]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/x86/xen/enlighten.c
xen: clean up domain mode predicates
[linux-2.6-omap-h63xx.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
29
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/features.h>
34 #include <xen/page.h>
35 #include <xen/hvc-console.h>
36
37 #include <asm/paravirt.h>
38 #include <asm/page.h>
39 #include <asm/xen/hypercall.h>
40 #include <asm/xen/hypervisor.h>
41 #include <asm/fixmap.h>
42 #include <asm/processor.h>
43 #include <asm/msr-index.h>
44 #include <asm/setup.h>
45 #include <asm/desc.h>
46 #include <asm/pgtable.h>
47 #include <asm/tlbflush.h>
48 #include <asm/reboot.h>
49
50 #include "xen-ops.h"
51 #include "mmu.h"
52 #include "multicalls.h"
53
54 EXPORT_SYMBOL_GPL(hypercall_page);
55
56 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
57 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
58
59 enum xen_domain_type xen_domain_type = XEN_NATIVE;
60 EXPORT_SYMBOL_GPL(xen_domain_type);
61
62 /*
63  * Identity map, in addition to plain kernel map.  This needs to be
64  * large enough to allocate page table pages to allocate the rest.
65  * Each page can map 2MB.
66  */
67 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
68
69 #ifdef CONFIG_X86_64
70 /* l3 pud for userspace vsyscall mapping */
71 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
72 #endif /* CONFIG_X86_64 */
73
74 /*
75  * Note about cr3 (pagetable base) values:
76  *
77  * xen_cr3 contains the current logical cr3 value; it contains the
78  * last set cr3.  This may not be the current effective cr3, because
79  * its update may be being lazily deferred.  However, a vcpu looking
80  * at its own cr3 can use this value knowing that it everything will
81  * be self-consistent.
82  *
83  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
84  * hypercall to set the vcpu cr3 is complete (so it may be a little
85  * out of date, but it will never be set early).  If one vcpu is
86  * looking at another vcpu's cr3 value, it should use this variable.
87  */
88 DEFINE_PER_CPU(unsigned long, xen_cr3);  /* cr3 stored as physaddr */
89 DEFINE_PER_CPU(unsigned long, xen_current_cr3);  /* actual vcpu cr3 */
90
91 struct start_info *xen_start_info;
92 EXPORT_SYMBOL_GPL(xen_start_info);
93
94 struct shared_info xen_dummy_shared_info;
95
96 /*
97  * Point at some empty memory to start with. We map the real shared_info
98  * page as soon as fixmap is up and running.
99  */
100 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
101
102 /*
103  * Flag to determine whether vcpu info placement is available on all
104  * VCPUs.  We assume it is to start with, and then set it to zero on
105  * the first failure.  This is because it can succeed on some VCPUs
106  * and not others, since it can involve hypervisor memory allocation,
107  * or because the guest failed to guarantee all the appropriate
108  * constraints on all VCPUs (ie buffer can't cross a page boundary).
109  *
110  * Note that any particular CPU may be using a placed vcpu structure,
111  * but we can only optimise if the all are.
112  *
113  * 0: not available, 1: available
114  */
115 static int have_vcpu_info_placement = 1;
116
117 static void xen_vcpu_setup(int cpu)
118 {
119         struct vcpu_register_vcpu_info info;
120         int err;
121         struct vcpu_info *vcpup;
122
123         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
124         per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
125
126         if (!have_vcpu_info_placement)
127                 return;         /* already tested, not available */
128
129         vcpup = &per_cpu(xen_vcpu_info, cpu);
130
131         info.mfn = virt_to_mfn(vcpup);
132         info.offset = offset_in_page(vcpup);
133
134         printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
135                cpu, vcpup, info.mfn, info.offset);
136
137         /* Check to see if the hypervisor will put the vcpu_info
138            structure where we want it, which allows direct access via
139            a percpu-variable. */
140         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
141
142         if (err) {
143                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
144                 have_vcpu_info_placement = 0;
145         } else {
146                 /* This cpu is using the registered vcpu info, even if
147                    later ones fail to. */
148                 per_cpu(xen_vcpu, cpu) = vcpup;
149
150                 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
151                        cpu, vcpup);
152         }
153 }
154
155 /*
156  * On restore, set the vcpu placement up again.
157  * If it fails, then we're in a bad state, since
158  * we can't back out from using it...
159  */
160 void xen_vcpu_restore(void)
161 {
162         if (have_vcpu_info_placement) {
163                 int cpu;
164
165                 for_each_online_cpu(cpu) {
166                         bool other_cpu = (cpu != smp_processor_id());
167
168                         if (other_cpu &&
169                             HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
170                                 BUG();
171
172                         xen_vcpu_setup(cpu);
173
174                         if (other_cpu &&
175                             HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
176                                 BUG();
177                 }
178
179                 BUG_ON(!have_vcpu_info_placement);
180         }
181 }
182
183 static void __init xen_banner(void)
184 {
185         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
186         struct xen_extraversion extra;
187         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
188
189         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
190                pv_info.name);
191         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
192                version >> 16, version & 0xffff, extra.extraversion,
193                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
194 }
195
196 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
197                       unsigned int *cx, unsigned int *dx)
198 {
199         unsigned maskedx = ~0;
200
201         /*
202          * Mask out inconvenient features, to try and disable as many
203          * unsupported kernel subsystems as possible.
204          */
205         if (*ax == 1)
206                 maskedx = ~((1 << X86_FEATURE_APIC) |  /* disable APIC */
207                             (1 << X86_FEATURE_ACPI) |  /* disable ACPI */
208                             (1 << X86_FEATURE_MCE)  |  /* disable MCE */
209                             (1 << X86_FEATURE_MCA)  |  /* disable MCA */
210                             (1 << X86_FEATURE_ACC));   /* thermal monitoring */
211
212         asm(XEN_EMULATE_PREFIX "cpuid"
213                 : "=a" (*ax),
214                   "=b" (*bx),
215                   "=c" (*cx),
216                   "=d" (*dx)
217                 : "0" (*ax), "2" (*cx));
218         *dx &= maskedx;
219 }
220
221 static void xen_set_debugreg(int reg, unsigned long val)
222 {
223         HYPERVISOR_set_debugreg(reg, val);
224 }
225
226 static unsigned long xen_get_debugreg(int reg)
227 {
228         return HYPERVISOR_get_debugreg(reg);
229 }
230
231 static void xen_leave_lazy(void)
232 {
233         paravirt_leave_lazy(paravirt_get_lazy_mode());
234         xen_mc_flush();
235 }
236
237 static unsigned long xen_store_tr(void)
238 {
239         return 0;
240 }
241
242 /*
243  * Set the page permissions for a particular virtual address.  If the
244  * address is a vmalloc mapping (or other non-linear mapping), then
245  * find the linear mapping of the page and also set its protections to
246  * match.
