]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/x86/mm/init_64.c
x86, init_64.c: cleanup
[linux-2.6-omap-h63xx.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32
33 #include <asm/processor.h>
34 #include <asm/system.h>
35 #include <asm/uaccess.h>
36 #include <asm/pgtable.h>
37 #include <asm/pgalloc.h>
38 #include <asm/dma.h>
39 #include <asm/fixmap.h>
40 #include <asm/e820.h>
41 #include <asm/apic.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44 #include <asm/proto.h>
45 #include <asm/smp.h>
46 #include <asm/sections.h>
47 #include <asm/kdebug.h>
48 #include <asm/numa.h>
49 #include <asm/cacheflush.h>
50
51 /*
52  * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
53  * The direct mapping extends to max_pfn_mapped, so that we can directly access
54  * apertures, ACPI and other tables without having to play with fixmaps.
55  */
56 unsigned long max_low_pfn_mapped;
57 unsigned long max_pfn_mapped;
58
59 static unsigned long dma_reserve __initdata;
60
61 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
62
63 int direct_gbpages
64 #ifdef CONFIG_DIRECT_GBPAGES
65                                 = 1
66 #endif
67 ;
68
69 static int __init parse_direct_gbpages_off(char *arg)
70 {
71         direct_gbpages = 0;
72         return 0;
73 }
74 early_param("nogbpages", parse_direct_gbpages_off);
75
76 static int __init parse_direct_gbpages_on(char *arg)
77 {
78         direct_gbpages = 1;
79         return 0;
80 }
81 early_param("gbpages", parse_direct_gbpages_on);
82
83 /*
84  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
85  * physical space so we can cache the place of the first one and move
86  * around without checking the pgd every time.
87  */
88
89 int after_bootmem;
90
91 unsigned long __supported_pte_mask __read_mostly = ~0UL;
92 EXPORT_SYMBOL_GPL(__supported_pte_mask);
93
94 static int do_not_nx __cpuinitdata;
95
96 /*
97  * noexec=on|off
98  * Control non-executable mappings for 64-bit processes.
99  *
100  * on   Enable (default)
101  * off  Disable
102  */
103 static int __init nonx_setup(char *str)
104 {
105         if (!str)
106                 return -EINVAL;
107         if (!strncmp(str, "on", 2)) {
108                 __supported_pte_mask |= _PAGE_NX;
109                 do_not_nx = 0;
110         } else if (!strncmp(str, "off", 3)) {
111                 do_not_nx = 1;
112                 __supported_pte_mask &= ~_PAGE_NX;
113         }
114         return 0;
115 }
116 early_param("noexec", nonx_setup);
117
118 void __cpuinit check_efer(void)
119 {
120         unsigned long efer;
121
122         rdmsrl(MSR_EFER, efer);
123         if (!(efer & EFER_NX) || do_not_nx)
124                 __supported_pte_mask &= ~_PAGE_NX;
125 }
126
127 int force_personality32;
128
129 /*
130  * noexec32=on|off
131  * Control non executable heap for 32bit processes.
132  * To control the stack too use noexec=off
133  *
134  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
135  * off  PROT_READ implies PROT_EXEC
136  */
137 static int __init nonx32_setup(char *str)
138 {
139         if (!strcmp(str, "on"))
140                 force_personality32 &= ~READ_IMPLIES_EXEC;
141         else if (!strcmp(str, "off"))
142                 force_personality32 |= READ_IMPLIES_EXEC;
143         return 1;
144 }
145 __setup("noexec32=", nonx32_setup);
146
147 /*
148  * NOTE: This function is marked __ref because it calls __init function
149  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
150  */
151 static __ref void *spp_getpage(void)
152 {
153         void *ptr;
154
155         if (after_bootmem)
156                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
157         else
158                 ptr = alloc_bootmem_pages(PAGE_SIZE);
159
160         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
161                 panic("set_pte_phys: cannot allocate page data %s\n",
162                         after_bootmem ? "after bootmem" : "");
163         }
164
165         pr_debug("spp_getpage %p\n", ptr);
166
167         return ptr;
168 }
169
170 void
171 set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
172 {
173         pud_t *pud;
174         pmd_t *pmd;
175         pte_t *pte;
176
177         pud = pud_page + pud_index(vaddr);
178         if (pud_none(*pud)) {
179                 pmd = (pmd_t *) spp_getpage();
180                 pud_populate(&init_mm, pud, pmd);
181                 if (pmd != pmd_offset(pud, 0)) {
182                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
183                                 pmd, pmd_offset(pud, 0));
184                         return;
185                 }
186         }
187         pmd = pmd_offset(pud, vaddr);
188         if (pmd_none(*pmd)) {
189                 pte = (pte_t *) spp_getpage();
190                 pmd_populate_kernel(&init_mm, pmd, pte);
191                 if (pte != pte_offset_kernel(pmd, 0)) {
192                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
193                         return;
194                 }
195         }
196
197         pte = pte_offset_kernel(pmd, vaddr);
198         if (!pte_none(*pte) && pte_val(new_pte) &&
199             pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
200                 pte_ERROR(*pte);
201         set_pte(pte, new_pte);
202
203         /*
204          * It's enough to flush this one mapping.
