]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/x86/xen/enlighten.c
x86/paravirt/xen: properly fill out the ldt ops
[linux-2.6-omap-h63xx.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
29
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/interface/sched.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36 #include <xen/hvc-console.h>
37
38 #include <asm/paravirt.h>
39 #include <asm/page.h>
40 #include <asm/xen/hypercall.h>
41 #include <asm/xen/hypervisor.h>
42 #include <asm/fixmap.h>
43 #include <asm/processor.h>
44 #include <asm/msr-index.h>
45 #include <asm/setup.h>
46 #include <asm/desc.h>
47 #include <asm/pgtable.h>
48 #include <asm/tlbflush.h>
49 #include <asm/reboot.h>
50
51 #include "xen-ops.h"
52 #include "mmu.h"
53 #include "multicalls.h"
54
55 EXPORT_SYMBOL_GPL(hypercall_page);
56
57 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
58 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
59
60 /*
61  * Identity map, in addition to plain kernel map.  This needs to be
62  * large enough to allocate page table pages to allocate the rest.
63  * Each page can map 2MB.
64  */
65 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
66
67 #ifdef CONFIG_X86_64
68 /* l3 pud for userspace vsyscall mapping */
69 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
70 #endif /* CONFIG_X86_64 */
71
72 /*
73  * Note about cr3 (pagetable base) values:
74  *
75  * xen_cr3 contains the current logical cr3 value; it contains the
76  * last set cr3.  This may not be the current effective cr3, because
77  * its update may be being lazily deferred.  However, a vcpu looking
78  * at its own cr3 can use this value knowing that it everything will
79  * be self-consistent.
80  *
81  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
82  * hypercall to set the vcpu cr3 is complete (so it may be a little
83  * out of date, but it will never be set early).  If one vcpu is
84  * looking at another vcpu's cr3 value, it should use this variable.
85  */
86 DEFINE_PER_CPU(unsigned long, xen_cr3);  /* cr3 stored as physaddr */
87 DEFINE_PER_CPU(unsigned long, xen_current_cr3);  /* actual vcpu cr3 */
88
89 struct start_info *xen_start_info;
90 EXPORT_SYMBOL_GPL(xen_start_info);
91
92 struct shared_info xen_dummy_shared_info;
93
94 /*
95  * Point at some empty memory to start with. We map the real shared_info
96  * page as soon as fixmap is up and running.
97  */
98 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
99
100 /*
101  * Flag to determine whether vcpu info placement is available on all
102  * VCPUs.  We assume it is to start with, and then set it to zero on
103  * the first failure.  This is because it can succeed on some VCPUs
104  * and not others, since it can involve hypervisor memory allocation,
105  * or because the guest failed to guarantee all the appropriate
106  * constraints on all VCPUs (ie buffer can't cross a page boundary).
107  *
108  * Note that any particular CPU may be using a placed vcpu structure,
109  * but we can only optimise if the all are.
110  *
111  * 0: not available, 1: available
112  */
113 static int have_vcpu_info_placement = 1;
114
115 static void xen_vcpu_setup(int cpu)
116 {
117         struct vcpu_register_vcpu_info info;
118         int err;
119         struct vcpu_info *vcpup;
120
121         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
122         per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
123
124         if (!have_vcpu_info_placement)
125                 return;         /* already tested, not available */
126
127         vcpup = &per_cpu(xen_vcpu_info, cpu);
128
129         info.mfn = virt_to_mfn(vcpup);
130         info.offset = offset_in_page(vcpup);
131
132         printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
133                cpu, vcpup, info.mfn, info.offset);
134
135         /* Check to see if the hypervisor will put the vcpu_info
136            structure where we want it, which allows direct access via
137            a percpu-variable. */
138         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
139
140         if (err) {
141                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
142                 have_vcpu_info_placement = 0;
143         } else {
144                 /* This cpu is using the registered vcpu info, even if
145                    later ones fail to. */
146                 per_cpu(xen_vcpu, cpu) = vcpup;
147
148                 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
149                        cpu, vcpup);
150         }
151 }
152
153 /*
154  * On restore, set the vcpu placement up again.
155  * If it fails, then we're in a bad state, since
156  * we can't back out from using it...
157  */
158 void xen_vcpu_restore(void)
159 {
160         if (have_vcpu_info_placement) {
161                 int cpu;
162
163                 for_each_online_cpu(cpu) {
164                         bool other_cpu = (cpu != smp_processor_id());
165
166                         if (other_cpu &&
167                             HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
168                                 BUG();
169
170                         xen_vcpu_setup(cpu);
171
172                         if (other_cpu &&
173                             HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
174                                 BUG();
175                 }
176
177                 BUG_ON(!have_vcpu_info_placement);
178         }
179 }
180
181 static void __init xen_banner(void)
182 {
183         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
184         struct xen_extraversion extra;
185         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
186
187         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
188                pv_info.name);
189         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
190                version >> 16, version & 0xffff, extra.extraversion,
191                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
192 }
193
194 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
195                       unsigned int *cx, unsigned int *dx)
196 {
197         unsigned maskedx = ~0;
198
199         /*
200          * Mask out inconvenient features, to try and disable as many
201          * unsupported kernel subsystems as possible.
