]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/x86/xen/enlighten.c
b795470ec06919da489b2260c49c67e42ae0abcd
[linux-2.6-omap-h63xx.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
29
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/interface/sched.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36 #include <xen/hvc-console.h>
37
38 #include <asm/paravirt.h>
39 #include <asm/page.h>
40 #include <asm/xen/hypercall.h>
41 #include <asm/xen/hypervisor.h>
42 #include <asm/fixmap.h>
43 #include <asm/processor.h>
44 #include <asm/msr-index.h>
45 #include <asm/setup.h>
46 #include <asm/desc.h>
47 #include <asm/pgtable.h>
48 #include <asm/tlbflush.h>
49 #include <asm/reboot.h>
50
51 #include "xen-ops.h"
52 #include "mmu.h"
53 #include "multicalls.h"
54
55 EXPORT_SYMBOL_GPL(hypercall_page);
56
57 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
58 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
59
60 /*
61  * Identity map, in addition to plain kernel map.  This needs to be
62  * large enough to allocate page table pages to allocate the rest.
63  * Each page can map 2MB.
64  */
65 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
66
67 #ifdef CONFIG_X86_64
68 /* l3 pud for userspace vsyscall mapping */
69 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
70 #endif /* CONFIG_X86_64 */
71
72 /*
73  * Note about cr3 (pagetable base) values:
74  *
75  * xen_cr3 contains the current logical cr3 value; it contains the
76  * last set cr3.  This may not be the current effective cr3, because
77  * its update may be being lazily deferred.  However, a vcpu looking
78  * at its own cr3 can use this value knowing that it everything will
79  * be self-consistent.
80  *
81  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
82  * hypercall to set the vcpu cr3 is complete (so it may be a little
83  * out of date, but it will never be set early).  If one vcpu is
84  * looking at another vcpu's cr3 value, it should use this variable.
85  */
86 DEFINE_PER_CPU(unsigned long, xen_cr3);  /* cr3 stored as physaddr */
87 DEFINE_PER_CPU(unsigned long, xen_current_cr3);  /* actual vcpu cr3 */
88
89 struct start_info *xen_start_info;
90 EXPORT_SYMBOL_GPL(xen_start_info);
91
92 struct shared_info xen_dummy_shared_info;
93
94 /*
95  * Point at some empty memory to start with. We map the real shared_info
96  * page as soon as fixmap is up and running.
97  */
98 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
99
100 /*
101  * Flag to determine whether vcpu info placement is available on all
102  * VCPUs.  We assume it is to start with, and then set it to zero on
103  * the first failure.  This is because it can succeed on some VCPUs
104  * and not others, since it can involve hypervisor memory allocation,
105  * or because the guest failed to guarantee all the appropriate
106  * constraints on all VCPUs (ie buffer can't cross a page boundary).
107  *
108  * Note that any particular CPU may be using a placed vcpu structure,
109  * but we can only optimise if the all are.
110  *
111  * 0: not available, 1: available
112  */
113 static int have_vcpu_info_placement = 1;
114
115 static void xen_vcpu_setup(int cpu)
116 {
117         struct vcpu_register_vcpu_info info;
118         int err;
119         struct vcpu_info *vcpup;
120
121         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
122         per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
123
124         if (!have_vcpu_info_placement)
125                 return;         /* already tested, not available */
126
127         vcpup = &per_cpu(xen_vcpu_info, cpu);
128
129         info.mfn = virt_to_mfn(vcpup);
130         info.offset = offset_in_page(vcpup);
131
132         printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
133                cpu, vcpup, info.mfn, info.offset);
134
135         /* Check to see if the hypervisor will put the vcpu_info
136            structure where we want it, which allows direct access via
137            a percpu-variable. */
138         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
139
140         if (err) {
141                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
142                 have_vcpu_info_placement = 0;
143         } else {
144                 /* This cpu is using the registered vcpu info, even if
145                    later ones fail to. */
146                 per_cpu(xen_vcpu, cpu) = vcpup;
147
148                 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
149                        cpu, vcpup);
150         }
151 }
152
153 /*
154  * On restore, set the vcpu placement up again.
155  * If it fails, then we're in a bad state, since
156  * we can't back out from using it...
157  */
158 void xen_vcpu_restore(void)
159 {
160         if (have_vcpu_info_placement) {
161                 int cpu;
162
163                 for_each_online_cpu(cpu) {
164                         bool other_cpu = (cpu != smp_processor_id());
165
166                         if (other_cpu &&
167                             HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
168                                 BUG();
169
170                         xen_vcpu_setup(cpu);
171
172                         if (other_cpu &&
173                             HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
174                                 BUG();
175                 }
176
177                 BUG_ON(!have_vcpu_info_placement);
178         }
179 }
180
181 static void __init xen_banner(void)
182 {
183         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
184         struct xen_extraversion extra;
185         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
186
187         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
188                pv_info.name);
189         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
190                version >> 16, version & 0xffff, extra.extraversion,
191                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
192 }
193
194 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
195                       unsigned int *cx, unsigned int *dx)
196 {
197         unsigned maskedx = ~0;
198
199         /*
200          * Mask out inconvenient features, to try and disable as many
201          * unsupported kernel subsystems as possible.