205          * (PGE mappings get flushed as well)
206          */
207         __flush_tlb_one(vaddr);
208 }
209
210 void
211 set_pte_vaddr(unsigned long vaddr, pte_t pteval)
212 {
213         pgd_t *pgd;
214         pud_t *pud_page;
215
216         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
217
218         pgd = pgd_offset_k(vaddr);
219         if (pgd_none(*pgd)) {
220                 printk(KERN_ERR
221                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
222                 return;
223         }
224         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
225         set_pte_vaddr_pud(pud_page, vaddr, pteval);
226 }
227
228 /*
229  * Create large page table mappings for a range of physical addresses.
230  */
231 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
232                                                 pgprot_t prot)
233 {
234         pgd_t *pgd;
235         pud_t *pud;
236         pmd_t *pmd;
237
238         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
239         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
240                 pgd = pgd_offset_k((unsigned long)__va(phys));
241                 if (pgd_none(*pgd)) {
242                         pud = (pud_t *) spp_getpage();
243                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
244                                                 _PAGE_USER));
245                 }
246                 pud = pud_offset(pgd, (unsigned long)__va(phys));
247                 if (pud_none(*pud)) {
248                         pmd = (pmd_t *) spp_getpage();
249                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
250                                                 _PAGE_USER));
251                 }
252                 pmd = pmd_offset(pud, phys);
253                 BUG_ON(!pmd_none(*pmd));
254                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
255         }
256 }
257
258 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
259 {
260         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
261 }
262
263 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
264 {
265         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
266 }
267
268 /*
269  * The head.S code sets up the kernel high mapping:
270  *
271  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
272  *
273  * phys_addr holds the negative offset to the kernel, which is added
274  * to the compile time generated pmds. This results in invalid pmds up
275  * to the point where we hit the physaddr 0 mapping.