202          */
203         if (*ax == 1)
204                 maskedx = ~((1 << X86_FEATURE_APIC) |  /* disable APIC */
205                             (1 << X86_FEATURE_ACPI) |  /* disable ACPI */
206                             (1 << X86_FEATURE_MCE)  |  /* disable MCE */
207                             (1 << X86_FEATURE_MCA)  |  /* disable MCA */
208                             (1 << X86_FEATURE_ACC));   /* thermal monitoring */
209
210         asm(XEN_EMULATE_PREFIX "cpuid"
211                 : "=a" (*ax),
212                   "=b" (*bx),
213                   "=c" (*cx),
214                   "=d" (*dx)
215                 : "0" (*ax), "2" (*cx));
216         *dx &= maskedx;
217 }
218
219 static void xen_set_debugreg(int reg, unsigned long val)
220 {
221         HYPERVISOR_set_debugreg(reg, val);
222 }
223
224 static unsigned long xen_get_debugreg(int reg)
225 {
226         return HYPERVISOR_get_debugreg(reg);
227 }
228
229 static unsigned long xen_save_fl(void)
230 {
231         struct vcpu_info *vcpu;
232         unsigned long flags;
233
234         vcpu = x86_read_percpu(xen_vcpu);
235
236         /* flag has opposite sense of mask */
237         flags = !vcpu->evtchn_upcall_mask;
238
239         /* convert to IF type flag
240            -0 -> 0x00000000
241            -1 -> 0xffffffff
242         */
243         return (-flags) & X86_EFLAGS_IF;
244 }
245
246 static void xen_restore_fl(unsigned long flags)
247 {
248         struct vcpu_info *vcpu;
249
250         /* convert from IF type flag */
251         flags = !(flags & X86_EFLAGS_IF);
252
253         /* There's a one instruction preempt window here.  We need to
254            make sure we're don't switch CPUs between getting the vcpu
255            pointer and updating the mask. */
256         preempt_disable();
257         vcpu = x86_read_percpu(xen_vcpu);
258         vcpu->evtchn_upcall_mask = flags;
259         preempt_enable_no_resched();
260
261         /* Doesn't matter if we get preempted here, because any
262            pending event will get dealt with anyway. */
263
264         if (flags == 0) {
265                 preempt_check_resched();
266                 barrier(); /* unmask then check (avoid races) */
267                 if (unlikely(vcpu->evtchn_upcall_pending))
268                         force_evtchn_callback();
269         }
270 }
271
272 static void xen_irq_disable(void)
273 {
274         /* There's a one instruction preempt window here.  We need to
275            make sure we're don't switch CPUs between getting the vcpu
276            pointer and updating the mask. */
277         preempt_disable();
278         x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
279         preempt_enable_no_resched();
280 }
281
282 static void xen_irq_enable(void)
283 {
284         struct vcpu_info *vcpu;
285
286         /* We don't need to worry about being preempted here, since
287            either a) interrupts are disabled, so no preemption, or b)
288            the caller is confused and is trying to re-enable interrupts
289            on an indeterminate processor. */
290
291         vcpu = x86_read_percpu(xen_vcpu);
292         vcpu->evtchn_upcall_mask = 0;
293
294         /* Doesn't matter if we get preempted here, because any
295            pending event will get dealt with anyway. */
296
297         barrier(); /* unmask then check (avoid races) */
298         if (unlikely(vcpu->evtchn_upcall_pending))
299                 force_evtchn_callback();
300 }
301
302 static void xen_safe_halt(void)
303 {
304         /* Blocking includes an implicit local_irq_enable(). */
305         if (HYPERVISOR_sched_op(SCHEDOP_block, NULL) != 0)
306                 BUG();
307 }
308
309 static void xen_halt(void)
310 {
311         if (irqs_disabled())
312                 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
313         else
314                 xen_safe_halt();
315 }
316
317 static void xen_leave_lazy(void)
318 {
319         paravirt_leave_lazy(paravirt_get_lazy_mode());
320         xen_mc_flush();
321 }
322
323 static unsigned long xen_store_tr(void)
324 {
325         return 0;
326 }
327
328 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
329 {
330         unsigned pages = roundup(entries * LDT_ENTRY_SIZE, PAGE_SIZE);
331         void *v = ldt;
332         int i;
333
334         for(i = 0; i < pages; i += PAGE_SIZE)
335                 make_lowmem_page_readonly(v + i);
336 }
337
338 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
339 {
340         unsigned pages = roundup(entries * LDT_ENTRY_SIZE, PAGE_SIZE);
341         void *v = ldt;
342         int i;
343
344         for(i = 0; i < pages; i += PAGE_SIZE)
345                 make_lowmem_page_readwrite(v + i);
346 }
347
348 static void xen_set_ldt(const void *addr, unsigned entries)
349 {
350         struct mmuext_op *op;
351         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
352
353         op = mcs.args;
354         op->cmd = MMUEXT_SET_LDT;
355         op->arg1.linear_addr = (unsigned long)addr;
356         op->arg2.nr_ents = entries;
357
358         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
359
360         xen_mc_issue(PARAVIRT_LAZY_CPU);
361 }
362
363 static void xen_load_gdt(const struct desc_ptr *dtr)
364 {
365         unsigned long *frames;
366         unsigned long va = dtr->address;
367         unsigned int size = dtr->size + 1;
368         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
369         int f;
370         struct multicall_space mcs;
371
372         /* A GDT can be up to 64k in size, which corresponds to 8192
373            8-byte entries, or 16 4k pages.. */
374
375         BUG_ON(size > 65536);
376         BUG_ON(va & ~PAGE_MASK);
377
378         mcs = xen_mc_entry(sizeof(*frames) * pages);
379         frames = mcs.args;
380
381         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
382                 frames[f] = virt_to_mfn(va);
383                 make_lowmem_page_readonly((void *)va);
384         }
385
386         MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
387
388         xen_mc_issue(PARAVIRT_LAZY_CPU);
389 }
390
391 static void load_TLS_descriptor(struct thread_struct *t,
392                                 unsigned int cpu, unsigned int i)
393 {
394         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
395         xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
396         struct multicall_space mc = __xen_mc_entry(0);
397
398         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
399 }
400
401 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
402 {
403         /*
404          * XXX sleazy hack: If we're being called in a lazy-cpu zone,
405          * it means we're in a context switch, and %gs has just been
406          * saved.  This means we can zero it out to prevent faults on
407          * exit from the hypervisor if the next process has no %gs.
408          * Either way, it has been saved, and the new value will get
409          * loaded properly.  This will go away as soon as Xen has been
410          * modified to not save/restore %gs for normal hypercalls.
411          *
412          * On x86_64, this hack is not used for %gs, because gs points
413          * to KERNEL_GS_BASE (and uses it for PDA references), so we
414          * must not zero %gs on x86_64
415          *
416          * For x86_64, we need to zero %fs, otherwise we may get an
417          * exception between the new %fs descriptor being loaded and
418          * %fs being effectively cleared at __switch_to().
