff = NULL;
1525         ReadCapdata_struct *size_buff = NULL;
1526         InquiryData_struct *inq_buff = NULL;
1527         int return_code;
1528         int listlength = 0;
1529         __u32 lunid = 0;
1530         unsigned int block_size;
1531         unsigned int total_size;
1532
1533         if (!capable(CAP_SYS_RAWIO))
1534                 return -EPERM;
1535         /* if we have no space in our disk array left to add anything */
1536         if(  h->num_luns >= CISS_MAX_LUN)
1537                 return -EINVAL;
1538         
1539         ld_buff = kmalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
1540         if (ld_buff == NULL)
1541                 goto mem_msg;
1542         memset(ld_buff, 0, sizeof(ReportLunData_struct));
1543         size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL);
1544         if (size_buff == NULL)
1545                 goto mem_msg;
1546         inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL);
1547         if (inq_buff == NULL)
1548                 goto mem_msg;
1549         
1550         return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff, 
1551                         sizeof(ReportLunData_struct), 0, 0, 0, TYPE_CMD);
1552
1553         if( return_code == IO_OK)
1554         {
1555                 
1556                 // printk("LUN Data\n--------------------------\n");
1557
1558                 listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[0])) << 24;
1559                 listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[1])) << 16;
1560                 listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[2])) << 8;  
1561                 listlength |= 0xff & (unsigned int)(ld_buff->LUNListLength[3]);
1562         } else /* reading number of logical volumes failed */
1563         {
1564                 printk(KERN_WARNING "cciss: report logical volume"
1565                         " command failed\n");
1566                 listlength = 0;
1567                 goto free_err;
1568         }
1569         num_luns = listlength / 8; // 8 bytes pre entry
1570         if (num_luns > CISS_MAX_LUN)
1571         {
1572                 num_luns = CISS_MAX_LUN;
1573         }
1574 #ifdef CCISS_DEBUG
1575         printk(KERN_DEBUG "Length = %x %x %x %x = %d\n", ld_buff->LUNListLength[0],
1576                 ld_buff->LUNListLength[1], ld_buff->LUNListLength[2],
1577                 ld_buff->LUNListLength[3],  num_luns);
1578 #endif 
1579         for(i=0; i<  num_luns; i++)
1580         {
1581                 int j;
1582                 int lunID_found = 0;
1583
1584                 lunid = (0xff & (unsigned int)(ld_buff->LUN[i][3])) << 24;
1585                 lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][2])) << 16;
1586                 lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][1])) << 8;
1587                 lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
1588                 
1589                 /* check to see if this is a new lun */ 
1590                 for(j=0; j <= h->highest_lun; j++)
1591                 {
1592 #ifdef CCISS_DEBUG
1593                         printk("Checking %d %x against %x\n", j,h->drv[j].LunID,
1594                                                 lunid);
1595 #endif /* CCISS_DEBUG */
1596                         if (h->drv[j].LunID == lunid)
1597                         {
1598                                 lunID_found = 1;
1599                                 break;
1600                         }
1601                         
1602                 }
1603                 if( lunID_found == 1)
1604                         continue;
1605                 else
1606                 {       /* It is the new lun we have been looking for */
1607 #ifdef CCISS_DEBUG
1608                         printk("new lun found at %d\n", i);
1609 #endif /* CCISS_DEBUG */
1610                         new_lun_index = i;
1611                         new_lun_found = 1;
1612                         break;  
1613                 }
1614          }
1615          if (!new_lun_found)
1616          {
1617                 printk(KERN_WARNING "cciss:  New Logical Volume not found\n");
1618                 goto free_err;
1619          }
1620          /* Now find the free index     */
1621         for(i=0; i <CISS_MAX_LUN; i++)
1622         {
1623 #ifdef CCISS_DEBUG
1624                 printk("Checking Index %d\n", i);
1625 #endif /* CCISS_DEBUG */
1626                 if(h->drv[i].LunID == 0)
1627                 {
1628 #ifdef CCISS_DEBUG
1629                         printk("free index found at %d\n", i);
1630 #endif /* CCISS_DEBUG */
1631                         free_index_found = 1;
1632                         free_index = i;
1633                         break;
1634                 }
1635         }
1636         if (!free_index_found)
1637         {
1638                 printk(KERN_WARNING "cciss: unable to find free slot for disk\n");
1639                 goto free_err;
1640          }
1641
1642         logvol = free_index;
1643         h->drv[logvol].LunID = lunid;
1644                 /* there could be gaps in lun numbers, track hightest */
1645         if(h->highest_lun < lunid)
1646                 h->highest_lun = logvol;
1647         cciss_read_capacity(ctlr, logvol, size_buff, 1,
1648                 &total_size, &block_size);
1649         cciss_geometry_inquiry(ctlr, logvol, 1, total_size, block_size,
1650                         inq_buff, &h->drv[logvol]);
1651         h->drv[logvol].usage_count = 0;
1652         ++h->num_luns;
1653         /* setup partitions per disk */
1654         disk = h->gendisk[logvol];
1655         set_capacity(disk, h->drv[logvol].nr_blocks);
1656         /* if it's the controller it's already added */
1657         if(logvol)
1658                 add_disk(disk);
1659 freeret:
1660         kfree(ld_buff);
1661         kfree(size_buff);
1662         kfree(inq_buff);
1663         return (logvol);
1664 mem_msg:
1665         printk(KERN_ERR "cciss: out of memory\n");
1666 free_err:
1667         logvol = -1;
1668         goto freeret;
1669 }
1670
1671 static int cciss_revalidate(struct gendisk *disk)
1672 {
1673         ctlr_info_t *h = get_host(disk);
1674         drive_info_struct *drv = get_drv(disk);
1675         int logvol;
1676         int FOUND=0;
1677         unsigned int block_size;
1678         unsigned int total_size;
1679         ReadCapdata_struct *size_buff = NULL;
1680         InquiryData_struct *inq_buff = NULL;
1681
1682         for(logvol=0; logvol < CISS_MAX_LUN; logvol++)
1683         {
1684                 if(h->drv[logvol].LunID == drv->LunID) {
1685                         FOUND=1;
1686                         break;
1687                 }
1688         }
1689
1690         if (!FOUND) return 1;
1691
1692         size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL);
1693         if (size_buff == NULL)
1694         {
1695                 printk(KERN_WARNING "cciss: out of memory\n");
1696                 return 1;
1697         }
1698         inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL);
1699         if (inq_buff == NULL)
1700         {
1701                 printk(KERN_WARNING "cciss: out of memory\n");
1702                 kfree(size_buff);
1703                 return 1;
1704         }
1705
1706         cciss_read_capacity(h->ctlr, logvol, size_buff, 1, &total_size, &block_size);
1707         cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size, inq_buff, drv);
1708
1709         blk_queue_hardsect_size(drv->queue, drv->block_size);
1710         set_capacity(disk, drv->nr_blocks);
1711
1712         kfree(size_buff);
1713         kfree(inq_buff);
1714         return 0;
1715 }
1716
1717 /*
1718  *   Wait polling for a command to complete.
1719  *   The memory mapped FIFO is polled for the completion.
1720  *   Used only at init time, interrupts from the HBA are disabled.
