]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/acpi/toshiba_acpi.c
Merge branch 'v28-range-hrtimers-for-linus-v2' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-omap-h63xx.git] / drivers / acpi / toshiba_acpi.c
1 /*
2  *  toshiba_acpi.c - Toshiba Laptop ACPI Extras
3  *
4  *
5  *  Copyright (C) 2002-2004 John Belmonte
6  *  Copyright (C) 2008 Philip Langdale
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  *
23  *  The devolpment page for this driver is located at
24  *  http://memebeam.org/toys/ToshibaAcpiDriver.
25  *
26  *  Credits:
27  *      Jonathan A. Buzzard - Toshiba HCI info, and critical tips on reverse
28  *              engineering the Windows drivers
29  *      Yasushi Nagato - changes for linux kernel 2.4 -> 2.5
30  *      Rob Miller - TV out and hotkeys help
31  *
32  *
33  *  TODO
34  *
35  */
36
37 #define TOSHIBA_ACPI_VERSION    "0.19"
38 #define PROC_INTERFACE_VERSION  1
39
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/init.h>
43 #include <linux/types.h>
44 #include <linux/proc_fs.h>
45 #include <linux/backlight.h>
46 #include <linux/platform_device.h>
47 #include <linux/rfkill.h>
48 #include <linux/input-polldev.h>
49
50 #include <asm/uaccess.h>
51
52 #include <acpi/acpi_drivers.h>
53
54 MODULE_AUTHOR("John Belmonte");
55 MODULE_DESCRIPTION("Toshiba Laptop ACPI Extras Driver");
56 MODULE_LICENSE("GPL");
57
58 #define MY_LOGPREFIX "toshiba_acpi: "
59 #define MY_ERR KERN_ERR MY_LOGPREFIX
60 #define MY_NOTICE KERN_NOTICE MY_LOGPREFIX
61 #define MY_INFO KERN_INFO MY_LOGPREFIX
62
63 /* Toshiba ACPI method paths */
64 #define METHOD_LCD_BRIGHTNESS   "\\_SB_.PCI0.VGA_.LCD_._BCM"
65 #define METHOD_HCI_1            "\\_SB_.VALD.GHCI"
66 #define METHOD_HCI_2            "\\_SB_.VALZ.GHCI"
67 #define METHOD_VIDEO_OUT        "\\_SB_.VALX.DSSX"
68
69 /* Toshiba HCI interface definitions
70  *
71  * HCI is Toshiba's "Hardware Control Interface" which is supposed to
72  * be uniform across all their models.  Ideally we would just call
73  * dedicated ACPI methods instead of using this primitive interface.
74  * However the ACPI methods seem to be incomplete in some areas (for
75  * example they allow setting, but not reading, the LCD brightness value),
76  * so this is still useful.
77  */
78
79 #define HCI_WORDS                       6
80
81 /* operations */
82 #define HCI_SET                         0xff00
83 #define HCI_GET                         0xfe00
84
85 /* return codes */
86 #define HCI_SUCCESS                     0x0000
87 #define HCI_FAILURE                     0x1000
88 #define HCI_NOT_SUPPORTED               0x8000
89 #define HCI_EMPTY                       0x8c00
90
91 /* registers */
92 #define HCI_FAN                         0x0004
93 #define HCI_SYSTEM_EVENT                0x0016
94 #define HCI_VIDEO_OUT                   0x001c
95 #define HCI_HOTKEY_EVENT                0x001e
96 #define HCI_LCD_BRIGHTNESS              0x002a
97 #define HCI_WIRELESS                    0x0056
98
99 /* field definitions */
100 #define HCI_LCD_BRIGHTNESS_BITS         3
101 #define HCI_LCD_BRIGHTNESS_SHIFT        (16-HCI_LCD_BRIGHTNESS_BITS)
102 #define HCI_LCD_BRIGHTNESS_LEVELS       (1 << HCI_LCD_BRIGHTNESS_BITS)
103 #define HCI_VIDEO_OUT_LCD               0x1
104 #define HCI_VIDEO_OUT_CRT               0x2
105 #define HCI_VIDEO_OUT_TV                0x4