419          */
420         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
421 #ifdef CONFIG_X86_32
422                 loadsegment(gs, 0);
423 #else
424                 loadsegment(fs, 0);
425 #endif
426         }
427
428         xen_mc_batch();
429
430         load_TLS_descriptor(t, cpu, 0);
431         load_TLS_descriptor(t, cpu, 1);
432         load_TLS_descriptor(t, cpu, 2);
433
434         xen_mc_issue(PARAVIRT_LAZY_CPU);
435 }
436
437 #ifdef CONFIG_X86_64
438 static void xen_load_gs_index(unsigned int idx)
439 {
440         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
441                 BUG();
442 }
443 #endif
444
445 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
446                                 const void *ptr)
447 {
448         unsigned long lp = (unsigned long)&dt[entrynum];
449         xmaddr_t mach_lp = virt_to_machine(lp);
450         u64 entry = *(u64 *)ptr;
451
452         preempt_disable();
453
454         xen_mc_flush();
455         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
456                 BUG();
457
458         preempt_enable();
459 }
460
461 static int cvt_gate_to_trap(int vector, const gate_desc *val,
462                             struct trap_info *info)
463 {
464         if (val->type != 0xf && val->type != 0xe)
465                 return 0;
466
467         info->vector = vector;
468         info->address = gate_offset(*val);
469         info->cs = gate_segment(*val);
470         info->flags = val->dpl;
471         /* interrupt gates clear IF */
472         if (val->type == 0xe)
473                 info->flags |= 4;
474
475         return 1;
476 }
477
478 /* Locations of each CPU's IDT */
479 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
480
481 /* Set an IDT entry.  If the entry is part of the current IDT, then
482    also update Xen. */
483 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
484 {
485         unsigned long p = (unsigned long)&dt[entrynum];
486         unsigned long start, end;
487
488         preempt_disable();
489
490         start = __get_cpu_var(idt_desc).address;
491         end = start + __get_cpu_var(idt_desc).size + 1;
492
493         xen_mc_flush();
494
495         native_write_idt_entry(dt, entrynum, g);
496
497         if (p >= start && (p + 8) <= end) {
498                 struct trap_info info[2];
499
500                 info[1].address = 0;
501
502                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
503                         if (HYPERVISOR_set_trap_table(info))
504                                 BUG();
505         }
506
507         preempt_enable();
508 }
509
510 static void xen_convert_trap_info(const struct desc_ptr *desc,
511                                   struct trap_info *traps)
512 {
513         unsigned in, out, count;
514
515         count = (desc->size+1) / sizeof(gate_desc);
516         BUG_ON(count > 256);
517
518         for (in = out = 0; in < count; in++) {
519                 gate_desc *entry = (gate_desc*)(desc->address) + in;
520
521                 if (cvt_gate_to_trap(in, entry, &traps[out]))
522                         out++;
523         }
524         traps[out].address = 0;
525 }
526
527 void xen_copy_trap_info(struct trap_info *traps)
528 {
529         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
530
531         xen_convert_trap_info(desc, traps);
532 }
533
534 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
535    hold a spinlock to protect the static traps[] array (static because
536    it avoids allocation, and saves stack space). */
537 static void xen_load_idt(const struct desc_ptr *desc)
538 {
539         static DEFINE_SPINLOCK(lock);
540         static struct trap_info traps[257];
541
542         spin_lock(&lock);
543
544         __get_cpu_var(idt_desc) = *desc;
545
546         xen_convert_trap_info(desc, traps);
547
548         xen_mc_flush();
549         if (HYPERVISOR_set_trap_table(traps))
550                 BUG();
551
552         spin_unlock(&lock);
553 }
554
555 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
556    they're handled differently. */
557 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
558                                 const void *desc, int type)
559 {
560         preempt_disable();
561
562         switch (type) {
563         case DESC_LDT:
564         case DESC_TSS:
565                 /* ignore */
566                 break;
567
568         default: {
569                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
570
571                 xen_mc_flush();
572                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
573                         BUG();
574         }
575
576         }
577
578         preempt_enable();
579 }
580
581 static void xen_load_sp0(struct tss_struct *tss,
582                           struct thread_struct *thread)
583 {
584         struct multicall_space mcs = xen_mc_entry(0);
585         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
586         xen_mc_issue(PARAVIRT_LAZY_CPU);
587 }
588
589 static void xen_set_iopl_mask(unsigned mask)
590 {
591         struct physdev_set_iopl set_iopl;
592
593         /* Force the change at ring 0. */
594         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
595         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
596 }
597
598 static void xen_io_delay(void)
599 {
600 }
601
602 #ifdef CONFIG_X86_LOCAL_APIC
603 static u32 xen_apic_read(unsigned long reg)
604 {
605         return 0;
606 }
607
608 static void xen_apic_write(unsigned long reg, u32 val)
609 {
610         /* Warn to see if there's any stray references */
611         WARN_ON(1);
612 }
613 #endif
614
615 static void xen_flush_tlb(void)
616 {
617         struct mmuext_op *op;
618         struct multicall_space mcs;
619
620         preempt_disable();
621
622         mcs = xen_mc_entry(sizeof(*op));
623
624         op = mcs.args;
625         op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
626         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
627
628         xen_mc_issue(PARAVIRT_LAZY_MMU);
629
630         preempt_enable();
631 }
632
633 static void xen_flush_tlb_single(unsigned long addr)
634 {
635         struct mmuext_op *op;
636         struct multicall_space mcs;
637
638         preempt_disable();
639
640         mcs = xen_mc_entry(sizeof(*op));
641         op = mcs.args;
642         op->cmd = MMUEXT_INVLPG_LOCAL;
643         op->arg1.linear_addr = addr & PAGE_MASK;
644         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
645
646         xen_mc_issue(PARAVIRT_LAZY_MMU);
647
648         preempt_enable();
649 }
650
651 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
652                                  unsigned long va)
653 {
654         struct {
655                 struct mmuext_op op;
656                 cpumask_t mask;
657         } *args;
658         cpumask_t cpumask = *cpus;
659         struct multicall_space mcs;
660
661         /*
662          * A couple of (to be removed) sanity checks:
663          *
664          * - current CPU must not be in mask
665          * - mask must exist :)
666          */
667         BUG_ON(cpus_empty(cpumask));
668         BUG_ON(cpu_isset(smp_processor_id(), cpumask));
669         BUG_ON(!mm);
670