247  */
248 static void set_aliased_prot(void *v, pgprot_t prot)
249 {
250         int level;
251         pte_t *ptep;
252         pte_t pte;
253         unsigned long pfn;
254         struct page *page;
255
256         ptep = lookup_address((unsigned long)v, &level);
257         BUG_ON(ptep == NULL);
258
259         pfn = pte_pfn(*ptep);
260         page = pfn_to_page(pfn);
261
262         pte = pfn_pte(pfn, prot);
263
264         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
265                 BUG();
266
267         if (!PageHighMem(page)) {
268                 void *av = __va(PFN_PHYS(pfn));
269
270                 if (av != v)
271                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
272                                 BUG();
273         } else
274                 kmap_flush_unused();
275 }
276
277 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
278 {
279         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
280         int i;
281
282         for(i = 0; i < entries; i += entries_per_page)
283                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
284 }
285
286 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
287 {
288         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
289         int i;
290
291         for(i = 0; i < entries; i += entries_per_page)
292                 set_aliased_prot(ldt + i, PAGE_KERNEL);
293 }
294
295 static void xen_set_ldt(const void *addr, unsigned entries)
296 {
297         struct mmuext_op *op;
298         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
299
300         op = mcs.args;
301         op->cmd = MMUEXT_SET_LDT;
302         op->arg1.linear_addr = (unsigned long)addr;
303         op->arg2.nr_ents = entries;
304
305         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
306
307         xen_mc_issue(PARAVIRT_LAZY_CPU);
308 }
309
310 static void xen_load_gdt(const struct desc_ptr *dtr)
311 {
312         unsigned long *frames;
313         unsigned long va = dtr->address;
314         unsigned int size = dtr->size + 1;
315         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
316         int f;
317         struct multicall_space mcs;
318
319         /* A GDT can be up to 64k in size, which corresponds to 8192
320            8-byte entries, or 16 4k pages.. */
321
322         BUG_ON(size > 65536);
323         BUG_ON(va & ~PAGE_MASK);
324
325         mcs = xen_mc_entry(sizeof(*frames) * pages);
326         frames = mcs.args;
327
328         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
329                 frames[f] = virt_to_mfn(va);
330                 make_lowmem_page_readonly((void *)va);
331         }
332
333         MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
334
335         xen_mc_issue(PARAVIRT_LAZY_CPU);
336 }
337
338 static void load_TLS_descriptor(struct thread_struct *t,
339                                 unsigned int cpu, unsigned int i)
340 {
341         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
342         xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
343         struct multicall_space mc = __xen_mc_entry(0);
344
345         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
346 }
347
348 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
349 {
350         /*
351          * XXX sleazy hack: If we're being called in a lazy-cpu zone,
352          * it means we're in a context switch, and %gs has just been
353          * saved.  This means we can zero it out to prevent faults on
354          * exit from the hypervisor if the next process has no %gs.
355          * Either way, it has been saved, and the new value will get
356          * loaded properly.  This will go away as soon as Xen has been
357          * modified to not save/restore %gs for normal hypercalls.
358          *
359          * On x86_64, this hack is not used for %gs, because gs points
360          * to KERNEL_GS_BASE (and uses it for PDA references), so we
361          * must not zero %gs on x86_64
362          *
363          * For x86_64, we need to zero %fs, otherwise we may get an
364          * exception between the new %fs descriptor being loaded and
365          * %fs being effectively cleared at __switch_to().
366          */
367         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
368 #ifdef CONFIG_X86_32
369                 loadsegment(gs, 0);
370 #else
371                 loadsegment(fs, 0);
372 #endif
373         }
374
375         xen_mc_batch();
376
377         load_TLS_descriptor(t, cpu, 0);
378         load_TLS_descriptor(t, cpu, 1);
379         load_TLS_descriptor(t, cpu, 2);
380
381         xen_mc_issue(PARAVIRT_LAZY_CPU);
382 }
383
384 #ifdef CONFIG_X86_64
385 static void xen_load_gs_index(unsigned int idx)
386 {
387         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
388                 BUG();
389 }
390 #endif
391
392 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
393                                 const void *ptr)
394 {
395         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
396         u64 entry = *(u64 *)ptr;
397
398         preempt_disable();
399
400         xen_mc_flush();
401         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
402                 BUG();
403
404         preempt_enable();
405 }
406
407 static int cvt_gate_to_trap(int vector, const gate_desc *val,
408                             struct trap_info *info)
409 {
410         if (val->type != 0xf && val->type != 0xe)
411                 return 0;
412
413         info->vector = vector;
414         info->address = gate_offset(*val);
415         info->cs = gate_segment(*val);
416         info->flags = val->dpl;
417         /* interrupt gates clear IF */
418         if (val->type == 0xe)
419                 info->flags |= 4;
420
421         return 1;
422 }
423
424 /* Locations of each CPU's IDT */
425 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
426
427 /* Set an IDT entry.  If the entry is part of the current IDT, then
428    also update Xen. */
429 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
430 {
431         unsigned long p = (unsigned long)&dt[entrynum];
432         unsigned long start, end;
433
434         preempt_disable();
435
436         start = __get_cpu_var(idt_desc).address;
437         end = start + __get_cpu_var(idt_desc).size + 1;
438
439         xen_mc_flush();
440
441         native_write_idt_entry(dt, entrynum, g);
442
443         if (p >= start && (p + 8) <= end) {
444                 struct trap_info info[2];
445
446                 info[1].address = 0;
447
448                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
