2 * Core of Xen paravirt_ops implementation.
4 * This file contains the xen_paravirt_ops structure itself, and the
6 * - privileged instructions
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/interface/sched.h>
34 #include <xen/features.h>
36 #include <xen/hvc-console.h>
38 #include <asm/paravirt.h>
40 #include <asm/xen/hypercall.h>
41 #include <asm/xen/hypervisor.h>
42 #include <asm/fixmap.h>
43 #include <asm/processor.h>
44 #include <asm/msr-index.h>
45 #include <asm/setup.h>
47 #include <asm/pgtable.h>
48 #include <asm/tlbflush.h>
49 #include <asm/reboot.h>
53 #include "multicalls.h"
55 EXPORT_SYMBOL_GPL(hypercall_page);
57 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
58 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
61 * Identity map, in addition to plain kernel map. This needs to be
62 * large enough to allocate page table pages to allocate the rest.
63 * Each page can map 2MB.
65 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
68 /* l3 pud for userspace vsyscall mapping */
69 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
70 #endif /* CONFIG_X86_64 */
73 * Note about cr3 (pagetable base) values:
75 * xen_cr3 contains the current logical cr3 value; it contains the
76 * last set cr3. This may not be the current effective cr3, because
77 * its update may be being lazily deferred. However, a vcpu looking
78 * at its own cr3 can use this value knowing that it everything will
81 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
82 * hypercall to set the vcpu cr3 is complete (so it may be a little
83 * out of date, but it will never be set early). If one vcpu is
84 * looking at another vcpu's cr3 value, it should use this variable.
86 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
87 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
89 struct start_info *xen_start_info;
90 EXPORT_SYMBOL_GPL(xen_start_info);
92 struct shared_info xen_dummy_shared_info;
95 * Point at some empty memory to start with. We map the real shared_info
96 * page as soon as fixmap is up and running.
98 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
101 * Flag to determine whether vcpu info placement is available on all
102 * VCPUs. We assume it is to start with, and then set it to zero on
103 * the first failure. This is because it can succeed on some VCPUs
104 * and not others, since it can involve hypervisor memory allocation,
105 * or because the guest failed to guarantee all the appropriate
106 * constraints on all VCPUs (ie buffer can't cross a page boundary).
108 * Note that any particular CPU may be using a placed vcpu structure,
109 * but we can only optimise if the all are.
111 * 0: not available, 1: available
113 static int have_vcpu_info_placement = 1;
115 static void xen_vcpu_setup(int cpu)
117 struct vcpu_register_vcpu_info info;
119 struct vcpu_info *vcpup;
121 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
122 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
124 if (!have_vcpu_info_placement)
125 return; /* already tested, not available */
127 vcpup = &per_cpu(xen_vcpu_info, cpu);
129 info.mfn = virt_to_mfn(vcpup);
130 info.offset = offset_in_page(vcpup);
132 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
133 cpu, vcpup, info.mfn, info.offset);
135 /* Check to see if the hypervisor will put the vcpu_info
136 structure where we want it, which allows direct access via
137 a percpu-variable. */
138 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
141 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
142 have_vcpu_info_placement = 0;
144 /* This cpu is using the registered vcpu info, even if
145 later ones fail to. */
146 per_cpu(xen_vcpu, cpu) = vcpup;
148 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
154 * On restore, set the vcpu placement up again.
155 * If it fails, then we're in a bad state, since
156 * we can't back out from using it...
158 void xen_vcpu_restore(void)
160 if (have_vcpu_info_placement) {
163 for_each_online_cpu(cpu) {
164 bool other_cpu = (cpu != smp_processor_id());
167 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
173 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
177 BUG_ON(!have_vcpu_info_placement);
181 static void __init xen_banner(void)
183 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
184 struct xen_extraversion extra;
185 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
187 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
189 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
190 version >> 16, version & 0xffff, extra.extraversion,
191 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
194 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
195 unsigned int *cx, unsigned int *dx)
197 unsigned maskedx = ~0;
200 * Mask out inconvenient features, to try and disable as many
201 * unsupported kernel subsystems as possible.