671         /* If a CPU which we ran on has gone down, OK. */
672         cpus_and(cpumask, cpumask, cpu_online_map);
673         if (cpus_empty(cpumask))
674                 return;
675
676         mcs = xen_mc_entry(sizeof(*args));
677         args = mcs.args;
678         args->mask = cpumask;
679         args->op.arg2.vcpumask = &args->mask;
680
681         if (va == TLB_FLUSH_ALL) {
682                 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
683         } else {
684                 args->op.cmd = MMUEXT_INVLPG_MULTI;
685                 args->op.arg1.linear_addr = va;
686         }
687
688         MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
689
690         xen_mc_issue(PARAVIRT_LAZY_MMU);
691 }
692
693 static void xen_clts(void)
694 {
695         struct multicall_space mcs;
696
697         mcs = xen_mc_entry(0);
698
699         MULTI_fpu_taskswitch(mcs.mc, 0);
700
701         xen_mc_issue(PARAVIRT_LAZY_CPU);
702 }
703
704 static void xen_write_cr0(unsigned long cr0)
705 {
706         struct multicall_space mcs;
707
708         /* Only pay attention to cr0.TS; everything else is
709            ignored. */
710         mcs = xen_mc_entry(0);
711
712         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
713
714         xen_mc_issue(PARAVIRT_LAZY_CPU);
715 }
716
717 static void xen_write_cr2(unsigned long cr2)
718 {
719         x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
720 }
721
722 static unsigned long xen_read_cr2(void)
723 {
724         return x86_read_percpu(xen_vcpu)->arch.cr2;
725 }
726
727 static unsigned long xen_read_cr2_direct(void)
728 {
729         return x86_read_percpu(xen_vcpu_info.arch.cr2);
730 }
731
732 static void xen_write_cr4(unsigned long cr4)
733 {
734         cr4 &= ~X86_CR4_PGE;
735         cr4 &= ~X86_CR4_PSE;
736
737         native_write_cr4(cr4);
738 }
739
740 static unsigned long xen_read_cr3(void)
741 {
742         return x86_read_percpu(xen_cr3);
743 }
744
745 static void set_current_cr3(void *v)
746 {
747         x86_write_percpu(xen_current_cr3, (unsigned long)v);
748 }
749
750 static void __xen_write_cr3(bool kernel, unsigned long cr3)
751 {
752         struct mmuext_op *op;
753         struct multicall_space mcs;
754         unsigned long mfn;
755
756         if (cr3)
757                 mfn = pfn_to_mfn(PFN_DOWN(cr3));
758         else
759                 mfn = 0;
760
761         WARN_ON(mfn == 0 && kernel);
762
763         mcs = __xen_mc_entry(sizeof(*op));
764
765         op = mcs.args;
766         op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
767         op->arg1.mfn = mfn;
768
769         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
770
771         if (kernel) {
772                 x86_write_percpu(xen_cr3, cr3);
773
774                 /* Update xen_current_cr3 once the batch has actually
775                    been submitted. */
776                 xen_mc_callback(set_current_cr3, (void *)cr3);
777         }
778 }
779
780 static void xen_write_cr3(unsigned long cr3)
781 {
782         BUG_ON(preemptible());
783
784         xen_mc_batch();  /* disables interrupts */
785
786         /* Update while interrupts are disabled, so its atomic with
787            respect to ipis */
788         x86_write_percpu(xen_cr3, cr3);
789
790         __xen_write_cr3(true, cr3);
791
792 #ifdef CONFIG_X86_64
793         {
794                 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
795                 if (user_pgd)
796                         __xen_write_cr3(false, __pa(user_pgd));
797                 else
798                         __xen_write_cr3(false, 0);
799         }
800 #endif
801
802         xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
803 }
804
805 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
806 {
807         int ret;
808
809         ret = 0;
810
811         switch(msr) {
812 #ifdef CONFIG_X86_64
813                 unsigned which;
814                 u64 base;
815
816         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
817         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
818         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
819
820         set:
821                 base = ((u64)high << 32) | low;
822                 if (HYPERVISOR_set_segment_base(which, base) != 0)
823                         ret = -EFAULT;
824                 break;
825 #endif
826         default:
827                 ret = native_write_msr_safe(msr, low, high);
828         }
829
830         return ret;
831 }
832
833 /* Early in boot, while setting up the initial pagetable, assume
834    everything is pinned. */
835 static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
836 {
837 #ifdef CONFIG_FLATMEM
838         BUG_ON(mem_map);        /* should only be used early */
839 #endif
840         make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
841 }
842
843 /* Early release_pte assumes that all pts are pinned, since there's
844    only init_mm and anything attached to that is pinned. */
845 static void xen_release_pte_init(u32 pfn)
846 {
847         make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
848 }
849
850 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
851 {
852         struct mmuext_op op;
853         op.cmd = cmd;
854         op.arg1.mfn = pfn_to_mfn(pfn);
855         if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
856                 BUG();
857 }
858
859 /* This needs to make sure the new pte page is pinned iff its being
860    attached to a pinned pagetable. */
861 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
862 {
863         struct page *page = pfn_to_page(pfn);
864
865         if (PagePinned(virt_to_page(mm->pgd))) {
866                 SetPagePinned(page);
867
868                 if (!PageHighMem(page)) {
869                         make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
870                         if (level == PT_PTE)
871                                 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
872                 } else
873                         /* make sure there are no stray mappings of
874                            this page */
875                         kmap_flush_unused();
876         }
877 }
878
879 static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
880 {
881         xen_alloc_ptpage(mm, pfn, PT_PTE);
882 }
883
884 static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
885 {
886         xen_alloc_ptpage(mm, pfn, PT_PMD);
887 }
888
889 static int xen_pgd_alloc(struct mm_struct *mm)
890 {
891         pgd_t *pgd = mm->pgd;
892         int ret = 0;
893
894         BUG_ON(PagePinned(virt_to_page(pgd)));
895
896 #ifdef CONFIG_X86_64
897         {
898                 struct page *page = virt_to_page(pgd);
899                 pgd_t *user_pgd;
900
901                 BUG_ON(page->private != 0);
902
903                 ret = -ENOMEM;
904
905                 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
906                 page->private = (unsigned long)user_pgd;
907
908                 if (user_pgd != NULL) {
909                         user_pgd[pgd_index(VSYSCALL_START)] =
910                                 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
911                         ret = 0;
912                 }
