]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/x86/xen/enlighten.c
xen64: set up userspace syscall patch
[linux-2.6-omap-h63xx.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
29
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/interface/sched.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36 #include <xen/hvc-console.h>
37
38 #include <asm/paravirt.h>
39 #include <asm/page.h>
40 #include <asm/xen/hypercall.h>
41 #include <asm/xen/hypervisor.h>
42 #include <asm/fixmap.h>
43 #include <asm/processor.h>
44 #include <asm/setup.h>
45 #include <asm/desc.h>
46 #include <asm/pgtable.h>
47 #include <asm/tlbflush.h>
48 #include <asm/reboot.h>
49
50 #include "xen-ops.h"
51 #include "mmu.h"
52 #include "multicalls.h"
53
54 EXPORT_SYMBOL_GPL(hypercall_page);
55
56 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
57 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
58
59 /*
60  * Identity map, in addition to plain kernel map.  This needs to be
61  * large enough to allocate page table pages to allocate the rest.
62  * Each page can map 2MB.
63  */
64 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
65
66 #ifdef CONFIG_X86_64
67 /* l3 pud for userspace vsyscall mapping */
68 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
69 #endif /* CONFIG_X86_64 */
70
71 /*
72  * Note about cr3 (pagetable base) values:
73  *
74  * xen_cr3 contains the current logical cr3 value; it contains the
75  * last set cr3.  This may not be the current effective cr3, because
76  * its update may be being lazily deferred.  However, a vcpu looking
77  * at its own cr3 can use this value knowing that it everything will
78  * be self-consistent.
79  *
80  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
81  * hypercall to set the vcpu cr3 is complete (so it may be a little
82  * out of date, but it will never be set early).  If one vcpu is
83  * looking at another vcpu's cr3 value, it should use this variable.
84  */
85 DEFINE_PER_CPU(unsigned long, xen_cr3);  /* cr3 stored as physaddr */
86 DEFINE_PER_CPU(unsigned long, xen_current_cr3);  /* actual vcpu cr3 */
87
88 struct start_info *xen_start_info;
89 EXPORT_SYMBOL_GPL(xen_start_info);
90
91 struct shared_info xen_dummy_shared_info;
92
93 /*
94  * Point at some empty memory to start with. We map the real shared_info
95  * page as soon as fixmap is up and running.
96  */
97 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
98
99 /*
100  * Flag to determine whether vcpu info placement is available on all
101  * VCPUs.  We assume it is to start with, and then set it to zero on
102  * the first failure.  This is because it can succeed on some VCPUs
103  * and not others, since it can involve hypervisor memory allocation,
104  * or because the guest failed to guarantee all the appropriate
105  * constraints on all VCPUs (ie buffer can't cross a page boundary).
106  *
107  * Note that any particular CPU may be using a placed vcpu structure,
108  * but we can only optimise if the all are.
109  *
110  * 0: not available, 1: available
111  */
112 static int have_vcpu_info_placement = 1;
113
114 static void xen_vcpu_setup(int cpu)
115 {
116         struct vcpu_register_vcpu_info info;
117         int err;
118         struct vcpu_info *vcpup;
119
120         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
121         per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
122
123         if (!have_vcpu_info_placement)
124                 return;         /* already tested, not available */
125
126         vcpup = &per_cpu(xen_vcpu_info, cpu);
127
128         info.mfn = virt_to_mfn(vcpup);
129         info.offset = offset_in_page(vcpup);
130
131         printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
132                cpu, vcpup, info.mfn, info.offset);
133
134         /* Check to see if the hypervisor will put the vcpu_info
135            structure where we want it, which allows direct access via
136            a percpu-variable. */
137         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
138
139         if (err) {
140                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
141                 have_vcpu_info_placement = 0;
142         } else {
143                 /* This cpu is using the registered vcpu info, even if
144                    later ones fail to. */
145                 per_cpu(xen_vcpu, cpu) = vcpup;
146
147                 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
148                        cpu, vcpup);
149         }
150 }
151
152 /*
153  * On restore, set the vcpu placement up again.
154  * If it fails, then we're in a bad state, since
155  * we can't back out from using it...
156  */
157 void xen_vcpu_restore(void)
158 {
159         if (have_vcpu_info_placement) {
160                 int cpu;
161
162                 for_each_online_cpu(cpu) {
163                         bool other_cpu = (cpu != smp_processor_id());
164
165                         if (other_cpu &&
166                             HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
167                                 BUG();
168
169                         xen_vcpu_setup(cpu);
170
171                         if (other_cpu &&
172                             HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
173                                 BUG();
174                 }
175
176                 BUG_ON(!have_vcpu_info_placement);
177         }
178 }
179
180 static void __init xen_banner(void)
181 {
182         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
183                pv_info.name);
184         printk(KERN_INFO "Hypervisor signature: %s%s\n",
185                xen_start_info->magic,
186                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
187 }
188
189 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
190                       unsigned int *cx, unsigned int *dx)
191 {
192         unsigned maskedx = ~0;
193
194         /*
195          * Mask out inconvenient features, to try and disable as many
196          * unsupported kernel subsystems as possible.