204 maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
205 (1 << X86_FEATURE_ACPI) | /* disable ACPI */
206 (1 << X86_FEATURE_MCE) | /* disable MCE */
207 (1 << X86_FEATURE_MCA) | /* disable MCA */
208 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
210 asm(XEN_EMULATE_PREFIX "cpuid"
215 : "0" (*ax), "2" (*cx));
219 static void xen_set_debugreg(int reg, unsigned long val)
221 HYPERVISOR_set_debugreg(reg, val);
224 static unsigned long xen_get_debugreg(int reg)
226 return HYPERVISOR_get_debugreg(reg);
229 static unsigned long xen_save_fl(void)
231 struct vcpu_info *vcpu;
234 vcpu = x86_read_percpu(xen_vcpu);
236 /* flag has opposite sense of mask */
237 flags = !vcpu->evtchn_upcall_mask;
239 /* convert to IF type flag
243 return (-flags) & X86_EFLAGS_IF;
246 static void xen_restore_fl(unsigned long flags)
248 struct vcpu_info *vcpu;
250 /* convert from IF type flag */
251 flags = !(flags & X86_EFLAGS_IF);
253 /* There's a one instruction preempt window here. We need to
254 make sure we're don't switch CPUs between getting the vcpu
255 pointer and updating the mask. */
257 vcpu = x86_read_percpu(xen_vcpu);
258 vcpu->evtchn_upcall_mask = flags;
259 preempt_enable_no_resched();
261 /* Doesn't matter if we get preempted here, because any
262 pending event will get dealt with anyway. */
265 preempt_check_resched();
266 barrier(); /* unmask then check (avoid races) */
267 if (unlikely(vcpu->evtchn_upcall_pending))
268 force_evtchn_callback();
272 static void xen_irq_disable(void)
274 /* There's a one instruction preempt window here. We need to
275 make sure we're don't switch CPUs between getting the vcpu
276 pointer and updating the mask. */
278 x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
279 preempt_enable_no_resched();
282 static void xen_irq_enable(void)
284 struct vcpu_info *vcpu;
286 /* We don't need to worry about being preempted here, since
287 either a) interrupts are disabled, so no preemption, or b)
288 the caller is confused and is trying to re-enable interrupts
289 on an indeterminate processor. */
291 vcpu = x86_read_percpu(xen_vcpu);
292 vcpu->evtchn_upcall_mask = 0;
294 /* Doesn't matter if we get preempted here, because any
295 pending event will get dealt with anyway. */
297 barrier(); /* unmask then check (avoid races) */
298 if (unlikely(vcpu->evtchn_upcall_pending))
299 force_evtchn_callback();
302 static void xen_safe_halt(void)
304 /* Blocking includes an implicit local_irq_enable(). */
305 if (HYPERVISOR_sched_op(SCHEDOP_block, NULL) != 0)
309 static void xen_halt(void)
312 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
317 static void xen_leave_lazy(void)
319 paravirt_leave_lazy(paravirt_get_lazy_mode());
323 static unsigned long xen_store_tr(void)
328 static void xen_set_ldt(const void *addr, unsigned entries)
330 struct mmuext_op *op;
331 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
334 op->cmd = MMUEXT_SET_LDT;
335 op->arg1.linear_addr = (unsigned long)addr;
336 op->arg2.nr_ents = entries;
338 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
340 xen_mc_issue(PARAVIRT_LAZY_CPU);
343 static void xen_load_gdt(const struct desc_ptr *dtr)
345 unsigned long *frames;
346 unsigned long va = dtr->address;
347 unsigned int size = dtr->size + 1;
348 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
350 struct multicall_space mcs;
352 /* A GDT can be up to 64k in size, which corresponds to 8192
353 8-byte entries, or 16 4k pages.. */
355 BUG_ON(size > 65536);
356 BUG_ON(va & ~PAGE_MASK);
358 mcs = xen_mc_entry(sizeof(*frames) * pages);
361 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
362 frames[f] = virt_to_mfn(va);
363 make_lowmem_page_readonly((void *)va);
366 MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
368 xen_mc_issue(PARAVIRT_LAZY_CPU);
371 static void load_TLS_descriptor(struct thread_struct *t,
372 unsigned int cpu, unsigned int i)
374 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
375 xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
376 struct multicall_space mc = __xen_mc_entry(0);
378 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
381 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
384 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
385 * it means we're in a context switch, and %gs has just been
386 * saved. This means we can zero it out to prevent faults on
387 * exit from the hypervisor if the next process has no %gs.
388 * Either way, it has been saved, and the new value will get
389 * loaded properly. This will go away as soon as Xen has been
390 * modified to not save/restore %gs for normal hypercalls.
392 * On x86_64, this hack is not used for %gs, because gs points
393 * to KERNEL_GS_BASE (and uses it for PDA references), so we
394 * must not zero %gs on x86_64
396 * For x86_64, we need to zero %fs, otherwise we may get an
397 * exception between the new %fs descriptor being loaded and
398 * %fs being effectively cleared at __switch_to().