449                         if (HYPERVISOR_set_trap_table(info))
450                                 BUG();
451         }
452
453         preempt_enable();
454 }
455
456 static void xen_convert_trap_info(const struct desc_ptr *desc,
457                                   struct trap_info *traps)
458 {
459         unsigned in, out, count;
460
461         count = (desc->size+1) / sizeof(gate_desc);
462         BUG_ON(count > 256);
463
464         for (in = out = 0; in < count; in++) {
465                 gate_desc *entry = (gate_desc*)(desc->address) + in;
466
467                 if (cvt_gate_to_trap(in, entry, &traps[out]))
468                         out++;
469         }
470         traps[out].address = 0;
471 }
472
473 void xen_copy_trap_info(struct trap_info *traps)
474 {
475         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
476
477         xen_convert_trap_info(desc, traps);
478 }
479
480 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
481    hold a spinlock to protect the static traps[] array (static because
482    it avoids allocation, and saves stack space). */
483 static void xen_load_idt(const struct desc_ptr *desc)
484 {
485         static DEFINE_SPINLOCK(lock);
486         static struct trap_info traps[257];
487
488         spin_lock(&lock);
489
490         __get_cpu_var(idt_desc) = *desc;
491
492         xen_convert_trap_info(desc, traps);
493
494         xen_mc_flush();
495         if (HYPERVISOR_set_trap_table(traps))
496                 BUG();
497
498         spin_unlock(&lock);
499 }
500
501 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
502    they're handled differently. */
503 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
504                                 const void *desc, int type)
505 {
506         preempt_disable();
507
508         switch (type) {
509         case DESC_LDT:
510         case DESC_TSS:
511                 /* ignore */
512                 break;
513
514         default: {
515                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
516
517                 xen_mc_flush();
518                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
519                         BUG();
520         }
521
522         }
523
524         preempt_enable();
525 }
526
527 static void xen_load_sp0(struct tss_struct *tss,
528                          struct thread_struct *thread)
529 {
530         struct multicall_space mcs = xen_mc_entry(0);
531         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
532         xen_mc_issue(PARAVIRT_LAZY_CPU);
533 }
534
535 static void xen_set_iopl_mask(unsigned mask)
536 {
537         struct physdev_set_iopl set_iopl;
538
539         /* Force the change at ring 0. */
540         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
541         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
542 }
543
544 static void xen_io_delay(void)
545 {
546 }
547
548 #ifdef CONFIG_X86_LOCAL_APIC
549 static u32 xen_apic_read(unsigned long reg)
550 {
551         return 0;
552 }
553
554 static void xen_apic_write(unsigned long reg, u32 val)
555 {
556         /* Warn to see if there's any stray references */
557         WARN_ON(1);
558 }
559 #endif
560
561 static void xen_flush_tlb(void)
562 {
563         struct mmuext_op *op;
564         struct multicall_space mcs;
565
566         preempt_disable();
567
568         mcs = xen_mc_entry(sizeof(*op));
569
570         op = mcs.args;
571         op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
572         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
573
574         xen_mc_issue(PARAVIRT_LAZY_MMU);
575
576         preempt_enable();
577 }
578
579 static void xen_flush_tlb_single(unsigned long addr)
580 {
581         struct mmuext_op *op;
582         struct multicall_space mcs;
583
584         preempt_disable();
585
586         mcs = xen_mc_entry(sizeof(*op));
587         op = mcs.args;
588         op->cmd = MMUEXT_INVLPG_LOCAL;
589         op->arg1.linear_addr = addr & PAGE_MASK;
590         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
591
592         xen_mc_issue(PARAVIRT_LAZY_MMU);
593
594         preempt_enable();
595 }
596
597 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
598                                  unsigned long va)
599 {
600         struct {
601                 struct mmuext_op op;
602                 cpumask_t mask;
603         } *args;
604         cpumask_t cpumask = *cpus;
605         struct multicall_space mcs;
606
607         /*
608          * A couple of (to be removed) sanity checks:
609          *
610          * - current CPU must not be in mask
611          * - mask must exist :)
612          */
613         BUG_ON(cpus_empty(cpumask));
614         BUG_ON(cpu_isset(smp_processor_id(), cpumask));
615         BUG_ON(!mm);
616
617         /* If a CPU which we ran on has gone down, OK. */
618         cpus_and(cpumask, cpumask, cpu_online_map);
619         if (cpus_empty(cpumask))
620                 return;
621
622         mcs = xen_mc_entry(sizeof(*args));
623         args = mcs.args;
624         args->mask = cpumask;
625         args->op.arg2.vcpumask = &args->mask;
626
627         if (va == TLB_FLUSH_ALL) {
628                 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
629         } else {
630                 args->op.cmd = MMUEXT_INVLPG_MULTI;
631                 args->op.arg1.linear_addr = va;
632         }
633
634         MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
635
636         xen_mc_issue(PARAVIRT_LAZY_MMU);
637 }
638
639 static void xen_clts(void)
640 {
641         struct multicall_space mcs;
642
643         mcs = xen_mc_entry(0);
644
645         MULTI_fpu_taskswitch(mcs.mc, 0);
646
647         xen_mc_issue(PARAVIRT_LAZY_CPU);
648 }
649
650 static void xen_write_cr0(unsigned long cr0)
651 {
652         struct multicall_space mcs;
653
654         /* Only pay attention to cr0.TS; everything else is
655            ignored. */
656         mcs = xen_mc_entry(0);
657
658         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
659
660         xen_mc_issue(PARAVIRT_LAZY_CPU);
661 }
662
663 static void xen_write_cr2(unsigned long cr2)
664 {
665         x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
666 }
667
668 static unsigned long xen_read_cr2(void)
669 {
670         return x86_read_percpu(xen_vcpu)->arch.cr2;
671 }
672
673 static unsigned long xen_read_cr2_direct(void)
674 {
675         return x86_read_percpu(xen_vcpu_info.arch.cr2);
676 }
677
678 static void xen_write_cr4(unsigned long cr4)
679 {
680         cr4 &= ~X86_CR4_PGE;
681         cr4 &= ~X86_CR4_PSE;
682
683         native_write_cr4(cr4);
684 }
685
686 static unsigned long xen_read_cr3(void)
687 {