1721  */
1722 static unsigned long pollcomplete(int ctlr)
1723 {
1724         unsigned long done;
1725         int i;
1726
1727         /* Wait (up to 20 seconds) for a command to complete */
1728
1729         for (i = 20 * HZ; i > 0; i--) {
1730                 done = hba[ctlr]->access.command_completed(hba[ctlr]);
1731                 if (done == FIFO_EMPTY)
1732                         schedule_timeout_uninterruptible(1);
1733                 else
1734                         return (done);
1735         }
1736         /* Invalid address to tell caller we ran out of time */
1737         return 1;
1738 }
1739 /*
1740  * Send a command to the controller, and wait for it to complete.  
1741  * Only used at init time. 
1742  */
1743 static int sendcmd(
1744         __u8    cmd,
1745         int     ctlr,
1746         void    *buff,
1747         size_t  size,
1748         unsigned int use_unit_num, /* 0: address the controller,
1749                                       1: address logical volume log_unit, 
1750                                       2: periph device address is scsi3addr */
1751         unsigned int log_unit,
1752         __u8    page_code,
1753         unsigned char *scsi3addr,
1754         int cmd_type)
1755 {
1756         CommandList_struct *c;
1757         int i;
1758         unsigned long complete;
1759         ctlr_info_t *info_p= hba[ctlr];
1760         u64bit buff_dma_handle;
1761         int status;
1762
1763         if ((c = cmd_alloc(info_p, 1)) == NULL) {
1764                 printk(KERN_WARNING "cciss: unable to get memory");
1765                 return(IO_ERROR);
1766         }
1767         status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
1768                 log_unit, page_code, scsi3addr, cmd_type);
1769         if (status != IO_OK) {
1770                 cmd_free(info_p, c, 1);
1771                 return status;
1772         }
1773 resend_cmd1:
1774         /*
1775          * Disable interrupt
1776          */
1777 #ifdef CCISS_DEBUG
1778         printk(KERN_DEBUG "cciss: turning intr off\n");
1779 #endif /* CCISS_DEBUG */ 
1780         info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF);
1781         
1782         /* Make sure there is room in the command FIFO */
1783         /* Actually it should be completely empty at this time. */
1784         for (i = 200000; i > 0; i--) 
1785         {
1786                 /* if fifo isn't full go */
1787                 if (!(info_p->access.fifo_full(info_p))) 
1788                 {
1789                         
1790                         break;
1791                 }
1792                 udelay(10);
1793                 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
1794                         " waiting!\n", ctlr);
1795         }
1796         /*
1797          * Send the cmd
1798          */
1799         info_p->access.submit_command(info_p, c);
1800         complete = pollcomplete(ctlr);
1801
1802 #ifdef CCISS_DEBUG
1803         printk(KERN_DEBUG "cciss: command completed\n");
1804 #endif /* CCISS_DEBUG */
1805
1806         if (complete != 1) {
1807                 if ( (complete & CISS_ERROR_BIT)
1808                      && (complete & ~CISS_ERROR_BIT) == c->busaddr)
1809                      {
1810                         /* if data overrun or underun on Report command 
1811                                 ignore it 
1812                         */
1813                         if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
1814                              (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
1815                              (c->Request.CDB[0] == CISS_INQUIRY)) &&
1816                                 ((c->err_info->CommandStatus == 
1817                                         CMD_DATA_OVERRUN) || 
1818                                  (c->err_info->CommandStatus == 
1819                                         CMD_DATA_UNDERRUN)
1820                                 ))
1821                         {
1822                                 complete = c->busaddr;
1823                         } else {
1824                                 if (c->err_info->CommandStatus ==
1825                                                 CMD_UNSOLICITED_ABORT) {
1826                                         printk(KERN_WARNING "cciss%d: "
1827                                                 "unsolicited abort %p\n",
1828                                                 ctlr, c);
1829                                         if (c->retry_count < MAX_CMD_RETRIES) {
1830                                                 printk(KERN_WARNING
1831                                                    "cciss%d: retrying %p\n",
1832                                                    ctlr, c);
1833                                                 c->retry_count++;
1834                                                 /* erase the old error */
1835                                                 /* information */
1836                                                 memset(c->err_info, 0,
1837                                                    sizeof(ErrorInfo_struct));
1838                                                 goto resend_cmd1;
1839                                         } else {
1840                                                 printk(KERN_WARNING
1841                                                    "cciss%d: retried %p too "
1842                                                    "many times\n", ctlr, c);
1843                                                 status = IO_ERROR;
1844                                                 goto cleanup1;
1845                                         }
1846                                 }
1847                                 printk(KERN_WARNING "ciss ciss%d: sendcmd"
1848                                 " Error %x \n", ctlr, 
1849                                         c->err_info->CommandStatus); 
1850                                 printk(KERN_WARNING "ciss ciss%d: sendcmd"
1851                                 " offensive info\n"
1852                                 "  size %x\n   num %x   value %x\n", ctlr,
1853                                   c->err_info->MoreErrInfo.Invalid_Cmd.offense_size,
1854                                   c->err_info->MoreErrInfo.Invalid_Cmd.offense_num,
1855                                   c->err_info->MoreErrInfo.Invalid_Cmd.offense_value);
1856                                 status = IO_ERROR;
1857                                 goto cleanup1;
1858                         }
1859                 }
1860                 if (complete != c->busaddr) {
1861                         printk( KERN_WARNING "cciss cciss%d: SendCmd "
1862                       "Invalid command list address returned! (%lx)\n",
1863                                 ctlr, complete);
1864                         status = IO_ERROR;
1865                         goto cleanup1;
1866                 }
1867         } else {
1868                 printk( KERN_WARNING
1869                         "cciss cciss%d: SendCmd Timeout out, "
1870                         "No command list address returned!\n",
1871                         ctlr);
1872                 status = IO_ERROR;
1873         }
1874                 
1875 cleanup1:       
1876         /* unlock the data buffer from DMA */
1877         pci_unmap_single(info_p->pdev, (dma_addr_t) buff_dma_handle.val,
1878                                 size, PCI_DMA_BIDIRECTIONAL);
1879         cmd_free(info_p, c, 1);
1880         return (status);
1881
1882 /*
1883  * Map (physical) PCI mem into (virtual) kernel space
1884  */
1885 static void __iomem *remap_pci_mem(ulong base, ulong size)
1886 {
1887         ulong page_base        = ((ulong) base) & PAGE_MASK;
1888         ulong page_offs        = ((ulong) base) - page_base;
1889         void __iomem *page_remapped = ioremap(page_base, page_offs+size);
1890
1891         return page_remapped ? (page_remapped + page_offs) : NULL;
1892 }
1893
1894 /* 
1895  * Takes jobs of the Q and sends them to the hardware, then puts it on 
1896  * the Q to wait for completion. 