400 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
410 load_TLS_descriptor(t, cpu, 0);
411 load_TLS_descriptor(t, cpu, 1);
412 load_TLS_descriptor(t, cpu, 2);
414 xen_mc_issue(PARAVIRT_LAZY_CPU);
418 static void xen_load_gs_index(unsigned int idx)
420 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
425 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
428 unsigned long lp = (unsigned long)&dt[entrynum];
429 xmaddr_t mach_lp = virt_to_machine(lp);
430 u64 entry = *(u64 *)ptr;
435 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
441 static int cvt_gate_to_trap(int vector, const gate_desc *val,
442 struct trap_info *info)
444 if (val->type != 0xf && val->type != 0xe)
447 info->vector = vector;
448 info->address = gate_offset(*val);
449 info->cs = gate_segment(*val);
450 info->flags = val->dpl;
451 /* interrupt gates clear IF */
452 if (val->type == 0xe)
458 /* Locations of each CPU's IDT */
459 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
461 /* Set an IDT entry. If the entry is part of the current IDT, then
463 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
465 unsigned long p = (unsigned long)&dt[entrynum];
466 unsigned long start, end;
470 start = __get_cpu_var(idt_desc).address;
471 end = start + __get_cpu_var(idt_desc).size + 1;
475 native_write_idt_entry(dt, entrynum, g);
477 if (p >= start && (p + 8) <= end) {
478 struct trap_info info[2];
482 if (cvt_gate_to_trap(entrynum, g, &info[0]))
483 if (HYPERVISOR_set_trap_table(info))
490 static void xen_convert_trap_info(const struct desc_ptr *desc,
491 struct trap_info *traps)
493 unsigned in, out, count;
495 count = (desc->size+1) / sizeof(gate_desc);
498 for (in = out = 0; in < count; in++) {
499 gate_desc *entry = (gate_desc*)(desc->address) + in;
501 if (cvt_gate_to_trap(in, entry, &traps[out]))
504 traps[out].address = 0;
507 void xen_copy_trap_info(struct trap_info *traps)
509 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
511 xen_convert_trap_info(desc, traps);
514 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
515 hold a spinlock to protect the static traps[] array (static because
516 it avoids allocation, and saves stack space). */
517 static void xen_load_idt(const struct desc_ptr *desc)
519 static DEFINE_SPINLOCK(lock);
520 static struct trap_info traps[257];
524 __get_cpu_var(idt_desc) = *desc;
526 xen_convert_trap_info(desc, traps);
529 if (HYPERVISOR_set_trap_table(traps))
535 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
536 they're handled differently. */
537 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
538 const void *desc, int type)
549 xmaddr_t maddr = virt_to_machine(&dt[entry]);
552 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
561 static void xen_load_sp0(struct tss_struct *tss,
562 struct thread_struct *thread)
564 struct multicall_space mcs = xen_mc_entry(0);
565 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
566 xen_mc_issue(PARAVIRT_LAZY_CPU);
569 static void xen_set_iopl_mask(unsigned mask)
571 struct physdev_set_iopl set_iopl;
573 /* Force the change at ring 0. */
574 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
575 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
578 static void xen_io_delay(void)
582 #ifdef CONFIG_X86_LOCAL_APIC
583 static u32 xen_apic_read(unsigned long reg)
588 static void xen_apic_write(unsigned long reg, u32 val)
590 /* Warn to see if there's any stray references */
595 static void xen_flush_tlb(void)
597 struct mmuext_op *op;
598 struct multicall_space mcs;
602 mcs = xen_mc_entry(sizeof(*op));
605 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
606 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
608 xen_mc_issue(PARAVIRT_LAZY_MMU);
613 static void xen_flush_tlb_single(unsigned long addr)
615 struct mmuext_op *op;
616 struct multicall_space mcs;
620 mcs = xen_mc_entry(sizeof(*op));
622 op->cmd = MMUEXT_INVLPG_LOCAL;
623 op->arg1.linear_addr = addr & PAGE_MASK;
624 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
626 xen_mc_issue(PARAVIRT_LAZY_MMU);
631 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
638 cpumask_t cpumask = *cpus;
639 struct multicall_space mcs;
642 * A couple of (to be removed) sanity checks:
644 * - current CPU must not be in mask
645 * - mask must exist :)
647 BUG_ON(cpus_empty(cpumask));
648 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
651 /* If a CPU which we ran on has gone down, OK. */
652 cpus_and(cpumask, cpumask, cpu_online_map);
653 if (cpus_empty(cpumask))
656 mcs = xen_mc_entry(sizeof(*args));
658 args->mask = cpumask;
659 args->op.arg2.vcpumask = &args->mask;
661 if (va == TLB_FLUSH_ALL) {
662 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
664 args->op.cmd = MMUEXT_INVLPG_MULTI;