197          */
198         if (*ax == 1)
199                 maskedx = ~((1 << X86_FEATURE_APIC) |  /* disable APIC */
200                             (1 << X86_FEATURE_ACPI) |  /* disable ACPI */
201                             (1 << X86_FEATURE_MCE)  |  /* disable MCE */
202                             (1 << X86_FEATURE_MCA)  |  /* disable MCA */
203                             (1 << X86_FEATURE_ACC));   /* thermal monitoring */
204
205         asm(XEN_EMULATE_PREFIX "cpuid"
206                 : "=a" (*ax),
207                   "=b" (*bx),
208                   "=c" (*cx),
209                   "=d" (*dx)
210                 : "0" (*ax), "2" (*cx));
211         *dx &= maskedx;
212 }
213
214 static void xen_set_debugreg(int reg, unsigned long val)
215 {
216         HYPERVISOR_set_debugreg(reg, val);
217 }
218
219 static unsigned long xen_get_debugreg(int reg)
220 {
221         return HYPERVISOR_get_debugreg(reg);
222 }
223
224 static unsigned long xen_save_fl(void)
225 {
226         struct vcpu_info *vcpu;
227         unsigned long flags;
228
229         vcpu = x86_read_percpu(xen_vcpu);
230
231         /* flag has opposite sense of mask */
232         flags = !vcpu->evtchn_upcall_mask;
233
234         /* convert to IF type flag
235            -0 -> 0x00000000
236            -1 -> 0xffffffff
237         */
238         return (-flags) & X86_EFLAGS_IF;
239 }
240
241 static void xen_restore_fl(unsigned long flags)
242 {
243         struct vcpu_info *vcpu;
244
245         /* convert from IF type flag */
246         flags = !(flags & X86_EFLAGS_IF);
247
248         /* There's a one instruction preempt window here.  We need to
249            make sure we're don't switch CPUs between getting the vcpu
250            pointer and updating the mask. */
251         preempt_disable();
252         vcpu = x86_read_percpu(xen_vcpu);
253         vcpu->evtchn_upcall_mask = flags;
254         preempt_enable_no_resched();
255
256         /* Doesn't matter if we get preempted here, because any
257            pending event will get dealt with anyway. */
258
259         if (flags == 0) {
260                 preempt_check_resched();
261                 barrier(); /* unmask then check (avoid races) */
262                 if (unlikely(vcpu->evtchn_upcall_pending))
263                         force_evtchn_callback();
264         }
265 }
266
267 static void xen_irq_disable(void)
268 {
269         /* There's a one instruction preempt window here.  We need to
270            make sure we're don't switch CPUs between getting the vcpu
271            pointer and updating the mask. */
272         preempt_disable();
273         x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
274         preempt_enable_no_resched();
275 }
276
277 static void xen_irq_enable(void)
278 {
279         struct vcpu_info *vcpu;
280
281         /* We don't need to worry about being preempted here, since
282            either a) interrupts are disabled, so no preemption, or b)
283            the caller is confused and is trying to re-enable interrupts
284            on an indeterminate processor. */
285
286         vcpu = x86_read_percpu(xen_vcpu);
287         vcpu->evtchn_upcall_mask = 0;
288
289         /* Doesn't matter if we get preempted here, because any
290            pending event will get dealt with anyway. */
291
292         barrier(); /* unmask then check (avoid races) */
293         if (unlikely(vcpu->evtchn_upcall_pending))
294                 force_evtchn_callback();
295 }
296
297 static void xen_safe_halt(void)
298 {
299         /* Blocking includes an implicit local_irq_enable(). */
300         if (HYPERVISOR_sched_op(SCHEDOP_block, NULL) != 0)
301                 BUG();
302 }
303
304 static void xen_halt(void)
305 {
306         if (irqs_disabled())
307                 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
308         else
309                 xen_safe_halt();
310 }
311
312 static void xen_leave_lazy(void)
313 {
314         paravirt_leave_lazy(paravirt_get_lazy_mode());
315         xen_mc_flush();
316 }
317
318 static unsigned long xen_store_tr(void)
319 {
320         return 0;
321 }
322
323 static void xen_set_ldt(const void *addr, unsigned entries)
324 {
325         struct mmuext_op *op;
326         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
327
328         op = mcs.args;
329         op->cmd = MMUEXT_SET_LDT;
330         op->arg1.linear_addr = (unsigned long)addr;
331         op->arg2.nr_ents = entries;
332
333         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
334
335         xen_mc_issue(PARAVIRT_LAZY_CPU);
336 }
337
338 static void xen_load_gdt(const struct desc_ptr *dtr)
339 {
340         unsigned long *frames;
341         unsigned long va = dtr->address;
342         unsigned int size = dtr->size + 1;
343         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
344         int f;
345         struct multicall_space mcs;
346
347         /* A GDT can be up to 64k in size, which corresponds to 8192
348            8-byte entries, or 16 4k pages.. */
349
350         BUG_ON(size > 65536);
351         BUG_ON(va & ~PAGE_MASK);
352
353         mcs = xen_mc_entry(sizeof(*frames) * pages);
354         frames = mcs.args;
355
356         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
357                 frames[f] = virt_to_mfn(va);
358                 make_lowmem_page_readonly((void *)va);
359         }
360
361         MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
362
363         xen_mc_issue(PARAVIRT_LAZY_CPU);
364 }
365
366 static void load_TLS_descriptor(struct thread_struct *t,
367                                 unsigned int cpu, unsigned int i)
368 {
369         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
370         xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
371         struct multicall_space mc = __xen_mc_entry(0);
372
373         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
374 }
375
376 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
377 {
378         /*
379          * XXX sleazy hack: If we're being called in a lazy-cpu zone,
380          * it means we're in a context switch, and %gs has just been
381          * saved.  This means we can zero it out to prevent faults on
382          * exit from the hypervisor if the next process has no %gs.
383          * Either way, it has been saved, and the new value will get
384          * loaded properly.  This will go away as soon as Xen has been
385          * modified to not save/restore %gs for normal hypercalls.
386          *
387          * On x86_64, this hack is not used for %gs, because gs points
388          * to KERNEL_GS_BASE (and uses it for PDA references), so we
389          * must not zero %gs on x86_64
390          *
391          * For x86_64, we need to zero %fs, otherwise we may get an
392          * exception between the new %fs descriptor being loaded and
393          * %fs being effectively cleared at __switch_to().