202          */
203         if (*ax == 1)
204                 maskedx = ~((1 << X86_FEATURE_APIC) |  /* disable APIC */
205                             (1 << X86_FEATURE_ACPI) |  /* disable ACPI */
206                             (1 << X86_FEATURE_MCE)  |  /* disable MCE */
207                             (1 << X86_FEATURE_MCA)  |  /* disable MCA */
208                             (1 << X86_FEATURE_ACC));   /* thermal monitoring */
209
210         asm(XEN_EMULATE_PREFIX "cpuid"
211                 : "=a" (*ax),
212                   "=b" (*bx),
213                   "=c" (*cx),
214                   "=d" (*dx)
215                 : "0" (*ax), "2" (*cx));
216         *dx &= maskedx;
217 }
218
219 static void xen_set_debugreg(int reg, unsigned long val)
220 {
221         HYPERVISOR_set_debugreg(reg, val);
222 }
223
224 static unsigned long xen_get_debugreg(int reg)
225 {
226         return HYPERVISOR_get_debugreg(reg);
227 }
228
229 static unsigned long xen_save_fl(void)
230 {
231         struct vcpu_info *vcpu;
232         unsigned long flags;
233
234         vcpu = x86_read_percpu(xen_vcpu);
235
236         /* flag has opposite sense of mask */
237         flags = !vcpu->evtchn_upcall_mask;
238
239         /* convert to IF type flag
240            -0 -> 0x00000000
241            -1 -> 0xffffffff
242         */
243         return (-flags) & X86_EFLAGS_IF;
244 }
245
246 static void xen_restore_fl(unsigned long flags)
247 {
248         struct vcpu_info *vcpu;
249
250         /* convert from IF type flag */
251         flags = !(flags & X86_EFLAGS_IF);
252
253         /* There's a one instruction preempt window here.  We need to
254            make sure we're don't switch CPUs between getting the vcpu
255            pointer and updating the mask. */
256         preempt_disable();
257         vcpu = x86_read_percpu(xen_vcpu);
258         vcpu->evtchn_upcall_mask = flags;
259         preempt_enable_no_resched();
260
261         /* Doesn't matter if we get preempted here, because any
262            pending event will get dealt with anyway. */
263
264         if (flags == 0) {
265                 preempt_check_resched();
266                 barrier(); /* unmask then check (avoid races) */
267                 if (unlikely(vcpu->evtchn_upcall_pending))
268                         force_evtchn_callback();
269         }
270 }
271
272 static void xen_irq_disable(void)
273 {
274         /* There's a one instruction preempt window here.  We need to
275            make sure we're don't switch CPUs between getting the vcpu
276            pointer and updating the mask. */
277         preempt_disable();
278         x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
279         preempt_enable_no_resched();
280 }
281
282 static void xen_irq_enable(void)
283 {
284         struct vcpu_info *vcpu;
285
286         /* We don't need to worry about being preempted here, since
287            either a) interrupts are disabled, so no preemption, or b)
288            the caller is confused and is trying to re-enable interrupts
289            on an indeterminate processor. */
290
291         vcpu = x86_read_percpu(xen_vcpu);
292         vcpu->evtchn_upcall_mask = 0;
293
294         /* Doesn't matter if we get preempted here, because any
295            pending event will get dealt with anyway. */
296
297         barrier(); /* unmask then check (avoid races) */
298         if (unlikely(vcpu->evtchn_upcall_pending))
299                 force_evtchn_callback();
300 }
301
302 static void xen_safe_halt(void)
303 {
304         /* Blocking includes an implicit local_irq_enable(). */
305         if (HYPERVISOR_sched_op(SCHEDOP_block, NULL) != 0)
306                 BUG();
307 }
308
309 static void xen_halt(void)
310 {
311         if (irqs_disabled())
312                 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
313         else
314                 xen_safe_halt();
315 }
316
317 static void xen_leave_lazy(void)
318 {
319         paravirt_leave_lazy(paravirt_get_lazy_mode());
320         xen_mc_flush();
321 }
322
323 static unsigned long xen_store_tr(void)
324 {
325         return 0;
326 }
327
328 /*
329  * If 'v' is a vmalloc mapping, then find the linear mapping of the
330  * page (if any) and also set its protections to match:
331  */
332 static void set_aliased_prot(void *v, pgprot_t prot)
333 {
334         int level;
335         pte_t *ptep;
336         pte_t pte;
337         unsigned long pfn;
338         struct page *page;
339
340         ptep = lookup_address((unsigned long)v, &level);
341         BUG_ON(ptep == NULL);
342
343         pfn = pte_pfn(*ptep);
344         page = pfn_to_page(pfn);
345
346         pte = pfn_pte(pfn, prot);
347
348         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
349                 BUG();
350
351         if (!PageHighMem(page)) {
352                 void *av = __va(PFN_PHYS(pfn));
353
354                 if (av != v)
355                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
356                                 BUG();
357         } else
358                 kmap_flush_unused();
359 }
360
361 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
362 {
363         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
364         int i;
365
366         for(i = 0; i < entries; i += entries_per_page)
367                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
368 }
369
370 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
371 {
372         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
373         int i;
374
375         for(i = 0; i < entries; i += entries_per_page)
376                 set_aliased_prot(ldt + i, PAGE_KERNEL);
377 }
378
379 static void xen_set_ldt(const void *addr, unsigned entries)
380 {
381         struct mmuext_op *op;
382         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
383
384         op = mcs.args;
385         op->cmd = MMUEXT_SET_LDT;
386         op->arg1.linear_addr = (unsigned long)addr;
387         op->arg2.nr_ents = entries;
388
389         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
390
391         xen_mc_issue(PARAVIRT_LAZY_CPU);
392 }
393
394 static void xen_load_gdt(const struct desc_ptr *dtr)
395 {
396         unsigned long *frames;
397         unsigned long va = dtr->address;
398         unsigned int size = dtr->size + 1;
399         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
400         int f;
401         struct multicall_space mcs;
402
403         /* A GDT can be up to 64k in size, which corresponds to 8192
404            8-byte entries, or 16 4k pages.. */
405
406         BUG_ON(size > 65536);
407         BUG_ON(va & ~PAGE_MASK);
408
409         mcs = xen_mc_entry(sizeof(*frames) * pages);
410         frames = mcs.args;
411
412         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
413                 frames[f] = virt_to_mfn(va);
414                 make_lowmem_page_readonly((void *)va);
415         }
416
417         MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
418
419         xen_mc_issue(PARAVIRT_LAZY_CPU);
420 }
421
422 static void load_TLS_descriptor(struct thread_struct *t,
423                                 unsigned int cpu, unsigned int i)
424 {
425         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
426         xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
427         struct multicall_space mc = __xen_mc_entry(0);
428
429         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
430 }
431
432 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
433 {
434         /*
435          * XXX sleazy hack: If we're being called in a lazy-cpu zone,
436          * it means we're in a context switch, and %gs has just been
437          * saved.  This means we can zero it out to prevent faults on
438          * exit from the hypervisor if the next process has no %gs.
439          * Either way, it has been saved, and the new value will get
440          * loaded properly.  This will go away as soon as Xen has been
441          * modified to not save/restore %gs for normal hypercalls.
442          *
443          * On x86_64, this hack is not used for %gs, because gs points
444          * to KERNEL_GS_BASE (and uses it for PDA references), so we
445          * must not zero %gs on x86_64
446          *
447          * For x86_64, we need to zero %fs, otherwise we may get an
448          * exception between the new %fs descriptor being loaded and
449          * %fs being effectively cleared at __switch_to().