1897  */ 
1898 static void start_io( ctlr_info_t *h)
1899 {
1900         CommandList_struct *c;
1901         
1902         while(( c = h->reqQ) != NULL )
1903         {
1904                 /* can't do anything if fifo is full */
1905                 if ((h->access.fifo_full(h))) {
1906                         printk(KERN_WARNING "cciss: fifo full\n");
1907                         break;
1908                 }
1909
1910                 /* Get the frist entry from the Request Q */ 
1911                 removeQ(&(h->reqQ), c);
1912                 h->Qdepth--;
1913         
1914                 /* Tell the controller execute command */ 
1915                 h->access.submit_command(h, c);
1916                 
1917                 /* Put job onto the completed Q */ 
1918                 addQ (&(h->cmpQ), c); 
1919         }
1920 }
1921
1922 static inline void complete_buffers(struct bio *bio, int status)
1923 {
1924         while (bio) {
1925                 struct bio *xbh = bio->bi_next; 
1926                 int nr_sectors = bio_sectors(bio);
1927
1928                 bio->bi_next = NULL; 
1929                 blk_finished_io(len);
1930                 bio_endio(bio, nr_sectors << 9, status ? 0 : -EIO);
1931                 bio = xbh;
1932         }
1933
1934
1935 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
1936 /* Zeros out the error record and then resends the command back */
1937 /* to the controller */
1938 static inline void resend_cciss_cmd( ctlr_info_t *h, CommandList_struct *c)
1939 {
1940         /* erase the old error information */
1941         memset(c->err_info, 0, sizeof(ErrorInfo_struct));
1942
1943         /* add it to software queue and then send it to the controller */
1944         addQ(&(h->reqQ),c);
1945         h->Qdepth++;
1946         if(h->Qdepth > h->maxQsinceinit)
1947                 h->maxQsinceinit = h->Qdepth;
1948
1949         start_io(h);
1950 }
1951 /* checks the status of the job and calls complete buffers to mark all 
1952  * buffers for the completed job. 
1953  */ 
1954 static inline void complete_command( ctlr_info_t *h, CommandList_struct *cmd,
1955                 int timeout)
1956 {
1957         int status = 1;
1958         int i;
1959         int retry_cmd = 0;
1960         u64bit temp64;
1961                 
1962         if (timeout)
1963                 status = 0; 
1964
1965         if(cmd->err_info->CommandStatus != 0) 
1966         { /* an error has occurred */ 
1967                 switch(cmd->err_info->CommandStatus)
1968                 {
1969                         unsigned char sense_key;
1970                         case CMD_TARGET_STATUS:
1971                                 status = 0;
1972                         
1973                                 if( cmd->err_info->ScsiStatus == 0x02)
1974                                 {
1975                                         printk(KERN_WARNING "cciss: cmd %p "
1976                                                 "has CHECK CONDITION "
1977                                                 " byte 2 = 0x%x\n", cmd,
1978                                                 cmd->err_info->SenseInfo[2]
1979                                         );
1980                                         /* check the sense key */
1981                                         sense_key = 0xf & 
1982                                                 cmd->err_info->SenseInfo[2];
1983                                         /* no status or recovered error */
1984                                         if((sense_key == 0x0) ||
1985                                             (sense_key == 0x1))
1986                                         {
1987                                                         status = 1;
1988                                         }
1989                                 } else
1990                                 {
1991                                         printk(KERN_WARNING "cciss: cmd %p "
1992                                                 "has SCSI Status 0x%x\n",
1993                                                 cmd, cmd->err_info->ScsiStatus);
1994                                 }
1995                         break;
1996                         case CMD_DATA_UNDERRUN:
1997                                 printk(KERN_WARNING "cciss: cmd %p has"
1998                                         " completed with data underrun "
1999                                         "reported\n", cmd);
2000                         break;
2001                         case CMD_DATA_OVERRUN:
2002                                 printk(KERN_WARNING "cciss: cmd %p has"
2003                                         " completed with data overrun "
2004                                         "reported\n", cmd);
2005                         break;
2006                         case CMD_INVALID:
2007                                 printk(KERN_WARNING "cciss: cmd %p is "
2008                                         "reported invalid\n", cmd);
2009                                 status = 0;
2010                         break;
2011                         case CMD_PROTOCOL_ERR:
2012                                 printk(KERN_WARNING "cciss: cmd %p has "
2013                                         "protocol error \n", cmd);
2014                                 status = 0;
2015                         break;
2016                         case CMD_HARDWARE_ERR:
2017                                 printk(KERN_WARNING "cciss: cmd %p had " 
2018                                         " hardware error\n", cmd);
2019                                 status = 0;
2020                         break;
2021                         case CMD_CONNECTION_LOST:
2022                                 printk(KERN_WARNING "cciss: cmd %p had "
2023                                         "connection lost\n", cmd);
2024                                 status=0;
2025                         break;
2026                         case CMD_ABORTED:
2027                                 printk(KERN_WARNING "cciss: cmd %p was "
2028                                         "aborted\n", cmd);
2029                                 status=0;
2030                         break;
2031                         case CMD_ABORT_FAILED:
2032                                 printk(KERN_WARNING "cciss: cmd %p reports "
2033                                         "abort failed\n", cmd);
2034                                 status=0;
2035                         break;
2036                         case CMD_UNSOLICITED_ABORT:
2037                                 printk(KERN_WARNING "cciss%d: unsolicited "
2038                                         "abort %p\n", h->ctlr, cmd);
2039                                 if (cmd->retry_count < MAX_CMD_RETRIES) {
2040                                         retry_cmd=1;
2041                                         printk(KERN_WARNING
2042                                                 "cciss%d: retrying %p\n",
2043                                                 h->ctlr, cmd);
2044                                         cmd->retry_count++;
2045                                 } else
2046                                         printk(KERN_WARNING
2047                                                 "cciss%d: %p retried too "
2048                                                 "many times\n", h->ctlr, cmd);
2049                                 status=0;
2050                         break;
2051                         case CMD_TIMEOUT:
2052                                 printk(KERN_WARNING "cciss: cmd %p timedout\n",
2053                                         cmd);
2054                                 status=0;
2055                         break;
2056                         default:
2057                                 printk(KERN_WARNING "cciss: cmd %p returned "
2058                                         "unknown status %x\n", cmd, 
2059                                                 cmd->err_info->CommandStatus); 
2060                                 status=0;
2061                 }
2062         }
2063         /* We need to return this command */
2064         if(retry_cmd) {
2065                 resend_cciss_cmd(h,cmd);
2066                 return;
2067         }       
2068         /* command did not need to be retried */
2069         /* unmap the DMA mapping for all the scatter gather elements */
2070         for(i=0; i<cmd->Header.SGList; i++) {
2071                 temp64.val32.lower = cmd->SG[i].Addr.lower;
2072                 temp64.val32.upper = cmd->SG[i].Addr.upper;
2073                 pci_unmap_page(hba[cmd->ctlr]->pdev,
2074                         temp64.val, cmd->SG[i].Len,
2075                         (cmd->Request.Type.Direction == XFER_READ) ?
2076                                 PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
2077         }
2078         complete_buffers(cmd->rq->bio, status);
2079
2080 #ifdef CCISS_DEBUG
2081         printk("Done with %p\n", cmd->rq);
2082 #endif /* CCISS_DEBUG */ 
2083
2084         end_that_request_last(cmd->rq);
2085         cmd_free(h,cmd,1);
2086 }
2087
2088 /* 
2089  * Get a request and submit it to the controller. 
2090  */
2091 static void do_cciss_request(request_queue_t *q)
2092 {
2093         ctlr_info_t *h= q->queuedata; 
2094         CommandList_struct *c;
2095         int start_blk, seg;
2096         struct request *creq;
2097         u64bit temp64;
2098         struct scatterlist tmp_sg[MAXSGENTRIES];
2099         drive_info_struct *drv;
2100         int i, dir;
2101
2102         /* We call start_io here in case there is a command waiting on the
2103          * queue that has not been sent.