276  *
277  * We limit the mappings to the region from _text to _end.  _end is
278  * rounded up to the 2MB boundary. This catches the invalid pmds as
279  * well, as they are located before _text:
280  */
281 void __init cleanup_highmap(void)
282 {
283         unsigned long vaddr = __START_KERNEL_map;
284         unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
285         pmd_t *pmd = level2_kernel_pgt;
286         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
287
288         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
289                 if (pmd_none(*pmd))
290                         continue;
291                 if (vaddr < (unsigned long) _text || vaddr > end)
292                         set_pmd(pmd, __pmd(0));
293         }
294 }
295
296 static unsigned long __initdata table_start;
297 static unsigned long __meminitdata table_end;
298 static unsigned long __meminitdata table_top;
299
300 static __ref void *alloc_low_page(unsigned long *phys)
301 {
302         unsigned long pfn = table_end++;
303         void *adr;
304
305         if (after_bootmem) {
306                 adr = (void *)get_zeroed_page(GFP_ATOMIC);
307                 *phys = __pa(adr);
308
309                 return adr;
310         }
311
312         if (pfn >= table_top)
313                 panic("alloc_low_page: ran out of memory");
314
315         adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
316         memset(adr, 0, PAGE_SIZE);
317         *phys  = pfn * PAGE_SIZE;
318         return adr;
319 }
320
321 static __ref void unmap_low_page(void *adr)
322 {
323         if (after_bootmem)
324                 return;
325
326         early_iounmap(adr, PAGE_SIZE);
327 }
328
329 static unsigned long __meminit
330 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end)
331 {
332         unsigned pages = 0;
333         unsigned long last_map_addr = end;
334         int i;
335
336         pte_t *pte = pte_page + pte_index(addr);
337
338         for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
339
340                 if (addr >= end) {
341                         if (!after_bootmem) {
342                                 for(; i < PTRS_PER_PTE; i++, pte++)
343                                         set_pte(pte, __pte(0));
344                         }
345                         break;
346                 }
347
348                 if (pte_val(*pte))
349                         continue;
350
351                 if (0)
352                         printk("   pte=%p addr=%lx pte=%016lx\n",
353                                pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
354                 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL));
355                 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
356                 pages++;
357         }
358         update_page_count(PG_LEVEL_4K, pages);
359
360         return last_map_addr;
361 }
362
363 static unsigned long __meminit
364 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end)
365 {
366         pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
367
368         return phys_pte_init(pte, address, end);
369 }
370
371 static unsigned long __meminit
372 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
373                          unsigned long page_size_mask)
374 {
375         unsigned long pages = 0;
376         unsigned long last_map_addr = end;
377         unsigned long start = address;
378
379         int i = pmd_index(address);
380
381         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
382                 unsigned long pte_phys;
383                 pmd_t *pmd = pmd_page + pmd_index(address);
384                 pte_t *pte;
385
386                 if (address >= end) {
387                         if (!after_bootmem) {
388                                 for (; i < PTRS_PER_PMD; i++, pmd++)
389                                         set_pmd(pmd, __pmd(0));
390                         }
391                         break;
392                 }
393
394                 if (pmd_val(*pmd)) {
395                         if (!pmd_large(*pmd)) {
396                                 spin_lock(&init_mm.page_table_lock);
397                                 last_map_addr = phys_pte_update(pmd, address,
398                                                                 end);
399                                 spin_unlock(&init_mm.page_table_lock);
400                         }
401                         /* Count entries we're using from level2_ident_pgt */
402                         if (start == 0)
403                                 pages++;
404                         continue;
405                 }
406
407                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
408                         pages++;
409                         spin_lock(&init_mm.page_table_lock);
410                         set_pte((pte_t *)pmd,
411                                 pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
412                         spin_unlock(&init_mm.page_table_lock);
413                         last_map_addr = (address & PMD_MASK) + PMD_SIZE;
414                         continue;
415                 }
416
417                 pte = alloc_low_page(&pte_phys);
418                 last_map_addr = phys_pte_init(pte, address, end);
419                 unmap_low_page(pte);
420
421                 spin_lock(&init_mm.page_table_lock);
422                 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
423                 spin_unlock(&init_mm.page_table_lock);
424         }
425         update_page_count(PG_LEVEL_2M, pages);
426         return last_map_addr;
427 }
428
429 static unsigned long __meminit
430 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
431                          unsigned long page_size_mask)
432 {
433         pmd_t *pmd = pmd_offset(pud, 0);
434         unsigned long last_map_addr;
435
436         last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask);
437         __flush_tlb_all();
438         return last_map_addr;
439 }
440
441 static unsigned long __meminit
442 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
443                          unsigned long page_size_mask)
444 {
445         unsigned long pages = 0;
446         unsigned long last_map_addr = end;
447         int i = pud_index(addr);
448
449         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
450                 unsigned long pmd_phys;
451                 pud_t *pud = pud_page + pud_index(addr);