665 args->op.arg1.linear_addr = va;
668 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
670 xen_mc_issue(PARAVIRT_LAZY_MMU);
673 static void xen_clts(void)
675 struct multicall_space mcs;
677 mcs = xen_mc_entry(0);
679 MULTI_fpu_taskswitch(mcs.mc, 0);
681 xen_mc_issue(PARAVIRT_LAZY_CPU);
684 static void xen_write_cr0(unsigned long cr0)
686 struct multicall_space mcs;
688 /* Only pay attention to cr0.TS; everything else is
690 mcs = xen_mc_entry(0);
692 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
694 xen_mc_issue(PARAVIRT_LAZY_CPU);
697 static void xen_write_cr2(unsigned long cr2)
699 x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
702 static unsigned long xen_read_cr2(void)
704 return x86_read_percpu(xen_vcpu)->arch.cr2;
707 static unsigned long xen_read_cr2_direct(void)
709 return x86_read_percpu(xen_vcpu_info.arch.cr2);
712 static void xen_write_cr4(unsigned long cr4)
717 native_write_cr4(cr4);
720 static unsigned long xen_read_cr3(void)
722 return x86_read_percpu(xen_cr3);
725 static void set_current_cr3(void *v)
727 x86_write_percpu(xen_current_cr3, (unsigned long)v);
730 static void __xen_write_cr3(bool kernel, unsigned long cr3)
732 struct mmuext_op *op;
733 struct multicall_space mcs;
737 mfn = pfn_to_mfn(PFN_DOWN(cr3));
741 WARN_ON(mfn == 0 && kernel);
743 mcs = __xen_mc_entry(sizeof(*op));
746 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
749 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
752 x86_write_percpu(xen_cr3, cr3);
754 /* Update xen_current_cr3 once the batch has actually
756 xen_mc_callback(set_current_cr3, (void *)cr3);
760 static void xen_write_cr3(unsigned long cr3)
762 BUG_ON(preemptible());
764 xen_mc_batch(); /* disables interrupts */
766 /* Update while interrupts are disabled, so its atomic with
768 x86_write_percpu(xen_cr3, cr3);
770 __xen_write_cr3(true, cr3);
774 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
776 __xen_write_cr3(false, __pa(user_pgd));
778 __xen_write_cr3(false, 0);
782 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
785 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
796 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
797 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
798 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
801 base = ((u64)high << 32) | low;
802 if (HYPERVISOR_set_segment_base(which, base) != 0)
807 ret = native_write_msr_safe(msr, low, high);
813 /* Early in boot, while setting up the initial pagetable, assume
814 everything is pinned. */
815 static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
817 #ifdef CONFIG_FLATMEM
818 BUG_ON(mem_map); /* should only be used early */
820 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
823 /* Early release_pte assumes that all pts are pinned, since there's
824 only init_mm and anything attached to that is pinned. */
825 static void xen_release_pte_init(u32 pfn)
827 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
830 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
834 op.arg1.mfn = pfn_to_mfn(pfn);
835 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
839 /* This needs to make sure the new pte page is pinned iff its being
840 attached to a pinned pagetable. */
841 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
843 struct page *page = pfn_to_page(pfn);
845 if (PagePinned(virt_to_page(mm->pgd))) {
848 if (!PageHighMem(page)) {
849 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
851 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
853 /* make sure there are no stray mappings of
859 static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
861 xen_alloc_ptpage(mm, pfn, PT_PTE);
864 static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
866 xen_alloc_ptpage(mm, pfn, PT_PMD);
869 static int xen_pgd_alloc(struct mm_struct *mm)
871 pgd_t *pgd = mm->pgd;
874 BUG_ON(PagePinned(virt_to_page(pgd)));
878 struct page *page = virt_to_page(pgd);
881 BUG_ON(page->private != 0);
885 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
886 page->private = (unsigned long)user_pgd;
888 if (user_pgd != NULL) {
889 user_pgd[pgd_index(VSYSCALL_START)] =
890 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
894 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
901 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
904 pgd_t *user_pgd = xen_get_user_pgd(pgd);
907 free_page((unsigned long)user_pgd);
911 /* This should never happen until we're OK to use struct page */
912 static void xen_release_ptpage(u32 pfn, unsigned level)
914 struct page *page = pfn_to_page(pfn);
916 if (PagePinned(page)) {
917 if (!PageHighMem(page)) {
919 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
920 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