688         return x86_read_percpu(xen_cr3);
689 }
690
691 static void set_current_cr3(void *v)
692 {
693         x86_write_percpu(xen_current_cr3, (unsigned long)v);
694 }
695
696 static void __xen_write_cr3(bool kernel, unsigned long cr3)
697 {
698         struct mmuext_op *op;
699         struct multicall_space mcs;
700         unsigned long mfn;
701
702         if (cr3)
703                 mfn = pfn_to_mfn(PFN_DOWN(cr3));
704         else
705                 mfn = 0;
706
707         WARN_ON(mfn == 0 && kernel);
708
709         mcs = __xen_mc_entry(sizeof(*op));
710
711         op = mcs.args;
712         op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
713         op->arg1.mfn = mfn;
714
715         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
716
717         if (kernel) {
718                 x86_write_percpu(xen_cr3, cr3);
719
720                 /* Update xen_current_cr3 once the batch has actually
721                    been submitted. */
722                 xen_mc_callback(set_current_cr3, (void *)cr3);
723         }
724 }
725
726 static void xen_write_cr3(unsigned long cr3)
727 {
728         BUG_ON(preemptible());
729
730         xen_mc_batch();  /* disables interrupts */
731
732         /* Update while interrupts are disabled, so its atomic with
733            respect to ipis */
734         x86_write_percpu(xen_cr3, cr3);
735
736         __xen_write_cr3(true, cr3);
737
738 #ifdef CONFIG_X86_64
739         {
740                 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
741                 if (user_pgd)
742                         __xen_write_cr3(false, __pa(user_pgd));
743                 else
744                         __xen_write_cr3(false, 0);
745         }
746 #endif
747
748         xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
749 }
750
751 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
752 {
753         int ret;
754
755         ret = 0;
756
757         switch(msr) {
758 #ifdef CONFIG_X86_64
759                 unsigned which;
760                 u64 base;
761
762         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
763         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
764         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
765
766         set:
767                 base = ((u64)high << 32) | low;
768                 if (HYPERVISOR_set_segment_base(which, base) != 0)
769                         ret = -EFAULT;
770                 break;
771 #endif
772
773         case MSR_STAR:
774         case MSR_CSTAR:
775         case MSR_LSTAR:
776         case MSR_SYSCALL_MASK:
777         case MSR_IA32_SYSENTER_CS:
778         case MSR_IA32_SYSENTER_ESP:
779         case MSR_IA32_SYSENTER_EIP:
780                 /* Fast syscall setup is all done in hypercalls, so
781                    these are all ignored.  Stub them out here to stop
782                    Xen console noise. */
783                 break;
784
785         default:
786                 ret = native_write_msr_safe(msr, low, high);
787         }
788
789         return ret;
790 }
791
792 /* Early in boot, while setting up the initial pagetable, assume
793    everything is pinned. */
794 static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
795 {
796 #ifdef CONFIG_FLATMEM
797         BUG_ON(mem_map);        /* should only be used early */
798 #endif
799         make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
800 }
801
802 /* Early release_pte assumes that all pts are pinned, since there's
803    only init_mm and anything attached to that is pinned. */
804 static void xen_release_pte_init(u32 pfn)
805 {
806         make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
807 }
808
809 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
810 {
811         struct mmuext_op op;
812         op.cmd = cmd;
813         op.arg1.mfn = pfn_to_mfn(pfn);
814         if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
815                 BUG();
816 }
817
818 /* This needs to make sure the new pte page is pinned iff its being
819    attached to a pinned pagetable. */
820 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
821 {
822         struct page *page = pfn_to_page(pfn);
823
824         if (PagePinned(virt_to_page(mm->pgd))) {
825                 SetPagePinned(page);
826
827                 if (!PageHighMem(page)) {
828                         make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
829                         if (level == PT_PTE)
830                                 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
831                 } else
832                         /* make sure there are no stray mappings of
833                            this page */
834                         kmap_flush_unused();
835         }
836 }
837
838 static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
839 {
840         xen_alloc_ptpage(mm, pfn, PT_PTE);
841 }
842
843 static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
844 {
845         xen_alloc_ptpage(mm, pfn, PT_PMD);
846 }
847
848 static int xen_pgd_alloc(struct mm_struct *mm)
849 {
850         pgd_t *pgd = mm->pgd;
851         int ret = 0;
852
853         BUG_ON(PagePinned(virt_to_page(pgd)));
854
855 #ifdef CONFIG_X86_64
856         {
857                 struct page *page = virt_to_page(pgd);
858                 pgd_t *user_pgd;
859
860                 BUG_ON(page->private != 0);
861
862                 ret = -ENOMEM;
863
864                 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
865                 page->private = (unsigned long)user_pgd;
866
867                 if (user_pgd != NULL) {
868                         user_pgd[pgd_index(VSYSCALL_START)] =
869                                 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
870                         ret = 0;
871                 }
872
873                 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
874         }
875 #endif
876
877         return ret;
878 }
879
880 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
881 {
882 #ifdef CONFIG_X86_64
883         pgd_t *user_pgd = xen_get_user_pgd(pgd);
884
885         if (user_pgd)
886                 free_page((unsigned long)user_pgd);
887 #endif
888 }
889
890 /* This should never happen until we're OK to use struct page */
891 static void xen_release_ptpage(u32 pfn, unsigned level)
892 {
893         struct page *page = pfn_to_page(pfn);
894
895         if (PagePinned(page)) {
896                 if (!PageHighMem(page)) {
897                         if (level == PT_PTE)
898                                 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