450          */
451         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
452 #ifdef CONFIG_X86_32
453                 loadsegment(gs, 0);
454 #else
455                 loadsegment(fs, 0);
456 #endif
457         }
458
459         xen_mc_batch();
460
461         load_TLS_descriptor(t, cpu, 0);
462         load_TLS_descriptor(t, cpu, 1);
463         load_TLS_descriptor(t, cpu, 2);
464
465         xen_mc_issue(PARAVIRT_LAZY_CPU);
466 }
467
468 #ifdef CONFIG_X86_64
469 static void xen_load_gs_index(unsigned int idx)
470 {
471         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
472                 BUG();
473 }
474 #endif
475
476 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
477                                 const void *ptr)
478 {
479         unsigned long lp = (unsigned long)&dt[entrynum];
480         xmaddr_t mach_lp = arbitrary_virt_to_machine(lp);
481         u64 entry = *(u64 *)ptr;
482
483         preempt_disable();
484
485         xen_mc_flush();
486         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
487                 BUG();
488
489         preempt_enable();
490 }
491
492 static int cvt_gate_to_trap(int vector, const gate_desc *val,
493                             struct trap_info *info)
494 {
495         if (val->type != 0xf && val->type != 0xe)
496                 return 0;
497
498         info->vector = vector;
499         info->address = gate_offset(*val);
500         info->cs = gate_segment(*val);
501         info->flags = val->dpl;
502         /* interrupt gates clear IF */
503         if (val->type == 0xe)
504                 info->flags |= 4;
505
506         return 1;
507 }
508
509 /* Locations of each CPU's IDT */
510 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
511
512 /* Set an IDT entry.  If the entry is part of the current IDT, then
513    also update Xen. */
514 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
515 {
516         unsigned long p = (unsigned long)&dt[entrynum];
517         unsigned long start, end;
518
519         preempt_disable();
520
521         start = __get_cpu_var(idt_desc).address;
522         end = start + __get_cpu_var(idt_desc).size + 1;
523
524         xen_mc_flush();
525
526         native_write_idt_entry(dt, entrynum, g);
527
528         if (p >= start && (p + 8) <= end) {
529                 struct trap_info info[2];
530
531                 info[1].address = 0;
532
533                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
534                         if (HYPERVISOR_set_trap_table(info))
535                                 BUG();
536         }
537
538         preempt_enable();
539 }
540
541 static void xen_convert_trap_info(const struct desc_ptr *desc,
542                                   struct trap_info *traps)
543 {
544         unsigned in, out, count;
545
546         count = (desc->size+1) / sizeof(gate_desc);
547         BUG_ON(count > 256);
548
549         for (in = out = 0; in < count; in++) {
550                 gate_desc *entry = (gate_desc*)(desc->address) + in;
551
552                 if (cvt_gate_to_trap(in, entry, &traps[out]))
553                         out++;
554         }
555         traps[out].address = 0;
556 }
557
558 void xen_copy_trap_info(struct trap_info *traps)
559 {
560         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
561
562         xen_convert_trap_info(desc, traps);
563 }
564
565 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
566    hold a spinlock to protect the static traps[] array (static because
567    it avoids allocation, and saves stack space). */
568 static void xen_load_idt(const struct desc_ptr *desc)
569 {
570         static DEFINE_SPINLOCK(lock);
571         static struct trap_info traps[257];
572
573         spin_lock(&lock);
574
575         __get_cpu_var(idt_desc) = *desc;
576
577         xen_convert_trap_info(desc, traps);
578
579         xen_mc_flush();
580         if (HYPERVISOR_set_trap_table(traps))
581                 BUG();
582
583         spin_unlock(&lock);
584 }
585
586 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
587    they're handled differently. */
588 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
589                                 const void *desc, int type)
590 {
591         preempt_disable();
592
593         switch (type) {
594         case DESC_LDT:
595         case DESC_TSS:
596                 /* ignore */
597                 break;
598
599         default: {
600                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
601
602                 xen_mc_flush();
603                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
604                         BUG();
605         }
606
607         }
608
609         preempt_enable();
610 }
611
612 static void xen_load_sp0(struct tss_struct *tss,
613                          struct thread_struct *thread)
614 {
615         struct multicall_space mcs = xen_mc_entry(0);
616         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
617         xen_mc_issue(PARAVIRT_LAZY_CPU);
618 }
619
620 static void xen_set_iopl_mask(unsigned mask)
621 {
622         struct physdev_set_iopl set_iopl;
623
624         /* Force the change at ring 0. */
625         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
626         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
627 }
628
629 static void xen_io_delay(void)
630 {
631 }
632
633 #ifdef CONFIG_X86_LOCAL_APIC
634 static u32 xen_apic_read(unsigned long reg)
635 {
636         return 0;
637 }
638
639 static void xen_apic_write(unsigned long reg, u32 val)
640 {
641         /* Warn to see if there's any stray references */
642         WARN_ON(1);
643 }
644 #endif
645
646 static void xen_flush_tlb(void)
647 {
648         struct mmuext_op *op;
649         struct multicall_space mcs;
650
651         preempt_disable();
652
653         mcs = xen_mc_entry(sizeof(*op));
654
655         op = mcs.args;
656         op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
657         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
658
659         xen_mc_issue(PARAVIRT_LAZY_MMU);
660
661         preempt_enable();
662 }
663
664 static void xen_flush_tlb_single(unsigned long addr)
665 {
666         struct mmuext_op *op;
667         struct multicall_space mcs;
668
669         preempt_disable();
670
671         mcs = xen_mc_entry(sizeof(*op));
672         op = mcs.args;
673         op->cmd = MMUEXT_INVLPG_LOCAL;
674         op->arg1.linear_addr = addr & PAGE_MASK;
675         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
676
677         xen_mc_issue(PARAVIRT_LAZY_MMU);
678
679         preempt_enable();
680 }
681
682 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
683                                  unsigned long va)
684 {
685         struct {
686                 struct mmuext_op op;
687                 cpumask_t mask;
688         } *args;
689         cpumask_t cpumask = *cpus;
690         struct multicall_space mcs;
691
692         /*
693          * A couple of (to be removed) sanity checks:
694          *
695          * - current CPU must not be in mask
696          * - mask must exist :)
697          */
698         BUG_ON(cpus_empty(cpumask));
699         BUG_ON(cpu_isset(smp_processor_id(), cpumask));
700         BUG_ON(!mm);
701
702         /* If a CPU which we ran on has gone down, OK. */
703         cpus_and(cpumask, cpumask, cpu_online_map);