922 ClearPagePinned(page);
926 static void xen_release_pte(u32 pfn)
928 xen_release_ptpage(pfn, PT_PTE);
931 static void xen_release_pmd(u32 pfn)
933 xen_release_ptpage(pfn, PT_PMD);
936 #if PAGETABLE_LEVELS == 4
937 static void xen_alloc_pud(struct mm_struct *mm, u32 pfn)
939 xen_alloc_ptpage(mm, pfn, PT_PUD);
942 static void xen_release_pud(u32 pfn)
944 xen_release_ptpage(pfn, PT_PUD);
948 #ifdef CONFIG_HIGHPTE
949 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
951 pgprot_t prot = PAGE_KERNEL;
953 if (PagePinned(page))
954 prot = PAGE_KERNEL_RO;
956 if (0 && PageHighMem(page))
957 printk("mapping highpte %lx type %d prot %s\n",
958 page_to_pfn(page), type,
959 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
961 return kmap_atomic_prot(page, type, prot);
965 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
967 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
968 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
969 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
975 /* Init-time set_pte while constructing initial pagetables, which
976 doesn't allow RO pagetable pages to be remapped RW */
977 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
979 pte = mask_rw_pte(ptep, pte);
981 xen_set_pte(ptep, pte);
984 static __init void xen_pagetable_setup_start(pgd_t *base)
988 void xen_setup_shared_info(void)
990 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
991 set_fixmap(FIX_PARAVIRT_BOOTMAP,
992 xen_start_info->shared_info);
994 HYPERVISOR_shared_info =
995 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
997 HYPERVISOR_shared_info =
998 (struct shared_info *)__va(xen_start_info->shared_info);
1001 /* In UP this is as good a place as any to set up shared info */
1002 xen_setup_vcpu_info_placement();
1005 xen_setup_mfn_list_list();
1008 static __init void xen_pagetable_setup_done(pgd_t *base)
1010 xen_setup_shared_info();
1013 static __init void xen_post_allocator_init(void)
1015 pv_mmu_ops.set_pte = xen_set_pte;
1016 pv_mmu_ops.set_pmd = xen_set_pmd;
1017 pv_mmu_ops.set_pud = xen_set_pud;
1018 #if PAGETABLE_LEVELS == 4
1019 pv_mmu_ops.set_pgd = xen_set_pgd;
1022 /* This will work as long as patching hasn't happened yet
1023 (which it hasn't) */
1024 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1025 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1026 pv_mmu_ops.release_pte = xen_release_pte;
1027 pv_mmu_ops.release_pmd = xen_release_pmd;
1028 #if PAGETABLE_LEVELS == 4
1029 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1030 pv_mmu_ops.release_pud = xen_release_pud;
1033 #ifdef CONFIG_X86_64
1034 SetPagePinned(virt_to_page(level3_user_vsyscall));
1036 xen_mark_init_mm_pinned();
1039 /* This is called once we have the cpu_possible_map */
1040 void xen_setup_vcpu_info_placement(void)
1044 for_each_possible_cpu(cpu)
1045 xen_vcpu_setup(cpu);
1047 /* xen_vcpu_setup managed to place the vcpu_info within the
1048 percpu area for all cpus, so make use of it */
1049 #ifdef CONFIG_X86_32
1050 if (have_vcpu_info_placement) {
1051 printk(KERN_INFO "Xen: using vcpu_info placement\n");
1053 pv_irq_ops.save_fl = xen_save_fl_direct;
1054 pv_irq_ops.restore_fl = xen_restore_fl_direct;
1055 pv_irq_ops.irq_disable = xen_irq_disable_direct;
1056 pv_irq_ops.irq_enable = xen_irq_enable_direct;
1057 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1062 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1063 unsigned long addr, unsigned len)
1065 char *start, *end, *reloc;
1068 start = end = reloc = NULL;
1070 #define SITE(op, x) \
1071 case PARAVIRT_PATCH(op.x): \
1072 if (have_vcpu_info_placement) { \
1073 start = (char *)xen_##x##_direct; \
1074 end = xen_##x##_direct_end; \
1075 reloc = xen_##x##_direct_reloc; \
1080 #ifdef CONFIG_X86_32
1081 SITE(pv_irq_ops, irq_enable);
1082 SITE(pv_irq_ops, irq_disable);
1083 SITE(pv_irq_ops, save_fl);
1084 SITE(pv_irq_ops, restore_fl);
1085 #endif /* CONFIG_X86_32 */
1089 if (start == NULL || (end-start) > len)
1092 ret = paravirt_patch_insns(insnbuf, len, start, end);
1094 /* Note: because reloc is assigned from something that
1095 appears to be an array, gcc assumes it's non-null,
1096 but doesn't know its relationship with start and
1098 if (reloc > start && reloc < end) {
1099 int reloc_off = reloc - start;
1100 long *relocp = (long *)(insnbuf + reloc_off);
1101 long delta = start - (char *)addr;
1109 ret = paravirt_patch_default(type, clobbers, insnbuf,
1117 static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
1121 phys >>= PAGE_SHIFT;
1124 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1125 #ifdef CONFIG_X86_F00F_BUG
1128 #ifdef CONFIG_X86_32
1131 # ifdef CONFIG_HIGHMEM
1132 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1135 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1137 #ifdef CONFIG_X86_LOCAL_APIC