913
914                 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
915         }
916 #endif
917
918         return ret;
919 }
920
921 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
922 {
923 #ifdef CONFIG_X86_64
924         pgd_t *user_pgd = xen_get_user_pgd(pgd);
925
926         if (user_pgd)
927                 free_page((unsigned long)user_pgd);
928 #endif
929 }
930
931 /* This should never happen until we're OK to use struct page */
932 static void xen_release_ptpage(u32 pfn, unsigned level)
933 {
934         struct page *page = pfn_to_page(pfn);
935
936         if (PagePinned(page)) {
937                 if (!PageHighMem(page)) {
938                         if (level == PT_PTE)
939                                 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
940                         make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
941                 }
942                 ClearPagePinned(page);
943         }
944 }
945
946 static void xen_release_pte(u32 pfn)
947 {
948         xen_release_ptpage(pfn, PT_PTE);
949 }
950
951 static void xen_release_pmd(u32 pfn)
952 {
953         xen_release_ptpage(pfn, PT_PMD);
954 }
955
956 #if PAGETABLE_LEVELS == 4
957 static void xen_alloc_pud(struct mm_struct *mm, u32 pfn)
958 {
959         xen_alloc_ptpage(mm, pfn, PT_PUD);
960 }
961
962 static void xen_release_pud(u32 pfn)
963 {
964         xen_release_ptpage(pfn, PT_PUD);
965 }
966 #endif
967
968 #ifdef CONFIG_HIGHPTE
969 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
970 {
971         pgprot_t prot = PAGE_KERNEL;
972
973         if (PagePinned(page))
974                 prot = PAGE_KERNEL_RO;
975
976         if (0 && PageHighMem(page))
977                 printk("mapping highpte %lx type %d prot %s\n",
978                        page_to_pfn(page), type,
979                        (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
980
981         return kmap_atomic_prot(page, type, prot);
982 }
983 #endif
984
985 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
986 {
987         /* If there's an existing pte, then don't allow _PAGE_RW to be set */
988         if (pte_val_ma(*ptep) & _PAGE_PRESENT)
989                 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
990                                pte_val_ma(pte));
991
992         return pte;
993 }
994
995 /* Init-time set_pte while constructing initial pagetables, which
996    doesn't allow RO pagetable pages to be remapped RW */
997 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
998 {
999         pte = mask_rw_pte(ptep, pte);
1000
1001         xen_set_pte(ptep, pte);
1002 }
1003
1004 static __init void xen_pagetable_setup_start(pgd_t *base)
1005 {
1006 }
1007
1008 void xen_setup_shared_info(void)
1009 {
1010         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1011                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1012                            xen_start_info->shared_info);
1013
1014                 HYPERVISOR_shared_info =
1015                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1016         } else
1017                 HYPERVISOR_shared_info =
1018                         (struct shared_info *)__va(xen_start_info->shared_info);
1019
1020 #ifndef CONFIG_SMP
1021         /* In UP this is as good a place as any to set up shared info */
1022         xen_setup_vcpu_info_placement();
1023 #endif
1024
1025         xen_setup_mfn_list_list();
1026 }
1027
1028 static __init void xen_pagetable_setup_done(pgd_t *base)
1029 {
1030         xen_setup_shared_info();
1031 }
1032
1033 static __init void xen_post_allocator_init(void)
1034 {
1035         pv_mmu_ops.set_pte = xen_set_pte;
1036         pv_mmu_ops.set_pmd = xen_set_pmd;
1037         pv_mmu_ops.set_pud = xen_set_pud;
1038 #if PAGETABLE_LEVELS == 4
1039         pv_mmu_ops.set_pgd = xen_set_pgd;
1040 #endif
1041
1042         /* This will work as long as patching hasn't happened yet
1043            (which it hasn't) */
1044         pv_mmu_ops.alloc_pte = xen_alloc_pte;
1045         pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1046         pv_mmu_ops.release_pte = xen_release_pte;
1047         pv_mmu_ops.release_pmd = xen_release_pmd;
1048 #if PAGETABLE_LEVELS == 4
1049         pv_mmu_ops.alloc_pud = xen_alloc_pud;
1050         pv_mmu_ops.release_pud = xen_release_pud;
1051 #endif
1052
1053 #ifdef CONFIG_X86_64
1054         SetPagePinned(virt_to_page(level3_user_vsyscall));
1055 #endif
1056         xen_mark_init_mm_pinned();
1057 }
1058
1059 /* This is called once we have the cpu_possible_map */
1060 void xen_setup_vcpu_info_placement(void)
1061 {
1062         int cpu;
1063
1064         for_each_possible_cpu(cpu)
1065                 xen_vcpu_setup(cpu);
1066
1067         /* xen_vcpu_setup managed to place the vcpu_info within the
1068            percpu area for all cpus, so make use of it */
1069 #ifdef CONFIG_X86_32
1070         if (have_vcpu_info_placement) {
1071                 printk(KERN_INFO "Xen: using vcpu_info placement\n");
1072
1073                 pv_irq_ops.save_fl = xen_save_fl_direct;
1074                 pv_irq_ops.restore_fl = xen_restore_fl_direct;
1075                 pv_irq_ops.irq_disable = xen_irq_disable_direct;
1076                 pv_irq_ops.irq_enable = xen_irq_enable_direct;
1077                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1078         }
1079 #endif
1080 }
1081
1082 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1083                           unsigned long addr, unsigned len)
1084 {
1085         char *start, *end, *reloc;
1086         unsigned ret;
1087
1088         start = end = reloc = NULL;
1089
1090 #define SITE(op, x)                                                     \
1091         case PARAVIRT_PATCH(op.x):                                      \
1092         if (have_vcpu_info_placement) {                                 \
1093                 start = (char *)xen_##x##_direct;                       \
1094                 end = xen_##x##_direct_end;                             \
1095                 reloc = xen_##x##_direct_reloc;                         \
1096         }                                                               \
1097         goto patch_site
1098
1099         switch (type) {
1100 #ifdef CONFIG_X86_32
1101                 SITE(pv_irq_ops, irq_enable);
1102                 SITE(pv_irq_ops, irq_disable);
1103                 SITE(pv_irq_ops, save_fl);
1104                 SITE(pv_irq_ops, restore_fl);
1105 #endif /* CONFIG_X86_32 */
1106 #undef SITE
1107
1108         patch_site:
1109                 if (start == NULL || (end-start) > len)
1110                         goto default_patch;
1111
1112                 ret = paravirt_patch_insns(insnbuf, len, start, end);
1113
1114                 /* Note: because reloc is assigned from something that
1115                    appears to be an array, gcc assumes it's non-null,
1116                    but doesn't know its relationship with start and
1117                    end. */
1118                 if (reloc > start && reloc < end) {
1119                         int reloc_off = reloc - start;
1120                         long *relocp = (long *)(insnbuf + reloc_off);
1121                         long delta = start - (char *)addr;