452                 pmd_t *pmd;
453
454                 if (addr >= end)
455                         break;
456
457                 if (!after_bootmem &&
458                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
459                         set_pud(pud, __pud(0));
460                         continue;
461                 }
462
463                 if (pud_val(*pud)) {
464                         if (!pud_large(*pud))
465                                 last_map_addr = phys_pmd_update(pud, addr, end,
466                                                          page_size_mask);
467                         continue;
468                 }
469
470                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
471                         pages++;
472                         spin_lock(&init_mm.page_table_lock);
473                         set_pte((pte_t *)pud,
474                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
475                         spin_unlock(&init_mm.page_table_lock);
476                         last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
477                         continue;
478                 }
479
480                 pmd = alloc_low_page(&pmd_phys);
481                 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask);
482                 unmap_low_page(pmd);
483
484                 spin_lock(&init_mm.page_table_lock);
485                 pud_populate(&init_mm, pud, __va(pmd_phys));
486                 spin_unlock(&init_mm.page_table_lock);
487         }
488         __flush_tlb_all();
489         update_page_count(PG_LEVEL_1G, pages);
490
491         return last_map_addr;
492 }
493
494 static unsigned long __meminit
495 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
496                  unsigned long page_size_mask)
497 {
498         pud_t *pud;
499
500         pud = (pud_t *)pgd_page_vaddr(*pgd);
501
502         return phys_pud_init(pud, addr, end, page_size_mask);
503 }
504
505 static void __init find_early_table_space(unsigned long end)
506 {
507         unsigned long puds, pmds, ptes, tables, start;
508
509         puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
510         tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
511         if (direct_gbpages) {
512                 unsigned long extra;
513                 extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
514                 pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
515         } else
516                 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
517         tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
518
519         if (cpu_has_pse) {
520                 unsigned long extra;
521                 extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
522                 ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
523         } else
524                 ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
525         tables += round_up(ptes * sizeof(pte_t), PAGE_SIZE);
526
527         /*
528          * RED-PEN putting page tables only on node 0 could
529          * cause a hotspot and fill up ZONE_DMA. The page tables
530          * need roughly 0.5KB per GB.
531          */
532         start = 0x8000;
533         table_start = find_e820_area(start, end, tables, PAGE_SIZE);
534         if (table_start == -1UL)
535                 panic("Cannot find space for the kernel page tables");
536
537         table_start >>= PAGE_SHIFT;
538         table_end = table_start;
539         table_top = table_start + (tables >> PAGE_SHIFT);
540
541         printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
542                 end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
543 }
544
545 static void __init init_gbpages(void)
546 {
547         if (direct_gbpages && cpu_has_gbpages)
548                 printk(KERN_INFO "Using GB pages for direct mapping\n");
549         else
550                 direct_gbpages = 0;
551 }
552
553 static unsigned long __init kernel_physical_mapping_init(unsigned long start,
554                                                 unsigned long end,
555                                                 unsigned long page_size_mask)
556 {
557
558         unsigned long next, last_map_addr = end;
559
560         start = (unsigned long)__va(start);
561         end = (unsigned long)__va(end);
562
563         for (; start < end; start = next) {
564                 pgd_t *pgd = pgd_offset_k(start);
565                 unsigned long pud_phys;
566                 pud_t *pud;
567
568                 next = (start + PGDIR_SIZE) & PGDIR_MASK;
569                 if (next > end)
570                         next = end;
571
572                 if (pgd_val(*pgd)) {
573                         last_map_addr = phys_pud_update(pgd, __pa(start),
574                                                  __pa(end), page_size_mask);
575                         continue;
576                 }
577
578                 pud = alloc_low_page(&pud_phys);
579                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
580                                                  page_size_mask);
581                 unmap_low_page(pud);
582
583                 spin_lock(&init_mm.page_table_lock);
584                 pgd_populate(&init_mm, pgd, __va(pud_phys));
585                 spin_unlock(&init_mm.page_table_lock);
586         }
587
588         return last_map_addr;
589 }
590
591 struct map_range {
592         unsigned long start;
593         unsigned long end;
594         unsigned page_size_mask;
595 };
596
597 #define NR_RANGE_MR 5
598
599 static int save_mr(struct map_range *mr, int nr_range,
600                    unsigned long start_pfn, unsigned long end_pfn,
601                    unsigned long page_size_mask)
602 {
603
604         if (start_pfn < end_pfn) {
605                 if (nr_range >= NR_RANGE_MR)
606                         panic("run out of range for init_memory_mapping\n");
607                 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
608                 mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
609                 mr[nr_range].page_size_mask = page_size_mask;
610                 nr_range++;
611         }
612
613         return nr_range;
614 }
615
616 /*
617  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
618  * This runs before bootmem is initialized and gets pages directly from
619  * the physical memory. To access them they are temporarily mapped.