1138 case FIX_APIC_BASE: /* maps dummy local APIC */
1140 pte = pfn_pte(phys, prot);
1144 pte = mfn_pte(phys, prot);
1148 __native_set_fixmap(idx, pte);
1150 #ifdef CONFIG_X86_64
1151 /* Replicate changes to map the vsyscall page into the user
1152 pagetable vsyscall mapping. */
1153 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1154 unsigned long vaddr = __fix_to_virt(idx);
1155 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1160 static const struct pv_info xen_info __initdata = {
1161 .paravirt_enabled = 1,
1162 .shared_kernel_pmd = 0,
1167 static const struct pv_init_ops xen_init_ops __initdata = {
1170 .banner = xen_banner,
1171 .memory_setup = xen_memory_setup,
1172 .arch_setup = xen_arch_setup,
1173 .post_allocator_init = xen_post_allocator_init,
1176 static const struct pv_time_ops xen_time_ops __initdata = {
1177 .time_init = xen_time_init,
1179 .set_wallclock = xen_set_wallclock,
1180 .get_wallclock = xen_get_wallclock,
1181 .get_tsc_khz = xen_tsc_khz,
1182 .sched_clock = xen_sched_clock,
1185 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
1188 .set_debugreg = xen_set_debugreg,
1189 .get_debugreg = xen_get_debugreg,
1193 .read_cr0 = native_read_cr0,
1194 .write_cr0 = xen_write_cr0,
1196 .read_cr4 = native_read_cr4,
1197 .read_cr4_safe = native_read_cr4_safe,
1198 .write_cr4 = xen_write_cr4,
1200 .wbinvd = native_wbinvd,
1202 .read_msr = native_read_msr_safe,
1203 .write_msr = xen_write_msr_safe,
1204 .read_tsc = native_read_tsc,
1205 .read_pmc = native_read_pmc,
1208 .irq_enable_sysexit = xen_sysexit,
1209 #ifdef CONFIG_X86_64
1210 .usergs_sysret32 = xen_sysret32,
1211 .usergs_sysret64 = xen_sysret64,
1214 .load_tr_desc = paravirt_nop,
1215 .set_ldt = xen_set_ldt,
1216 .load_gdt = xen_load_gdt,
1217 .load_idt = xen_load_idt,
1218 .load_tls = xen_load_tls,
1219 #ifdef CONFIG_X86_64
1220 .load_gs_index = xen_load_gs_index,
1223 .store_gdt = native_store_gdt,
1224 .store_idt = native_store_idt,
1225 .store_tr = xen_store_tr,
1227 .write_ldt_entry = xen_write_ldt_entry,
1228 .write_gdt_entry = xen_write_gdt_entry,
1229 .write_idt_entry = xen_write_idt_entry,
1230 .load_sp0 = xen_load_sp0,
1232 .set_iopl_mask = xen_set_iopl_mask,
1233 .io_delay = xen_io_delay,
1235 /* Xen takes care of %gs when switching to usermode for us */
1236 .swapgs = paravirt_nop,
1239 .enter = paravirt_enter_lazy_cpu,
1240 .leave = xen_leave_lazy,
1244 static void __init __xen_init_IRQ(void)
1246 #ifdef CONFIG_X86_64
1249 /* Create identity vector->irq map */
1250 for(i = 0; i < NR_VECTORS; i++) {
1253 for_each_possible_cpu(cpu)
1254 per_cpu(vector_irq, cpu)[i] = i;
1256 #endif /* CONFIG_X86_64 */
1261 static const struct pv_irq_ops xen_irq_ops __initdata = {
1262 .init_IRQ = __xen_init_IRQ,
1263 .save_fl = xen_save_fl,
1264 .restore_fl = xen_restore_fl,
1265 .irq_disable = xen_irq_disable,
1266 .irq_enable = xen_irq_enable,
1267 .safe_halt = xen_safe_halt,
1269 #ifdef CONFIG_X86_64
1270 .adjust_exception_frame = xen_adjust_exception_frame,
1274 static const struct pv_apic_ops xen_apic_ops __initdata = {
1275 #ifdef CONFIG_X86_LOCAL_APIC
1276 .apic_write = xen_apic_write,
1277 .apic_read = xen_apic_read,
1278 .setup_boot_clock = paravirt_nop,
1279 .setup_secondary_clock = paravirt_nop,
1280 .startup_ipi_hook = paravirt_nop,
1284 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1285 .pagetable_setup_start = xen_pagetable_setup_start,
1286 .pagetable_setup_done = xen_pagetable_setup_done,
1288 .read_cr2 = xen_read_cr2,
1289 .write_cr2 = xen_write_cr2,
1291 .read_cr3 = xen_read_cr3,
1292 .write_cr3 = xen_write_cr3,
1294 .flush_tlb_user = xen_flush_tlb,
1295 .flush_tlb_kernel = xen_flush_tlb,
1296 .flush_tlb_single = xen_flush_tlb_single,
1297 .flush_tlb_others = xen_flush_tlb_others,
1299 .pte_update = paravirt_nop,
1300 .pte_update_defer = paravirt_nop,
1302 .pgd_alloc = xen_pgd_alloc,
1303 .pgd_free = xen_pgd_free,
1305 .alloc_pte = xen_alloc_pte_init,
1306 .release_pte = xen_release_pte_init,
1307 .alloc_pmd = xen_alloc_pte_init,
1308 .alloc_pmd_clone = paravirt_nop,
1309 .release_pmd = xen_release_pte_init,
1311 #ifdef CONFIG_HIGHPTE
1312 .kmap_atomic_pte = xen_kmap_atomic_pte,
1315 #ifdef CONFIG_X86_64
1316 .set_pte = xen_set_pte,
1318 .set_pte = xen_set_pte_init,
1320 .set_pte_at = xen_set_pte_at,
1321 .set_pmd = xen_set_pmd_hyper,
1323 .ptep_modify_prot_start = __ptep_modify_prot_start,
1324 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1326 .pte_val = xen_pte_val,
1327 .pte_flags = native_pte_flags,
1328 .pgd_val = xen_pgd_val,
1330 .make_pte = xen_make_pte,
1331 .make_pgd = xen_make_pgd,
1333 #ifdef CONFIG_X86_PAE
1334 .set_pte_atomic = xen_set_pte_atomic,