394          */
395         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
396 #ifdef CONFIG_X86_32
397                 loadsegment(gs, 0);
398 #else
399                 loadsegment(fs, 0);
400 #endif
401         }
402
403         xen_mc_batch();
404
405         load_TLS_descriptor(t, cpu, 0);
406         load_TLS_descriptor(t, cpu, 1);
407         load_TLS_descriptor(t, cpu, 2);
408
409         xen_mc_issue(PARAVIRT_LAZY_CPU);
410 }
411
412 #ifdef CONFIG_X86_64
413 static void xen_load_gs_index(unsigned int idx)
414 {
415         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
416                 BUG();
417 }
418 #endif
419
420 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
421                                 const void *ptr)
422 {
423         unsigned long lp = (unsigned long)&dt[entrynum];
424         xmaddr_t mach_lp = virt_to_machine(lp);
425         u64 entry = *(u64 *)ptr;
426
427         preempt_disable();
428
429         xen_mc_flush();
430         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
431                 BUG();
432
433         preempt_enable();
434 }
435
436 static int cvt_gate_to_trap(int vector, const gate_desc *val,
437                             struct trap_info *info)
438 {
439         if (val->type != 0xf && val->type != 0xe)
440                 return 0;
441
442         info->vector = vector;
443         info->address = gate_offset(*val);
444         info->cs = gate_segment(*val);
445         info->flags = val->dpl;
446         /* interrupt gates clear IF */
447         if (val->type == 0xe)
448                 info->flags |= 4;
449
450         return 1;
451 }
452
453 /* Locations of each CPU's IDT */
454 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
455
456 /* Set an IDT entry.  If the entry is part of the current IDT, then
457    also update Xen. */
458 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
459 {
460         unsigned long p = (unsigned long)&dt[entrynum];
461         unsigned long start, end;
462
463         preempt_disable();
464
465         start = __get_cpu_var(idt_desc).address;
466         end = start + __get_cpu_var(idt_desc).size + 1;
467
468         xen_mc_flush();
469
470         native_write_idt_entry(dt, entrynum, g);
471
472         if (p >= start && (p + 8) <= end) {
473                 struct trap_info info[2];
474
475                 info[1].address = 0;
476
477                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
478                         if (HYPERVISOR_set_trap_table(info))
479                                 BUG();
480         }
481
482         preempt_enable();
483 }
484
485 static void xen_convert_trap_info(const struct desc_ptr *desc,
486                                   struct trap_info *traps)
487 {
488         unsigned in, out, count;
489
490         count = (desc->size+1) / sizeof(gate_desc);
491         BUG_ON(count > 256);
492
493         for (in = out = 0; in < count; in++) {
494                 gate_desc *entry = (gate_desc*)(desc->address) + in;
495
496                 if (cvt_gate_to_trap(in, entry, &traps[out]))
497                         out++;
498         }
499         traps[out].address = 0;
500 }
501
502 void xen_copy_trap_info(struct trap_info *traps)
503 {
504         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
505
506         xen_convert_trap_info(desc, traps);
507 }
508
509 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
510    hold a spinlock to protect the static traps[] array (static because
511    it avoids allocation, and saves stack space). */
512 static void xen_load_idt(const struct desc_ptr *desc)
513 {
514         static DEFINE_SPINLOCK(lock);
515         static struct trap_info traps[257];
516
517         spin_lock(&lock);
518
519         __get_cpu_var(idt_desc) = *desc;
520
521         xen_convert_trap_info(desc, traps);
522
523         xen_mc_flush();
524         if (HYPERVISOR_set_trap_table(traps))
525                 BUG();
526
527         spin_unlock(&lock);
528 }
529
530 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
531    they're handled differently. */
532 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
533                                 const void *desc, int type)
534 {
535         preempt_disable();
536
537         switch (type) {
538         case DESC_LDT:
539         case DESC_TSS:
540                 /* ignore */
541                 break;
542
543         default: {
544                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
545
546                 xen_mc_flush();
547                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
548                         BUG();
549         }
550
551         }
552
553         preempt_enable();
554 }
555
556 static void xen_load_sp0(struct tss_struct *tss,
557                           struct thread_struct *thread)
558 {
559         struct multicall_space mcs = xen_mc_entry(0);
560         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
561         xen_mc_issue(PARAVIRT_LAZY_CPU);
562 }
563
564 static void xen_set_iopl_mask(unsigned mask)
565 {
566         struct physdev_set_iopl set_iopl;
567
568         /* Force the change at ring 0. */
569         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
570         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
571 }
572
573 static void xen_io_delay(void)
574 {
575 }
576
577 #ifdef CONFIG_X86_LOCAL_APIC
578 static u32 xen_apic_read(unsigned long reg)
579 {
580         return 0;
581 }
582
583 static void xen_apic_write(unsigned long reg, u32 val)
584 {
585         /* Warn to see if there's any stray references */
586         WARN_ON(1);
587 }
588 #endif
589
590 static void xen_flush_tlb(void)
591 {
592         struct mmuext_op *op;
593         struct multicall_space mcs;
594
595         preempt_disable();
596
597         mcs = xen_mc_entry(sizeof(*op));
598
599         op = mcs.args;
600         op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
601         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
602
603         xen_mc_issue(PARAVIRT_LAZY_MMU);
604
605         preempt_enable();
606 }
607
608 static void xen_flush_tlb_single(unsigned long addr)
609 {
610         struct mmuext_op *op;
611         struct multicall_space mcs;
612
613         preempt_disable();
614
615         mcs = xen_mc_entry(sizeof(*op));
616         op = mcs.args;
617         op->cmd = MMUEXT_INVLPG_LOCAL;
618         op->arg1.linear_addr = addr & PAGE_MASK;
619         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
620
621         xen_mc_issue(PARAVIRT_LAZY_MMU);
622
623         preempt_enable();
624 }
625
626 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
627                                  unsigned long va)
628 {
629         struct {
630                 struct mmuext_op op;
631                 cpumask_t mask;
632         } *args;
633         cpumask_t cpumask = *cpus;
634         struct multicall_space mcs;
635
636         /*
637          * A couple of (to be removed) sanity checks:
638          *
639          * - current CPU must not be in mask