704         if (cpus_empty(cpumask))
705                 return;
706
707         mcs = xen_mc_entry(sizeof(*args));
708         args = mcs.args;
709         args->mask = cpumask;
710         args->op.arg2.vcpumask = &args->mask;
711
712         if (va == TLB_FLUSH_ALL) {
713                 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
714         } else {
715                 args->op.cmd = MMUEXT_INVLPG_MULTI;
716                 args->op.arg1.linear_addr = va;
717         }
718
719         MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
720
721         xen_mc_issue(PARAVIRT_LAZY_MMU);
722 }
723
724 static void xen_clts(void)
725 {
726         struct multicall_space mcs;
727
728         mcs = xen_mc_entry(0);
729
730         MULTI_fpu_taskswitch(mcs.mc, 0);
731
732         xen_mc_issue(PARAVIRT_LAZY_CPU);
733 }
734
735 static void xen_write_cr0(unsigned long cr0)
736 {
737         struct multicall_space mcs;
738
739         /* Only pay attention to cr0.TS; everything else is
740            ignored. */
741         mcs = xen_mc_entry(0);
742
743         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
744
745         xen_mc_issue(PARAVIRT_LAZY_CPU);
746 }
747
748 static void xen_write_cr2(unsigned long cr2)
749 {
750         x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
751 }
752
753 static unsigned long xen_read_cr2(void)
754 {
755         return x86_read_percpu(xen_vcpu)->arch.cr2;
756 }
757
758 static unsigned long xen_read_cr2_direct(void)
759 {
760         return x86_read_percpu(xen_vcpu_info.arch.cr2);
761 }
762
763 static void xen_write_cr4(unsigned long cr4)
764 {
765         cr4 &= ~X86_CR4_PGE;
766         cr4 &= ~X86_CR4_PSE;
767
768         native_write_cr4(cr4);
769 }
770
771 static unsigned long xen_read_cr3(void)
772 {
773         return x86_read_percpu(xen_cr3);
774 }
775
776 static void set_current_cr3(void *v)
777 {
778         x86_write_percpu(xen_current_cr3, (unsigned long)v);
779 }
780
781 static void __xen_write_cr3(bool kernel, unsigned long cr3)
782 {
783         struct mmuext_op *op;
784         struct multicall_space mcs;
785         unsigned long mfn;
786
787         if (cr3)
788                 mfn = pfn_to_mfn(PFN_DOWN(cr3));
789         else
790                 mfn = 0;
791
792         WARN_ON(mfn == 0 && kernel);
793
794         mcs = __xen_mc_entry(sizeof(*op));
795
796         op = mcs.args;
797         op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
798         op->arg1.mfn = mfn;
799
800         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
801
802         if (kernel) {
803                 x86_write_percpu(xen_cr3, cr3);
804
805                 /* Update xen_current_cr3 once the batch has actually
806                    been submitted. */
807                 xen_mc_callback(set_current_cr3, (void *)cr3);
808         }
809 }
810
811 static void xen_write_cr3(unsigned long cr3)
812 {
813         BUG_ON(preemptible());
814
815         xen_mc_batch();  /* disables interrupts */
816
817         /* Update while interrupts are disabled, so its atomic with
818            respect to ipis */
819         x86_write_percpu(xen_cr3, cr3);
820
821         __xen_write_cr3(true, cr3);
822
823 #ifdef CONFIG_X86_64
824         {
825                 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
826                 if (user_pgd)
827                         __xen_write_cr3(false, __pa(user_pgd));
828                 else
829                         __xen_write_cr3(false, 0);
830         }
831 #endif
832
833         xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
834 }
835
836 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
837 {
838         int ret;
839
840         ret = 0;
841
842         switch(msr) {
843 #ifdef CONFIG_X86_64
844                 unsigned which;
845                 u64 base;
846
847         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
848         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
849         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
850
851         set:
852                 base = ((u64)high << 32) | low;
853                 if (HYPERVISOR_set_segment_base(which, base) != 0)
854                         ret = -EFAULT;
855                 break;
856 #endif
857
858         case MSR_STAR:
859         case MSR_CSTAR:
860         case MSR_LSTAR:
861         case MSR_SYSCALL_MASK:
862         case MSR_IA32_SYSENTER_CS:
863         case MSR_IA32_SYSENTER_ESP:
864         case MSR_IA32_SYSENTER_EIP:
865                 /* Fast syscall setup is all done in hypercalls, so
866                    these are all ignored.  Stub them out here to stop
867                    Xen console noise. */
868                 break;
869
870         default:
871                 ret = native_write_msr_safe(msr, low, high);
872         }
873
874         return ret;
875 }
876
877 /* Early in boot, while setting up the initial pagetable, assume
878    everything is pinned. */
879 static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
880 {
881 #ifdef CONFIG_FLATMEM
882         BUG_ON(mem_map);        /* should only be used early */
883 #endif
884         make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
885 }
886
887 /* Early release_pte assumes that all pts are pinned, since there's
888    only init_mm and anything attached to that is pinned. */
889 static void xen_release_pte_init(u32 pfn)
890 {
891         make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
892 }
893
894 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
895 {
896         struct mmuext_op op;
897         op.cmd = cmd;
898         op.arg1.mfn = pfn_to_mfn(pfn);
899         if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
900                 BUG();
901 }
902
903 /* This needs to make sure the new pte page is pinned iff its being
904    attached to a pinned pagetable. */
905 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
906 {
907         struct page *page = pfn_to_page(pfn);
908
909         if (PagePinned(virt_to_page(mm->pgd))) {
910                 SetPagePinned(page);
911
912                 if (!PageHighMem(page)) {
913                         make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
914                         if (level == PT_PTE)
915                                 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
916                 } else
917                         /* make sure there are no stray mappings of
918                            this page */
919                         kmap_flush_unused();
920         }
921 }
922
923 static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
924 {
925         xen_alloc_ptpage(mm, pfn, PT_PTE);
926 }
927
928 static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
929 {
930         xen_alloc_ptpage(mm, pfn, PT_PMD);
931 }
932
933 static int xen_pgd_alloc(struct mm_struct *mm)
934 {
935         pgd_t *pgd = mm->pgd;
936         int ret = 0;
937
938         BUG_ON(PagePinned(virt_to_page(pgd)));
939
940 #ifdef CONFIG_X86_64
941         {
942                 struct page *page = virt_to_page(pgd);
943                 pgd_t *user_pgd;
944
945                 BUG_ON(page->private != 0);
946
947                 ret = -ENOMEM;
948
949                 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
950                 page->private = (unsigned long)user_pgd;