106 #define HCI_WIRELESS_KILL_SWITCH        0x01
107 #define HCI_WIRELESS_BT_PRESENT         0x0f
108 #define HCI_WIRELESS_BT_ATTACH          0x40
109 #define HCI_WIRELESS_BT_POWER           0x80
110
111 static const struct acpi_device_id toshiba_device_ids[] = {
112         {"TOS6200", 0},
113         {"TOS6208", 0},
114         {"TOS1900", 0},
115         {"", 0},
116 };
117 MODULE_DEVICE_TABLE(acpi, toshiba_device_ids);
118
119 /* utility
120  */
121
122 static __inline__ void _set_bit(u32 * word, u32 mask, int value)
123 {
124         *word = (*word & ~mask) | (mask * value);
125 }
126
127 /* acpi interface wrappers
128  */
129
130 static int is_valid_acpi_path(const char *methodName)
131 {
132         acpi_handle handle;
133         acpi_status status;
134
135         status = acpi_get_handle(NULL, (char *)methodName, &handle);
136         return !ACPI_FAILURE(status);
137 }
138
139 static int write_acpi_int(const char *methodName, int val)
140 {
141         struct acpi_object_list params;
142         union acpi_object in_objs[1];
143         acpi_status status;
144
145         params.count = ARRAY_SIZE(in_objs);
146         params.pointer = in_objs;
147         in_objs[0].type = ACPI_TYPE_INTEGER;
148         in_objs[0].integer.value = val;
149
150         status = acpi_evaluate_object(NULL, (char *)methodName, &params, NULL);
151         return (status == AE_OK);
152 }
153
154 #if 0
155 static int read_acpi_int(const char *methodName, int *pVal)
156 {
157         struct acpi_buffer results;
158         union acpi_object out_objs[1];
159         acpi_status status;
160
161         results.length = sizeof(out_objs);
162         results.pointer = out_objs;
163
164         status = acpi_evaluate_object(0, (char *)methodName, 0, &results);
165         *pVal = out_objs[0].integer.value;
166
167         return (status == AE_OK) && (out_objs[0].type == ACPI_TYPE_INTEGER);
168 }
169 #endif
170
171 static const char *method_hci /*= 0*/ ;
172
173 /* Perform a raw HCI call.  Here we don't care about input or output buffer
174  * format.
175  */
176 static acpi_status hci_raw(const u32 in[HCI_WORDS], u32 out[HCI_WORDS])
177 {
178         struct acpi_object_list params;
179         union acpi_object in_objs[HCI_WORDS];
180         struct acpi_buffer results;
181         union acpi_object out_objs[HCI_WORDS + 1];
182         acpi_status status;
183         int i;
184
185         params.count = HCI_WORDS;
186         params.pointer = in_objs;
187         for (i = 0; i < HCI_WORDS; ++i) {
188                 in_objs[i].type = ACPI_TYPE_INTEGER;
189                 in_objs[i].integer.value = in[i];
190         }
191
192         results.length = sizeof(out_objs);
193         results.pointer = out_objs;
194
195         status = acpi_evaluate_object(NULL, (char *)method_hci, &params,
196                                       &results);
197         if ((status == AE_OK) && (out_objs->package.count <= HCI_WORDS)) {
198                 for (i = 0; i < out_objs->package.count; ++i) {
199                         out[i] = out_objs->package.elements[i].integer.value;
200                 }
201         }
202
203         return status;
204 }
205
206 /* common hci tasks (get or set one or two value)
207  *
208  * In addition to the ACPI status, the HCI system returns a result which
209  * may be useful (such as "not supported").