2104         */
2105         if (blk_queue_plugged(q))
2106                 goto startio;
2107
2108 queue:
2109         creq = elv_next_request(q);
2110         if (!creq)
2111                 goto startio;
2112
2113         if (creq->nr_phys_segments > MAXSGENTRIES)
2114                 BUG();
2115
2116         if (( c = cmd_alloc(h, 1)) == NULL)
2117                 goto full;
2118
2119         blkdev_dequeue_request(creq);
2120
2121         spin_unlock_irq(q->queue_lock);
2122
2123         c->cmd_type = CMD_RWREQ;
2124         c->rq = creq;
2125         
2126         /* fill in the request */ 
2127         drv = creq->rq_disk->private_data;
2128         c->Header.ReplyQueue = 0;  // unused in simple mode
2129         c->Header.Tag.lower = c->busaddr;  // use the physical address the cmd block for tag
2130         c->Header.LUN.LogDev.VolId= drv->LunID;
2131         c->Header.LUN.LogDev.Mode = 1;
2132         c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
2133         c->Request.Type.Type =  TYPE_CMD; // It is a command. 
2134         c->Request.Type.Attribute = ATTR_SIMPLE; 
2135         c->Request.Type.Direction = 
2136                 (rq_data_dir(creq) == READ) ? XFER_READ: XFER_WRITE; 
2137         c->Request.Timeout = 0; // Don't time out       
2138         c->Request.CDB[0] = (rq_data_dir(creq) == READ) ? CCISS_READ : CCISS_WRITE;
2139         start_blk = creq->sector;
2140 #ifdef CCISS_DEBUG
2141         printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",(int) creq->sector,
2142                 (int) creq->nr_sectors);        
2143 #endif /* CCISS_DEBUG */
2144
2145         seg = blk_rq_map_sg(q, creq, tmp_sg);
2146
2147         /* get the DMA records for the setup */ 
2148         if (c->Request.Type.Direction == XFER_READ)
2149                 dir = PCI_DMA_FROMDEVICE;
2150         else
2151                 dir = PCI_DMA_TODEVICE;
2152
2153         for (i=0; i<seg; i++)
2154         {
2155                 c->SG[i].Len = tmp_sg[i].length;
2156                 temp64.val = (__u64) pci_map_page(h->pdev, tmp_sg[i].page,
2157                                           tmp_sg[i].offset, tmp_sg[i].length,
2158                                           dir);
2159                 c->SG[i].Addr.lower = temp64.val32.lower;
2160                 c->SG[i].Addr.upper = temp64.val32.upper;
2161                 c->SG[i].Ext = 0;  // we are not chaining
2162         }
2163         /* track how many SG entries we are using */ 
2164         if( seg > h->maxSG)
2165                 h->maxSG = seg; 
2166
2167 #ifdef CCISS_DEBUG
2168         printk(KERN_DEBUG "cciss: Submitting %d sectors in %d segments\n", creq->nr_sectors, seg);
2169 #endif /* CCISS_DEBUG */
2170
2171         c->Header.SGList = c->Header.SGTotal = seg;
2172         c->Request.CDB[1]= 0;
2173         c->Request.CDB[2]= (start_blk >> 24) & 0xff;    //MSB
2174         c->Request.CDB[3]= (start_blk >> 16) & 0xff;
2175         c->Request.CDB[4]= (start_blk >>  8) & 0xff;
2176         c->Request.CDB[5]= start_blk & 0xff;
2177         c->Request.CDB[6]= 0; // (sect >> 24) & 0xff; MSB
2178         c->Request.CDB[7]= (creq->nr_sectors >>  8) & 0xff; 
2179         c->Request.CDB[8]= creq->nr_sectors & 0xff; 
2180         c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
2181
2182         spin_lock_irq(q->queue_lock);
2183
2184         addQ(&(h->reqQ),c);
2185         h->Qdepth++;
2186         if(h->Qdepth > h->maxQsinceinit)
2187                 h->maxQsinceinit = h->Qdepth; 
2188
2189         goto queue;
2190 full:
2191         blk_stop_queue(q);
2192 startio:
2193         /* We will already have the driver lock here so not need
2194          * to lock it.
2195         */
2196         start_io(h);
2197 }
2198
2199 static irqreturn_t do_cciss_intr(int irq, void *dev_id, struct pt_regs *regs)
2200 {
2201         ctlr_info_t *h = dev_id;
2202         CommandList_struct *c;
2203         unsigned long flags;
2204         __u32 a, a1;
2205         int j;
2206         int start_queue = h->next_to_run;
2207
2208         /* Is this interrupt for us? */
2209         if (( h->access.intr_pending(h) == 0) || (h->interrupts_enabled == 0))
2210                 return IRQ_NONE;
2211
2212         /*
2213          * If there are completed commands in the completion queue,
2214          * we had better do something about it.
2215          */
2216         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2217         while( h->access.intr_pending(h))
2218         {
2219                 while((a = h->access.command_completed(h)) != FIFO_EMPTY) 
2220                 {
2221                         a1 = a;
2222                         a &= ~3;
2223                         if ((c = h->cmpQ) == NULL)
2224                         {  
2225                                 printk(KERN_WARNING "cciss: Completion of %08lx ignored\n", (unsigned long)a1);
2226                                 continue;       
2227                         } 
2228                         while(c->busaddr != a) {
2229                                 c = c->next;
2230                                 if (c == h->cmpQ) 
2231                                         break;
2232                         }
2233                         /*
2234                          * If we've found the command, take it off the
2235                          * completion Q and free it
2236                          */
2237                          if (c->busaddr == a) {
2238                                 removeQ(&h->cmpQ, c);
2239                                 if (c->cmd_type == CMD_RWREQ) {
2240                                         complete_command(h, c, 0);
2241                                 } else if (c->cmd_type == CMD_IOCTL_PEND) {
2242                                         complete(c->waiting);
2243                                 }
2244 #                               ifdef CONFIG_CISS_SCSI_TAPE
2245                                 else if (c->cmd_type == CMD_SCSI)
2246                                         complete_scsi_command(c, 0, a1);
2247 #                               endif
2248                                 continue;
2249                         }
2250                 }
2251         }
2252
2253         /* check to see if we have maxed out the number of commands that can
2254          * be placed on the queue.  If so then exit.  We do this check here
2255          * in case the interrupt we serviced was from an ioctl and did not
2256          * free any new commands.
2257          */
2258         if ((find_first_zero_bit(h->cmd_pool_bits, NR_CMDS)) == NR_CMDS)
2259                 goto cleanup;
2260
2261         /* We have room on the queue for more commands.  Now we need to queue
2262          * them up.  We will also keep track of the next queue to run so
2263          * that every queue gets a chance to be started first.
2264         */
2265         for (j=0; j < h->highest_lun + 1; j++){
2266                 int curr_queue = (start_queue + j) % (h->highest_lun + 1);
2267                 /* make sure the disk has been added and the drive is real
2268                  * because this can be called from the middle of init_one.
2269                 */
2270                 if(!(h->drv[curr_queue].queue) ||
2271                                    !(h->drv[curr_queue].heads))
2272                         continue;
2273                 blk_start_queue(h->gendisk[curr_queue]->queue);
2274
2275                 /* check to see if we have maxed out the number of commands
2276                  * that can be placed on the queue.