640          * - mask must exist :)
641          */
642         BUG_ON(cpus_empty(cpumask));
643         BUG_ON(cpu_isset(smp_processor_id(), cpumask));
644         BUG_ON(!mm);
645
646         /* If a CPU which we ran on has gone down, OK. */
647         cpus_and(cpumask, cpumask, cpu_online_map);
648         if (cpus_empty(cpumask))
649                 return;
650
651         mcs = xen_mc_entry(sizeof(*args));
652         args = mcs.args;
653         args->mask = cpumask;
654         args->op.arg2.vcpumask = &args->mask;
655
656         if (va == TLB_FLUSH_ALL) {
657                 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
658         } else {
659                 args->op.cmd = MMUEXT_INVLPG_MULTI;
660                 args->op.arg1.linear_addr = va;
661         }
662
663         MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
664
665         xen_mc_issue(PARAVIRT_LAZY_MMU);
666 }
667
668 static void xen_clts(void)
669 {
670         struct multicall_space mcs;
671
672         mcs = xen_mc_entry(0);
673
674         MULTI_fpu_taskswitch(mcs.mc, 0);
675
676         xen_mc_issue(PARAVIRT_LAZY_CPU);
677 }
678
679 static void xen_write_cr0(unsigned long cr0)
680 {
681         struct multicall_space mcs;
682
683         /* Only pay attention to cr0.TS; everything else is
684            ignored. */
685         mcs = xen_mc_entry(0);
686
687         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
688
689         xen_mc_issue(PARAVIRT_LAZY_CPU);
690 }
691
692 static void xen_write_cr2(unsigned long cr2)
693 {
694         x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
695 }
696
697 static unsigned long xen_read_cr2(void)
698 {
699         return x86_read_percpu(xen_vcpu)->arch.cr2;
700 }
701
702 static unsigned long xen_read_cr2_direct(void)
703 {
704         return x86_read_percpu(xen_vcpu_info.arch.cr2);
705 }
706
707 static void xen_write_cr4(unsigned long cr4)
708 {
709         cr4 &= ~X86_CR4_PGE;
710         cr4 &= ~X86_CR4_PSE;
711
712         native_write_cr4(cr4);
713 }
714
715 static unsigned long xen_read_cr3(void)
716 {
717         return x86_read_percpu(xen_cr3);
718 }
719
720 static void set_current_cr3(void *v)
721 {
722         x86_write_percpu(xen_current_cr3, (unsigned long)v);
723 }
724
725 static void __xen_write_cr3(bool kernel, unsigned long cr3)
726 {
727         struct mmuext_op *op;
728         struct multicall_space mcs;
729         unsigned long mfn;
730
731         if (cr3)
732                 mfn = pfn_to_mfn(PFN_DOWN(cr3));
733         else
734                 mfn = 0;
735
736         WARN_ON(mfn == 0 && kernel);
737
738         mcs = __xen_mc_entry(sizeof(*op));
739
740         op = mcs.args;
741         op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
742         op->arg1.mfn = mfn;
743
744         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
745
746         if (kernel) {
747                 x86_write_percpu(xen_cr3, cr3);
748
749                 /* Update xen_current_cr3 once the batch has actually
750                    been submitted. */
751                 xen_mc_callback(set_current_cr3, (void *)cr3);
752         }
753 }
754
755 static void xen_write_cr3(unsigned long cr3)
756 {
757         BUG_ON(preemptible());
758
759         xen_mc_batch();  /* disables interrupts */
760
761         /* Update while interrupts are disabled, so its atomic with
762            respect to ipis */
763         x86_write_percpu(xen_cr3, cr3);
764
765         __xen_write_cr3(true, cr3);
766
767 #ifdef CONFIG_X86_64
768         {
769                 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
770                 if (user_pgd)
771                         __xen_write_cr3(false, __pa(user_pgd));
772                 else
773                         __xen_write_cr3(false, 0);
774         }
775 #endif
776
777         xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
778 }
779
780 /* Early in boot, while setting up the initial pagetable, assume
781    everything is pinned. */
782 static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
783 {
784 #ifdef CONFIG_FLATMEM
785         BUG_ON(mem_map);        /* should only be used early */
786 #endif
787         make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
788 }
789
790 /* Early release_pte assumes that all pts are pinned, since there's
791    only init_mm and anything attached to that is pinned. */
792 static void xen_release_pte_init(u32 pfn)
793 {
794         make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
795 }
796
797 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
798 {
799         struct mmuext_op op;
800         op.cmd = cmd;
801         op.arg1.mfn = pfn_to_mfn(pfn);
802         if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
803                 BUG();
804 }
805
806 /* This needs to make sure the new pte page is pinned iff its being
807    attached to a pinned pagetable. */
808 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
809 {
810         struct page *page = pfn_to_page(pfn);
811
812         if (PagePinned(virt_to_page(mm->pgd))) {
813                 SetPagePinned(page);
814
815                 if (!PageHighMem(page)) {
816                         make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
817                         if (level == PT_PTE)
818                                 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
819                 } else
820                         /* make sure there are no stray mappings of
821                            this page */
822                         kmap_flush_unused();
823         }
824 }
825
826 static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
827 {
828         xen_alloc_ptpage(mm, pfn, PT_PTE);
829 }
830
831 static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
832 {
833         xen_alloc_ptpage(mm, pfn, PT_PMD);
834 }
835
836 static int xen_pgd_alloc(struct mm_struct *mm)
837 {
838         pgd_t *pgd = mm->pgd;
839         int ret = 0;
840
841         BUG_ON(PagePinned(virt_to_page(pgd)));
842
843 #ifdef CONFIG_X86_64
844         {
845                 struct page *page = virt_to_page(pgd);
846                 pgd_t *user_pgd;
847
848                 BUG_ON(page->private != 0);
849
850                 ret = -ENOMEM;
851
852                 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
853                 page->private = (unsigned long)user_pgd;
854
855                 if (user_pgd != NULL) {
856                         user_pgd[pgd_index(VSYSCALL_START)] =
857                                 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
858                         ret = 0;
859                 }
860
861                 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
862         }
863 #endif
864
865         return ret;
866 }
867
868 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
869 {
870 #ifdef CONFIG_X86_64
871         pgd_t *user_pgd = xen_get_user_pgd(pgd);
872
873         if (user_pgd)
874                 free_page((unsigned long)user_pgd);
875 #endif
876 }
877