620  */
621 unsigned long __init_refok init_memory_mapping(unsigned long start,
622                                                unsigned long end)
623 {
624         unsigned long last_map_addr = 0;
625         unsigned long page_size_mask = 0;
626         unsigned long start_pfn, end_pfn;
627
628         struct map_range mr[NR_RANGE_MR];
629         int nr_range, i;
630
631         printk(KERN_INFO "init_memory_mapping\n");
632
633         /*
634          * Find space for the kernel direct mapping tables.
635          *
636          * Later we should allocate these tables in the local node of the
637          * memory mapped. Unfortunately this is done currently before the
638          * nodes are discovered.
639          */
640         if (!after_bootmem)
641                 init_gbpages();
642
643         if (direct_gbpages)
644                 page_size_mask |= 1 << PG_LEVEL_1G;
645         if (cpu_has_pse)
646                 page_size_mask |= 1 << PG_LEVEL_2M;
647
648         memset(mr, 0, sizeof(mr));
649         nr_range = 0;
650
651         /* head if not big page alignment ?*/
652         start_pfn = start >> PAGE_SHIFT;
653         end_pfn = ((start + (PMD_SIZE - 1)) >> PMD_SHIFT)
654                         << (PMD_SHIFT - PAGE_SHIFT);
655         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
656
657         /* big page (2M) range*/
658         start_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT)
659                          << (PMD_SHIFT - PAGE_SHIFT);
660         end_pfn = ((start + (PUD_SIZE - 1))>>PUD_SHIFT)
661                          << (PUD_SHIFT - PAGE_SHIFT);
662         if (end_pfn > ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT)))
663                 end_pfn = ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT));
664         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
665                         page_size_mask & (1<<PG_LEVEL_2M));
666
667         /* big page (1G) range */
668         start_pfn = end_pfn;
669         end_pfn = (end>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
670         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
671                                 page_size_mask &
672                                  ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
673
674         /* tail is not big page (1G) alignment */
675         start_pfn = end_pfn;
676         end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
677         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
678                         page_size_mask & (1<<PG_LEVEL_2M));
679
680         /* tail is not big page (2M) alignment */
681         start_pfn = end_pfn;
682         end_pfn = end>>PAGE_SHIFT;
683         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
684
685         /* try to merge same page size and continuous */
686         for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
687                 unsigned long old_start;
688                 if (mr[i].end != mr[i+1].start ||
689                     mr[i].page_size_mask != mr[i+1].page_size_mask)
690                         continue;
691                 /* move it */
692                 old_start = mr[i].start;
693                 memmove(&mr[i], &mr[i+1],
694                          (nr_range - 1 - i) * sizeof (struct map_range));
695                 mr[i].start = old_start;
696                 nr_range--;
697         }
698
699         for (i = 0; i < nr_range; i++)
700                 printk(KERN_DEBUG " %010lx - %010lx page %s\n",
701                                 mr[i].start, mr[i].end,
702                         (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
703                          (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
704
705         if (!after_bootmem)
706                 find_early_table_space(end);
707
708         for (i = 0; i < nr_range; i++)
709                 last_map_addr = kernel_physical_mapping_init(
710                                         mr[i].start, mr[i].end,
711                                         mr[i].page_size_mask);
712
713         if (!after_bootmem)
714                 mmu_cr4_features = read_cr4();
715         __flush_tlb_all();
716
717         if (!after_bootmem && table_end > table_start)
718                 reserve_early(table_start << PAGE_SHIFT,
719                                  table_end << PAGE_SHIFT, "PGTABLE");
720
721         printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
722                          last_map_addr, end);
723
724         if (!after_bootmem)
725                 early_memtest(start, end);
726
727         return last_map_addr >> PAGE_SHIFT;
728 }
729
730 #ifndef CONFIG_NUMA
731 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
732 {
733         unsigned long bootmap_size, bootmap;
734
735         bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
736         bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
737                                  PAGE_SIZE);
738         if (bootmap == -1L)
739                 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
740         /* don't touch min_low_pfn */
741         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
742                                          0, end_pfn);
743         e820_register_active_regions(0, start_pfn, end_pfn);
744         free_bootmem_with_active_regions(0, end_pfn);
745         early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
746         reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
747 }
748
749 void __init paging_init(void)
750 {
751         unsigned long max_zone_pfns[MAX_NR_ZONES];
752
753         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
754         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
755         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
756         max_zone_pfns[ZONE_NORMAL] = max_pfn;
757
758         memory_present(0, 0, max_pfn);
759         sparse_init();
760         free_area_init_nodes(max_zone_pfns);
761 }
762 #endif
763
764 /*
765  * Memory hotplug specific functions
766  */
767 #ifdef CONFIG_MEMORY_HOTPLUG
768 /*
769  * Memory is added always to NORMAL zone. This means you will never get
770  * additional DMA/DMA32 memory.