1122
1123                         *relocp += delta;
1124                 }
1125                 break;
1126
1127         default_patch:
1128         default:
1129                 ret = paravirt_patch_default(type, clobbers, insnbuf,
1130                                              addr, len);
1131                 break;
1132         }
1133
1134         return ret;
1135 }
1136
1137 static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
1138 {
1139         pte_t pte;
1140
1141         phys >>= PAGE_SHIFT;
1142
1143         switch (idx) {
1144         case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1145 #ifdef CONFIG_X86_F00F_BUG
1146         case FIX_F00F_IDT:
1147 #endif
1148 #ifdef CONFIG_X86_32
1149         case FIX_WP_TEST:
1150         case FIX_VDSO:
1151 # ifdef CONFIG_HIGHMEM
1152         case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1153 # endif
1154 #else
1155         case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1156 #endif
1157 #ifdef CONFIG_X86_LOCAL_APIC
1158         case FIX_APIC_BASE:     /* maps dummy local APIC */
1159 #endif
1160                 pte = pfn_pte(phys, prot);
1161                 break;
1162
1163         default:
1164                 pte = mfn_pte(phys, prot);
1165                 break;
1166         }
1167
1168         __native_set_fixmap(idx, pte);
1169
1170 #ifdef CONFIG_X86_64
1171         /* Replicate changes to map the vsyscall page into the user
1172            pagetable vsyscall mapping. */
1173         if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1174                 unsigned long vaddr = __fix_to_virt(idx);
1175                 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1176         }
1177 #endif
1178 }
1179
1180 static const struct pv_info xen_info __initdata = {
1181         .paravirt_enabled = 1,
1182         .shared_kernel_pmd = 0,
1183
1184         .name = "Xen",
1185 };
1186
1187 static const struct pv_init_ops xen_init_ops __initdata = {
1188         .patch = xen_patch,
1189
1190         .banner = xen_banner,
1191         .memory_setup = xen_memory_setup,
1192         .arch_setup = xen_arch_setup,
1193         .post_allocator_init = xen_post_allocator_init,
1194 };
1195
1196 static const struct pv_time_ops xen_time_ops __initdata = {
1197         .time_init = xen_time_init,
1198
1199         .set_wallclock = xen_set_wallclock,
1200         .get_wallclock = xen_get_wallclock,
1201         .get_tsc_khz = xen_tsc_khz,
1202         .sched_clock = xen_sched_clock,
1203 };
1204
1205 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
1206         .cpuid = xen_cpuid,
1207
1208         .set_debugreg = xen_set_debugreg,
1209         .get_debugreg = xen_get_debugreg,
1210
1211         .clts = xen_clts,
1212
1213         .read_cr0 = native_read_cr0,
1214         .write_cr0 = xen_write_cr0,
1215
1216         .read_cr4 = native_read_cr4,
1217         .read_cr4_safe = native_read_cr4_safe,
1218         .write_cr4 = xen_write_cr4,
1219
1220         .wbinvd = native_wbinvd,
1221
1222         .read_msr = native_read_msr_safe,
1223         .write_msr = xen_write_msr_safe,
1224         .read_tsc = native_read_tsc,
1225         .read_pmc = native_read_pmc,
1226
1227         .iret = xen_iret,
1228         .irq_enable_sysexit = xen_sysexit,
1229 #ifdef CONFIG_X86_64
1230         .usergs_sysret32 = xen_sysret32,
1231         .usergs_sysret64 = xen_sysret64,
1232 #endif
1233
1234         .load_tr_desc = paravirt_nop,
1235         .set_ldt = xen_set_ldt,
1236         .load_gdt = xen_load_gdt,
1237         .load_idt = xen_load_idt,
1238         .load_tls = xen_load_tls,
1239 #ifdef CONFIG_X86_64
1240         .load_gs_index = xen_load_gs_index,
1241 #endif
1242
1243         .alloc_ldt = xen_alloc_ldt,
1244         .free_ldt = xen_free_ldt,
1245
1246         .store_gdt = native_store_gdt,
1247         .store_idt = native_store_idt,
1248         .store_tr = xen_store_tr,
1249
1250         .write_ldt_entry = xen_write_ldt_entry,
1251         .write_gdt_entry = xen_write_gdt_entry,
1252         .write_idt_entry = xen_write_idt_entry,
1253         .load_sp0 = xen_load_sp0,
1254
1255         .set_iopl_mask = xen_set_iopl_mask,
1256         .io_delay = xen_io_delay,
1257
1258         /* Xen takes care of %gs when switching to usermode for us */
1259         .swapgs = paravirt_nop,
1260
1261         .lazy_mode = {
1262                 .enter = paravirt_enter_lazy_cpu,
1263                 .leave = xen_leave_lazy,
1264         },
1265 };
1266
1267 static void __init __xen_init_IRQ(void)
1268 {
1269 #ifdef CONFIG_X86_64
1270         int i;
1271
1272         /* Create identity vector->irq map */
1273         for(i = 0; i < NR_VECTORS; i++) {
1274                 int cpu;
1275
1276                 for_each_possible_cpu(cpu)
1277                         per_cpu(vector_irq, cpu)[i] = i;
1278         }
1279 #endif  /* CONFIG_X86_64 */
1280
1281         xen_init_IRQ();
1282 }
1283
1284 static const struct pv_irq_ops xen_irq_ops __initdata = {
1285         .init_IRQ = __xen_init_IRQ,
1286         .save_fl = xen_save_fl,
1287         .restore_fl = xen_restore_fl,
1288         .irq_disable = xen_irq_disable,
1289         .irq_enable = xen_irq_enable,
1290         .safe_halt = xen_safe_halt,
1291         .halt = xen_halt,
1292 #ifdef CONFIG_X86_64
1293         .adjust_exception_frame = xen_adjust_exception_frame,
1294 #endif
1295 };
1296
1297 static const struct pv_apic_ops xen_apic_ops __initdata = {
1298 #ifdef CONFIG_X86_LOCAL_APIC
1299         .apic_write = xen_apic_write,
1300         .apic_read = xen_apic_read,
1301         .setup_boot_clock = paravirt_nop,
1302         .setup_secondary_clock = paravirt_nop,
1303         .startup_ipi_hook = paravirt_nop,
1304 #endif
1305 };
1306
1307 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1308         .pagetable_setup_start = xen_pagetable_setup_start,
1309         .pagetable_setup_done = xen_pagetable_setup_done,
1310
1311         .read_cr2 = xen_read_cr2,
1312         .write_cr2 = xen_write_cr2,
1313
1314         .read_cr3 = xen_read_cr3,
1315         .write_cr3 = xen_write_cr3,
1316
1317         .flush_tlb_user = xen_flush_tlb,
1318         .flush_tlb_kernel = xen_flush_tlb,
1319         .flush_tlb_single = xen_flush_tlb_single,
1320         .flush_tlb_others = xen_flush_tlb_others,
1321
1322         .pte_update = paravirt_nop,
1323         .pte_update_defer = paravirt_nop,
1324
1325         .pgd_alloc = xen_pgd_alloc,
1326         .pgd_free = xen_pgd_free,
1327
1328         .alloc_pte = xen_alloc_pte_init,
1329         .release_pte = xen_release_pte_init,
1330         .alloc_pmd = xen_alloc_pte_init,
1331         .alloc_pmd_clone = paravirt_nop,
1332         .release_pmd = xen_release_pte_init,
1333
1334 #ifdef CONFIG_HIGHPTE
1335         .kmap_atomic_pte = xen_kmap_atomic_pte,
1336 #endif
1337
1338 #ifdef CONFIG_X86_64
1339         .set_pte = xen_set_pte,
1340 #else
1341         .set_pte = xen_set_pte_init,
1342 #endif
1343         .set_pte_at = xen_set_pte_at,
1344         .set_pmd = xen_set_pmd_hyper,
1345
1346         .ptep_modify_prot_start = __ptep_modify_prot_start,
1347         .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1348
1349         .pte_val = xen_pte_val,
1350         .pte_flags = native_pte_val,