878 /* This should never happen until we're OK to use struct page */
879 static void xen_release_ptpage(u32 pfn, unsigned level)
880 {
881         struct page *page = pfn_to_page(pfn);
882
883         if (PagePinned(page)) {
884                 if (!PageHighMem(page)) {
885                         if (level == PT_PTE)
886                                 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
887                         make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
888                 }
889                 ClearPagePinned(page);
890         }
891 }
892
893 static void xen_release_pte(u32 pfn)
894 {
895         xen_release_ptpage(pfn, PT_PTE);
896 }
897
898 static void xen_release_pmd(u32 pfn)
899 {
900         xen_release_ptpage(pfn, PT_PMD);
901 }
902
903 #if PAGETABLE_LEVELS == 4
904 static void xen_alloc_pud(struct mm_struct *mm, u32 pfn)
905 {
906         xen_alloc_ptpage(mm, pfn, PT_PUD);
907 }
908
909 static void xen_release_pud(u32 pfn)
910 {
911         xen_release_ptpage(pfn, PT_PUD);
912 }
913 #endif
914
915 #ifdef CONFIG_HIGHPTE
916 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
917 {
918         pgprot_t prot = PAGE_KERNEL;
919
920         if (PagePinned(page))
921                 prot = PAGE_KERNEL_RO;
922
923         if (0 && PageHighMem(page))
924                 printk("mapping highpte %lx type %d prot %s\n",
925                        page_to_pfn(page), type,
926                        (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
927
928         return kmap_atomic_prot(page, type, prot);
929 }
930 #endif
931
932 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
933 {
934         /* If there's an existing pte, then don't allow _PAGE_RW to be set */
935         if (pte_val_ma(*ptep) & _PAGE_PRESENT)
936                 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
937                                pte_val_ma(pte));
938
939         return pte;
940 }
941
942 /* Init-time set_pte while constructing initial pagetables, which
943    doesn't allow RO pagetable pages to be remapped RW */
944 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
945 {
946         pte = mask_rw_pte(ptep, pte);
947
948         xen_set_pte(ptep, pte);
949 }
950
951 static __init void xen_pagetable_setup_start(pgd_t *base)
952 {
953 }
954
955 void xen_setup_shared_info(void)
956 {
957         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
958                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
959                            xen_start_info->shared_info);
960
961                 HYPERVISOR_shared_info =
962                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
963         } else
964                 HYPERVISOR_shared_info =
965                         (struct shared_info *)__va(xen_start_info->shared_info);
966
967 #ifndef CONFIG_SMP
968         /* In UP this is as good a place as any to set up shared info */
969         xen_setup_vcpu_info_placement();
970 #endif
971
972         xen_setup_mfn_list_list();
973 }
974
975 static __init void xen_pagetable_setup_done(pgd_t *base)
976 {
977         xen_setup_shared_info();
978 }
979
980 static __init void xen_post_allocator_init(void)
981 {
982         pv_mmu_ops.set_pte = xen_set_pte;
983         pv_mmu_ops.set_pmd = xen_set_pmd;
984         pv_mmu_ops.set_pud = xen_set_pud;
985 #if PAGETABLE_LEVELS == 4
986         pv_mmu_ops.set_pgd = xen_set_pgd;
987 #endif
988
989         /* This will work as long as patching hasn't happened yet
990            (which it hasn't) */
991         pv_mmu_ops.alloc_pte = xen_alloc_pte;
992         pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
993         pv_mmu_ops.release_pte = xen_release_pte;
994         pv_mmu_ops.release_pmd = xen_release_pmd;
995 #if PAGETABLE_LEVELS == 4
996         pv_mmu_ops.alloc_pud = xen_alloc_pud;
997         pv_mmu_ops.release_pud = xen_release_pud;
998 #endif
999
1000 #ifdef CONFIG_X86_64
1001         SetPagePinned(virt_to_page(level3_user_vsyscall));
1002 #endif
1003         xen_mark_init_mm_pinned();
1004 }
1005
1006 /* This is called once we have the cpu_possible_map */
1007 void xen_setup_vcpu_info_placement(void)
1008 {
1009         int cpu;
1010
1011         for_each_possible_cpu(cpu)
1012                 xen_vcpu_setup(cpu);
1013
1014         /* xen_vcpu_setup managed to place the vcpu_info within the
1015            percpu area for all cpus, so make use of it */
1016 #ifdef CONFIG_X86_32
1017         if (have_vcpu_info_placement) {
1018                 printk(KERN_INFO "Xen: using vcpu_info placement\n");
1019
1020                 pv_irq_ops.save_fl = xen_save_fl_direct;
1021                 pv_irq_ops.restore_fl = xen_restore_fl_direct;
1022                 pv_irq_ops.irq_disable = xen_irq_disable_direct;
1023                 pv_irq_ops.irq_enable = xen_irq_enable_direct;
1024                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1025         }
1026 #endif
1027 }
1028
1029 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1030                           unsigned long addr, unsigned len)
1031 {
1032         char *start, *end, *reloc;
1033         unsigned ret;
1034
1035         start = end = reloc = NULL;
1036
1037 #define SITE(op, x)                                                     \
1038         case PARAVIRT_PATCH(op.x):                                      \
1039         if (have_vcpu_info_placement) {                                 \
1040                 start = (char *)xen_##x##_direct;                       \
1041                 end = xen_##x##_direct_end;                             \
1042                 reloc = xen_##x##_direct_reloc;                         \
1043         }                                                               \
1044         goto patch_site
1045
1046         switch (type) {
1047 #ifdef CONFIG_X86_32
1048                 SITE(pv_irq_ops, irq_enable);
1049                 SITE(pv_irq_ops, irq_disable);
1050                 SITE(pv_irq_ops, save_fl);
1051                 SITE(pv_irq_ops, restore_fl);
1052 #endif /* CONFIG_X86_32 */
1053 #undef SITE
1054
1055         patch_site:
1056                 if (start == NULL || (end-start) > len)
1057                         goto default_patch;
1058
1059                 ret = paravirt_patch_insns(insnbuf, len, start, end);
1060
1061                 /* Note: because reloc is assigned from something that
1062                    appears to be an array, gcc assumes it's non-null,
1063                    but doesn't know its relationship with start and
1064                    end. */
1065                 if (reloc > start && reloc < end) {
1066                         int reloc_off = reloc - start;
1067                         long *relocp = (long *)(insnbuf + reloc_off);
1068                         long delta = start - (char *)addr;
1069
1070                         *relocp += delta;
1071                 }
1072                 break;
1073
1074         default_patch:
1075         default:
1076                 ret = paravirt_patch_default(type, clobbers, insnbuf,
1077                                              addr, len);