210  */
211
212 static acpi_status hci_write1(u32 reg, u32 in1, u32 * result)
213 {
214         u32 in[HCI_WORDS] = { HCI_SET, reg, in1, 0, 0, 0 };
215         u32 out[HCI_WORDS];
216         acpi_status status = hci_raw(in, out);
217         *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
218         return status;
219 }
220
221 static acpi_status hci_read1(u32 reg, u32 * out1, u32 * result)
222 {
223         u32 in[HCI_WORDS] = { HCI_GET, reg, 0, 0, 0, 0 };
224         u32 out[HCI_WORDS];
225         acpi_status status = hci_raw(in, out);
226         *out1 = out[2];
227         *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
228         return status;
229 }
230
231 static acpi_status hci_write2(u32 reg, u32 in1, u32 in2, u32 *result)
232 {
233         u32 in[HCI_WORDS] = { HCI_SET, reg, in1, in2, 0, 0 };
234         u32 out[HCI_WORDS];
235         acpi_status status = hci_raw(in, out);
236         *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
237         return status;
238 }
239
240 static acpi_status hci_read2(u32 reg, u32 *out1, u32 *out2, u32 *result)
241 {
242         u32 in[HCI_WORDS] = { HCI_GET, reg, *out1, *out2, 0, 0 };
243         u32 out[HCI_WORDS];
244         acpi_status status = hci_raw(in, out);
245         *out1 = out[2];
246         *out2 = out[3];
247         *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
248         return status;
249 }
250
251 struct toshiba_acpi_dev {
252         struct platform_device *p_dev;
253         struct rfkill *rfk_dev;
254         struct input_polled_dev *poll_dev;
255
256         const char *bt_name;
257         const char *rfk_name;
258
259         bool last_rfk_state;
260
261         struct mutex mutex;
262 };
263
264 static struct toshiba_acpi_dev toshiba_acpi = {
265         .bt_name = "Toshiba Bluetooth",
266         .rfk_name = "Toshiba RFKill Switch",
267         .last_rfk_state = false,
268 };
269
270 /* Bluetooth rfkill handlers */
271
272 static u32 hci_get_bt_present(bool *present)
273 {
274         u32 hci_result;
275         u32 value, value2;
276
277         value = 0;
278         value2 = 0;
279         hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
280         if (hci_result == HCI_SUCCESS)
281                 *present = (value & HCI_WIRELESS_BT_PRESENT) ? true : false;
282
283         return hci_result;
284 }
285
286 static u32 hci_get_bt_on(bool *on)
287 {
288         u32 hci_result;
289         u32 value, value2;
290
291         value = 0;
292         value2 = 0x0001;
293         hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
294         if (hci_result == HCI_SUCCESS)
295                 *on = (value & HCI_WIRELESS_BT_POWER) &&
296                       (value & HCI_WIRELESS_BT_ATTACH);
297
298         return hci_result;
299 }
300
301 static u32 hci_get_radio_state(bool *radio_state)
302 {
303         u32 hci_result;
304         u32 value, value2;
305
306         value = 0;
307         value2 = 0x0001;
308         hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
309
310         *radio_state = value & HCI_WIRELESS_KILL_SWITCH;
311         return hci_result;
312 }
313
314 static int bt_rfkill_toggle_radio(void *data, enum rfkill_state state)
315 {
316         u32 result1, result2;
317         u32 value;
318         bool radio_state;
319         struct toshiba_acpi_dev *dev = data;
320
321         value = (state == RFKILL_STATE_UNBLOCKED);
322
323         if (hci_get_radio_state(&radio_state) != HCI_SUCCESS)
324                 return -EFAULT;
325
326         switch (state) {
327         case RFKILL_STATE_UNBLOCKED:
328                 if (!radio_state)
329                         return -EPERM;
330                 break;
331         case RFKILL_STATE_SOFT_BLOCKED:
332                 break;
333         default:
334                 return -EINVAL;
335         }
336
337         mutex_lock(&dev->mutex);
338         hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_POWER, &result1);
339         hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_ATTACH, &result2);
340         mutex_unlock(&dev->mutex);
341
342         if (result1 != HCI_SUCCESS || result2 != HCI_SUCCESS)
343                 return -EFAULT;
344
345         return 0;
346 }
347
348 static void bt_poll_rfkill(struct input_polled_dev *poll_dev)
349 {
350         bool state_changed;
351         bool new_rfk_state;
352         bool value;
353         u32 hci_result;
354         struct toshiba_acpi_dev *dev = poll_dev->private;
355
356         hci_result = hci_get_radio_state(&value);
357         if (hci_result != HCI_SUCCESS)
358                 return; /* Can't do anything useful */
359
360         new_rfk_state = value;
361
362         mutex_lock(&dev->mutex);
363         state_changed = new_rfk_state != dev->last_rfk_state;
364         dev->last_rfk_state = new_rfk_state;
365         mutex_unlock(&dev->mutex);
366
367         if (unlikely(state_changed)) {
368                 rfkill_force_state(dev->rfk_dev,
369                                    new_rfk_state ?