771  */
772 int arch_add_memory(int nid, u64 start, u64 size)
773 {
774         struct pglist_data *pgdat = NODE_DATA(nid);
775         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
776         unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
777         unsigned long nr_pages = size >> PAGE_SHIFT;
778         int ret;
779
780         last_mapped_pfn = init_memory_mapping(start, start + size-1);
781         if (last_mapped_pfn > max_pfn_mapped)
782                 max_pfn_mapped = last_mapped_pfn;
783
784         ret = __add_pages(zone, start_pfn, nr_pages);
785         WARN_ON(1);
786
787         return ret;
788 }
789 EXPORT_SYMBOL_GPL(arch_add_memory);
790
791 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
792 int memory_add_physaddr_to_nid(u64 start)
793 {
794         return 0;
795 }
796 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
797 #endif
798
799 #endif /* CONFIG_MEMORY_HOTPLUG */
800
801 /*
802  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
803  * is valid. The argument is a physical page number.
804  *
805  *
806  * On x86, access has to be given to the first megabyte of ram because that area
807  * contains bios code and data regions used by X and dosemu and similar apps.
808  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
809  * mmio resources as well as potential bios/acpi data regions.
810  */
811 int devmem_is_allowed(unsigned long pagenr)
812 {
813         if (pagenr <= 256)
814                 return 1;
815         if (!page_is_ram(pagenr))
816                 return 1;
817         return 0;
818 }
819
820
821 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
822                          kcore_modules, kcore_vsyscall;
823
824 void __init mem_init(void)
825 {
826         long codesize, reservedpages, datasize, initsize;
827
828         pci_iommu_alloc();
829
830         /* clear_bss() already clear the empty_zero_page */
831
832         reservedpages = 0;
833
834         /* this will put all low memory onto the freelists */
835 #ifdef CONFIG_NUMA
836         totalram_pages = numa_free_all_bootmem();
837 #else
838         totalram_pages = free_all_bootmem();
839 #endif
840         reservedpages = max_pfn - totalram_pages -
841                                         absent_pages_in_range(0, max_pfn);
842         after_bootmem = 1;
843
844         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
845         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
846         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
847
848         /* Register memory areas for /proc/kcore */
849         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
850         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
851                    VMALLOC_END-VMALLOC_START);
852         kclist_add(&kcore_kernel, &_stext, _end - _stext);
853         kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
854         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
855                                  VSYSCALL_END - VSYSCALL_START);
856
857         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
858                                 "%ldk reserved, %ldk data, %ldk init)\n",
859                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
860                 max_pfn << (PAGE_SHIFT-10),
861                 codesize >> 10,
862                 reservedpages << (PAGE_SHIFT-10),
863                 datasize >> 10,
864                 initsize >> 10);
865
866         cpa_init();
867 }
868
869 void free_init_pages(char *what, unsigned long begin, unsigned long end)
870 {
871         unsigned long addr = begin;
872
873         if (addr >= end)
874                 return;
875
876         /*
877          * If debugging page accesses then do not free this memory but
878          * mark them not present - any buggy init-section access will
879          * create a kernel page fault:
880          */
881 #ifdef CONFIG_DEBUG_PAGEALLOC
882         printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
883                 begin, PAGE_ALIGN(end));
884         set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
885 #else
886         printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
887
888         for (; addr < end; addr += PAGE_SIZE) {
889                 ClearPageReserved(virt_to_page(addr));
890                 init_page_count(virt_to_page(addr));
891                 memset((void *)(addr & ~(PAGE_SIZE-1)),
892                         POISON_FREE_INITMEM, PAGE_SIZE);
893                 free_page(addr);
894                 totalram_pages++;
895         }