2277                 */
2278                 if ((find_first_zero_bit(h->cmd_pool_bits, NR_CMDS)) == NR_CMDS)
2279                 {
2280                         if (curr_queue == start_queue){
2281                                 h->next_to_run = (start_queue + 1) % (h->highest_lun + 1);
2282                                 goto cleanup;
2283                         } else {
2284                                 h->next_to_run = curr_queue;
2285                                 goto cleanup;
2286         }
2287                 } else {
2288                         curr_queue = (curr_queue + 1) % (h->highest_lun + 1);
2289                 }
2290         }
2291
2292 cleanup:
2293         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2294         return IRQ_HANDLED;
2295 }
2296 /* 
2297  *  We cannot read the structure directly, for portablity we must use 
2298  *   the io functions.
2299  *   This is for debug only. 
2300  */
2301 #ifdef CCISS_DEBUG
2302 static void print_cfg_table( CfgTable_struct *tb)
2303 {
2304         int i;
2305         char temp_name[17];
2306
2307         printk("Controller Configuration information\n");
2308         printk("------------------------------------\n");
2309         for(i=0;i<4;i++)
2310                 temp_name[i] = readb(&(tb->Signature[i]));
2311         temp_name[4]='\0';
2312         printk("   Signature = %s\n", temp_name); 
2313         printk("   Spec Number = %d\n", readl(&(tb->SpecValence)));
2314         printk("   Transport methods supported = 0x%x\n", 
2315                                 readl(&(tb-> TransportSupport)));
2316         printk("   Transport methods active = 0x%x\n", 
2317                                 readl(&(tb->TransportActive)));
2318         printk("   Requested transport Method = 0x%x\n", 
2319                         readl(&(tb->HostWrite.TransportRequest)));
2320         printk("   Coalese Interrupt Delay = 0x%x\n", 
2321                         readl(&(tb->HostWrite.CoalIntDelay)));
2322         printk("   Coalese Interrupt Count = 0x%x\n", 
2323                         readl(&(tb->HostWrite.CoalIntCount)));
2324         printk("   Max outstanding commands = 0x%d\n", 
2325                         readl(&(tb->CmdsOutMax)));
2326         printk("   Bus Types = 0x%x\n", readl(&(tb-> BusTypes)));
2327         for(i=0;i<16;i++)
2328                 temp_name[i] = readb(&(tb->ServerName[i]));
2329         temp_name[16] = '\0';
2330         printk("   Server Name = %s\n", temp_name);
2331         printk("   Heartbeat Counter = 0x%x\n\n\n", 
2332                         readl(&(tb->HeartBeat)));
2333 }
2334 #endif /* CCISS_DEBUG */ 
2335
2336 static void release_io_mem(ctlr_info_t *c)
2337 {
2338         /* if IO mem was not protected do nothing */
2339         if( c->io_mem_addr == 0)
2340                 return;
2341         release_region(c->io_mem_addr, c->io_mem_length);
2342         c->io_mem_addr = 0;
2343         c->io_mem_length = 0;
2344 }
2345
2346 static int find_PCI_BAR_index(struct pci_dev *pdev,
2347                                 unsigned long pci_bar_addr)
2348 {
2349         int i, offset, mem_type, bar_type;
2350         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
2351                 return 0;
2352         offset = 0;
2353         for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
2354                 bar_type = pci_resource_flags(pdev, i) &
2355                         PCI_BASE_ADDRESS_SPACE;
2356                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
2357                         offset += 4;
2358                 else {
2359                         mem_type = pci_resource_flags(pdev, i) &
2360                                 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
2361                         switch (mem_type) {
2362                                 case PCI_BASE_ADDRESS_MEM_TYPE_32:
2363                                 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
2364                                         offset += 4; /* 32 bit */
2365                                         break;
2366                                 case PCI_BASE_ADDRESS_MEM_TYPE_64:
2367                                         offset += 8;
2368                                         break;
2369                                 default: /* reserved in PCI 2.2 */
2370                                         printk(KERN_WARNING "Base address is invalid\n");
2371                                         return -1;
2372                                 break;
2373                         }
2374                 }
2375                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
2376                         return i+1;
2377         }
2378         return -1;
2379 }
2380
2381 static int cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
2382 {
2383         ushort subsystem_vendor_id, subsystem_device_id, command;
2384         __u32 board_id, scratchpad = 0;
2385         __u64 cfg_offset;
2386         __u32 cfg_base_addr;
2387         __u64 cfg_base_addr_index;
2388         int i;
2389
2390         /* check to see if controller has been disabled */
2391         /* BEFORE trying to enable it */
2392         (void) pci_read_config_word(pdev, PCI_COMMAND,&command);
2393         if(!(command & 0x02))
2394         {
2395                 printk(KERN_WARNING "cciss: controller appears to be disabled\n");
2396                 return(-1);
2397         }
2398
2399         if (pci_enable_device(pdev))
2400         {
2401                 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
2402                 return( -1);
2403         }
2404
2405         subsystem_vendor_id = pdev->subsystem_vendor;
2406         subsystem_device_id = pdev->subsystem_device;
2407         board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
2408                                         subsystem_vendor_id);
2409
2410         /* search for our IO range so we can protect it */
2411         for(i=0; i<DEVICE_COUNT_RESOURCE; i++)
2412         {
2413                 /* is this an IO range */ 
2414                 if( pci_resource_flags(pdev, i) & 0x01 ) {
2415                         c->io_mem_addr = pci_resource_start(pdev, i);
2416                         c->io_mem_length = pci_resource_end(pdev, i) -
2417                                 pci_resource_start(pdev, i) +1;
2418 #ifdef CCISS_DEBUG
2419                         printk("IO value found base_addr[%d] %lx %lx\n", i,
2420                                 c->io_mem_addr, c->io_mem_length);
2421 #endif /* CCISS_DEBUG */
2422                         /* register the IO range */ 
2423                         if(!request_region( c->io_mem_addr,
2424                                         c->io_mem_length, "cciss"))
2425                         {
2426                                 printk(KERN_WARNING "cciss I/O memory range already in use addr=%lx length=%ld\n",
2427                                 c->io_mem_addr, c->io_mem_length);
2428                                 c->io_mem_addr= 0;
2429                                 c->io_mem_length = 0;
2430                         } 
2431                         break;
2432                 }
2433         }
2434
2435 #ifdef CCISS_DEBUG
2436         printk("command = %x\n", command);
2437         printk("irq = %x\n", pdev->irq);
2438         printk("board_id = %x\n", board_id);
2439 #endif /* CCISS_DEBUG */ 
2440
2441         c->intr = pdev->irq;
2442
2443         /*
2444          * Memory base addr is first addr , the second points to the config
2445          *   table
2446          */
2447
2448         c->paddr = pci_resource_start(pdev, 0); /* addressing mode bits already removed */
2449 #ifdef CCISS_DEBUG
2450         printk("address 0 = %x\n", c->paddr);
2451 #endif /* CCISS_DEBUG */ 
2452         c->vaddr = remap_pci_mem(c->paddr, 200);
2453
2454         /* Wait for the board to become ready.  (PCI hotplug needs this.)