370                                    RFKILL_STATE_SOFT_BLOCKED :
371                                    RFKILL_STATE_HARD_BLOCKED);
372                 input_report_switch(poll_dev->input, SW_RFKILL_ALL,
373                                     new_rfk_state);
374         }
375 }
376
377 static struct proc_dir_entry *toshiba_proc_dir /*= 0*/ ;
378 static struct backlight_device *toshiba_backlight_device;
379 static int force_fan;
380 static int last_key_event;
381 static int key_event_valid;
382
383 typedef struct _ProcItem {
384         const char *name;
385         char *(*read_func) (char *);
386         unsigned long (*write_func) (const char *, unsigned long);
387 } ProcItem;
388
389 /* proc file handlers
390  */
391
392 static int
393 dispatch_read(char *page, char **start, off_t off, int count, int *eof,
394               ProcItem * item)
395 {
396         char *p = page;
397         int len;
398
399         if (off == 0)
400                 p = item->read_func(p);
401
402         /* ISSUE: I don't understand this code */
403         len = (p - page);
404         if (len <= off + count)
405                 *eof = 1;
406         *start = page + off;
407         len -= off;
408         if (len > count)
409                 len = count;
410         if (len < 0)
411                 len = 0;
412         return len;
413 }
414
415 static int
416 dispatch_write(struct file *file, const char __user * buffer,
417                unsigned long count, ProcItem * item)
418 {
419         int result;
420         char *tmp_buffer;
421
422         /* Arg buffer points to userspace memory, which can't be accessed
423          * directly.  Since we're making a copy, zero-terminate the
424          * destination so that sscanf can be used on it safely.
425          */
426         tmp_buffer = kmalloc(count + 1, GFP_KERNEL);
427         if (!tmp_buffer)
428                 return -ENOMEM;
429
430         if (copy_from_user(tmp_buffer, buffer, count)) {
431                 result = -EFAULT;
432         } else {
433                 tmp_buffer[count] = 0;
434                 result = item->write_func(tmp_buffer, count);
435         }
436         kfree(tmp_buffer);
437         return result;
438 }
439
440 static int get_lcd(struct backlight_device *bd)
441 {
442         u32 hci_result;
443         u32 value;
444
445         hci_read1(HCI_LCD_BRIGHTNESS, &value, &hci_result);
446         if (hci_result == HCI_SUCCESS) {
447                 return (value >> HCI_LCD_BRIGHTNESS_SHIFT);
448         } else
449                 return -EFAULT;
450 }
451
452 static char *read_lcd(char *p)
453 {
454         int value = get_lcd(NULL);
455
456         if (value >= 0) {
457                 p += sprintf(p, "brightness:              %d\n", value);
458                 p += sprintf(p, "brightness_levels:       %d\n",
459                              HCI_LCD_BRIGHTNESS_LEVELS);
460         } else {
461                 printk(MY_ERR "Error reading LCD brightness\n");
462         }
463
464         return p;
465 }
466
467 static int set_lcd(int value)
468 {
469         u32 hci_result;
470
471         value = value << HCI_LCD_BRIGHTNESS_SHIFT;
472         hci_write1(HCI_LCD_BRIGHTNESS, value, &hci_result);
473         if (hci_result != HCI_SUCCESS)
474                 return -EFAULT;
475
476         return 0;
477 }
478
479 static int set_lcd_status(struct backlight_device *bd)
480 {
481         return set_lcd(bd->props.brightness);
482 }
483
484 static unsigned long write_lcd(const char *buffer, unsigned long count)
485 {
486         int value;
487         int ret;
488
489         if (sscanf(buffer, " brightness : %i", &value) == 1 &&
490             value >= 0 && value < HCI_LCD_BRIGHTNESS_LEVELS) {
491                 ret = set_lcd(value);
492                 if (ret == 0)
493                         ret = count;
494         } else {
495                 ret = -EINVAL;
496         }
497         return ret;
498 }
499
500 static char *read_video(char *p)
501 {
502         u32 hci_result;
503         u32 value;
504
505         hci_read1(HCI_VIDEO_OUT, &value, &hci_result);
506         if (hci_result == HCI_SUCCESS) {
507                 int is_lcd = (value & HCI_VIDEO_OUT_LCD) ? 1 : 0;
508                 int is_crt = (value & HCI_VIDEO_OUT_CRT) ? 1 : 0;
509                 int is_tv = (value & HCI_VIDEO_OUT_TV) ? 1 : 0;
510                 p += sprintf(p, "lcd_out:                 %d\n", is_lcd);