1335 .set_pte_present = xen_set_pte_at,
1336 .pte_clear = xen_pte_clear,
1337 .pmd_clear = xen_pmd_clear,
1338 #endif /* CONFIG_X86_PAE */
1339 .set_pud = xen_set_pud_hyper,
1341 .make_pmd = xen_make_pmd,
1342 .pmd_val = xen_pmd_val,
1344 #if PAGETABLE_LEVELS == 4
1345 .pud_val = xen_pud_val,
1346 .make_pud = xen_make_pud,
1347 .set_pgd = xen_set_pgd_hyper,
1349 .alloc_pud = xen_alloc_pte_init,
1350 .release_pud = xen_release_pte_init,
1351 #endif /* PAGETABLE_LEVELS == 4 */
1353 .activate_mm = xen_activate_mm,
1354 .dup_mmap = xen_dup_mmap,
1355 .exit_mmap = xen_exit_mmap,
1358 .enter = paravirt_enter_lazy_mmu,
1359 .leave = xen_leave_lazy,
1362 .set_fixmap = xen_set_fixmap,
1365 static void xen_reboot(int reason)
1367 struct sched_shutdown r = { .reason = reason };
1373 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1377 static void xen_restart(char *msg)
1379 xen_reboot(SHUTDOWN_reboot);
1382 static void xen_emergency_restart(void)
1384 xen_reboot(SHUTDOWN_reboot);
1387 static void xen_machine_halt(void)
1389 xen_reboot(SHUTDOWN_poweroff);
1392 static void xen_crash_shutdown(struct pt_regs *regs)
1394 xen_reboot(SHUTDOWN_crash);
1397 static const struct machine_ops __initdata xen_machine_ops = {
1398 .restart = xen_restart,
1399 .halt = xen_machine_halt,
1400 .power_off = xen_machine_halt,
1401 .shutdown = xen_machine_halt,
1402 .crash_shutdown = xen_crash_shutdown,
1403 .emergency_restart = xen_emergency_restart,
1407 static void __init xen_reserve_top(void)
1409 #ifdef CONFIG_X86_32
1410 unsigned long top = HYPERVISOR_VIRT_START;
1411 struct xen_platform_parameters pp;
1413 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1414 top = pp.virt_start;
1416 reserve_top_address(-top + 2 * PAGE_SIZE);
1417 #endif /* CONFIG_X86_32 */
1421 * Like __va(), but returns address in the kernel mapping (which is
1422 * all we have until the physical memory mapping has been set up.
1424 static void *__ka(phys_addr_t paddr)
1426 #ifdef CONFIG_X86_64
1427 return (void *)(paddr + __START_KERNEL_map);
1433 /* Convert a machine address to physical address */
1434 static unsigned long m2p(phys_addr_t maddr)
1438 maddr &= PTE_PFN_MASK;
1439 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1444 /* Convert a machine address to kernel virtual */
1445 static void *m2v(phys_addr_t maddr)
1447 return __ka(m2p(maddr));
1450 #ifdef CONFIG_X86_64
1451 static void walk(pgd_t *pgd, unsigned long addr)
1453 unsigned l4idx = pgd_index(addr);
1454 unsigned l3idx = pud_index(addr);
1455 unsigned l2idx = pmd_index(addr);
1456 unsigned l1idx = pte_index(addr);
1462 xen_raw_printk("walk %p, %lx -> %d %d %d %d\n",
1463 pgd, addr, l4idx, l3idx, l2idx, l1idx);
1466 xen_raw_printk(" l4: %016lx\n", l4.pgd);
1467 xen_raw_printk(" %016lx\n", pgd_val(l4));
1469 l3 = ((pud_t *)(m2v(l4.pgd)))[l3idx];
1470 xen_raw_printk(" l3: %016lx\n", l3.pud);
1471 xen_raw_printk(" %016lx\n", pud_val(l3));
1473 l2 = ((pmd_t *)(m2v(l3.pud)))[l2idx];
1474 xen_raw_printk(" l2: %016lx\n", l2.pmd);
1475 xen_raw_printk(" %016lx\n", pmd_val(l2));
1477 l1 = ((pte_t *)(m2v(l2.pmd)))[l1idx];
1478 xen_raw_printk(" l1: %016lx\n", l1.pte);
1479 xen_raw_printk(" %016lx\n", pte_val(l1));
1483 static void set_page_prot(void *addr, pgprot_t prot)
1485 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1486 pte_t pte = pfn_pte(pfn, prot);
1488 xen_raw_printk("addr=%p pfn=%lx mfn=%lx prot=%016llx pte=%016llx\n",
1489 addr, pfn, get_phys_to_machine(pfn),
1490 pgprot_val(prot), pte.pte);
1492 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1496 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1498 unsigned pmdidx, pteidx;
1504 for(pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1507 /* Reuse or allocate a page of ptes */
1508 if (pmd_present(pmd[pmdidx]))
1509 pte_page = m2v(pmd[pmdidx].pmd);
1511 /* Check for free pte pages */
1512 if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1515 pte_page = &level1_ident_pgt[ident_pte];
1516 ident_pte += PTRS_PER_PTE;
1518 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1521 /* Install mappings */
1522 for(pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1525 if (pfn > max_pfn_mapped)
1526 max_pfn_mapped = pfn;
1528 if (!pte_none(pte_page[pteidx]))
1531 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1532 pte_page[pteidx] = pte;
1536 for(pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1537 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1539 set_page_prot(pmd, PAGE_KERNEL_RO);
1542 #ifdef CONFIG_X86_64
1543 static void convert_pfn_mfn(void *v)
1548 /* All levels are converted the same way, so just treat them
1550 for(i = 0; i < PTRS_PER_PTE; i++)
1551 pte[i] = xen_make_pte(pte[i].pte);
1555 * Set up the inital kernel pagetable.