1351         .pgd_val = xen_pgd_val,
1352
1353         .make_pte = xen_make_pte,
1354         .make_pgd = xen_make_pgd,
1355
1356 #ifdef CONFIG_X86_PAE
1357         .set_pte_atomic = xen_set_pte_atomic,
1358         .set_pte_present = xen_set_pte_at,
1359         .pte_clear = xen_pte_clear,
1360         .pmd_clear = xen_pmd_clear,
1361 #endif  /* CONFIG_X86_PAE */
1362         .set_pud = xen_set_pud_hyper,
1363
1364         .make_pmd = xen_make_pmd,
1365         .pmd_val = xen_pmd_val,
1366
1367 #if PAGETABLE_LEVELS == 4
1368         .pud_val = xen_pud_val,
1369         .make_pud = xen_make_pud,
1370         .set_pgd = xen_set_pgd_hyper,
1371
1372         .alloc_pud = xen_alloc_pte_init,
1373         .release_pud = xen_release_pte_init,
1374 #endif  /* PAGETABLE_LEVELS == 4 */
1375
1376         .activate_mm = xen_activate_mm,
1377         .dup_mmap = xen_dup_mmap,
1378         .exit_mmap = xen_exit_mmap,
1379
1380         .lazy_mode = {
1381                 .enter = paravirt_enter_lazy_mmu,
1382                 .leave = xen_leave_lazy,
1383         },
1384
1385         .set_fixmap = xen_set_fixmap,
1386 };
1387
1388 static void xen_reboot(int reason)
1389 {
1390         struct sched_shutdown r = { .reason = reason };
1391
1392 #ifdef CONFIG_SMP
1393         smp_send_stop();
1394 #endif
1395
1396         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1397                 BUG();
1398 }
1399
1400 static void xen_restart(char *msg)
1401 {
1402         xen_reboot(SHUTDOWN_reboot);
1403 }
1404
1405 static void xen_emergency_restart(void)
1406 {
1407         xen_reboot(SHUTDOWN_reboot);
1408 }
1409
1410 static void xen_machine_halt(void)
1411 {
1412         xen_reboot(SHUTDOWN_poweroff);
1413 }
1414
1415 static void xen_crash_shutdown(struct pt_regs *regs)
1416 {
1417         xen_reboot(SHUTDOWN_crash);
1418 }
1419
1420 static const struct machine_ops __initdata xen_machine_ops = {
1421         .restart = xen_restart,
1422         .halt = xen_machine_halt,
1423         .power_off = xen_machine_halt,
1424         .shutdown = xen_machine_halt,
1425         .crash_shutdown = xen_crash_shutdown,
1426         .emergency_restart = xen_emergency_restart,
1427 };
1428
1429
1430 static void __init xen_reserve_top(void)
1431 {
1432 #ifdef CONFIG_X86_32
1433         unsigned long top = HYPERVISOR_VIRT_START;
1434         struct xen_platform_parameters pp;
1435
1436         if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1437                 top = pp.virt_start;
1438
1439         reserve_top_address(-top + 2 * PAGE_SIZE);
1440 #endif  /* CONFIG_X86_32 */
1441 }
1442
1443 /*
1444  * Like __va(), but returns address in the kernel mapping (which is
1445  * all we have until the physical memory mapping has been set up.
1446  */
1447 static void *__ka(phys_addr_t paddr)
1448 {
1449 #ifdef CONFIG_X86_64
1450         return (void *)(paddr + __START_KERNEL_map);
1451 #else
1452         return __va(paddr);
1453 #endif
1454 }
1455
1456 /* Convert a machine address to physical address */
1457 static unsigned long m2p(phys_addr_t maddr)
1458 {
1459         phys_addr_t paddr;
1460
1461         maddr &= PTE_PFN_MASK;
1462         paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1463
1464         return paddr;
1465 }
1466
1467 /* Convert a machine address to kernel virtual */
1468 static void *m2v(phys_addr_t maddr)
1469 {
1470         return __ka(m2p(maddr));
1471 }
1472
1473 #ifdef CONFIG_X86_64
1474 static void walk(pgd_t *pgd, unsigned long addr)
1475 {
1476         unsigned l4idx = pgd_index(addr);
1477         unsigned l3idx = pud_index(addr);
1478         unsigned l2idx = pmd_index(addr);
1479         unsigned l1idx = pte_index(addr);
1480         pgd_t l4;
1481         pud_t l3;
1482         pmd_t l2;
1483         pte_t l1;
1484
1485         xen_raw_printk("walk %p, %lx -> %d %d %d %d\n",
1486                        pgd, addr, l4idx, l3idx, l2idx, l1idx);
1487
1488         l4 = pgd[l4idx];
1489         xen_raw_printk("  l4: %016lx\n", l4.pgd);
1490         xen_raw_printk("      %016lx\n", pgd_val(l4));
1491
1492         l3 = ((pud_t *)(m2v(l4.pgd)))[l3idx];
1493         xen_raw_printk("  l3: %016lx\n", l3.pud);
1494         xen_raw_printk("      %016lx\n", pud_val(l3));
1495
1496         l2 = ((pmd_t *)(m2v(l3.pud)))[l2idx];
1497         xen_raw_printk("  l2: %016lx\n", l2.pmd);
1498         xen_raw_printk("      %016lx\n", pmd_val(l2));
1499
1500         l1 = ((pte_t *)(m2v(l2.pmd)))[l1idx];
1501         xen_raw_printk("  l1: %016lx\n", l1.pte);
1502         xen_raw_printk("      %016lx\n", pte_val(l1));
1503 }
1504 #endif
1505
1506 static void set_page_prot(void *addr, pgprot_t prot)
1507 {
1508         unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1509         pte_t pte = pfn_pte(pfn, prot);
1510
1511         xen_raw_printk("addr=%p pfn=%lx mfn=%lx prot=%016llx pte=%016llx\n",
1512                        addr, pfn, get_phys_to_machine(pfn),
1513                        pgprot_val(prot), pte.pte);
1514
1515         if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1516                 BUG();
1517 }
1518
1519 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1520 {
1521         unsigned pmdidx, pteidx;
1522         unsigned ident_pte;
1523         unsigned long pfn;
1524
1525         ident_pte = 0;
1526         pfn = 0;
1527         for(pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1528                 pte_t *pte_page;
1529
1530                 /* Reuse or allocate a page of ptes */
1531                 if (pmd_present(pmd[pmdidx]))
1532                         pte_page = m2v(pmd[pmdidx].pmd);
1533                 else {
1534                         /* Check for free pte pages */
1535                         if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1536                                 break;
1537
1538                         pte_page = &level1_ident_pgt[ident_pte];
1539                         ident_pte += PTRS_PER_PTE;
1540
1541                         pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1542                 }
1543
1544                 /* Install mappings */
1545                 for(pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1546                         pte_t pte;
1547
1548                         if (pfn > max_pfn_mapped)
1549                                 max_pfn_mapped = pfn;
1550
1551                         if (!pte_none(pte_page[pteidx]))
1552                                 continue;
1553
1554                         pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1555                         pte_page[pteidx] = pte;
1556                 }
1557         }
1558
1559         for(pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1560                 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1561
1562         set_page_prot(pmd, PAGE_KERNEL_RO);
1563 }
1564
1565 #ifdef CONFIG_X86_64
1566 static void convert_pfn_mfn(void *v)
1567 {
1568         pte_t *pte = v;
1569         int i;
1570
1571         /* All levels are converted the same way, so just treat them
1572            as ptes. */
1573         for(i = 0; i < PTRS_PER_PTE; i++)
1574                 pte[i] = xen_make_pte(pte[i].pte);
1575 }
1576
1577 /*
1578  * Set up the inital kernel pagetable.