899                         make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
900                 }
901                 ClearPagePinned(page);
902         }
903 }
904
905 static void xen_release_pte(u32 pfn)
906 {
907         xen_release_ptpage(pfn, PT_PTE);
908 }
909
910 static void xen_release_pmd(u32 pfn)
911 {
912         xen_release_ptpage(pfn, PT_PMD);
913 }
914
915 #if PAGETABLE_LEVELS == 4
916 static void xen_alloc_pud(struct mm_struct *mm, u32 pfn)
917 {
918         xen_alloc_ptpage(mm, pfn, PT_PUD);
919 }
920
921 static void xen_release_pud(u32 pfn)
922 {
923         xen_release_ptpage(pfn, PT_PUD);
924 }
925 #endif
926
927 #ifdef CONFIG_HIGHPTE
928 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
929 {
930         pgprot_t prot = PAGE_KERNEL;
931
932         if (PagePinned(page))
933                 prot = PAGE_KERNEL_RO;
934
935         if (0 && PageHighMem(page))
936                 printk("mapping highpte %lx type %d prot %s\n",
937                        page_to_pfn(page), type,
938                        (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
939
940         return kmap_atomic_prot(page, type, prot);
941 }
942 #endif
943
944 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
945 {
946         /* If there's an existing pte, then don't allow _PAGE_RW to be set */
947         if (pte_val_ma(*ptep) & _PAGE_PRESENT)
948                 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
949                                pte_val_ma(pte));
950
951         return pte;
952 }
953
954 /* Init-time set_pte while constructing initial pagetables, which
955    doesn't allow RO pagetable pages to be remapped RW */
956 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
957 {
958         pte = mask_rw_pte(ptep, pte);
959
960         xen_set_pte(ptep, pte);
961 }
962
963 static __init void xen_pagetable_setup_start(pgd_t *base)
964 {
965 }
966
967 void xen_setup_shared_info(void)
968 {
969         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
970                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
971                            xen_start_info->shared_info);
972
973                 HYPERVISOR_shared_info =
974                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
975         } else
976                 HYPERVISOR_shared_info =
977                         (struct shared_info *)__va(xen_start_info->shared_info);
978
979 #ifndef CONFIG_SMP
980         /* In UP this is as good a place as any to set up shared info */
981         xen_setup_vcpu_info_placement();
982 #endif
983
984         xen_setup_mfn_list_list();
985 }
986
987 static __init void xen_pagetable_setup_done(pgd_t *base)
988 {
989         xen_setup_shared_info();
990 }
991
992 static __init void xen_post_allocator_init(void)
993 {
994         pv_mmu_ops.set_pte = xen_set_pte;
995         pv_mmu_ops.set_pmd = xen_set_pmd;
996         pv_mmu_ops.set_pud = xen_set_pud;
997 #if PAGETABLE_LEVELS == 4
998         pv_mmu_ops.set_pgd = xen_set_pgd;
999 #endif
1000
1001         /* This will work as long as patching hasn't happened yet
1002            (which it hasn't) */
1003         pv_mmu_ops.alloc_pte = xen_alloc_pte;
1004         pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1005         pv_mmu_ops.release_pte = xen_release_pte;
1006         pv_mmu_ops.release_pmd = xen_release_pmd;
1007 #if PAGETABLE_LEVELS == 4
1008         pv_mmu_ops.alloc_pud = xen_alloc_pud;
1009         pv_mmu_ops.release_pud = xen_release_pud;
1010 #endif
1011
1012 #ifdef CONFIG_X86_64
1013         SetPagePinned(virt_to_page(level3_user_vsyscall));
1014 #endif
1015         xen_mark_init_mm_pinned();
1016 }
1017
1018 /* This is called once we have the cpu_possible_map */
1019 void xen_setup_vcpu_info_placement(void)
1020 {
1021         int cpu;
1022
1023         for_each_possible_cpu(cpu)
1024                 xen_vcpu_setup(cpu);
1025
1026         /* xen_vcpu_setup managed to place the vcpu_info within the
1027            percpu area for all cpus, so make use of it */
1028 #ifdef CONFIG_X86_32
1029         if (have_vcpu_info_placement) {
1030                 printk(KERN_INFO "Xen: using vcpu_info placement\n");
1031
1032                 pv_irq_ops.save_fl = xen_save_fl_direct;
1033                 pv_irq_ops.restore_fl = xen_restore_fl_direct;
1034                 pv_irq_ops.irq_disable = xen_irq_disable_direct;
1035                 pv_irq_ops.irq_enable = xen_irq_enable_direct;
1036                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1037         }
1038 #endif
1039 }
1040
1041 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1042                           unsigned long addr, unsigned len)
1043 {
1044         char *start, *end, *reloc;
1045         unsigned ret;
1046
1047         start = end = reloc = NULL;
1048
1049 #define SITE(op, x)                                                     \
1050         case PARAVIRT_PATCH(op.x):                                      \
1051         if (have_vcpu_info_placement) {                                 \
1052                 start = (char *)xen_##x##_direct;                       \
1053                 end = xen_##x##_direct_end;                             \
1054                 reloc = xen_##x##_direct_reloc;                         \
1055         }                                                               \
1056         goto patch_site
1057
1058         switch (type) {
1059 #ifdef CONFIG_X86_32
1060                 SITE(pv_irq_ops, irq_enable);
1061                 SITE(pv_irq_ops, irq_disable);
1062                 SITE(pv_irq_ops, save_fl);
1063                 SITE(pv_irq_ops, restore_fl);
1064 #endif /* CONFIG_X86_32 */
1065 #undef SITE
1066
1067         patch_site:
1068                 if (start == NULL || (end-start) > len)
1069                         goto default_patch;
1070
1071                 ret = paravirt_patch_insns(insnbuf, len, start, end);
1072
1073                 /* Note: because reloc is assigned from something that
1074                    appears to be an array, gcc assumes it's non-null,
1075                    but doesn't know its relationship with start and
1076                    end. */
1077                 if (reloc > start && reloc < end) {
1078                         int reloc_off = reloc - start;
1079                         long *relocp = (long *)(insnbuf + reloc_off);
1080                         long delta = start - (char *)addr;
1081
1082                         *relocp += delta;
1083                 }
1084                 break;
1085
1086         default_patch:
1087         default:
1088                 ret = paravirt_patch_default(type, clobbers, insnbuf,
1089                                              addr, len);