1557 * We can construct this by grafting the Xen provided pagetable into
1558 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1559 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1560 * means that only the kernel has a physical mapping to start with -
1561 * but that's enough to get __va working. We need to fill in the rest
1562 * of the physical mapping once some sort of allocator has been set
1565 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1570 /* Zap identity mapping */
1571 init_level4_pgt[0] = __pgd(0);
1573 /* Pre-constructed entries are in pfn, so convert to mfn */
1574 convert_pfn_mfn(init_level4_pgt);
1575 convert_pfn_mfn(level3_ident_pgt);
1576 convert_pfn_mfn(level3_kernel_pgt);
1578 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1579 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1581 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1582 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1584 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1585 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1586 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1588 /* Set up identity map */
1589 xen_map_identity_early(level2_ident_pgt, max_pfn);
1591 /* Make pagetable pieces RO */
1592 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1593 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1594 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1595 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1596 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1597 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1599 /* Pin down new L4 */
1600 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1601 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1603 /* Unpin Xen-provided one */
1604 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1607 pgd = init_level4_pgt;
1610 * At this stage there can be no user pgd, and no page
1611 * structure to attach it to, so make sure we just set kernel
1615 __xen_write_cr3(true, __pa(pgd));
1616 xen_mc_issue(PARAVIRT_LAZY_CPU);
1618 reserve_early(__pa(xen_start_info->pt_base),
1619 __pa(xen_start_info->pt_base +
1620 xen_start_info->nr_pt_frames * PAGE_SIZE),
1625 #else /* !CONFIG_X86_64 */
1626 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1628 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1632 init_pg_tables_start = __pa(pgd);
1633 init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1634 max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024);
1636 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1637 memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1639 xen_map_identity_early(level2_kernel_pgt, max_pfn);
1641 memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1642 set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1643 __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1645 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1646 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1647 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1649 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1651 xen_write_cr3(__pa(swapper_pg_dir));
1653 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1655 return swapper_pg_dir;
1657 #endif /* CONFIG_X86_64 */
1659 /* First C function to be called on Xen boot */
1660 asmlinkage void __init xen_start_kernel(void)
1664 if (!xen_start_info)
1667 BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1669 xen_setup_features();
1671 /* Install Xen paravirt ops */
1673 pv_init_ops = xen_init_ops;
1674 pv_time_ops = xen_time_ops;
1675 pv_cpu_ops = xen_cpu_ops;
1676 pv_irq_ops = xen_irq_ops;
1677 pv_apic_ops = xen_apic_ops;
1678 pv_mmu_ops = xen_mmu_ops;
1680 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1681 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1682 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1685 machine_ops = xen_machine_ops;
1687 #ifdef CONFIG_X86_64
1688 /* Disable until direct per-cpu data access. */
1689 have_vcpu_info_placement = 0;
1696 if (!xen_feature(XENFEAT_auto_translated_physmap))
1697 xen_build_dynamic_phys_to_machine();
1699 pgd = (pgd_t *)xen_start_info->pt_base;
1701 /* Prevent unwanted bits from being set in PTEs. */
1702 __supported_pte_mask &= ~_PAGE_GLOBAL;
1703 if (!is_initial_xendomain())
1704 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1706 /* Don't do the full vcpu_info placement stuff until we have a
1707 possible map and a non-dummy shared_info. */
1708 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1710 xen_raw_console_write("mapping kernel into physical memory\n");
1711 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1715 /* keep using Xen gdt for now; no urgent need to change it */
1717 pv_info.kernel_rpl = 1;
1718 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1719 pv_info.kernel_rpl = 0;
1721 /* set the limit of our address space */
1724 #ifdef CONFIG_X86_32
1725 /* set up basic CPUID stuff */
1726 cpu_detect(&new_cpu_data);
1727 new_cpu_data.hard_math = 1;
1728 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1731 /* Poke various useful things into boot_params */
1732 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1733 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1734 ? __pa(xen_start_info->mod_start) : 0;
1735 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1736 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1738 if (!is_initial_xendomain()) {
1739 add_preferred_console("xenboot", 0, NULL);
1740 add_preferred_console("tty", 0, NULL);
1741 add_preferred_console("hvc", 0, NULL);
1744 xen_raw_console_write("about to get started...\n");
1747 xen_raw_printk("&boot_params=%p __pa(&boot_params)=%lx __va(__pa(&boot_params))=%lx\n",
1748 &boot_params, __pa_symbol(&boot_params),
1749 __va(__pa_symbol(&boot_params)));
1751 walk(pgd, &boot_params);
1752 walk(pgd, __va(__pa(&boot_params)));
1755 /* Start the world */
1756 #ifdef CONFIG_X86_32
1757 i386_start_kernel();
1759 x86_64_start_reservations((char *)__pa_symbol(&boot_params));