2455          * We poll for up to 120 secs, once per 100ms. */
2456         for (i=0; i < 1200; i++) {
2457                 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
2458                 if (scratchpad == CCISS_FIRMWARE_READY)
2459                         break;
2460                 set_current_state(TASK_INTERRUPTIBLE);
2461                 schedule_timeout(HZ / 10); /* wait 100ms */
2462         }
2463         if (scratchpad != CCISS_FIRMWARE_READY) {
2464                 printk(KERN_WARNING "cciss: Board not ready.  Timed out.\n");
2465                 return -1;
2466         }
2467
2468         /* get the address index number */
2469         cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
2470         cfg_base_addr &= (__u32) 0x0000ffff;
2471 #ifdef CCISS_DEBUG
2472         printk("cfg base address = %x\n", cfg_base_addr);
2473 #endif /* CCISS_DEBUG */
2474         cfg_base_addr_index =
2475                 find_PCI_BAR_index(pdev, cfg_base_addr);
2476 #ifdef CCISS_DEBUG
2477         printk("cfg base address index = %x\n", cfg_base_addr_index);
2478 #endif /* CCISS_DEBUG */
2479         if (cfg_base_addr_index == -1) {
2480                 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
2481                 release_io_mem(c);
2482                 return -1;
2483         }
2484
2485         cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
2486 #ifdef CCISS_DEBUG
2487         printk("cfg offset = %x\n", cfg_offset);
2488 #endif /* CCISS_DEBUG */
2489         c->cfgtable =  remap_pci_mem(pci_resource_start(pdev,
2490                                 cfg_base_addr_index) + cfg_offset,
2491                                 sizeof(CfgTable_struct));
2492         c->board_id = board_id;
2493
2494 #ifdef CCISS_DEBUG
2495         print_cfg_table(c->cfgtable); 
2496 #endif /* CCISS_DEBUG */
2497
2498         for(i=0; i<NR_PRODUCTS; i++) {
2499                 if (board_id == products[i].board_id) {
2500                         c->product_name = products[i].product_name;
2501                         c->access = *(products[i].access);
2502                         break;
2503                 }
2504         }
2505         if (i == NR_PRODUCTS) {
2506                 printk(KERN_WARNING "cciss: Sorry, I don't know how"
2507                         " to access the Smart Array controller %08lx\n", 
2508                                 (unsigned long)board_id);
2509                 return -1;
2510         }
2511         if (  (readb(&c->cfgtable->Signature[0]) != 'C') ||
2512               (readb(&c->cfgtable->Signature[1]) != 'I') ||
2513               (readb(&c->cfgtable->Signature[2]) != 'S') ||
2514               (readb(&c->cfgtable->Signature[3]) != 'S') )
2515         {
2516                 printk("Does not appear to be a valid CISS config table\n");
2517                 return -1;
2518         }
2519
2520 #ifdef CONFIG_X86
2521 {
2522         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
2523         __u32 prefetch;
2524         prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
2525         prefetch |= 0x100;
2526         writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
2527 }
2528 #endif
2529
2530 #ifdef CCISS_DEBUG
2531         printk("Trying to put board into Simple mode\n");
2532 #endif /* CCISS_DEBUG */ 
2533         c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
2534         /* Update the field, and then ring the doorbell */ 
2535         writel( CFGTBL_Trans_Simple, 
2536                 &(c->cfgtable->HostWrite.TransportRequest));
2537         writel( CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
2538
2539         /* under certain very rare conditions, this can take awhile.
2540          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
2541          * as we enter this code.) */
2542         for(i=0;i<MAX_CONFIG_WAIT;i++) {
2543                 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
2544                         break;
2545                 /* delay and try again */
2546                 set_current_state(TASK_INTERRUPTIBLE);
2547                 schedule_timeout(10);
2548         }       
2549
2550 #ifdef CCISS_DEBUG
2551         printk(KERN_DEBUG "I counter got to %d %x\n", i, readl(c->vaddr + SA5_DOORBELL));
2552 #endif /* CCISS_DEBUG */
2553 #ifdef CCISS_DEBUG
2554         print_cfg_table(c->cfgtable);   
2555 #endif /* CCISS_DEBUG */ 
2556
2557         if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
2558         {
2559                 printk(KERN_WARNING "cciss: unable to get board into"
2560                                         " simple mode\n");
2561                 return -1;
2562         }
2563         return 0;
2564
2565 }
2566
2567 /* 
2568  * Gets information about the local volumes attached to the controller. 
2569  */ 
2570 static void cciss_getgeometry(int cntl_num)
2571 {
2572         ReportLunData_struct *ld_buff;
2573         ReadCapdata_struct *size_buff;
2574         InquiryData_struct *inq_buff;
2575         int return_code;
2576         int i;
2577         int listlength = 0;
2578         __u32 lunid = 0;
2579         int block_size;
2580         int total_size; 
2581
2582         ld_buff = kmalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2583         if (ld_buff == NULL)
2584         {
2585                 printk(KERN_ERR "cciss: out of memory\n");
2586                 return;
2587         }
2588         memset(ld_buff, 0, sizeof(ReportLunData_struct));
2589         size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL);
2590         if (size_buff == NULL)
2591         {
2592                 printk(KERN_ERR "cciss: out of memory\n");
2593                 kfree(ld_buff);
2594                 return;
2595         }
2596         inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL);
2597         if (inq_buff == NULL)
2598         {
2599                 printk(KERN_ERR "cciss: out of memory\n");
2600                 kfree(ld_buff);
2601                 kfree(size_buff);
2602                 return;
2603         }
2604         /* Get the firmware version */ 
2605         return_code = sendcmd(CISS_INQUIRY, cntl_num, inq_buff, 
2606                 sizeof(InquiryData_struct), 0, 0 ,0, NULL, TYPE_CMD);
2607         if (return_code == IO_OK)
2608         {
2609                 hba[cntl_num]->firm_ver[0] = inq_buff->data_byte[32];
2610                 hba[cntl_num]->firm_ver[1] = inq_buff->data_byte[33];
2611                 hba[cntl_num]->firm_ver[2] = inq_buff->data_byte[34];
2612                 hba[cntl_num]->firm_ver[3] = inq_buff->data_byte[35];
2613         } else /* send command failed */
2614         {
2615                 printk(KERN_WARNING "cciss: unable to determine firmware"
2616                         " version of controller\n");
2617         }
2618         /* Get the number of logical volumes */ 
2619         return_code = sendcmd(CISS_REPORT_LOG, cntl_num, ld_buff, 
2620                         sizeof(ReportLunData_struct), 0, 0, 0, NULL, TYPE_CMD);
2621
2622         if( return_code == IO_OK)
2623         {
2624 #ifdef CCISS_DEBUG
2625                 printk("LUN Data\n--------------------------\n");
2626 #endif /* CCISS_DEBUG */ 
2627
2628                 listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[0])) << 24;
2629                 listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[1])) << 16;
2630                 listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[2])) << 8;  