1090                 break;
1091         }
1092
1093         return ret;
1094 }
1095
1096 static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
1097 {
1098         pte_t pte;
1099
1100         phys >>= PAGE_SHIFT;
1101
1102         switch (idx) {
1103         case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1104 #ifdef CONFIG_X86_F00F_BUG
1105         case FIX_F00F_IDT:
1106 #endif
1107 #ifdef CONFIG_X86_32
1108         case FIX_WP_TEST:
1109         case FIX_VDSO:
1110 # ifdef CONFIG_HIGHMEM
1111         case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1112 # endif
1113 #else
1114         case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1115 #endif
1116 #ifdef CONFIG_X86_LOCAL_APIC
1117         case FIX_APIC_BASE:     /* maps dummy local APIC */
1118 #endif
1119                 pte = pfn_pte(phys, prot);
1120                 break;
1121
1122         default:
1123                 pte = mfn_pte(phys, prot);
1124                 break;
1125         }
1126
1127         __native_set_fixmap(idx, pte);
1128
1129 #ifdef CONFIG_X86_64
1130         /* Replicate changes to map the vsyscall page into the user
1131            pagetable vsyscall mapping. */
1132         if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1133                 unsigned long vaddr = __fix_to_virt(idx);
1134                 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1135         }
1136 #endif
1137 }
1138
1139 static const struct pv_info xen_info __initdata = {
1140         .paravirt_enabled = 1,
1141         .shared_kernel_pmd = 0,
1142
1143         .name = "Xen",
1144 };
1145
1146 static const struct pv_init_ops xen_init_ops __initdata = {
1147         .patch = xen_patch,
1148
1149         .banner = xen_banner,
1150         .memory_setup = xen_memory_setup,
1151         .arch_setup = xen_arch_setup,
1152         .post_allocator_init = xen_post_allocator_init,
1153 };
1154
1155 static const struct pv_time_ops xen_time_ops __initdata = {
1156         .time_init = xen_time_init,
1157
1158         .set_wallclock = xen_set_wallclock,
1159         .get_wallclock = xen_get_wallclock,
1160         .get_tsc_khz = xen_tsc_khz,
1161         .sched_clock = xen_sched_clock,
1162 };
1163
1164 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
1165         .cpuid = xen_cpuid,
1166
1167         .set_debugreg = xen_set_debugreg,
1168         .get_debugreg = xen_get_debugreg,
1169
1170         .clts = xen_clts,
1171
1172         .read_cr0 = native_read_cr0,
1173         .write_cr0 = xen_write_cr0,
1174
1175         .read_cr4 = native_read_cr4,
1176         .read_cr4_safe = native_read_cr4_safe,
1177         .write_cr4 = xen_write_cr4,
1178
1179         .wbinvd = native_wbinvd,
1180
1181         .read_msr = native_read_msr_safe,
1182         .write_msr = xen_write_msr_safe,
1183         .read_tsc = native_read_tsc,
1184         .read_pmc = native_read_pmc,
1185
1186         .iret = xen_iret,
1187         .irq_enable_sysexit = xen_sysexit,
1188 #ifdef CONFIG_X86_64
1189         .usergs_sysret32 = xen_sysret32,
1190         .usergs_sysret64 = xen_sysret64,
1191 #endif
1192
1193         .load_tr_desc = paravirt_nop,
1194         .set_ldt = xen_set_ldt,
1195         .load_gdt = xen_load_gdt,
1196         .load_idt = xen_load_idt,
1197         .load_tls = xen_load_tls,
1198 #ifdef CONFIG_X86_64
1199         .load_gs_index = xen_load_gs_index,
1200 #endif
1201
1202         .alloc_ldt = xen_alloc_ldt,
1203         .free_ldt = xen_free_ldt,
1204
1205         .store_gdt = native_store_gdt,
1206         .store_idt = native_store_idt,
1207         .store_tr = xen_store_tr,
1208
1209         .write_ldt_entry = xen_write_ldt_entry,
1210         .write_gdt_entry = xen_write_gdt_entry,
1211         .write_idt_entry = xen_write_idt_entry,
1212         .load_sp0 = xen_load_sp0,
1213
1214         .set_iopl_mask = xen_set_iopl_mask,
1215         .io_delay = xen_io_delay,
1216
1217         /* Xen takes care of %gs when switching to usermode for us */
1218         .swapgs = paravirt_nop,
1219
1220         .lazy_mode = {
1221                 .enter = paravirt_enter_lazy_cpu,
1222                 .leave = xen_leave_lazy,
1223         },
1224 };
1225
1226 static const struct pv_apic_ops xen_apic_ops __initdata = {
1227 #ifdef CONFIG_X86_LOCAL_APIC
1228         .apic_write = xen_apic_write,
1229         .apic_read = xen_apic_read,
1230         .setup_boot_clock = paravirt_nop,
1231         .setup_secondary_clock = paravirt_nop,
1232         .startup_ipi_hook = paravirt_nop,
1233 #endif
1234 };
1235
1236 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1237         .pagetable_setup_start = xen_pagetable_setup_start,
1238         .pagetable_setup_done = xen_pagetable_setup_done,
1239
1240         .read_cr2 = xen_read_cr2,
1241         .write_cr2 = xen_write_cr2,
1242
1243         .read_cr3 = xen_read_cr3,
1244         .write_cr3 = xen_write_cr3,
1245
1246         .flush_tlb_user = xen_flush_tlb,
1247         .flush_tlb_kernel = xen_flush_tlb,
1248         .flush_tlb_single = xen_flush_tlb_single,
1249         .flush_tlb_others = xen_flush_tlb_others,
1250
1251         .pte_update = paravirt_nop,
1252         .pte_update_defer = paravirt_nop,
1253
1254         .pgd_alloc = xen_pgd_alloc,
1255         .pgd_free = xen_pgd_free,
1256
1257         .alloc_pte = xen_alloc_pte_init,
1258         .release_pte = xen_release_pte_init,
1259         .alloc_pmd = xen_alloc_pte_init,
1260         .alloc_pmd_clone = paravirt_nop,
1261         .release_pmd = xen_release_pte_init,
1262
1263 #ifdef CONFIG_HIGHPTE
1264         .kmap_atomic_pte = xen_kmap_atomic_pte,
1265 #endif
1266
1267 #ifdef CONFIG_X86_64
1268         .set_pte = xen_set_pte,
1269 #else
1270         .set_pte = xen_set_pte_init,
1271 #endif
1272         .set_pte_at = xen_set_pte_at,
1273         .set_pmd = xen_set_pmd_hyper,
1274
1275         .ptep_modify_prot_start = __ptep_modify_prot_start,
1276         .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1277
1278         .pte_val = xen_pte_val,
1279         .pte_flags = native_pte_flags,
1280         .pgd_val = xen_pgd_val,
1281
1282         .make_pte = xen_make_pte,
1283         .make_pgd = xen_make_pgd,
1284
1285 #ifdef CONFIG_X86_PAE
1286         .set_pte_atomic = xen_set_pte_atomic,
1287         .set_pte_present = xen_set_pte_at,
1288         .pte_clear = xen_pte_clear,
1289         .pmd_clear = xen_pmd_clear,
1290 #endif  /* CONFIG_X86_PAE */
1291         .set_pud = xen_set_pud_hyper,
1292
1293         .make_pmd = xen_make_pmd,
1294         .pmd_val = xen_pmd_val,
1295
1296 #if PAGETABLE_LEVELS == 4
1297         .pud_val = xen_pud_val,