896 #endif
897 }
898
899 void free_initmem(void)
900 {
901         free_init_pages("unused kernel memory",
902                         (unsigned long)(&__init_begin),
903                         (unsigned long)(&__init_end));
904 }
905
906 #ifdef CONFIG_DEBUG_RODATA
907 const int rodata_test_data = 0xC3;
908 EXPORT_SYMBOL_GPL(rodata_test_data);
909
910 void mark_rodata_ro(void)
911 {
912         unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
913         unsigned long rodata_start =
914                 ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
915
916 #ifdef CONFIG_DYNAMIC_FTRACE
917         /* Dynamic tracing modifies the kernel text section */
918         start = rodata_start;
919 #endif
920
921         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
922                (end - start) >> 10);
923         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
924
925         /*
926          * The rodata section (but not the kernel text!) should also be
927          * not-executable.
928          */
929         set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
930
931         rodata_test();
932
933 #ifdef CONFIG_CPA_DEBUG
934         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
935         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
936
937         printk(KERN_INFO "Testing CPA: again\n");
938         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
939 #endif
940 }
941
942 #endif
943
944 #ifdef CONFIG_BLK_DEV_INITRD
945 void free_initrd_mem(unsigned long start, unsigned long end)
946 {
947         free_init_pages("initrd memory", start, end);
948 }
949 #endif
950
951 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
952                                    int flags)
953 {
954 #ifdef CONFIG_NUMA
955         int nid, next_nid;
956         int ret;
957 #endif
958         unsigned long pfn = phys >> PAGE_SHIFT;
959
960         if (pfn >= max_pfn) {
961                 /*
962                  * This can happen with kdump kernels when accessing
963                  * firmware tables:
964                  */
965                 if (pfn < max_pfn_mapped)
966                         return -EFAULT;
967
968                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
969                                 phys, len);
970                 return -EFAULT;
971         }
972
973         /* Should check here against the e820 map to avoid double free */
974 #ifdef CONFIG_NUMA
975         nid = phys_to_nid(phys);
976         next_nid = phys_to_nid(phys + len - 1);
977         if (nid == next_nid)
978                 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
979         else
980                 ret = reserve_bootmem(phys, len, flags);
981
982         if (ret != 0)
983                 return ret;
984
985 #else
986         reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
987 #endif
988
989         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
990                 dma_reserve += len / PAGE_SIZE;
991                 set_dma_reserve(dma_reserve);
992         }
993
994         return 0;
995 }
996
997 int kern_addr_valid(unsigned long addr)
998 {
999         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1000         pgd_t *pgd;
1001         pud_t *pud;
1002         pmd_t *pmd;
1003         pte_t *pte;
1004
1005         if (above != 0 && above != -1UL)
1006                 return 0;
1007
1008         pgd = pgd_offset_k(addr);
1009         if (pgd_none(*pgd))
1010                 return 0;
1011
1012         pud = pud_offset(pgd, addr);
1013         if (pud_none(*pud))
1014                 return 0;
1015
1016         pmd = pmd_offset(pud, addr);
1017         if (pmd_none(*pmd))
1018                 return 0;
1019
1020         if (pmd_large(*pmd))
1021                 return pfn_valid(pmd_pfn(*pmd));
1022
1023         pte = pte_offset_kernel(pmd, addr);
1024         if (pte_none(*pte))
1025                 return 0;
1026
1027         return pfn_valid(pte_pfn(*pte));
1028 }
1029
1030 /*
1031  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
1032  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
1033  * not need special handling anymore:
1034  */
1035 static struct vm_area_struct gate_vma = {
1036         .vm_start       = VSYSCALL_START,
1037         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
1038         .vm_page_prot   = PAGE_READONLY_EXEC,
1039         .vm_flags       = VM_READ | VM_EXEC
1040 };
1041
1042 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
1043 {
1044 #ifdef CONFIG_IA32_EMULATION