511                 p += sprintf(p, "crt_out:                 %d\n", is_crt);
512                 p += sprintf(p, "tv_out:                  %d\n", is_tv);
513         } else {
514                 printk(MY_ERR "Error reading video out status\n");
515         }
516
517         return p;
518 }
519
520 static unsigned long write_video(const char *buffer, unsigned long count)
521 {
522         int value;
523         int remain = count;
524         int lcd_out = -1;
525         int crt_out = -1;
526         int tv_out = -1;
527         u32 hci_result;
528         u32 video_out;
529
530         /* scan expression.  Multiple expressions may be delimited with ;
531          *
532          *  NOTE: to keep scanning simple, invalid fields are ignored
533          */
534         while (remain) {
535                 if (sscanf(buffer, " lcd_out : %i", &value) == 1)
536                         lcd_out = value & 1;
537                 else if (sscanf(buffer, " crt_out : %i", &value) == 1)
538                         crt_out = value & 1;
539                 else if (sscanf(buffer, " tv_out : %i", &value) == 1)
540                         tv_out = value & 1;
541                 /* advance to one character past the next ; */
542                 do {
543                         ++buffer;
544                         --remain;
545                 }
546                 while (remain && *(buffer - 1) != ';');
547         }
548
549         hci_read1(HCI_VIDEO_OUT, &video_out, &hci_result);
550         if (hci_result == HCI_SUCCESS) {
551                 unsigned int new_video_out = video_out;
552                 if (lcd_out != -1)
553                         _set_bit(&new_video_out, HCI_VIDEO_OUT_LCD, lcd_out);
554                 if (crt_out != -1)
555                         _set_bit(&new_video_out, HCI_VIDEO_OUT_CRT, crt_out);
556                 if (tv_out != -1)
557                         _set_bit(&new_video_out, HCI_VIDEO_OUT_TV, tv_out);
558                 /* To avoid unnecessary video disruption, only write the new
559                  * video setting if something changed. */
560                 if (new_video_out != video_out)
561                         write_acpi_int(METHOD_VIDEO_OUT, new_video_out);
562         } else {
563                 return -EFAULT;
564         }
565
566         return count;
567 }
568
569 static char *read_fan(char *p)
570 {
571         u32 hci_result;
572         u32 value;
573
574         hci_read1(HCI_FAN, &value, &hci_result);
575         if (hci_result == HCI_SUCCESS) {
576                 p += sprintf(p, "running:                 %d\n", (value > 0));
577                 p += sprintf(p, "force_on:                %d\n", force_fan);
578         } else {
579                 printk(MY_ERR "Error reading fan status\n");
580         }
581
582         return p;
583 }
584
585 static unsigned long write_fan(const char *buffer, unsigned long count)
586 {
587         int value;
588         u32 hci_result;
589
590         if (sscanf(buffer, " force_on : %i", &value) == 1 &&
591             value >= 0 && value <= 1) {
592                 hci_write1(HCI_FAN, value, &hci_result);
593                 if (hci_result != HCI_SUCCESS)
594                         return -EFAULT;
595                 else
596                         force_fan = value;
597         } else {
598                 return -EINVAL;
599         }
600
601         return count;
602 }
603
604 static char *read_keys(char *p)
605 {
606         u32 hci_result;
607         u32 value;
608
609         if (!key_event_valid) {
610                 hci_read1(HCI_SYSTEM_EVENT, &value, &hci_result);
611                 if (hci_result == HCI_SUCCESS) {
612                         key_event_valid = 1;
613                         last_key_event = value;
614                 } else if (hci_result == HCI_EMPTY) {
615                         /* better luck next time */
616                 } else if (hci_result == HCI_NOT_SUPPORTED) {
617                         /* This is a workaround for an unresolved issue on
618                          * some machines where system events sporadically
619                          * become disabled. */
620                         hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
621                         printk(MY_NOTICE "Re-enabled hotkeys\n");
622                 } else {
623                         printk(MY_ERR "Error reading hotkey status\n");
624                         goto end;
625                 }
626         }