1579  *
1580  * We can construct this by grafting the Xen provided pagetable into
1581  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1582  * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1583  * means that only the kernel has a physical mapping to start with -
1584  * but that's enough to get __va working.  We need to fill in the rest
1585  * of the physical mapping once some sort of allocator has been set
1586  * up.
1587  */
1588 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1589 {
1590         pud_t *l3;
1591         pmd_t *l2;
1592
1593         /* Zap identity mapping */
1594         init_level4_pgt[0] = __pgd(0);
1595
1596         /* Pre-constructed entries are in pfn, so convert to mfn */
1597         convert_pfn_mfn(init_level4_pgt);
1598         convert_pfn_mfn(level3_ident_pgt);
1599         convert_pfn_mfn(level3_kernel_pgt);
1600
1601         l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1602         l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1603
1604         memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1605         memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1606
1607         l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1608         l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1609         memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1610
1611         /* Set up identity map */
1612         xen_map_identity_early(level2_ident_pgt, max_pfn);
1613
1614         /* Make pagetable pieces RO */
1615         set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1616         set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1617         set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1618         set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1619         set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1620         set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1621
1622         /* Pin down new L4 */
1623         pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1624                           PFN_DOWN(__pa_symbol(init_level4_pgt)));
1625
1626         /* Unpin Xen-provided one */
1627         pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1628
1629         /* Switch over */
1630         pgd = init_level4_pgt;
1631
1632         /*
1633          * At this stage there can be no user pgd, and no page
1634          * structure to attach it to, so make sure we just set kernel
1635          * pgd.
1636          */
1637         xen_mc_batch();
1638         __xen_write_cr3(true, __pa(pgd));
1639         xen_mc_issue(PARAVIRT_LAZY_CPU);
1640
1641         reserve_early(__pa(xen_start_info->pt_base),
1642                       __pa(xen_start_info->pt_base +
1643                            xen_start_info->nr_pt_frames * PAGE_SIZE),
1644                       "XEN PAGETABLES");
1645
1646         return pgd;
1647 }
1648 #else   /* !CONFIG_X86_64 */
1649 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1650
1651 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1652 {
1653         pmd_t *kernel_pmd;
1654
1655         init_pg_tables_start = __pa(pgd);
1656         init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1657         max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024);
1658
1659         kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1660         memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1661
1662         xen_map_identity_early(level2_kernel_pgt, max_pfn);
1663
1664         memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1665         set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1666                         __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1667
1668         set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1669         set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1670         set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1671
1672         pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1673
1674         xen_write_cr3(__pa(swapper_pg_dir));
1675
1676         pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1677
1678         return swapper_pg_dir;
1679 }
1680 #endif  /* CONFIG_X86_64 */
1681
1682 /* First C function to be called on Xen boot */
1683 asmlinkage void __init xen_start_kernel(void)
1684 {
1685         pgd_t *pgd;
1686
1687         if (!xen_start_info)
1688                 return;
1689
1690         BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1691
1692         xen_setup_features();
1693
1694         /* Install Xen paravirt ops */
1695         pv_info = xen_info;
1696         pv_init_ops = xen_init_ops;
1697         pv_time_ops = xen_time_ops;
1698         pv_cpu_ops = xen_cpu_ops;
1699         pv_irq_ops = xen_irq_ops;
1700         pv_apic_ops = xen_apic_ops;
1701         pv_mmu_ops = xen_mmu_ops;
1702
1703         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1704                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1705                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1706         }
1707
1708         machine_ops = xen_machine_ops;
1709
1710 #ifdef CONFIG_X86_64
1711         /* Disable until direct per-cpu data access. */
1712         have_vcpu_info_placement = 0;
1713         x86_64_init_pda();
1714 #endif
1715
1716         xen_smp_init();
1717
1718         /* Get mfn list */
1719         if (!xen_feature(XENFEAT_auto_translated_physmap))
1720                 xen_build_dynamic_phys_to_machine();
1721
1722         pgd = (pgd_t *)xen_start_info->pt_base;
1723
1724         /* Prevent unwanted bits from being set in PTEs. */
1725         __supported_pte_mask &= ~_PAGE_GLOBAL;
1726         if (!is_initial_xendomain())
1727                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1728
1729         /* Don't do the full vcpu_info placement stuff until we have a
1730            possible map and a non-dummy shared_info. */
1731         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1732
1733         xen_raw_console_write("mapping kernel into physical memory\n");
1734         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1735
1736         init_mm.pgd = pgd;
1737
1738         /* keep using Xen gdt for now; no urgent need to change it */
1739
1740         pv_info.kernel_rpl = 1;
1741         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1742                 pv_info.kernel_rpl = 0;
1743
1744         /* set the limit of our address space */
1745         xen_reserve_top();
1746
1747 #ifdef CONFIG_X86_32
1748         /* set up basic CPUID stuff */
1749         cpu_detect(&new_cpu_data);
1750         new_cpu_data.hard_math = 1;
1751         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1752 #endif
1753
1754         /* Poke various useful things into boot_params */
1755         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1756         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1757                 ? __pa(xen_start_info->mod_start) : 0;
1758         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1759         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1760
1761         if (!is_initial_xendomain()) {
1762                 add_preferred_console("xenboot", 0, NULL);
1763                 add_preferred_console("tty", 0, NULL);
1764                 add_preferred_console("hvc", 0, NULL);
1765         }
1766
1767         xen_raw_console_write("about to get started...\n");
1768
1769 #if 0
1770         xen_raw_printk("&boot_params=%p __pa(&boot_params)=%lx __va(__pa(&boot_params))=%lx\n",
1771                        &boot_params, __pa_symbol(&boot_params),
1772                        __va(__pa_symbol(&boot_params)));
1773
1774         walk(pgd, &boot_params);
1775         walk(pgd, __va(__pa(&boot_params)));
1776 #endif
1777
1778         /* Start the world */
1779 #ifdef CONFIG_X86_32
1780         i386_start_kernel();
1781 #else
1782         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1783 #endif
1784 }