]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/x86/mm/init_64.c
x86, cpa: make the kernel physical mapping initialization a two pass sequence
[linux-2.6-omap-h63xx.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32
33 #include <asm/processor.h>
34 #include <asm/system.h>
35 #include <asm/uaccess.h>
36 #include <asm/pgtable.h>
37 #include <asm/pgalloc.h>
38 #include <asm/dma.h>
39 #include <asm/fixmap.h>
40 #include <asm/e820.h>
41 #include <asm/apic.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44 #include <asm/proto.h>
45 #include <asm/smp.h>
46 #include <asm/sections.h>
47 #include <asm/kdebug.h>
48 #include <asm/numa.h>
49 #include <asm/cacheflush.h>
50
51 /*
52  * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
53  * The direct mapping extends to max_pfn_mapped, so that we can directly access
54  * apertures, ACPI and other tables without having to play with fixmaps.
55  */
56 unsigned long max_low_pfn_mapped;
57 unsigned long max_pfn_mapped;
58
59 static unsigned long dma_reserve __initdata;
60
61 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
62
63 int direct_gbpages
64 #ifdef CONFIG_DIRECT_GBPAGES
65                                 = 1
66 #endif
67 ;
68
69 static int __init parse_direct_gbpages_off(char *arg)
70 {
71         direct_gbpages = 0;
72         return 0;
73 }
74 early_param("nogbpages", parse_direct_gbpages_off);
75
76 static int __init parse_direct_gbpages_on(char *arg)
77 {
78         direct_gbpages = 1;
79         return 0;
80 }
81 early_param("gbpages", parse_direct_gbpages_on);
82
83 /*
84  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
85  * physical space so we can cache the place of the first one and move
86  * around without checking the pgd every time.
87  */
88
89 int after_bootmem;
90
91 /*
92  * NOTE: This function is marked __ref because it calls __init function
93  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
94  */
95 static __ref void *spp_getpage(void)
96 {
97         void *ptr;
98
99         if (after_bootmem)
100                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
101         else
102                 ptr = alloc_bootmem_pages(PAGE_SIZE);
103
104         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
105                 panic("set_pte_phys: cannot allocate page data %s\n",
106                         after_bootmem ? "after bootmem" : "");
107         }
108
109         pr_debug("spp_getpage %p\n", ptr);
110
111         return ptr;
112 }
113
114 void
115 set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
116 {
117         pud_t *pud;
118         pmd_t *pmd;
119         pte_t *pte;
120
121         pud = pud_page + pud_index(vaddr);
122         if (pud_none(*pud)) {
123                 pmd = (pmd_t *) spp_getpage();
124                 pud_populate(&init_mm, pud, pmd);
125                 if (pmd != pmd_offset(pud, 0)) {
126                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
127                                 pmd, pmd_offset(pud, 0));
128                         return;
129                 }
130         }
131         pmd = pmd_offset(pud, vaddr);
132         if (pmd_none(*pmd)) {
133                 pte = (pte_t *) spp_getpage();
134                 pmd_populate_kernel(&init_mm, pmd, pte);
135                 if (pte != pte_offset_kernel(pmd, 0)) {
136                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
137                         return;
138                 }
139         }
140
141         pte = pte_offset_kernel(pmd, vaddr);
142         if (!pte_none(*pte) && pte_val(new_pte) &&
143             pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
144                 pte_ERROR(*pte);
145         set_pte(pte, new_pte);
146
147         /*
148          * It's enough to flush this one mapping.
149          * (PGE mappings get flushed as well)
150          */
151         __flush_tlb_one(vaddr);
152 }
153
154 void
155 set_pte_vaddr(unsigned long vaddr, pte_t pteval)
156 {
157         pgd_t *pgd;
158         pud_t *pud_page;
159
160         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
161
162         pgd = pgd_offset_k(vaddr);
163         if (pgd_none(*pgd)) {
164                 printk(KERN_ERR
165                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
166                 return;
167         }
168         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
169         set_pte_vaddr_pud(pud_page, vaddr, pteval);
170 }
171
172 /*
173  * Create large page table mappings for a range of physical addresses.