1045         if (test_tsk_thread_flag(tsk, TIF_IA32))
1046                 return NULL;
1047 #endif
1048         return &gate_vma;
1049 }
1050
1051 int in_gate_area(struct task_struct *task, unsigned long addr)
1052 {
1053         struct vm_area_struct *vma = get_gate_vma(task);
1054
1055         if (!vma)
1056                 return 0;
1057
1058         return (addr >= vma->vm_start) && (addr < vma->vm_end);
1059 }
1060
1061 /*
1062  * Use this when you have no reliable task/vma, typically from interrupt
1063  * context. It is less reliable than using the task's vma and may give
1064  * false positives:
1065  */
1066 int in_gate_area_no_task(unsigned long addr)
1067 {
1068         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
1069 }
1070
1071 const char *arch_vma_name(struct vm_area_struct *vma)
1072 {
1073         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
1074                 return "[vdso]";
1075         if (vma == &gate_vma)
1076                 return "[vsyscall]";
1077         return NULL;
1078 }
1079
1080 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1081 /*
1082  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1083  */
1084 static long __meminitdata addr_start, addr_end;
1085 static void __meminitdata *p_start, *p_end;
1086 static int __meminitdata node_start;
1087
1088 int __meminit
1089 vmemmap_populate(struct page *start_page, unsigned long size, int node)
1090 {
1091         unsigned long addr = (unsigned long)start_page;
1092         unsigned long end = (unsigned long)(start_page + size);
1093         unsigned long next;
1094         pgd_t *pgd;
1095         pud_t *pud;
1096         pmd_t *pmd;
1097
1098         for (; addr < end; addr = next) {
1099                 void *p = NULL;
1100
1101                 pgd = vmemmap_pgd_populate(addr, node);
1102                 if (!pgd)
1103                         return -ENOMEM;
1104
1105                 pud = vmemmap_pud_populate(pgd, addr, node);
1106                 if (!pud)
1107                         return -ENOMEM;
1108
1109                 if (!cpu_has_pse) {
1110                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1111                         pmd = vmemmap_pmd_populate(pud, addr, node);
1112
1113                         if (!pmd)
1114                                 return -ENOMEM;
1115
1116                         p = vmemmap_pte_populate(pmd, addr, node);
1117
1118                         if (!p)
1119                                 return -ENOMEM;
1120
1121                         addr_end = addr + PAGE_SIZE;
1122                         p_end = p + PAGE_SIZE;
1123                 } else {
1124                         next = pmd_addr_end(addr, end);
1125
1126                         pmd = pmd_offset(pud, addr);
1127                         if (pmd_none(*pmd)) {
1128                                 pte_t entry;
1129
1130                                 p = vmemmap_alloc_block(PMD_SIZE, node);
1131                                 if (!p)
1132                                         return -ENOMEM;
1133
1134                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1135                                                 PAGE_KERNEL_LARGE);
1136                                 set_pmd(pmd, __pmd(pte_val(entry)));
1137
1138                                 /* check to see if we have contiguous blocks */
1139                                 if (p_end != p || node_start != node) {
1140                                         if (p_start)
1141                                                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1142                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1143                                         addr_start = addr;
1144                                         node_start = node;
1145                                         p_start = p;
1146                                 }
1147
1148                                 addr_end = addr + PMD_SIZE;
1149                                 p_end = p + PMD_SIZE;
1150                         } else
1151                                 vmemmap_verify((pte_t *)pmd, node, addr, next);
1152                 }
1153
1154         }
1155         return 0;
1156 }
1157
1158 void __meminit vmemmap_populate_print_last(void)
1159 {
1160         if (p_start) {
1161                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1162                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1163                 p_start = NULL;
1164                 p_end = NULL;
1165                 node_start = 0;
1166         }
1167 }
1168 #endif