627
628         p += sprintf(p, "hotkey_ready:            %d\n", key_event_valid);
629         p += sprintf(p, "hotkey:                  0x%04x\n", last_key_event);
630
631       end:
632         return p;
633 }
634
635 static unsigned long write_keys(const char *buffer, unsigned long count)
636 {
637         int value;
638
639         if (sscanf(buffer, " hotkey_ready : %i", &value) == 1 && value == 0) {
640                 key_event_valid = 0;
641         } else {
642                 return -EINVAL;
643         }
644
645         return count;
646 }
647
648 static char *read_version(char *p)
649 {
650         p += sprintf(p, "driver:                  %s\n", TOSHIBA_ACPI_VERSION);
651         p += sprintf(p, "proc_interface:          %d\n",
652                      PROC_INTERFACE_VERSION);
653         return p;
654 }
655
656 /* proc and module init
657  */
658
659 #define PROC_TOSHIBA            "toshiba"
660
661 static ProcItem proc_items[] = {
662         {"lcd", read_lcd, write_lcd},
663         {"video", read_video, write_video},
664         {"fan", read_fan, write_fan},
665         {"keys", read_keys, write_keys},
666         {"version", read_version, NULL},
667         {NULL}
668 };
669
670 static acpi_status __init add_device(void)
671 {
672         struct proc_dir_entry *proc;
673         ProcItem *item;
674
675         for (item = proc_items; item->name; ++item) {
676                 proc = create_proc_read_entry(item->name,
677                                               S_IFREG | S_IRUGO | S_IWUSR,
678                                               toshiba_proc_dir,
679                                               (read_proc_t *) dispatch_read,
680                                               item);
681                 if (proc)
682                         proc->owner = THIS_MODULE;
683                 if (proc && item->write_func)
684                         proc->write_proc = (write_proc_t *) dispatch_write;
685         }
686
687         return AE_OK;
688 }
689
690 static acpi_status remove_device(void)
691 {
692         ProcItem *item;
693
694         for (item = proc_items; item->name; ++item)
695                 remove_proc_entry(item->name, toshiba_proc_dir);
696         return AE_OK;
697 }
698
699 static struct backlight_ops toshiba_backlight_data = {
700         .get_brightness = get_lcd,
701         .update_status  = set_lcd_status,
702 };
703
704 static void toshiba_acpi_exit(void)
705 {
706         if (toshiba_acpi.poll_dev) {
707                 input_unregister_polled_device(toshiba_acpi.poll_dev);
708                 input_free_polled_device(toshiba_acpi.poll_dev);
709         }
710
711         if (toshiba_acpi.rfk_dev)
712                 rfkill_unregister(toshiba_acpi.rfk_dev);
713
714         if (toshiba_backlight_device)
715                 backlight_device_unregister(toshiba_backlight_device);
716
717         remove_device();
718
719         if (toshiba_proc_dir)
720                 remove_proc_entry(PROC_TOSHIBA, acpi_root_dir);
721
722         platform_device_unregister(toshiba_acpi.p_dev);
723
724         return;
725 }
726
727 static int __init toshiba_acpi_init(void)
728 {
729         acpi_status status = AE_OK;
730         u32 hci_result;
731         bool bt_present;
732         bool bt_on;
733         bool radio_on;
734         int ret = 0;
735
736         if (acpi_disabled)
737                 return -ENODEV;
738
739         /* simple device detection: look for HCI method */
740         if (is_valid_acpi_path(METHOD_HCI_1))
741                 method_hci = METHOD_HCI_1;
742         else if (is_valid_acpi_path(METHOD_HCI_2))
743                 method_hci = METHOD_HCI_2;
744         else
745                 return -ENODEV;
746
747         printk(MY_INFO "Toshiba Laptop ACPI Extras version %s\n",
748                TOSHIBA_ACPI_VERSION);
749         printk(MY_INFO "    HCI method: %s\n", method_hci);
750
751         mutex_init(&toshiba_acpi.mutex);
752
753         toshiba_acpi.p_dev = platform_device_register_simple("toshiba_acpi",
754                                                               -1, NULL, 0);
755         if (IS_ERR(toshiba_acpi.p_dev)) {
756                 ret = PTR_ERR(toshiba_acpi.p_dev);
757                 printk(MY_ERR "unable to register platform device\n");
758                 toshiba_acpi.p_dev = NULL;
759                 toshiba_acpi_exit();
760                 return ret;
761         }
762
763         force_fan = 0;