174  */
175 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
176                                                 pgprot_t prot)
177 {
178         pgd_t *pgd;
179         pud_t *pud;
180         pmd_t *pmd;
181
182         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
183         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
184                 pgd = pgd_offset_k((unsigned long)__va(phys));
185                 if (pgd_none(*pgd)) {
186                         pud = (pud_t *) spp_getpage();
187                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
188                                                 _PAGE_USER));
189                 }
190                 pud = pud_offset(pgd, (unsigned long)__va(phys));
191                 if (pud_none(*pud)) {
192                         pmd = (pmd_t *) spp_getpage();
193                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
194                                                 _PAGE_USER));
195                 }
196                 pmd = pmd_offset(pud, phys);
197                 BUG_ON(!pmd_none(*pmd));
198                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
199         }
200 }
201
202 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
203 {
204         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
205 }
206
207 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
208 {
209         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
210 }
211
212 /*
213  * The head.S code sets up the kernel high mapping:
214  *
215  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
216  *
217  * phys_addr holds the negative offset to the kernel, which is added
218  * to the compile time generated pmds. This results in invalid pmds up
219  * to the point where we hit the physaddr 0 mapping.
220  *
221  * We limit the mappings to the region from _text to _end.  _end is
222  * rounded up to the 2MB boundary. This catches the invalid pmds as
223  * well, as they are located before _text:
224  */
225 void __init cleanup_highmap(void)
226 {
227         unsigned long vaddr = __START_KERNEL_map;
228         unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
229         pmd_t *pmd = level2_kernel_pgt;
230         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
231
232         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
233                 if (pmd_none(*pmd))
234                         continue;
235                 if (vaddr < (unsigned long) _text || vaddr > end)
236                         set_pmd(pmd, __pmd(0));
237         }
238 }
239
240 static unsigned long __initdata table_start;
241 static unsigned long __meminitdata table_end;
242 static unsigned long __meminitdata table_top;
243
244 static __ref void *alloc_low_page(unsigned long *phys)
245 {
246         unsigned long pfn = table_end++;
247         void *adr;
248
249         if (after_bootmem) {
250                 adr = (void *)get_zeroed_page(GFP_ATOMIC);
251                 *phys = __pa(adr);
252
253                 return adr;
254         }
255
256         if (pfn >= table_top)
257                 panic("alloc_low_page: ran out of memory");
258
259         adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
260         memset(adr, 0, PAGE_SIZE);
261         *phys  = pfn * PAGE_SIZE;
262         return adr;
263 }
264
265 static __ref void unmap_low_page(void *adr)
266 {
267         if (after_bootmem)
268                 return;
269
270         early_iounmap(adr, PAGE_SIZE);
271 }
272
273 static int physical_mapping_iter;
274
275 static unsigned long __meminit
276 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end)
277 {
278         unsigned pages = 0;
279         unsigned long last_map_addr = end;
280         int i;
281
282         pte_t *pte = pte_page + pte_index(addr);
283
284         for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
285
286                 if (addr >= end) {
287                         if (!after_bootmem) {
288                                 for(; i < PTRS_PER_PTE; i++, pte++)
289                                         set_pte(pte, __pte(0));
290                         }
291                         break;
292                 }
293
294                 if (pte_val(*pte))
295                         goto repeat_set_pte;
296
297                 if (0)
298                         printk("   pte=%p addr=%lx pte=%016lx\n",
299                                pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
300                 pages++;
301 repeat_set_pte:
302                 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL));
303                 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
304         }
305
306         if (physical_mapping_iter == 1)
307                 update_page_count(PG_LEVEL_4K, pages);
308
309         return last_map_addr;
310 }
311
312 static unsigned long __meminit
313 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end)
314 {
315         pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
316
317         return phys_pte_init(pte, address, end);
318 }
319
320 static unsigned long __meminit
321 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
322                          unsigned long page_size_mask)
323 {
324         unsigned long pages = 0;
325         unsigned long last_map_addr = end;
326
327         int i = pmd_index(address);
328
329         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
330                 unsigned long pte_phys;
331                 pmd_t *pmd = pmd_page + pmd_index(address);
332                 pte_t *pte;
333
334                 if (address >= end) {
335                         if (!after_bootmem) {
336                                 for (; i < PTRS_PER_PMD; i++, pmd++)
337                                         set_pmd(pmd, __pmd(0));
338                         }
339                         break;
340                 }
341
342                 if (pmd_val(*pmd)) {