1078                 break;
1079         }
1080
1081         return ret;
1082 }
1083
1084 static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
1085 {
1086         pte_t pte;
1087
1088         phys >>= PAGE_SHIFT;
1089
1090         switch (idx) {
1091         case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1092 #ifdef CONFIG_X86_F00F_BUG
1093         case FIX_F00F_IDT:
1094 #endif
1095 #ifdef CONFIG_X86_32
1096         case FIX_WP_TEST:
1097         case FIX_VDSO:
1098         case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1099 #else
1100         case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1101 #endif
1102 #ifdef CONFIG_X86_LOCAL_APIC
1103         case FIX_APIC_BASE:     /* maps dummy local APIC */
1104 #endif
1105                 pte = pfn_pte(phys, prot);
1106                 break;
1107
1108         default:
1109                 pte = mfn_pte(phys, prot);
1110                 break;
1111         }
1112
1113         __native_set_fixmap(idx, pte);
1114
1115 #ifdef CONFIG_X86_64
1116         /* Replicate changes to map the vsyscall page into the user
1117            pagetable vsyscall mapping. */
1118         if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1119                 unsigned long vaddr = __fix_to_virt(idx);
1120                 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1121         }
1122 #endif
1123 }
1124
1125 static const struct pv_info xen_info __initdata = {
1126         .paravirt_enabled = 1,
1127         .shared_kernel_pmd = 0,
1128
1129         .name = "Xen",
1130 };
1131
1132 static const struct pv_init_ops xen_init_ops __initdata = {
1133         .patch = xen_patch,
1134
1135         .banner = xen_banner,
1136         .memory_setup = xen_memory_setup,
1137         .arch_setup = xen_arch_setup,
1138         .post_allocator_init = xen_post_allocator_init,
1139 };
1140
1141 static const struct pv_time_ops xen_time_ops __initdata = {
1142         .time_init = xen_time_init,
1143
1144         .set_wallclock = xen_set_wallclock,
1145         .get_wallclock = xen_get_wallclock,
1146         .get_tsc_khz = xen_tsc_khz,
1147         .sched_clock = xen_sched_clock,
1148 };
1149
1150 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
1151         .cpuid = xen_cpuid,
1152
1153         .set_debugreg = xen_set_debugreg,
1154         .get_debugreg = xen_get_debugreg,
1155
1156         .clts = xen_clts,
1157
1158         .read_cr0 = native_read_cr0,
1159         .write_cr0 = xen_write_cr0,
1160
1161         .read_cr4 = native_read_cr4,
1162         .read_cr4_safe = native_read_cr4_safe,
1163         .write_cr4 = xen_write_cr4,
1164
1165         .wbinvd = native_wbinvd,
1166
1167         .read_msr = native_read_msr_safe,
1168         .write_msr = native_write_msr_safe,
1169         .read_tsc = native_read_tsc,
1170         .read_pmc = native_read_pmc,
1171
1172         .iret = xen_iret,
1173         .irq_enable_sysexit = xen_sysexit,
1174 #ifdef CONFIG_X86_64
1175         .usergs_sysret32 = xen_sysret32,
1176         .usergs_sysret64 = xen_sysret64,
1177 #endif
1178
1179         .load_tr_desc = paravirt_nop,
1180         .set_ldt = xen_set_ldt,
1181         .load_gdt = xen_load_gdt,
1182         .load_idt = xen_load_idt,
1183         .load_tls = xen_load_tls,
1184 #ifdef CONFIG_X86_64
1185         .load_gs_index = xen_load_gs_index,
1186 #endif
1187
1188         .store_gdt = native_store_gdt,
1189         .store_idt = native_store_idt,
1190         .store_tr = xen_store_tr,
1191
1192         .write_ldt_entry = xen_write_ldt_entry,
1193         .write_gdt_entry = xen_write_gdt_entry,
1194         .write_idt_entry = xen_write_idt_entry,
1195         .load_sp0 = xen_load_sp0,
1196
1197         .set_iopl_mask = xen_set_iopl_mask,
1198         .io_delay = xen_io_delay,
1199
1200         /* Xen takes care of %gs when switching to usermode for us */
1201         .swapgs = paravirt_nop,
1202
1203         .lazy_mode = {
1204                 .enter = paravirt_enter_lazy_cpu,
1205                 .leave = xen_leave_lazy,
1206         },
1207 };
1208
1209 static void __init __xen_init_IRQ(void)
1210 {
1211 #ifdef CONFIG_X86_64
1212         int i;
1213
1214         /* Create identity vector->irq map */
1215         for(i = 0; i < NR_VECTORS; i++) {
1216                 int cpu;
1217
1218                 for_each_possible_cpu(cpu)
1219                         per_cpu(vector_irq, cpu)[i] = i;
1220         }
1221 #endif  /* CONFIG_X86_64 */
1222
1223         xen_init_IRQ();
1224 }
1225
1226 static const struct pv_irq_ops xen_irq_ops __initdata = {
1227         .init_IRQ = __xen_init_IRQ,
1228         .save_fl = xen_save_fl,
1229         .restore_fl = xen_restore_fl,
1230         .irq_disable = xen_irq_disable,
1231         .irq_enable = xen_irq_enable,
1232         .safe_halt = xen_safe_halt,
1233         .halt = xen_halt,
1234 #ifdef CONFIG_X86_64
1235         .adjust_exception_frame = xen_adjust_exception_frame,
1236 #endif
1237 };
1238
1239 static const struct pv_apic_ops xen_apic_ops __initdata = {
1240 #ifdef CONFIG_X86_LOCAL_APIC
1241         .apic_write = xen_apic_write,
1242         .apic_write_atomic = xen_apic_write,
1243         .apic_read = xen_apic_read,
1244         .setup_boot_clock = paravirt_nop,
1245         .setup_secondary_clock = paravirt_nop,
1246         .startup_ipi_hook = paravirt_nop,
1247 #endif
1248 };
1249
1250 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1251         .pagetable_setup_start = xen_pagetable_setup_start,
1252         .pagetable_setup_done = xen_pagetable_setup_done,
1253
1254         .read_cr2 = xen_read_cr2,
1255         .write_cr2 = xen_write_cr2,
1256
1257         .read_cr3 = xen_read_cr3,
1258         .write_cr3 = xen_write_cr3,
1259
1260         .flush_tlb_user = xen_flush_tlb,
1261         .flush_tlb_kernel = xen_flush_tlb,
1262         .flush_tlb_single = xen_flush_tlb_single,
1263         .flush_tlb_others = xen_flush_tlb_others,
1264
1265         .pte_update = paravirt_nop,
1266         .pte_update_defer = paravirt_nop,
1267
1268         .pgd_alloc = xen_pgd_alloc,
1269         .pgd_free = xen_pgd_free,
1270
1271         .alloc_pte = xen_alloc_pte_init,
1272         .release_pte = xen_release_pte_init,
1273         .alloc_pmd = xen_alloc_pte_init,
1274         .alloc_pmd_clone = paravirt_nop,
1275         .release_pmd = xen_release_pte_init,
1276
1277 #ifdef CONFIG_HIGHPTE
1278         .kmap_atomic_pte = xen_kmap_atomic_pte,
1279 #endif
1280
1281 #ifdef CONFIG_X86_64
1282         .set_pte = xen_set_pte,
1283 #else
1284         .set_pte = xen_set_pte_init,
1285 #endif
1286         .set_pte_at = xen_set_pte_at,
1287         .set_pmd = xen_set_pmd_hyper,
1288
1289         .ptep_modify_prot_start = __ptep_modify_prot_start,
1290         .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1291
1292         .pte_val = xen_pte_val,
1293         .pte_flags = native_pte_val,
1294         .pgd_val = xen_pgd_val,
1295
1296         .make_pte = xen_make_pte,
1297         .make_pgd = xen_make_pgd,
1298
1299 #ifdef CONFIG_X86_PAE