1298         .make_pud = xen_make_pud,
1299         .set_pgd = xen_set_pgd_hyper,
1300
1301         .alloc_pud = xen_alloc_pte_init,
1302         .release_pud = xen_release_pte_init,
1303 #endif  /* PAGETABLE_LEVELS == 4 */
1304
1305         .activate_mm = xen_activate_mm,
1306         .dup_mmap = xen_dup_mmap,
1307         .exit_mmap = xen_exit_mmap,
1308
1309         .lazy_mode = {
1310                 .enter = paravirt_enter_lazy_mmu,
1311                 .leave = xen_leave_lazy,
1312         },
1313
1314         .set_fixmap = xen_set_fixmap,
1315 };
1316
1317 static void xen_reboot(int reason)
1318 {
1319         struct sched_shutdown r = { .reason = reason };
1320
1321 #ifdef CONFIG_SMP
1322         smp_send_stop();
1323 #endif
1324
1325         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1326                 BUG();
1327 }
1328
1329 static void xen_restart(char *msg)
1330 {
1331         xen_reboot(SHUTDOWN_reboot);
1332 }
1333
1334 static void xen_emergency_restart(void)
1335 {
1336         xen_reboot(SHUTDOWN_reboot);
1337 }
1338
1339 static void xen_machine_halt(void)
1340 {
1341         xen_reboot(SHUTDOWN_poweroff);
1342 }
1343
1344 static void xen_crash_shutdown(struct pt_regs *regs)
1345 {
1346         xen_reboot(SHUTDOWN_crash);
1347 }
1348
1349 static const struct machine_ops __initdata xen_machine_ops = {
1350         .restart = xen_restart,
1351         .halt = xen_machine_halt,
1352         .power_off = xen_machine_halt,
1353         .shutdown = xen_machine_halt,
1354         .crash_shutdown = xen_crash_shutdown,
1355         .emergency_restart = xen_emergency_restart,
1356 };
1357
1358
1359 static void __init xen_reserve_top(void)
1360 {
1361 #ifdef CONFIG_X86_32
1362         unsigned long top = HYPERVISOR_VIRT_START;
1363         struct xen_platform_parameters pp;
1364
1365         if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1366                 top = pp.virt_start;
1367
1368         reserve_top_address(-top + 2 * PAGE_SIZE);
1369 #endif  /* CONFIG_X86_32 */
1370 }
1371
1372 /*
1373  * Like __va(), but returns address in the kernel mapping (which is
1374  * all we have until the physical memory mapping has been set up.
1375  */
1376 static void *__ka(phys_addr_t paddr)
1377 {
1378 #ifdef CONFIG_X86_64
1379         return (void *)(paddr + __START_KERNEL_map);
1380 #else
1381         return __va(paddr);
1382 #endif
1383 }
1384
1385 /* Convert a machine address to physical address */
1386 static unsigned long m2p(phys_addr_t maddr)
1387 {
1388         phys_addr_t paddr;
1389
1390         maddr &= PTE_PFN_MASK;
1391         paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1392
1393         return paddr;
1394 }
1395
1396 /* Convert a machine address to kernel virtual */
1397 static void *m2v(phys_addr_t maddr)
1398 {
1399         return __ka(m2p(maddr));
1400 }
1401
1402 #ifdef CONFIG_X86_64
1403 static void walk(pgd_t *pgd, unsigned long addr)
1404 {
1405         unsigned l4idx = pgd_index(addr);
1406         unsigned l3idx = pud_index(addr);
1407         unsigned l2idx = pmd_index(addr);
1408         unsigned l1idx = pte_index(addr);
1409         pgd_t l4;
1410         pud_t l3;
1411         pmd_t l2;
1412         pte_t l1;
1413
1414         xen_raw_printk("walk %p, %lx -> %d %d %d %d\n",
1415                        pgd, addr, l4idx, l3idx, l2idx, l1idx);
1416
1417         l4 = pgd[l4idx];
1418         xen_raw_printk("  l4: %016lx\n", l4.pgd);
1419         xen_raw_printk("      %016lx\n", pgd_val(l4));
1420
1421         l3 = ((pud_t *)(m2v(l4.pgd)))[l3idx];
1422         xen_raw_printk("  l3: %016lx\n", l3.pud);
1423         xen_raw_printk("      %016lx\n", pud_val(l3));
1424
1425         l2 = ((pmd_t *)(m2v(l3.pud)))[l2idx];
1426         xen_raw_printk("  l2: %016lx\n", l2.pmd);
1427         xen_raw_printk("      %016lx\n", pmd_val(l2));
1428
1429         l1 = ((pte_t *)(m2v(l2.pmd)))[l1idx];
1430         xen_raw_printk("  l1: %016lx\n", l1.pte);
1431         xen_raw_printk("      %016lx\n", pte_val(l1));
1432 }
1433 #endif
1434
1435 static void set_page_prot(void *addr, pgprot_t prot)
1436 {
1437         unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1438         pte_t pte = pfn_pte(pfn, prot);
1439
1440         xen_raw_printk("addr=%p pfn=%lx mfn=%lx prot=%016llx pte=%016llx\n",
1441                        addr, pfn, get_phys_to_machine(pfn),
1442                        pgprot_val(prot), pte.pte);
1443
1444         if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1445                 BUG();
1446 }
1447
1448 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1449 {
1450         unsigned pmdidx, pteidx;
1451         unsigned ident_pte;
1452         unsigned long pfn;
1453
1454         ident_pte = 0;
1455         pfn = 0;
1456         for(pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1457                 pte_t *pte_page;
1458
1459                 /* Reuse or allocate a page of ptes */
1460                 if (pmd_present(pmd[pmdidx]))
1461                         pte_page = m2v(pmd[pmdidx].pmd);
1462                 else {
1463                         /* Check for free pte pages */
1464                         if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1465                                 break;
1466
1467                         pte_page = &level1_ident_pgt[ident_pte];
1468                         ident_pte += PTRS_PER_PTE;
1469
1470                         pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1471                 }
1472
1473                 /* Install mappings */
1474                 for(pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1475                         pte_t pte;
1476
1477                         if (pfn > max_pfn_mapped)
1478                                 max_pfn_mapped = pfn;
1479
1480                         if (!pte_none(pte_page[pteidx]))
1481                                 continue;
1482
1483                         pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1484                         pte_page[pteidx] = pte;
1485                 }
1486         }
1487
1488         for(pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1489                 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1490
1491         set_page_prot(pmd, PAGE_KERNEL_RO);
1492 }
1493
1494 #ifdef CONFIG_X86_64
1495 static void convert_pfn_mfn(void *v)
1496 {
1497         pte_t *pte = v;
1498         int i;
1499
1500         /* All levels are converted the same way, so just treat them
1501            as ptes. */
1502         for(i = 0; i < PTRS_PER_PTE; i++)
1503                 pte[i] = xen_make_pte(pte[i].pte);
1504 }
1505
1506 /*
1507  * Set up the inital kernel pagetable.
