]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/x86/mm/pageattr.c
x86: CPA use the existing pfn in split as well
[linux-2.6-omap-h63xx.git] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11
12 #include <asm/e820.h>
13 #include <asm/processor.h>
14 #include <asm/tlbflush.h>
15 #include <asm/sections.h>
16 #include <asm/uaccess.h>
17 #include <asm/pgalloc.h>
18
19 static inline int
20 within(unsigned long addr, unsigned long start, unsigned long end)
21 {
22         return addr >= start && addr < end;
23 }
24
25 /*
26  * Flushing functions
27  */
28
29 /**
30  * clflush_cache_range - flush a cache range with clflush
31  * @addr:       virtual start address
32  * @size:       number of bytes to flush
33  *
34  * clflush is an unordered instruction which needs fencing with mfence
35  * to avoid ordering issues.
36  */
37 void clflush_cache_range(void *vaddr, unsigned int size)
38 {
39         void *vend = vaddr + size - 1;
40
41         mb();
42
43         for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
44                 clflush(vaddr);
45         /*
46          * Flush any possible final partial cacheline:
47          */
48         clflush(vend);
49
50         mb();
51 }
52
53 static void __cpa_flush_all(void *arg)
54 {
55         /*
56          * Flush all to work around Errata in early athlons regarding
57          * large page flushing.
58          */
59         __flush_tlb_all();
60
61         if (boot_cpu_data.x86_model >= 4)
62                 wbinvd();
63 }
64
65 static void cpa_flush_all(void)
66 {
67         BUG_ON(irqs_disabled());
68
69         on_each_cpu(__cpa_flush_all, NULL, 1, 1);
70 }
71
72 static void __cpa_flush_range(void *arg)
73 {
74         /*
75          * We could optimize that further and do individual per page
76          * tlb invalidates for a low number of pages. Caveat: we must
77          * flush the high aliases on 64bit as well.
78          */
79         __flush_tlb_all();
80 }
81
82 static void cpa_flush_range(unsigned long start, int numpages)
83 {
84         unsigned int i, level;
85         unsigned long addr;
86
87         BUG_ON(irqs_disabled());
88         WARN_ON(PAGE_ALIGN(start) != start);
89
90         on_each_cpu(__cpa_flush_range, NULL, 1, 1);
91
92         /*
93          * We only need to flush on one CPU,
94          * clflush is a MESI-coherent instruction that
95          * will cause all other CPUs to flush the same
96          * cachelines:
97          */
98         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
99                 pte_t *pte = lookup_address(addr, &level);
100
101                 /*
102                  * Only flush present addresses:
103                  */
104                 if (pte && pte_present(*pte))
105                         clflush_cache_range((void *) addr, PAGE_SIZE);
106         }
107 }
108
109 #define HIGH_MAP_START  __START_KERNEL_map
110 #define HIGH_MAP_END    (__START_KERNEL_map + KERNEL_TEXT_SIZE)
111
112
113 /*
114  * Converts a virtual address to a X86-64 highmap address
115  */
116 static unsigned long virt_to_highmap(void *address)
117 {
118 #ifdef CONFIG_X86_64
119         return __pa((unsigned long)address) + HIGH_MAP_START - phys_base;
120 #else
121         return (unsigned long)address;
122 #endif
123 }
124
125 /*
126  * Certain areas of memory on x86 require very specific protection flags,
127  * for example the BIOS area or kernel text. Callers don't always get this
128  * right (again, ioremap() on BIOS memory is not uncommon) so this function
129  * checks and fixes these known static required protection bits.