951
952                 if (user_pgd != NULL) {
953                         user_pgd[pgd_index(VSYSCALL_START)] =
954                                 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
955                         ret = 0;
956                 }
957
958                 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
959         }
960 #endif
961
962         return ret;
963 }
964
965 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
966 {
967 #ifdef CONFIG_X86_64
968         pgd_t *user_pgd = xen_get_user_pgd(pgd);
969
970         if (user_pgd)
971                 free_page((unsigned long)user_pgd);
972 #endif
973 }
974
975 /* This should never happen until we're OK to use struct page */
976 static void xen_release_ptpage(u32 pfn, unsigned level)
977 {
978         struct page *page = pfn_to_page(pfn);
979
980         if (PagePinned(page)) {
981                 if (!PageHighMem(page)) {
982                         if (level == PT_PTE)
983                                 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
984                         make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
985                 }
986                 ClearPagePinned(page);
987         }
988 }
989
990 static void xen_release_pte(u32 pfn)
991 {
992         xen_release_ptpage(pfn, PT_PTE);
993 }
994
995 static void xen_release_pmd(u32 pfn)
996 {
997         xen_release_ptpage(pfn, PT_PMD);
998 }
999
1000 #if PAGETABLE_LEVELS == 4
1001 static void xen_alloc_pud(struct mm_struct *mm, u32 pfn)
1002 {
1003         xen_alloc_ptpage(mm, pfn, PT_PUD);
1004 }
1005
1006 static void xen_release_pud(u32 pfn)
1007 {
1008         xen_release_ptpage(pfn, PT_PUD);
1009 }
1010 #endif
1011
1012 #ifdef CONFIG_HIGHPTE
1013 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
1014 {
1015         pgprot_t prot = PAGE_KERNEL;
1016
1017         if (PagePinned(page))
1018                 prot = PAGE_KERNEL_RO;
1019
1020         if (0 && PageHighMem(page))
1021                 printk("mapping highpte %lx type %d prot %s\n",
1022                        page_to_pfn(page), type,
1023                        (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
1024
1025         return kmap_atomic_prot(page, type, prot);
1026 }
1027 #endif
1028
1029 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1030 {
1031         /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1032         if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1033                 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1034                                pte_val_ma(pte));
1035
1036         return pte;
1037 }
1038
1039 /* Init-time set_pte while constructing initial pagetables, which
1040    doesn't allow RO pagetable pages to be remapped RW */
1041 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1042 {
1043         pte = mask_rw_pte(ptep, pte);
1044
1045         xen_set_pte(ptep, pte);
1046 }
1047
1048 static __init void xen_pagetable_setup_start(pgd_t *base)
1049 {
1050 }
1051
1052 void xen_setup_shared_info(void)
1053 {
1054         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1055                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1056                            xen_start_info->shared_info);
1057
1058                 HYPERVISOR_shared_info =
1059                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1060         } else
1061                 HYPERVISOR_shared_info =
1062                         (struct shared_info *)__va(xen_start_info->shared_info);
1063
1064 #ifndef CONFIG_SMP
1065         /* In UP this is as good a place as any to set up shared info */
1066         xen_setup_vcpu_info_placement();
1067 #endif
1068
1069         xen_setup_mfn_list_list();
1070 }
1071
1072 static __init void xen_pagetable_setup_done(pgd_t *base)
1073 {
1074         xen_setup_shared_info();
1075 }
1076
1077 static __init void xen_post_allocator_init(void)
1078 {
1079         pv_mmu_ops.set_pte = xen_set_pte;
1080         pv_mmu_ops.set_pmd = xen_set_pmd;
1081         pv_mmu_ops.set_pud = xen_set_pud;
1082 #if PAGETABLE_LEVELS == 4
1083         pv_mmu_ops.set_pgd = xen_set_pgd;
1084 #endif
1085
1086         /* This will work as long as patching hasn't happened yet
1087            (which it hasn't) */
1088         pv_mmu_ops.alloc_pte = xen_alloc_pte;
1089         pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1090         pv_mmu_ops.release_pte = xen_release_pte;
1091         pv_mmu_ops.release_pmd = xen_release_pmd;
1092 #if PAGETABLE_LEVELS == 4
1093         pv_mmu_ops.alloc_pud = xen_alloc_pud;
1094         pv_mmu_ops.release_pud = xen_release_pud;
1095 #endif
1096
1097 #ifdef CONFIG_X86_64
1098         SetPagePinned(virt_to_page(level3_user_vsyscall));
1099 #endif
1100         xen_mark_init_mm_pinned();
1101 }
1102
1103 /* This is called once we have the cpu_possible_map */
1104 void xen_setup_vcpu_info_placement(void)
1105 {
1106         int cpu;
1107
1108         for_each_possible_cpu(cpu)
1109                 xen_vcpu_setup(cpu);
1110
1111         /* xen_vcpu_setup managed to place the vcpu_info within the
1112            percpu area for all cpus, so make use of it */
1113 #ifdef CONFIG_X86_32
1114         if (have_vcpu_info_placement) {
1115                 printk(KERN_INFO "Xen: using vcpu_info placement\n");
1116
1117                 pv_irq_ops.save_fl = xen_save_fl_direct;
1118                 pv_irq_ops.restore_fl = xen_restore_fl_direct;
1119                 pv_irq_ops.irq_disable = xen_irq_disable_direct;
1120                 pv_irq_ops.irq_enable = xen_irq_enable_direct;
1121                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1122         }
1123 #endif
1124 }
1125
1126 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1127                           unsigned long addr, unsigned len)
1128 {
1129         char *start, *end, *reloc;
1130         unsigned ret;
1131
1132         start = end = reloc = NULL;
1133
1134 #define SITE(op, x)                                                     \
1135         case PARAVIRT_PATCH(op.x):                                      \
1136         if (have_vcpu_info_placement) {                                 \
1137                 start = (char *)xen_##x##_direct;                       \
1138                 end = xen_##x##_direct_end;                             \
1139                 reloc = xen_##x##_direct_reloc;                         \
1140         }                                                               \
1141         goto patch_site
1142
1143         switch (type) {
1144 #ifdef CONFIG_X86_32
1145                 SITE(pv_irq_ops, irq_enable);
1146                 SITE(pv_irq_ops, irq_disable);
1147                 SITE(pv_irq_ops, save_fl);
1148                 SITE(pv_irq_ops, restore_fl);
1149 #endif /* CONFIG_X86_32 */
1150 #undef SITE
1151
1152         patch_site:
1153                 if (start == NULL || (end-start) > len)
1154                         goto default_patch;
1155
1156                 ret = paravirt_patch_insns(insnbuf, len, start, end);
1157
1158                 /* Note: because reloc is assigned from something that
1159                    appears to be an array, gcc assumes it's non-null,
1160                    but doesn't know its relationship with start and
1161                    end. */
1162                 if (reloc > start && reloc < end) {