1508  *
1509  * We can construct this by grafting the Xen provided pagetable into
1510  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1511  * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1512  * means that only the kernel has a physical mapping to start with -
1513  * but that's enough to get __va working.  We need to fill in the rest
1514  * of the physical mapping once some sort of allocator has been set
1515  * up.
1516  */
1517 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1518 {
1519         pud_t *l3;
1520         pmd_t *l2;
1521
1522         /* Zap identity mapping */
1523         init_level4_pgt[0] = __pgd(0);
1524
1525         /* Pre-constructed entries are in pfn, so convert to mfn */
1526         convert_pfn_mfn(init_level4_pgt);
1527         convert_pfn_mfn(level3_ident_pgt);
1528         convert_pfn_mfn(level3_kernel_pgt);
1529
1530         l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1531         l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1532
1533         memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1534         memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1535
1536         l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1537         l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1538         memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1539
1540         /* Set up identity map */
1541         xen_map_identity_early(level2_ident_pgt, max_pfn);
1542
1543         /* Make pagetable pieces RO */
1544         set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1545         set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1546         set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1547         set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1548         set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1549         set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1550
1551         /* Pin down new L4 */
1552         pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1553                           PFN_DOWN(__pa_symbol(init_level4_pgt)));
1554
1555         /* Unpin Xen-provided one */
1556         pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1557
1558         /* Switch over */
1559         pgd = init_level4_pgt;
1560
1561         /*
1562          * At this stage there can be no user pgd, and no page
1563          * structure to attach it to, so make sure we just set kernel
1564          * pgd.
1565          */
1566         xen_mc_batch();
1567         __xen_write_cr3(true, __pa(pgd));
1568         xen_mc_issue(PARAVIRT_LAZY_CPU);
1569
1570         reserve_early(__pa(xen_start_info->pt_base),
1571                       __pa(xen_start_info->pt_base +
1572                            xen_start_info->nr_pt_frames * PAGE_SIZE),
1573                       "XEN PAGETABLES");
1574
1575         return pgd;
1576 }
1577 #else   /* !CONFIG_X86_64 */
1578 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1579
1580 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1581 {
1582         pmd_t *kernel_pmd;
1583
1584         init_pg_tables_start = __pa(pgd);
1585         init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1586         max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024);
1587
1588         kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1589         memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1590
1591         xen_map_identity_early(level2_kernel_pgt, max_pfn);
1592
1593         memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1594         set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1595                         __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1596
1597         set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1598         set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1599         set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1600
1601         pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1602
1603         xen_write_cr3(__pa(swapper_pg_dir));
1604
1605         pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1606
1607         return swapper_pg_dir;
1608 }
1609 #endif  /* CONFIG_X86_64 */
1610
1611 /* First C function to be called on Xen boot */
1612 asmlinkage void __init xen_start_kernel(void)
1613 {
1614         pgd_t *pgd;
1615
1616         if (!xen_start_info)
1617                 return;
1618
1619         xen_domain_type = XEN_PV_DOMAIN;
1620
1621         BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1622
1623         xen_setup_features();
1624
1625         /* Install Xen paravirt ops */
1626         pv_info = xen_info;
1627         pv_init_ops = xen_init_ops;
1628         pv_time_ops = xen_time_ops;
1629         pv_cpu_ops = xen_cpu_ops;
1630         pv_apic_ops = xen_apic_ops;
1631         pv_mmu_ops = xen_mmu_ops;
1632
1633         xen_init_irq_ops();
1634
1635         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1636                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1637                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1638         }
1639
1640         machine_ops = xen_machine_ops;
1641
1642 #ifdef CONFIG_X86_64
1643         /* Disable until direct per-cpu data access. */
1644         have_vcpu_info_placement = 0;
1645         x86_64_init_pda();
1646 #endif
1647
1648         xen_smp_init();
1649
1650         /* Get mfn list */
1651         if (!xen_feature(XENFEAT_auto_translated_physmap))
1652                 xen_build_dynamic_phys_to_machine();
1653
1654         pgd = (pgd_t *)xen_start_info->pt_base;
1655
1656         /* Prevent unwanted bits from being set in PTEs. */
1657         __supported_pte_mask &= ~_PAGE_GLOBAL;
1658         if (!xen_initial_domain())
1659                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1660
1661         /* Don't do the full vcpu_info placement stuff until we have a
1662            possible map and a non-dummy shared_info. */
1663         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1664
1665         xen_raw_console_write("mapping kernel into physical memory\n");
1666         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1667
1668         init_mm.pgd = pgd;
1669
1670         /* keep using Xen gdt for now; no urgent need to change it */
1671
1672         pv_info.kernel_rpl = 1;
1673         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1674                 pv_info.kernel_rpl = 0;
1675
1676         /* set the limit of our address space */
1677         xen_reserve_top();
1678
1679 #ifdef CONFIG_X86_32
1680         /* set up basic CPUID stuff */
1681         cpu_detect(&new_cpu_data);
1682         new_cpu_data.hard_math = 1;
1683         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1684 #endif
1685
1686         /* Poke various useful things into boot_params */
1687         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1688         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1689                 ? __pa(xen_start_info->mod_start) : 0;
1690         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1691         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1692
1693         if (!xen_initial_domain()) {
1694                 add_preferred_console("xenboot", 0, NULL);
1695                 add_preferred_console("tty", 0, NULL);
1696                 add_preferred_console("hvc", 0, NULL);
1697         }
1698
1699         xen_raw_console_write("about to get started...\n");
1700
1701 #if 0
1702         xen_raw_printk("&boot_params=%p __pa(&boot_params)=%lx __va(__pa(&boot_params))=%lx\n",
1703                        &boot_params, __pa_symbol(&boot_params),
1704                        __va(__pa_symbol(&boot_params)));
1705
1706         walk(pgd, &boot_params);
1707         walk(pgd, __va(__pa(&boot_params)));
1708 #endif
1709
1710         /* Start the world */
1711 #ifdef CONFIG_X86_32
1712         i386_start_kernel();
1713 #else
1714         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1715 #endif
1716 }