130  */
131 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address)
132 {
133         pgprot_t forbidden = __pgprot(0);
134
135         /*
136          * The BIOS area between 640k and 1Mb needs to be executable for
137          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
138          */
139         if (within(__pa(address), BIOS_BEGIN, BIOS_END))
140                 pgprot_val(forbidden) |= _PAGE_NX;
141
142         /*
143          * The kernel text needs to be executable for obvious reasons
144          * Does not cover __inittext since that is gone later on
145          */
146         if (within(address, (unsigned long)_text, (unsigned long)_etext))
147                 pgprot_val(forbidden) |= _PAGE_NX;
148         /*
149          * Do the same for the x86-64 high kernel mapping
150          */
151         if (within(address, virt_to_highmap(_text), virt_to_highmap(_etext)))
152                 pgprot_val(forbidden) |= _PAGE_NX;
153
154
155 #ifdef CONFIG_DEBUG_RODATA
156         /* The .rodata section needs to be read-only */
157         if (within(address, (unsigned long)__start_rodata,
158                                 (unsigned long)__end_rodata))
159                 pgprot_val(forbidden) |= _PAGE_RW;
160         /*
161          * Do the same for the x86-64 high kernel mapping
162          */
163         if (within(address, virt_to_highmap(__start_rodata),
164                                 virt_to_highmap(__end_rodata)))
165                 pgprot_val(forbidden) |= _PAGE_RW;
166 #endif
167
168         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
169
170         return prot;
171 }
172
173 pte_t *lookup_address(unsigned long address, int *level)
174 {
175         pgd_t *pgd = pgd_offset_k(address);
176         pud_t *pud;
177         pmd_t *pmd;
178
179         *level = PG_LEVEL_NONE;
180
181         if (pgd_none(*pgd))
182                 return NULL;
183         pud = pud_offset(pgd, address);
184         if (pud_none(*pud))
185                 return NULL;
186         pmd = pmd_offset(pud, address);
187         if (pmd_none(*pmd))
188                 return NULL;
189
190         *level = PG_LEVEL_2M;
191         if (pmd_large(*pmd))
192                 return (pte_t *)pmd;
193
194         *level = PG_LEVEL_4K;
195         return pte_offset_kernel(pmd, address);
196 }
197
198 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
199 {
200         /* change init_mm */
201         set_pte_atomic(kpte, pte);
202 #ifdef CONFIG_X86_32
203         if (!SHARED_KERNEL_PMD) {
204                 struct page *page;
205
206                 list_for_each_entry(page, &pgd_list, lru) {
207                         pgd_t *pgd;
208                         pud_t *pud;
209                         pmd_t *pmd;
210
211                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
212                         pud = pud_offset(pgd, address);
213                         pmd = pmd_offset(pud, address);
214                         set_pte_atomic((pte_t *)pmd, pte);
215                 }
216         }
217 #endif
218 }
219
220 static int split_large_page(pte_t *kpte, unsigned long address)
221 {
222         pgprot_t ref_prot = pte_pgprot(pte_clrhuge(*kpte));
223         gfp_t gfp_flags = GFP_KERNEL;
224         unsigned long flags, addr, pfn;
225         pte_t *pbase, *tmp;
226         struct page *base;
227         unsigned int i, level;
228
229 #ifdef CONFIG_DEBUG_PAGEALLOC
230         gfp_flags = __GFP_HIGH | __GFP_NOFAIL | __GFP_NOWARN;
231         gfp_flags = GFP_ATOMIC | __GFP_NOWARN;
232 #endif
233         base = alloc_pages(gfp_flags, 0);
234         if (!base)
235                 return -ENOMEM;
236
237         spin_lock_irqsave(&pgd_lock, flags);
238         /*
239          * Check for races, another CPU might have split this page
240          * up for us already:
241          */
242         tmp = lookup_address(address, &level);
243         if (tmp != kpte) {
244                 WARN_ON_ONCE(1);
245                 goto out_unlock;
246         }
247
248         address = __pa(address);
249         addr = address & LARGE_PAGE_MASK;
250         pbase = (pte_t *)page_address(base);
251 #ifdef CONFIG_X86_32
252         paravirt_alloc_pt(&init_mm, page_to_pfn(base));
253 #endif
254
255         /*
256          * Get the target pfn from the original entry:
257          */
258         pfn = pte_pfn(*kpte);
259         for (i = 0; i < PTRS_PER_PTE; i++, pfn++)
260                 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
261
262         /*
263          * Install the new, split up pagetable. Important detail here:
264          *
265          * On Intel the NX bit of all levels must be cleared to make a
266          * page executable. See section 4.13.2 of Intel 64 and IA-32
267          * Architectures Software Developer's Manual).
268          */
269         ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte)));
270         __set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
271         base = NULL;
272
273 out_unlock:
274         spin_unlock_irqrestore(&pgd_lock, flags);
275
276         if (base)
277                 __free_pages(base, 0);
278
279         return 0;
280 }
281
282 static int
283 __change_page_attr(unsigned long address, pgprot_t mask_set, pgprot_t mask_clr)
284 {
285         struct page *kpte_page;
286         int level, err = 0;
287         pte_t *kpte;
288
289 repeat:
290         kpte = lookup_address(address, &level);
291         if (!kpte)
292                 return -EINVAL;
293
294         kpte_page = virt_to_page(kpte);
295         BUG_ON(PageLRU(kpte_page));
296         BUG_ON(PageCompound(kpte_page));
297
298         if (level == PG_LEVEL_4K) {
299                 pte_t new_pte, old_pte = *kpte;
300                 pgprot_t new_prot = pte_pgprot(old_pte);
301
302                 if(!pte_val(old_pte)) {
303                         WARN_ON_ONCE(1);
304                         return -EINVAL;
305                 }
306
307                 pgprot_val(new_prot) &= ~pgprot_val(mask_clr);
308                 pgprot_val(new_prot) |= pgprot_val(mask_set);
309
310                 new_prot = static_protections(new_prot, address);
311
312                 /*
313                  * We need to keep the pfn from the existing PTE,
314                  * after all we're only going to change it's attributes
315                  * not the memory it points to
316                  */
317                 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
318                 set_pte_atomic(kpte, new_pte);
319         } else {
320                 err = split_large_page(kpte, address);
321                 if (!err)
322                         goto repeat;
323         }
324         return err;
325 }
326
327 /**
328  * change_page_attr_addr - Change page table attributes in linear mapping
329  * @address: Virtual address in linear mapping.