1300         .set_pte_atomic = xen_set_pte_atomic,
1301         .set_pte_present = xen_set_pte_at,
1302         .pte_clear = xen_pte_clear,
1303         .pmd_clear = xen_pmd_clear,
1304 #endif  /* CONFIG_X86_PAE */
1305         .set_pud = xen_set_pud_hyper,
1306
1307         .make_pmd = xen_make_pmd,
1308         .pmd_val = xen_pmd_val,
1309
1310 #if PAGETABLE_LEVELS == 4
1311         .pud_val = xen_pud_val,
1312         .make_pud = xen_make_pud,
1313         .set_pgd = xen_set_pgd_hyper,
1314
1315         .alloc_pud = xen_alloc_pte_init,
1316         .release_pud = xen_release_pte_init,
1317 #endif  /* PAGETABLE_LEVELS == 4 */
1318
1319         .activate_mm = xen_activate_mm,
1320         .dup_mmap = xen_dup_mmap,
1321         .exit_mmap = xen_exit_mmap,
1322
1323         .lazy_mode = {
1324                 .enter = paravirt_enter_lazy_mmu,
1325                 .leave = xen_leave_lazy,
1326         },
1327
1328         .set_fixmap = xen_set_fixmap,
1329 };
1330
1331 static void xen_reboot(int reason)
1332 {
1333         struct sched_shutdown r = { .reason = reason };
1334
1335 #ifdef CONFIG_SMP
1336         smp_send_stop();
1337 #endif
1338
1339         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1340                 BUG();
1341 }
1342
1343 static void xen_restart(char *msg)
1344 {
1345         xen_reboot(SHUTDOWN_reboot);
1346 }
1347
1348 static void xen_emergency_restart(void)
1349 {
1350         xen_reboot(SHUTDOWN_reboot);
1351 }
1352
1353 static void xen_machine_halt(void)
1354 {
1355         xen_reboot(SHUTDOWN_poweroff);
1356 }
1357
1358 static void xen_crash_shutdown(struct pt_regs *regs)
1359 {
1360         xen_reboot(SHUTDOWN_crash);
1361 }
1362
1363 static const struct machine_ops __initdata xen_machine_ops = {
1364         .restart = xen_restart,
1365         .halt = xen_machine_halt,
1366         .power_off = xen_machine_halt,
1367         .shutdown = xen_machine_halt,
1368         .crash_shutdown = xen_crash_shutdown,
1369         .emergency_restart = xen_emergency_restart,
1370 };
1371
1372
1373 static void __init xen_reserve_top(void)
1374 {
1375 #ifdef CONFIG_X86_32
1376         unsigned long top = HYPERVISOR_VIRT_START;
1377         struct xen_platform_parameters pp;
1378
1379         if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1380                 top = pp.virt_start;
1381
1382         reserve_top_address(-top + 2 * PAGE_SIZE);
1383 #endif  /* CONFIG_X86_32 */
1384 }
1385
1386 /*
1387  * Like __va(), but returns address in the kernel mapping (which is
1388  * all we have until the physical memory mapping has been set up.
1389  */
1390 static void *__ka(phys_addr_t paddr)
1391 {
1392 #ifdef CONFIG_X86_64
1393         return (void *)(paddr + __START_KERNEL_map);
1394 #else
1395         return __va(paddr);
1396 #endif
1397 }
1398
1399 /* Convert a machine address to physical address */
1400 static unsigned long m2p(phys_addr_t maddr)
1401 {
1402         phys_addr_t paddr;
1403
1404         maddr &= PTE_MASK;
1405         paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1406
1407         return paddr;
1408 }
1409
1410 /* Convert a machine address to kernel virtual */
1411 static void *m2v(phys_addr_t maddr)
1412 {
1413         return __ka(m2p(maddr));
1414 }
1415
1416 #ifdef CONFIG_X86_64
1417 static void walk(pgd_t *pgd, unsigned long addr)
1418 {
1419         unsigned l4idx = pgd_index(addr);
1420         unsigned l3idx = pud_index(addr);
1421         unsigned l2idx = pmd_index(addr);
1422         unsigned l1idx = pte_index(addr);
1423         pgd_t l4;
1424         pud_t l3;
1425         pmd_t l2;
1426         pte_t l1;
1427
1428         xen_raw_printk("walk %p, %lx -> %d %d %d %d\n",
1429                        pgd, addr, l4idx, l3idx, l2idx, l1idx);
1430
1431         l4 = pgd[l4idx];
1432         xen_raw_printk("  l4: %016lx\n", l4.pgd);
1433         xen_raw_printk("      %016lx\n", pgd_val(l4));
1434
1435         l3 = ((pud_t *)(m2v(l4.pgd)))[l3idx];
1436         xen_raw_printk("  l3: %016lx\n", l3.pud);
1437         xen_raw_printk("      %016lx\n", pud_val(l3));
1438
1439         l2 = ((pmd_t *)(m2v(l3.pud)))[l2idx];
1440         xen_raw_printk("  l2: %016lx\n", l2.pmd);
1441         xen_raw_printk("      %016lx\n", pmd_val(l2));
1442
1443         l1 = ((pte_t *)(m2v(l2.pmd)))[l1idx];
1444         xen_raw_printk("  l1: %016lx\n", l1.pte);
1445         xen_raw_printk("      %016lx\n", pte_val(l1));
1446 }
1447 #endif
1448
1449 static void set_page_prot(void *addr, pgprot_t prot)
1450 {
1451         unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1452         pte_t pte = pfn_pte(pfn, prot);
1453
1454         xen_raw_printk("addr=%p pfn=%lx mfn=%lx prot=%016llx pte=%016llx\n",
1455                        addr, pfn, get_phys_to_machine(pfn),
1456                        pgprot_val(prot), pte.pte);
1457
1458         if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1459                 BUG();
1460 }
1461
1462 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1463 {
1464         unsigned pmdidx, pteidx;
1465         unsigned ident_pte;
1466         unsigned long pfn;
1467
1468         ident_pte = 0;
1469         pfn = 0;
1470         for(pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1471                 pte_t *pte_page;
1472
1473                 /* Reuse or allocate a page of ptes */
1474                 if (pmd_present(pmd[pmdidx]))
1475                         pte_page = m2v(pmd[pmdidx].pmd);
1476                 else {
1477                         /* Check for free pte pages */
1478                         if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1479                                 break;
1480
1481                         pte_page = &level1_ident_pgt[ident_pte];
1482                         ident_pte += PTRS_PER_PTE;
1483
1484                         pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1485                 }
1486
1487                 /* Install mappings */
1488                 for(pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1489                         pte_t pte;
1490
1491                         if (pfn > max_pfn_mapped)
1492                                 max_pfn_mapped = pfn;
1493
1494                         if (!pte_none(pte_page[pteidx]))
1495                                 continue;
1496
1497                         pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1498                         pte_page[pteidx] = pte;
1499                 }
1500         }
1501
1502         for(pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1503                 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1504
1505         set_page_prot(pmd, PAGE_KERNEL_RO);
1506 }
1507
1508 #ifdef CONFIG_X86_64
1509 static void convert_pfn_mfn(void *v)
1510 {
1511         pte_t *pte = v;
1512         int i;
1513
1514         /* All levels are converted the same way, so just treat them
1515            as ptes. */
1516         for(i = 0; i < PTRS_PER_PTE; i++)
1517                 pte[i] = xen_make_pte(pte[i].pte);
1518 }
1519
1520 /*
1521  * Set up the inital kernel pagetable.