1163                         int reloc_off = reloc - start;
1164                         long *relocp = (long *)(insnbuf + reloc_off);
1165                         long delta = start - (char *)addr;
1166
1167                         *relocp += delta;
1168                 }
1169                 break;
1170
1171         default_patch:
1172         default:
1173                 ret = paravirt_patch_default(type, clobbers, insnbuf,
1174                                              addr, len);
1175                 break;
1176         }
1177
1178         return ret;
1179 }
1180
1181 static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
1182 {
1183         pte_t pte;
1184
1185         phys >>= PAGE_SHIFT;
1186
1187         switch (idx) {
1188         case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1189 #ifdef CONFIG_X86_F00F_BUG
1190         case FIX_F00F_IDT:
1191 #endif
1192 #ifdef CONFIG_X86_32
1193         case FIX_WP_TEST:
1194         case FIX_VDSO:
1195 # ifdef CONFIG_HIGHMEM
1196         case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1197 # endif
1198 #else
1199         case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1200 #endif
1201 #ifdef CONFIG_X86_LOCAL_APIC
1202         case FIX_APIC_BASE:     /* maps dummy local APIC */
1203 #endif
1204                 pte = pfn_pte(phys, prot);
1205                 break;
1206
1207         default:
1208                 pte = mfn_pte(phys, prot);
1209                 break;
1210         }
1211
1212         __native_set_fixmap(idx, pte);
1213
1214 #ifdef CONFIG_X86_64
1215         /* Replicate changes to map the vsyscall page into the user
1216            pagetable vsyscall mapping. */
1217         if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1218                 unsigned long vaddr = __fix_to_virt(idx);
1219                 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1220         }
1221 #endif
1222 }
1223
1224 static const struct pv_info xen_info __initdata = {
1225         .paravirt_enabled = 1,
1226         .shared_kernel_pmd = 0,
1227
1228         .name = "Xen",
1229 };
1230
1231 static const struct pv_init_ops xen_init_ops __initdata = {
1232         .patch = xen_patch,
1233
1234         .banner = xen_banner,
1235         .memory_setup = xen_memory_setup,
1236         .arch_setup = xen_arch_setup,
1237         .post_allocator_init = xen_post_allocator_init,
1238 };
1239
1240 static const struct pv_time_ops xen_time_ops __initdata = {
1241         .time_init = xen_time_init,
1242
1243         .set_wallclock = xen_set_wallclock,
1244         .get_wallclock = xen_get_wallclock,
1245         .get_tsc_khz = xen_tsc_khz,
1246         .sched_clock = xen_sched_clock,
1247 };
1248
1249 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
1250         .cpuid = xen_cpuid,
1251
1252         .set_debugreg = xen_set_debugreg,
1253         .get_debugreg = xen_get_debugreg,
1254
1255         .clts = xen_clts,
1256
1257         .read_cr0 = native_read_cr0,
1258         .write_cr0 = xen_write_cr0,
1259
1260         .read_cr4 = native_read_cr4,
1261         .read_cr4_safe = native_read_cr4_safe,
1262         .write_cr4 = xen_write_cr4,
1263
1264         .wbinvd = native_wbinvd,
1265
1266         .read_msr = native_read_msr_safe,
1267         .write_msr = xen_write_msr_safe,
1268         .read_tsc = native_read_tsc,
1269         .read_pmc = native_read_pmc,
1270
1271         .iret = xen_iret,
1272         .irq_enable_sysexit = xen_sysexit,
1273 #ifdef CONFIG_X86_64
1274         .usergs_sysret32 = xen_sysret32,
1275         .usergs_sysret64 = xen_sysret64,
1276 #endif
1277
1278         .load_tr_desc = paravirt_nop,
1279         .set_ldt = xen_set_ldt,
1280         .load_gdt = xen_load_gdt,
1281         .load_idt = xen_load_idt,
1282         .load_tls = xen_load_tls,
1283 #ifdef CONFIG_X86_64
1284         .load_gs_index = xen_load_gs_index,
1285 #endif
1286
1287         .alloc_ldt = xen_alloc_ldt,
1288         .free_ldt = xen_free_ldt,
1289
1290         .store_gdt = native_store_gdt,
1291         .store_idt = native_store_idt,
1292         .store_tr = xen_store_tr,
1293
1294         .write_ldt_entry = xen_write_ldt_entry,
1295         .write_gdt_entry = xen_write_gdt_entry,
1296         .write_idt_entry = xen_write_idt_entry,
1297         .load_sp0 = xen_load_sp0,
1298
1299         .set_iopl_mask = xen_set_iopl_mask,
1300         .io_delay = xen_io_delay,
1301
1302         /* Xen takes care of %gs when switching to usermode for us */
1303         .swapgs = paravirt_nop,
1304
1305         .lazy_mode = {
1306                 .enter = paravirt_enter_lazy_cpu,
1307                 .leave = xen_leave_lazy,
1308         },
1309 };
1310
1311 static void __init __xen_init_IRQ(void)
1312 {
1313 #ifdef CONFIG_X86_64
1314         int i;
1315
1316         /* Create identity vector->irq map */
1317         for(i = 0; i < NR_VECTORS; i++) {
1318                 int cpu;
1319
1320                 for_each_possible_cpu(cpu)
1321                         per_cpu(vector_irq, cpu)[i] = i;
1322         }
1323 #endif  /* CONFIG_X86_64 */
1324
1325         xen_init_IRQ();
1326 }
1327
1328 static const struct pv_irq_ops xen_irq_ops __initdata = {
1329         .init_IRQ = __xen_init_IRQ,
1330         .save_fl = xen_save_fl,
1331         .restore_fl = xen_restore_fl,
1332         .irq_disable = xen_irq_disable,
1333         .irq_enable = xen_irq_enable,
1334         .safe_halt = xen_safe_halt,
1335         .halt = xen_halt,
1336 #ifdef CONFIG_X86_64
1337         .adjust_exception_frame = xen_adjust_exception_frame,
1338 #endif
1339 };
1340
1341 static const struct pv_apic_ops xen_apic_ops __initdata = {
1342 #ifdef CONFIG_X86_LOCAL_APIC
1343         .apic_write = xen_apic_write,
1344         .apic_read = xen_apic_read,
1345         .setup_boot_clock = paravirt_nop,
1346         .setup_secondary_clock = paravirt_nop,
1347         .startup_ipi_hook = paravirt_nop,
1348 #endif
1349 };
1350
1351 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1352         .pagetable_setup_start = xen_pagetable_setup_start,
1353         .pagetable_setup_done = xen_pagetable_setup_done,
1354
1355         .read_cr2 = xen_read_cr2,
1356         .write_cr2 = xen_write_cr2,
1357
1358         .read_cr3 = xen_read_cr3,
1359         .write_cr3 = xen_write_cr3,
1360
1361         .flush_tlb_user = xen_flush_tlb,
1362         .flush_tlb_kernel = xen_flush_tlb,
1363         .flush_tlb_single = xen_flush_tlb_single,
1364         .flush_tlb_others = xen_flush_tlb_others,
1365
1366         .pte_update = paravirt_nop,
1367         .pte_update_defer = paravirt_nop,
1368
1369         .pgd_alloc = xen_pgd_alloc,
1370         .pgd_free = xen_pgd_free,
1371
1372         .alloc_pte = xen_alloc_pte_init,
1373         .release_pte = xen_release_pte_init,
1374         .alloc_pmd = xen_alloc_pte_init,
1375         .alloc_pmd_clone = paravirt_nop,
1376         .release_pmd = xen_release_pte_init,
1377
1378 #ifdef CONFIG_HIGHPTE
1379         .kmap_atomic_pte = xen_kmap_atomic_pte,
1380 #endif
1381
1382 #ifdef CONFIG_X86_64
1383         .set_pte = xen_set_pte,
1384 #else
1385         .set_pte = xen_set_pte_init,
1386 #endif
1387         .set_pte_at = xen_set_pte_at,
1388         .set_pmd = xen_set_pmd_hyper,
1389
1390         .ptep_modify_prot_start = __ptep_modify_prot_start,
1391         .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1392