2631                 listlength |= 0xff & (unsigned int)(ld_buff->LUNListLength[3]);
2632         } else /* reading number of logical volumes failed */
2633         {
2634                 printk(KERN_WARNING "cciss: report logical volume"
2635                         " command failed\n");
2636                 listlength = 0;
2637         }
2638         hba[cntl_num]->num_luns = listlength / 8; // 8 bytes pre entry
2639         if (hba[cntl_num]->num_luns > CISS_MAX_LUN)
2640         {
2641                 printk(KERN_ERR "ciss:  only %d number of logical volumes supported\n",
2642                         CISS_MAX_LUN);
2643                 hba[cntl_num]->num_luns = CISS_MAX_LUN;
2644         }
2645 #ifdef CCISS_DEBUG
2646         printk(KERN_DEBUG "Length = %x %x %x %x = %d\n", ld_buff->LUNListLength[0],
2647                 ld_buff->LUNListLength[1], ld_buff->LUNListLength[2],
2648                 ld_buff->LUNListLength[3],  hba[cntl_num]->num_luns);
2649 #endif /* CCISS_DEBUG */
2650
2651         hba[cntl_num]->highest_lun = hba[cntl_num]->num_luns-1;
2652         for(i=0; i<  hba[cntl_num]->num_luns; i++)
2653         {
2654
2655                 lunid = (0xff & (unsigned int)(ld_buff->LUN[i][3])) << 24;
2656                 lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][2])) << 16;
2657                 lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][1])) << 8;
2658                 lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
2659                 
2660                 hba[cntl_num]->drv[i].LunID = lunid;
2661
2662
2663 #ifdef CCISS_DEBUG
2664                 printk(KERN_DEBUG "LUN[%d]:  %x %x %x %x = %x\n", i, 
2665                 ld_buff->LUN[i][0], ld_buff->LUN[i][1],ld_buff->LUN[i][2], 
2666                 ld_buff->LUN[i][3], hba[cntl_num]->drv[i].LunID);
2667 #endif /* CCISS_DEBUG */
2668                 cciss_read_capacity(cntl_num, i, size_buff, 0,
2669                         &total_size, &block_size);
2670                 cciss_geometry_inquiry(cntl_num, i, 0, total_size, block_size,
2671                         inq_buff, &hba[cntl_num]->drv[i]);
2672         }
2673         kfree(ld_buff);
2674         kfree(size_buff);
2675         kfree(inq_buff);
2676 }       
2677
2678 /* Function to find the first free pointer into our hba[] array */
2679 /* Returns -1 if no free entries are left.  */
2680 static int alloc_cciss_hba(void)
2681 {
2682         struct gendisk *disk[NWD];
2683         int i, n;
2684         for (n = 0; n < NWD; n++) {
2685                 disk[n] = alloc_disk(1 << NWD_SHIFT);
2686                 if (!disk[n])
2687                         goto out;
2688         }
2689
2690         for(i=0; i< MAX_CTLR; i++) {
2691                 if (!hba[i]) {
2692                         ctlr_info_t *p;
2693                         p = kmalloc(sizeof(ctlr_info_t), GFP_KERNEL);
2694                         if (!p)
2695                                 goto Enomem;
2696                         memset(p, 0, sizeof(ctlr_info_t));
2697                         for (n = 0; n < NWD; n++)
2698                                 p->gendisk[n] = disk[n];
2699                         hba[i] = p;
2700                         return i;
2701                 }
2702         }
2703         printk(KERN_WARNING "cciss: This driver supports a maximum"
2704                 " of %d controllers.\n", MAX_CTLR);
2705         goto out;
2706 Enomem:
2707         printk(KERN_ERR "cciss: out of memory.\n");
2708 out:
2709         while (n--)
2710                 put_disk(disk[n]);
2711         return -1;
2712 }
2713
2714 static void free_hba(int i)
2715 {
2716         ctlr_info_t *p = hba[i];
2717         int n;
2718
2719         hba[i] = NULL;
2720         for (n = 0; n < NWD; n++)
2721                 put_disk(p->gendisk[n]);
2722         kfree(p);
2723 }
2724
2725 /*
2726  *  This is it.  Find all the controllers and register them.  I really hate
2727  *  stealing all these major device numbers.
2728  *  returns the number of block devices registered.
2729  */
2730 static int __devinit cciss_init_one(struct pci_dev *pdev,
2731         const struct pci_device_id *ent)
2732 {
2733         request_queue_t *q;
2734         int i;
2735         int j;
2736         int rc;
2737
2738         printk(KERN_DEBUG "cciss: Device 0x%x has been found at"
2739                         " bus %d dev %d func %d\n",
2740                 pdev->device, pdev->bus->number, PCI_SLOT(pdev->devfn),
2741                         PCI_FUNC(pdev->devfn));
2742         i = alloc_cciss_hba();
2743         if(i < 0)
2744                 return (-1);
2745         if (cciss_pci_init(hba[i], pdev) != 0)
2746                 goto clean1;
2747
2748         sprintf(hba[i]->devname, "cciss%d", i);
2749         hba[i]->ctlr = i;
2750         hba[i]->pdev = pdev;
2751
2752         /* configure PCI DMA stuff */
2753         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK))
2754                 printk("cciss: using DAC cycles\n");
2755         else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK))
2756                 printk("cciss: not using DAC cycles\n");
2757         else {
2758                 printk("cciss: no suitable DMA available\n");
2759                 goto clean1;
2760         }
2761
2762         /*
2763          * register with the major number, or get a dynamic major number
2764          * by passing 0 as argument.  This is done for greater than
2765          * 8 controller support.
2766          */
2767         if (i < MAX_CTLR_ORIG)
2768                 hba[i]->major = MAJOR_NR + i;
2769         rc = register_blkdev(hba[i]->major, hba[i]->devname);
2770         if(rc == -EBUSY || rc == -EINVAL) {
2771                 printk(KERN_ERR
2772                         "cciss:  Unable to get major number %d for %s "
2773                         "on hba %d\n", hba[i]->major, hba[i]->devname, i);
2774                 goto clean1;
2775         }
2776         else {
2777                 if (i >= MAX_CTLR_ORIG)
2778                         hba[i]->major = rc;
2779         }
2780
2781         /* make sure the board interrupts are off */
2782         hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
2783         if( request_irq(hba[i]->intr, do_cciss_intr, 
2784                 SA_INTERRUPT | SA_SHIRQ | SA_SAMPLE_RANDOM, 
2785                         hba[i]->devname, hba[i])) {
2786                 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
2787                         hba[i]->intr, hba[i]->devname);
2788                 goto clean2;
2789         }
2790         hba[i]->cmd_pool_bits = kmalloc(((NR_CMDS+BITS_PER_LONG-1)/BITS_PER_LONG)*sizeof(unsigned long), GFP_KERNEL);
2791         hba[i]->cmd_pool = (CommandList_struct *)pci_alloc_consistent(
2792                 hba[i]->pdev, NR_CMDS * sizeof(CommandList_struct), 
2793                 &(hba[i]->cmd_pool_dhandle));
2794         hba[i]->errinfo_pool = (ErrorInfo_struct *)pci_alloc_consistent(
2795                 hba[i]->pdev, NR_CMDS * sizeof( ErrorInfo_struct), 
2796                 &(hba[i]->errinfo_pool_dhandle));
2797         if((hba[i]->cmd_pool_bits == NULL) 
2798                 || (hba[i]->cmd_pool == NULL)
2799                 || (hba[i]->errinfo_pool == NULL)) {
2800                 printk( KERN_ERR "cciss: out of memory");
2801                 goto clean4;
2802         }
2803
2804         spin_lock_init(&hba[i]->lock);
2805
2806         /* Initialize the pdev driver private data. 