1522  *
1523  * We can construct this by grafting the Xen provided pagetable into
1524  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1525  * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1526  * means that only the kernel has a physical mapping to start with -
1527  * but that's enough to get __va working.  We need to fill in the rest
1528  * of the physical mapping once some sort of allocator has been set
1529  * up.
1530  */
1531 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1532 {
1533         pud_t *l3;
1534         pmd_t *l2;
1535
1536         /* Zap identity mapping */
1537         init_level4_pgt[0] = __pgd(0);
1538
1539         /* Pre-constructed entries are in pfn, so convert to mfn */
1540         convert_pfn_mfn(init_level4_pgt);
1541         convert_pfn_mfn(level3_ident_pgt);
1542         convert_pfn_mfn(level3_kernel_pgt);
1543
1544         l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1545         l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1546
1547         memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1548         memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1549
1550         l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1551         l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1552         memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1553
1554         /* Set up identity map */
1555         xen_map_identity_early(level2_ident_pgt, max_pfn);
1556
1557         /* Make pagetable pieces RO */
1558         set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1559         set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1560         set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1561         set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1562         set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1563         set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1564
1565         /* Pin down new L4 */
1566         pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1567                           PFN_DOWN(__pa_symbol(init_level4_pgt)));
1568
1569         /* Unpin Xen-provided one */
1570         pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1571
1572         /* Switch over */
1573         pgd = init_level4_pgt;
1574
1575         /*
1576          * At this stage there can be no user pgd, and no page
1577          * structure to attach it to, so make sure we just set kernel
1578          * pgd.
1579          */
1580         xen_mc_batch();
1581         __xen_write_cr3(true, __pa(pgd));
1582         xen_mc_issue(PARAVIRT_LAZY_CPU);
1583
1584         reserve_early(__pa(xen_start_info->pt_base),
1585                       __pa(xen_start_info->pt_base +
1586                            xen_start_info->nr_pt_frames * PAGE_SIZE),
1587                       "XEN PAGETABLES");
1588
1589         return pgd;
1590 }
1591 #else   /* !CONFIG_X86_64 */
1592 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1593
1594 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1595 {
1596         pmd_t *kernel_pmd;
1597
1598         init_pg_tables_start = __pa(pgd);
1599         init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1600         max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024);
1601
1602         kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1603         memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1604
1605         xen_map_identity_early(level2_kernel_pgt, max_pfn);
1606
1607         memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1608         set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1609                         __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1610
1611         set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1612         set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1613         set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1614
1615         pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1616
1617         xen_write_cr3(__pa(swapper_pg_dir));
1618
1619         pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1620
1621         return swapper_pg_dir;
1622 }
1623 #endif  /* CONFIG_X86_64 */
1624
1625 /* First C function to be called on Xen boot */
1626 asmlinkage void __init xen_start_kernel(void)
1627 {
1628         pgd_t *pgd;
1629
1630         if (!xen_start_info)
1631                 return;
1632
1633         BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1634
1635         xen_setup_features();
1636
1637         /* Install Xen paravirt ops */
1638         pv_info = xen_info;
1639         pv_init_ops = xen_init_ops;
1640         pv_time_ops = xen_time_ops;
1641         pv_cpu_ops = xen_cpu_ops;
1642         pv_irq_ops = xen_irq_ops;
1643         pv_apic_ops = xen_apic_ops;
1644         pv_mmu_ops = xen_mmu_ops;
1645
1646         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1647                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1648                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1649         }
1650
1651         machine_ops = xen_machine_ops;
1652
1653 #ifdef CONFIG_X86_64
1654         /* Disable until direct per-cpu data access. */
1655         have_vcpu_info_placement = 0;
1656         x86_64_init_pda();
1657 #endif
1658
1659         xen_smp_init();
1660
1661         /* Get mfn list */
1662         if (!xen_feature(XENFEAT_auto_translated_physmap))
1663                 xen_build_dynamic_phys_to_machine();
1664
1665         pgd = (pgd_t *)xen_start_info->pt_base;
1666
1667         /* Prevent unwanted bits from being set in PTEs. */
1668         __supported_pte_mask &= ~_PAGE_GLOBAL;
1669         if (!is_initial_xendomain())
1670                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1671
1672         /* Don't do the full vcpu_info placement stuff until we have a
1673            possible map and a non-dummy shared_info. */
1674         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1675
1676         xen_raw_console_write("mapping kernel into physical memory\n");
1677         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1678
1679         init_mm.pgd = pgd;
1680
1681         /* keep using Xen gdt for now; no urgent need to change it */
1682
1683         pv_info.kernel_rpl = 1;
1684         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1685                 pv_info.kernel_rpl = 0;
1686
1687         /* set the limit of our address space */
1688         xen_reserve_top();
1689
1690 #ifdef CONFIG_X86_32
1691         /* set up basic CPUID stuff */
1692         cpu_detect(&new_cpu_data);
1693         new_cpu_data.hard_math = 1;
1694         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1695 #endif
1696
1697         /* Poke various useful things into boot_params */
1698         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1699         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1700                 ? __pa(xen_start_info->mod_start) : 0;
1701         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1702         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1703
1704         if (!is_initial_xendomain()) {
1705                 add_preferred_console("xenboot", 0, NULL);
1706                 add_preferred_console("tty", 0, NULL);
1707                 add_preferred_console("hvc", 0, NULL);
1708         }
1709
1710         xen_raw_console_write("about to get started...\n");
1711
1712 #if 0
1713         xen_raw_printk("&boot_params=%p __pa(&boot_params)=%lx __va(__pa(&boot_params))=%lx\n",
1714                        &boot_params, __pa_symbol(&boot_params),
1715                        __va(__pa_symbol(&boot_params)));
1716
1717         walk(pgd, &boot_params);
1718         walk(pgd, __va(__pa(&boot_params)));
1719 #endif
1720
1721         /* Start the world */
1722 #ifdef CONFIG_X86_32
1723         i386_start_kernel();
1724 #else
1725         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1726 #endif
1727 }