330  * @prot:    New page table attribute (PAGE_*)
331  *
332  * Change page attributes of a page in the direct mapping. This is a variant
333  * of change_page_attr() that also works on memory holes that do not have
334  * mem_map entry (pfn_valid() is false).
335  *
336  * See change_page_attr() documentation for more details.
337  *
338  * Modules and drivers should use the set_memory_* APIs instead.
339  */
340
341
342 static int
343 change_page_attr_addr(unsigned long address, pgprot_t mask_set,
344                       pgprot_t mask_clr)
345 {
346         int err;
347
348 #ifdef CONFIG_X86_64
349         unsigned long phys_addr = __pa(address);
350
351         /*
352          * If we are inside the high mapped kernel range, then we
353          * fixup the low mapping first. __va() returns the virtual
354          * address in the linear mapping:
355          */
356         if (within(address, HIGH_MAP_START, HIGH_MAP_END))
357                 address = (unsigned long) __va(phys_addr);
358 #endif
359
360         err = __change_page_attr(address, mask_set, mask_clr);
361         if (err)
362                 return err;
363
364 #ifdef CONFIG_X86_64
365         /*
366          * If the physical address is inside the kernel map, we need
367          * to touch the high mapped kernel as well:
368          */
369         if (within(phys_addr, 0, KERNEL_TEXT_SIZE)) {
370                 /*
371                  * Calc the high mapping address. See __phys_addr()
372                  * for the non obvious details.
373                  *
374                  * Note that NX and other required permissions are
375                  * checked in static_protections().
376                  */
377                 address = phys_addr + HIGH_MAP_START - phys_base;
378
379                 /*
380                  * Our high aliases are imprecise, because we check
381                  * everything between 0 and KERNEL_TEXT_SIZE, so do
382                  * not propagate lookup failures back to users:
383                  */
384                 __change_page_attr(address, mask_set, mask_clr);
385         }
386 #endif
387         return err;
388 }
389
390 static int __change_page_attr_set_clr(unsigned long addr, int numpages,
391                                       pgprot_t mask_set, pgprot_t mask_clr)
392 {
393         unsigned int i;
394         int ret;
395
396         for (i = 0; i < numpages ; i++, addr += PAGE_SIZE) {
397                 ret = change_page_attr_addr(addr, mask_set, mask_clr);
398                 if (ret)
399                         return ret;
400         }
401
402         return 0;
403 }
404
405 static int change_page_attr_set_clr(unsigned long addr, int numpages,
406                                     pgprot_t mask_set, pgprot_t mask_clr)
407 {
408         int ret = __change_page_attr_set_clr(addr, numpages, mask_set,
409                                              mask_clr);
410
411         /*
412          * On success we use clflush, when the CPU supports it to
413          * avoid the wbindv. If the CPU does not support it and in the
414          * error case we fall back to cpa_flush_all (which uses
415          * wbindv):
416          */
417         if (!ret && cpu_has_clflush)
418                 cpa_flush_range(addr, numpages);
419         else
420                 cpa_flush_all();
421
422         return ret;
423 }
424
425 static inline int change_page_attr_set(unsigned long addr, int numpages,
426                                        pgprot_t mask)
427 {
428         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0));
429 }
430
431 static inline int change_page_attr_clear(unsigned long addr, int numpages,
432                                          pgprot_t mask)
433 {
434         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask);
435 }
436
437 int set_memory_uc(unsigned long addr, int numpages)
438 {
439         return change_page_attr_set(addr, numpages,
440                                     __pgprot(_PAGE_PCD | _PAGE_PWT));
441 }
442 EXPORT_SYMBOL(set_memory_uc);
443
444 int set_memory_wb(unsigned long addr, int numpages)
445 {
446         return change_page_attr_clear(addr, numpages,
447                                       __pgprot(_PAGE_PCD | _PAGE_PWT));
448 }
449 EXPORT_SYMBOL(set_memory_wb);
450
451 int set_memory_x(unsigned long addr, int numpages)
452 {