764         key_event_valid = 0;
765
766         /* enable event fifo */
767         hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
768
769         toshiba_proc_dir = proc_mkdir(PROC_TOSHIBA, acpi_root_dir);
770         if (!toshiba_proc_dir) {
771                 toshiba_acpi_exit();
772                 return -ENODEV;
773         } else {
774                 toshiba_proc_dir->owner = THIS_MODULE;
775                 status = add_device();
776                 if (ACPI_FAILURE(status)) {
777                         toshiba_acpi_exit();
778                         return -ENODEV;
779                 }
780         }
781
782         toshiba_backlight_device = backlight_device_register("toshiba",
783                                                 &toshiba_acpi.p_dev->dev,
784                                                 NULL,
785                                                 &toshiba_backlight_data);
786         if (IS_ERR(toshiba_backlight_device)) {
787                 ret = PTR_ERR(toshiba_backlight_device);
788
789                 printk(KERN_ERR "Could not register toshiba backlight device\n");
790                 toshiba_backlight_device = NULL;
791                 toshiba_acpi_exit();
792                 return ret;
793         }
794         toshiba_backlight_device->props.max_brightness = HCI_LCD_BRIGHTNESS_LEVELS - 1;
795
796         /* Register rfkill switch for Bluetooth */
797         if (hci_get_bt_present(&bt_present) == HCI_SUCCESS && bt_present) {
798                 toshiba_acpi.rfk_dev = rfkill_allocate(&toshiba_acpi.p_dev->dev,
799                                                         RFKILL_TYPE_BLUETOOTH);
800                 if (!toshiba_acpi.rfk_dev) {
801                         printk(MY_ERR "unable to allocate rfkill device\n");
802                         toshiba_acpi_exit();
803                         return -ENOMEM;
804                 }
805
806                 toshiba_acpi.rfk_dev->name = toshiba_acpi.bt_name;
807                 toshiba_acpi.rfk_dev->toggle_radio = bt_rfkill_toggle_radio;
808                 toshiba_acpi.rfk_dev->user_claim_unsupported = 1;
809                 toshiba_acpi.rfk_dev->data = &toshiba_acpi;
810
811                 if (hci_get_bt_on(&bt_on) == HCI_SUCCESS && bt_on) {
812                         toshiba_acpi.rfk_dev->state = RFKILL_STATE_UNBLOCKED;
813                 } else if (hci_get_radio_state(&radio_on) == HCI_SUCCESS &&
814                            radio_on) {
815                         toshiba_acpi.rfk_dev->state = RFKILL_STATE_SOFT_BLOCKED;
816                 } else {
817                         toshiba_acpi.rfk_dev->state = RFKILL_STATE_HARD_BLOCKED;
818                 }
819
820                 ret = rfkill_register(toshiba_acpi.rfk_dev);
821                 if (ret) {
822                         printk(MY_ERR "unable to register rfkill device\n");
823                         toshiba_acpi_exit();
824                         return -ENOMEM;
825                 }
826         }
827
828         /* Register input device for kill switch */
829         toshiba_acpi.poll_dev = input_allocate_polled_device();
830         if (!toshiba_acpi.poll_dev) {
831                 printk(MY_ERR "unable to allocate kill-switch input device\n");
832                 toshiba_acpi_exit();
833                 return -ENOMEM;
834         }
835         toshiba_acpi.poll_dev->private = &toshiba_acpi;
836         toshiba_acpi.poll_dev->poll = bt_poll_rfkill;
837         toshiba_acpi.poll_dev->poll_interval = 1000; /* msecs */
838
839         toshiba_acpi.poll_dev->input->name = toshiba_acpi.rfk_name;
840         toshiba_acpi.poll_dev->input->id.bustype = BUS_HOST;
841         toshiba_acpi.poll_dev->input->id.vendor = 0x0930; /* Toshiba USB ID */
842         set_bit(EV_SW, toshiba_acpi.poll_dev->input->evbit);
843         set_bit(SW_RFKILL_ALL, toshiba_acpi.poll_dev->input->swbit);
844         input_report_switch(toshiba_acpi.poll_dev->input, SW_RFKILL_ALL, TRUE);
845
846         ret = input_register_polled_device(toshiba_acpi.poll_dev);
847         if (ret) {
848                 printk(MY_ERR "unable to register kill-switch input device\n");
849                 rfkill_free(toshiba_acpi.rfk_dev);
850                 toshiba_acpi.rfk_dev = NULL;
851                 toshiba_acpi_exit();
852                 return ret;
853         }
854
855         return 0;
856 }
857
858 module_init(toshiba_acpi_init);
859 module_exit(toshiba_acpi_exit);