2807                 have it point to hba[i].  */
2808         pci_set_drvdata(pdev, hba[i]);
2809         /* command and error info recs zeroed out before 
2810                         they are used */
2811         memset(hba[i]->cmd_pool_bits, 0, ((NR_CMDS+BITS_PER_LONG-1)/BITS_PER_LONG)*sizeof(unsigned long));
2812
2813 #ifdef CCISS_DEBUG      
2814         printk(KERN_DEBUG "Scanning for drives on controller cciss%d\n",i);
2815 #endif /* CCISS_DEBUG */
2816
2817         cciss_getgeometry(i);
2818
2819         cciss_scsi_setup(i);
2820
2821         /* Turn the interrupts on so we can service requests */
2822         hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
2823
2824         cciss_procinit(i);
2825
2826         for(j=0; j < NWD; j++) { /* mfm */
2827                 drive_info_struct *drv = &(hba[i]->drv[j]);
2828                 struct gendisk *disk = hba[i]->gendisk[j];
2829
2830                 q = blk_init_queue(do_cciss_request, &hba[i]->lock);
2831                 if (!q) {
2832                         printk(KERN_ERR
2833                            "cciss:  unable to allocate queue for disk %d\n",
2834                            j);
2835                         break;
2836                 }
2837                 drv->queue = q;
2838
2839                 q->backing_dev_info.ra_pages = READ_AHEAD;
2840         blk_queue_bounce_limit(q, hba[i]->pdev->dma_mask);
2841
2842         /* This is a hardware imposed limit. */
2843         blk_queue_max_hw_segments(q, MAXSGENTRIES);
2844
2845         /* This is a limit in the driver and could be eliminated. */
2846         blk_queue_max_phys_segments(q, MAXSGENTRIES);
2847
2848         blk_queue_max_sectors(q, 512);
2849
2850                 q->queuedata = hba[i];
2851                 sprintf(disk->disk_name, "cciss/c%dd%d", i, j);
2852                 sprintf(disk->devfs_name, "cciss/host%d/target%d", i, j);
2853                 disk->major = hba[i]->major;
2854                 disk->first_minor = j << NWD_SHIFT;
2855                 disk->fops = &cciss_fops;
2856                 disk->queue = q;
2857                 disk->private_data = drv;
2858                 /* we must register the controller even if no disks exist */
2859                 /* this is for the online array utilities */
2860                 if(!drv->heads && j)
2861                         continue;
2862                 blk_queue_hardsect_size(q, drv->block_size);
2863                 set_capacity(disk, drv->nr_blocks);
2864                 add_disk(disk);
2865         }
2866
2867         return(1);
2868
2869 clean4:
2870         if(hba[i]->cmd_pool_bits)
2871                 kfree(hba[i]->cmd_pool_bits);
2872         if(hba[i]->cmd_pool)
2873                 pci_free_consistent(hba[i]->pdev,
2874                         NR_CMDS * sizeof(CommandList_struct),
2875                         hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
2876         if(hba[i]->errinfo_pool)
2877                 pci_free_consistent(hba[i]->pdev,
2878                         NR_CMDS * sizeof( ErrorInfo_struct),
2879                         hba[i]->errinfo_pool,
2880                         hba[i]->errinfo_pool_dhandle);
2881         free_irq(hba[i]->intr, hba[i]);
2882 clean2:
2883         unregister_blkdev(hba[i]->major, hba[i]->devname);
2884 clean1:
2885         release_io_mem(hba[i]);
2886         free_hba(i);
2887         return(-1);
2888 }
2889
2890 static void __devexit cciss_remove_one (struct pci_dev *pdev)
2891 {
2892         ctlr_info_t *tmp_ptr;
2893         int i, j;
2894         char flush_buf[4];
2895         int return_code; 
2896
2897         if (pci_get_drvdata(pdev) == NULL)
2898         {
2899                 printk( KERN_ERR "cciss: Unable to remove device \n");
2900                 return;
2901         }
2902         tmp_ptr = pci_get_drvdata(pdev);
2903         i = tmp_ptr->ctlr;
2904         if (hba[i] == NULL) 
2905         {
2906                 printk(KERN_ERR "cciss: device appears to "
2907                         "already be removed \n");
2908                 return;
2909         }
2910         /* Turn board interrupts off  and send the flush cache command */
2911         /* sendcmd will turn off interrupt, and send the flush...
2912         * To write all data in the battery backed cache to disks */
2913         memset(flush_buf, 0, 4);
2914         return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, 0, 0, NULL,
2915                                 TYPE_CMD);
2916         if(return_code != IO_OK)
2917         {
2918                 printk(KERN_WARNING "Error Flushing cache on controller %d\n", 
2919                         i);
2920         }
2921         free_irq(hba[i]->intr, hba[i]);
2922         pci_set_drvdata(pdev, NULL);
2923         iounmap(hba[i]->vaddr);
2924         cciss_unregister_scsi(i);  /* unhook from SCSI subsystem */
2925         unregister_blkdev(hba[i]->major, hba[i]->devname);
2926         remove_proc_entry(hba[i]->devname, proc_cciss); 
2927         
2928         /* remove it from the disk list */
2929         for (j = 0; j < NWD; j++) {
2930                 struct gendisk *disk = hba[i]->gendisk[j];
2931                 if (disk->flags & GENHD_FL_UP)
2932                         blk_cleanup_queue(disk->queue);
2933                         del_gendisk(disk);
2934         }
2935
2936         pci_free_consistent(hba[i]->pdev, NR_CMDS * sizeof(CommandList_struct),
2937                             hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
2938         pci_free_consistent(hba[i]->pdev, NR_CMDS * sizeof( ErrorInfo_struct),
2939                 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
2940         kfree(hba[i]->cmd_pool_bits);
2941         release_io_mem(hba[i]);
2942         free_hba(i);
2943 }       
2944
2945 static struct pci_driver cciss_pci_driver = {
2946         .name =         "cciss",
2947         .probe =        cciss_init_one,
2948         .remove =       __devexit_p(cciss_remove_one),
2949         .id_table =     cciss_pci_device_id, /* id_table */
2950 };
2951
2952 /*
2953  *  This is it.  Register the PCI driver information for the cards we control
2954  *  the OS will call our registered routines when it finds one of our cards. 
2955  */
2956 static int __init cciss_init(void)
2957 {
2958         printk(KERN_INFO DRIVER_NAME "\n");
2959
2960         /* Register for our PCI devices */
2961         return pci_module_init(&cciss_pci_driver);
2962 }
2963
2964 static void __exit cciss_cleanup(void)
2965 {
2966         int i;
2967
2968         pci_unregister_driver(&cciss_pci_driver);
2969         /* double check that all controller entrys have been removed */
2970         for (i=0; i< MAX_CTLR; i++) 
2971         {
2972                 if (hba[i] != NULL)
2973                 {
2974                         printk(KERN_WARNING "cciss: had to remove"
2975                                         " controller %d\n", i);
2976                         cciss_remove_one(hba[i]->pdev);
2977                 }
2978         }
2979         remove_proc_entry("cciss", proc_root_driver);
2980 }
2981
2982 module_init(cciss_init);
2983 module_exit(cciss_cleanup);