453         return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_NX));
454 }
455 EXPORT_SYMBOL(set_memory_x);
456
457 int set_memory_nx(unsigned long addr, int numpages)
458 {
459         return change_page_attr_set(addr, numpages, __pgprot(_PAGE_NX));
460 }
461 EXPORT_SYMBOL(set_memory_nx);
462
463 int set_memory_ro(unsigned long addr, int numpages)
464 {
465         return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_RW));
466 }
467
468 int set_memory_rw(unsigned long addr, int numpages)
469 {
470         return change_page_attr_set(addr, numpages, __pgprot(_PAGE_RW));
471 }
472
473 int set_memory_np(unsigned long addr, int numpages)
474 {
475         return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_PRESENT));
476 }
477
478 int set_pages_uc(struct page *page, int numpages)
479 {
480         unsigned long addr = (unsigned long)page_address(page);
481
482         return set_memory_uc(addr, numpages);
483 }
484 EXPORT_SYMBOL(set_pages_uc);
485
486 int set_pages_wb(struct page *page, int numpages)
487 {
488         unsigned long addr = (unsigned long)page_address(page);
489
490         return set_memory_wb(addr, numpages);
491 }
492 EXPORT_SYMBOL(set_pages_wb);
493
494 int set_pages_x(struct page *page, int numpages)
495 {
496         unsigned long addr = (unsigned long)page_address(page);
497
498         return set_memory_x(addr, numpages);
499 }
500 EXPORT_SYMBOL(set_pages_x);
501
502 int set_pages_nx(struct page *page, int numpages)
503 {
504         unsigned long addr = (unsigned long)page_address(page);
505
506         return set_memory_nx(addr, numpages);
507 }
508 EXPORT_SYMBOL(set_pages_nx);
509
510 int set_pages_ro(struct page *page, int numpages)
511 {
512         unsigned long addr = (unsigned long)page_address(page);
513
514         return set_memory_ro(addr, numpages);
515 }
516
517 int set_pages_rw(struct page *page, int numpages)
518 {
519         unsigned long addr = (unsigned long)page_address(page);
520
521         return set_memory_rw(addr, numpages);
522 }
523
524
525 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_CPA_DEBUG)
526 static inline int __change_page_attr_set(unsigned long addr, int numpages,
527                                          pgprot_t mask)
528 {
529         return __change_page_attr_set_clr(addr, numpages, mask, __pgprot(0));
530 }
531
532 static inline int __change_page_attr_clear(unsigned long addr, int numpages,
533                                            pgprot_t mask)
534 {
535         return __change_page_attr_set_clr(addr, numpages, __pgprot(0), mask);
536 }
537 #endif
538
539 #ifdef CONFIG_DEBUG_PAGEALLOC
540
541 static int __set_pages_p(struct page *page, int numpages)
542 {
543         unsigned long addr = (unsigned long)page_address(page);
544
545         return __change_page_attr_set(addr, numpages,
546                                       __pgprot(_PAGE_PRESENT | _PAGE_RW));
547 }
548
549 static int __set_pages_np(struct page *page, int numpages)
550 {
551         unsigned long addr = (unsigned long)page_address(page);
552
553         return __change_page_attr_clear(addr, numpages,
554                                         __pgprot(_PAGE_PRESENT));
555 }
556
557 void kernel_map_pages(struct page *page, int numpages, int enable)
558 {
559         if (PageHighMem(page))
560                 return;
561         if (!enable) {
562                 debug_check_no_locks_freed(page_address(page),
563                                            numpages * PAGE_SIZE);
564         }
565
566         /*
567          * If page allocator is not up yet then do not call c_p_a():
568          */
569         if (!debug_pagealloc_enabled)
570                 return;
571
572         /*
573          * The return value is ignored - the calls cannot fail,
574          * large pages are disabled at boot time:
575          */
576         if (enable)
577                 __set_pages_p(page, numpages);
578         else
579                 __set_pages_np(page, numpages);
580
581         /*
582          * We should perform an IPI and flush all tlbs,
583          * but that can deadlock->flush only current cpu:
584          */
585         __flush_tlb_all();
586 }
587 #endif
588
589 /*
590  * The testcases use internal knowledge of the implementation that shouldn't
591  * be exposed to the rest of the kernel. Include these directly here.
592  */
593 #ifdef CONFIG_CPA_DEBUG
594 #include "pageattr-test.c"
595 #endif