1393         .pte_val = xen_pte_val,
1394         .pte_flags = native_pte_flags,
1395         .pgd_val = xen_pgd_val,
1396
1397         .make_pte = xen_make_pte,
1398         .make_pgd = xen_make_pgd,
1399
1400 #ifdef CONFIG_X86_PAE
1401         .set_pte_atomic = xen_set_pte_atomic,
1402         .set_pte_present = xen_set_pte_at,
1403         .pte_clear = xen_pte_clear,
1404         .pmd_clear = xen_pmd_clear,
1405 #endif  /* CONFIG_X86_PAE */
1406         .set_pud = xen_set_pud_hyper,
1407
1408         .make_pmd = xen_make_pmd,
1409         .pmd_val = xen_pmd_val,
1410
1411 #if PAGETABLE_LEVELS == 4
1412         .pud_val = xen_pud_val,
1413         .make_pud = xen_make_pud,
1414         .set_pgd = xen_set_pgd_hyper,
1415
1416         .alloc_pud = xen_alloc_pte_init,
1417         .release_pud = xen_release_pte_init,
1418 #endif  /* PAGETABLE_LEVELS == 4 */
1419
1420         .activate_mm = xen_activate_mm,
1421         .dup_mmap = xen_dup_mmap,
1422         .exit_mmap = xen_exit_mmap,
1423
1424         .lazy_mode = {
1425                 .enter = paravirt_enter_lazy_mmu,
1426                 .leave = xen_leave_lazy,
1427         },
1428
1429         .set_fixmap = xen_set_fixmap,
1430 };
1431
1432 static void xen_reboot(int reason)
1433 {
1434         struct sched_shutdown r = { .reason = reason };
1435
1436 #ifdef CONFIG_SMP
1437         smp_send_stop();
1438 #endif
1439
1440         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1441                 BUG();
1442 }
1443
1444 static void xen_restart(char *msg)
1445 {
1446         xen_reboot(SHUTDOWN_reboot);
1447 }
1448
1449 static void xen_emergency_restart(void)
1450 {
1451         xen_reboot(SHUTDOWN_reboot);
1452 }
1453
1454 static void xen_machine_halt(void)
1455 {
1456         xen_reboot(SHUTDOWN_poweroff);
1457 }
1458
1459 static void xen_crash_shutdown(struct pt_regs *regs)
1460 {
1461         xen_reboot(SHUTDOWN_crash);
1462 }
1463
1464 static const struct machine_ops __initdata xen_machine_ops = {
1465         .restart = xen_restart,
1466         .halt = xen_machine_halt,
1467         .power_off = xen_machine_halt,
1468         .shutdown = xen_machine_halt,
1469         .crash_shutdown = xen_crash_shutdown,
1470         .emergency_restart = xen_emergency_restart,
1471 };
1472
1473
1474 static void __init xen_reserve_top(void)
1475 {
1476 #ifdef CONFIG_X86_32
1477         unsigned long top = HYPERVISOR_VIRT_START;
1478         struct xen_platform_parameters pp;
1479
1480         if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1481                 top = pp.virt_start;
1482
1483         reserve_top_address(-top + 2 * PAGE_SIZE);
1484 #endif  /* CONFIG_X86_32 */
1485 }
1486
1487 /*
1488  * Like __va(), but returns address in the kernel mapping (which is
1489  * all we have until the physical memory mapping has been set up.
1490  */
1491 static void *__ka(phys_addr_t paddr)
1492 {
1493 #ifdef CONFIG_X86_64
1494         return (void *)(paddr + __START_KERNEL_map);
1495 #else
1496         return __va(paddr);
1497 #endif
1498 }
1499
1500 /* Convert a machine address to physical address */
1501 static unsigned long m2p(phys_addr_t maddr)
1502 {
1503         phys_addr_t paddr;
1504
1505         maddr &= PTE_PFN_MASK;
1506         paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1507
1508         return paddr;
1509 }
1510
1511 /* Convert a machine address to kernel virtual */
1512 static void *m2v(phys_addr_t maddr)
1513 {
1514         return __ka(m2p(maddr));
1515 }
1516
1517 #ifdef CONFIG_X86_64
1518 static void walk(pgd_t *pgd, unsigned long addr)
1519 {
1520         unsigned l4idx = pgd_index(addr);
1521         unsigned l3idx = pud_index(addr);
1522         unsigned l2idx = pmd_index(addr);
1523         unsigned l1idx = pte_index(addr);
1524         pgd_t l4;
1525         pud_t l3;
1526         pmd_t l2;
1527         pte_t l1;
1528
1529         xen_raw_printk("walk %p, %lx -> %d %d %d %d\n",
1530                        pgd, addr, l4idx, l3idx, l2idx, l1idx);
1531
1532         l4 = pgd[l4idx];
1533         xen_raw_printk("  l4: %016lx\n", l4.pgd);
1534         xen_raw_printk("      %016lx\n", pgd_val(l4));
1535
1536         l3 = ((pud_t *)(m2v(l4.pgd)))[l3idx];
1537         xen_raw_printk("  l3: %016lx\n", l3.pud);
1538         xen_raw_printk("      %016lx\n", pud_val(l3));
1539
1540         l2 = ((pmd_t *)(m2v(l3.pud)))[l2idx];
1541         xen_raw_printk("  l2: %016lx\n", l2.pmd);
1542         xen_raw_printk("      %016lx\n", pmd_val(l2));
1543
1544         l1 = ((pte_t *)(m2v(l2.pmd)))[l1idx];
1545         xen_raw_printk("  l1: %016lx\n", l1.pte);
1546         xen_raw_printk("      %016lx\n", pte_val(l1));
1547 }
1548 #endif
1549
1550 static void set_page_prot(void *addr, pgprot_t prot)
1551 {
1552         unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1553         pte_t pte = pfn_pte(pfn, prot);
1554
1555         xen_raw_printk("addr=%p pfn=%lx mfn=%lx prot=%016llx pte=%016llx\n",
1556                        addr, pfn, get_phys_to_machine(pfn),
1557                        pgprot_val(prot), pte.pte);
1558
1559         if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1560                 BUG();
1561 }
1562
1563 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1564 {
1565         unsigned pmdidx, pteidx;
1566         unsigned ident_pte;
1567         unsigned long pfn;
1568
1569         ident_pte = 0;
1570         pfn = 0;
1571         for(pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1572                 pte_t *pte_page;
1573
1574                 /* Reuse or allocate a page of ptes */
1575                 if (pmd_present(pmd[pmdidx]))
1576                         pte_page = m2v(pmd[pmdidx].pmd);
1577                 else {
1578                         /* Check for free pte pages */
1579                         if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1580                                 break;
1581
1582                         pte_page = &level1_ident_pgt[ident_pte];
1583                         ident_pte += PTRS_PER_PTE;
1584
1585                         pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1586                 }
1587
1588                 /* Install mappings */
1589                 for(pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1590                         pte_t pte;
1591
1592                         if (pfn > max_pfn_mapped)
1593                                 max_pfn_mapped = pfn;
1594
1595                         if (!pte_none(pte_page[pteidx]))
1596                                 continue;
1597
1598                         pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1599                         pte_page[pteidx] = pte;
1600                 }
1601         }
1602
1603         for(pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1604                 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1605
1606         set_page_prot(pmd, PAGE_KERNEL_RO);
1607 }
1608
1609 #ifdef CONFIG_X86_64
1610 static void convert_pfn_mfn(void *v)
1611 {
1612         pte_t *pte = v;
1613         int i;
1614
1615         /* All levels are converted the same way, so just treat them
1616            as ptes. */
1617         for(i = 0; i < PTRS_PER_PTE; i++)
1618                 pte[i] = xen_make_pte(pte[i].pte);
1619 }
1620
1621 /*
1622  * Set up the inital kernel pagetable.
1623  *
1624  * We can construct this by grafting the Xen provided pagetable into
1625  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1626  * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1627  * means that only the kernel has a physical mapping to start with -
1628  * but that's enough to get __va working.  We need to fill in the rest
1629  * of the physical mapping once some sort of allocator has been set
1630  * up.
1631  */
1632 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1633 {
1634         pud_t *l3;
1635         pmd_t *l2;
1636
1637         /* Zap identity mapping */
1638         init_level4_pgt[0] = __pgd(0);
1639
1640         /* Pre-constructed entries are in pfn, so convert to mfn */
1641         convert_pfn_mfn(init_level4_pgt);
1642         convert_pfn_mfn(level3_ident_pgt);
1643         convert_pfn_mfn(level3_kernel_pgt);
1644
1645         l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1646         l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1647
1648         memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1649         memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1650
1651         l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1652         l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1653         memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1654
1655         /* Set up identity map */
1656         xen_map_identity_early(level2_ident_pgt, max_pfn);
1657
1658         /* Make pagetable pieces RO */
1659         set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1660         set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1661         set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1662         set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1663         set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1664         set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1665
1666         /* Pin down new L4 */
1667         pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1668                           PFN_DOWN(__pa_symbol(init_level4_pgt)));
1669
1670         /* Unpin Xen-provided one */
1671         pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1672
1673         /* Switch over */
1674         pgd = init_level4_pgt;
1675
1676         /*
1677          * At this stage there can be no user pgd, and no page
1678          * structure to attach it to, so make sure we just set kernel
1679          * pgd.
1680          */
1681         xen_mc_batch();
1682         __xen_write_cr3(true, __pa(pgd));
1683         xen_mc_issue(PARAVIRT_LAZY_CPU);
1684
1685         reserve_early(__pa(xen_start_info->pt_base),
1686                       __pa(xen_start_info->pt_base +
1687                            xen_start_info->nr_pt_frames * PAGE_SIZE),
1688                       "XEN PAGETABLES");
1689
1690         return pgd;
1691 }
1692 #else   /* !CONFIG_X86_64 */
1693 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1694
1695 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1696 {
1697         pmd_t *kernel_pmd;
1698
1699         init_pg_tables_start = __pa(pgd);
1700         init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1701         max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024);
1702
1703         kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1704         memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1705
1706         xen_map_identity_early(level2_kernel_pgt, max_pfn);
1707
1708         memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1709         set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1710                         __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1711
1712         set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1713         set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1714         set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1715
1716         pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1717
1718         xen_write_cr3(__pa(swapper_pg_dir));
1719
1720         pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1721
1722         return swapper_pg_dir;
1723 }
1724 #endif  /* CONFIG_X86_64 */
1725
1726 /* First C function to be called on Xen boot */
1727 asmlinkage void __init xen_start_kernel(void)
1728 {
1729         pgd_t *pgd;
1730
1731         if (!xen_start_info)
1732                 return;
1733
1734         BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1735
1736         xen_setup_features();
1737
1738         /* Install Xen paravirt ops */
1739         pv_info = xen_info;
1740         pv_init_ops = xen_init_ops;
1741         pv_time_ops = xen_time_ops;
1742         pv_cpu_ops = xen_cpu_ops;
1743         pv_irq_ops = xen_irq_ops;
1744         pv_apic_ops = xen_apic_ops;
1745         pv_mmu_ops = xen_mmu_ops;
1746
1747         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1748                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1749                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1750         }
1751
1752         machine_ops = xen_machine_ops;
1753
1754 #ifdef CONFIG_X86_64
1755         /* Disable until direct per-cpu data access. */
1756         have_vcpu_info_placement = 0;
1757         x86_64_init_pda();
1758 #endif
1759
1760         xen_smp_init();
1761
1762         /* Get mfn list */
1763         if (!xen_feature(XENFEAT_auto_translated_physmap))
1764                 xen_build_dynamic_phys_to_machine();
1765
1766         pgd = (pgd_t *)xen_start_info->pt_base;
1767
1768         /* Prevent unwanted bits from being set in PTEs. */
1769         __supported_pte_mask &= ~_PAGE_GLOBAL;
1770         if (!is_initial_xendomain())
1771                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1772
1773         /* Don't do the full vcpu_info placement stuff until we have a
1774            possible map and a non-dummy shared_info. */
1775         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1776
1777         xen_raw_console_write("mapping kernel into physical memory\n");
1778         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1779
1780         init_mm.pgd = pgd;
1781
1782         /* keep using Xen gdt for now; no urgent need to change it */
1783
1784         pv_info.kernel_rpl = 1;
1785         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1786                 pv_info.kernel_rpl = 0;
1787
1788         /* set the limit of our address space */
1789         xen_reserve_top();
1790
1791 #ifdef CONFIG_X86_32
1792         /* set up basic CPUID stuff */
1793         cpu_detect(&new_cpu_data);
1794         new_cpu_data.hard_math = 1;
1795         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1796 #endif
1797
1798         /* Poke various useful things into boot_params */
1799         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1800         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1801                 ? __pa(xen_start_info->mod_start) : 0;
1802         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1803         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1804
1805         if (!is_initial_xendomain()) {
1806                 add_preferred_console("xenboot", 0, NULL);
1807                 add_preferred_console("tty", 0, NULL);
1808                 add_preferred_console("hvc", 0, NULL);
1809         }
1810
1811         xen_raw_console_write("about to get started...\n");
1812
1813 #if 0
1814         xen_raw_printk("&boot_params=%p __pa(&boot_params)=%lx __va(__pa(&boot_params))=%lx\n",
1815                        &boot_params, __pa_symbol(&boot_params),
1816                        __va(__pa_symbol(&boot_params)));
1817
1818         walk(pgd, &boot_params);
1819         walk(pgd, __va(__pa(&boot_params)));
1820 #endif
1821
1822         /* Start the world */
1823 #ifdef CONFIG_X86_32
1824         i386_start_kernel();
1825 #else
1826         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1827 #endif
1828 }