343                         if (!pmd_large(*pmd)) {
344                                 spin_lock(&init_mm.page_table_lock);
345                                 last_map_addr = phys_pte_update(pmd, address,
346                                                                 end);
347                                 spin_unlock(&init_mm.page_table_lock);
348                                 continue;
349                         }
350                         goto repeat_set_pte;
351                 }
352
353                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
354                         pages++;
355 repeat_set_pte:
356                         spin_lock(&init_mm.page_table_lock);
357                         set_pte((pte_t *)pmd,
358                                 pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
359                         spin_unlock(&init_mm.page_table_lock);
360                         last_map_addr = (address & PMD_MASK) + PMD_SIZE;
361                         continue;
362                 }
363
364                 pte = alloc_low_page(&pte_phys);
365                 last_map_addr = phys_pte_init(pte, address, end);
366                 unmap_low_page(pte);
367
368                 spin_lock(&init_mm.page_table_lock);
369                 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
370                 spin_unlock(&init_mm.page_table_lock);
371         }
372         if (physical_mapping_iter == 1)
373                 update_page_count(PG_LEVEL_2M, pages);
374         return last_map_addr;
375 }
376
377 static unsigned long __meminit
378 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
379                          unsigned long page_size_mask)
380 {
381         pmd_t *pmd = pmd_offset(pud, 0);
382         unsigned long last_map_addr;
383
384         last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask);
385         __flush_tlb_all();
386         return last_map_addr;
387 }
388
389 static unsigned long __meminit
390 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
391                          unsigned long page_size_mask)
392 {
393         unsigned long pages = 0;
394         unsigned long last_map_addr = end;
395         int i = pud_index(addr);
396
397         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
398                 unsigned long pmd_phys;
399                 pud_t *pud = pud_page + pud_index(addr);
400                 pmd_t *pmd;
401
402                 if (addr >= end)
403                         break;
404
405                 if (!after_bootmem &&
406                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
407                         set_pud(pud, __pud(0));
408                         continue;
409                 }
410
411                 if (pud_val(*pud)) {
412                         if (!pud_large(*pud)) {
413                                 last_map_addr = phys_pmd_update(pud, addr, end,
414                                                          page_size_mask);
415                                 continue;
416                         }
417
418                         goto repeat_set_pte;
419                 }
420
421                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
422                         pages++;
423 repeat_set_pte:
424                         spin_lock(&init_mm.page_table_lock);
425                         set_pte((pte_t *)pud,
426                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
427                         spin_unlock(&init_mm.page_table_lock);
428                         last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
429                         continue;
430                 }
431
432                 pmd = alloc_low_page(&pmd_phys);
433                 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask);
434                 unmap_low_page(pmd);
435
436                 spin_lock(&init_mm.page_table_lock);
437                 pud_populate(&init_mm, pud, __va(pmd_phys));
438                 spin_unlock(&init_mm.page_table_lock);
439         }
440         __flush_tlb_all();
441
442         if (physical_mapping_iter == 1)
443                 update_page_count(PG_LEVEL_1G, pages);
444
445         return last_map_addr;
446 }
447
448 static unsigned long __meminit
449 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
450                  unsigned long page_size_mask)
451 {
452         pud_t *pud;
453
454         pud = (pud_t *)pgd_page_vaddr(*pgd);
455
456         return phys_pud_init(pud, addr, end, page_size_mask);
457 }
458
459 static void __init find_early_table_space(unsigned long end)
460 {
461         unsigned long puds, pmds, ptes, tables, start;
462
463         puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
464         tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
465         if (direct_gbpages) {
466                 unsigned long extra;
467                 extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
468                 pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
469         } else
470                 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
471         tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
472
473         if (cpu_has_pse) {
474                 unsigned long extra;
475                 extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
476                 ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
477         } else
478                 ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
479         tables += round_up(ptes * sizeof(pte_t), PAGE_SIZE);
480
481         /*
482          * RED-PEN putting page tables only on node 0 could
483          * cause a hotspot and fill up ZONE_DMA. The page tables
484          * need roughly 0.5KB per GB.
485          */
486         start = 0x8000;
487         table_start = find_e820_area(start, end, tables, PAGE_SIZE);
488         if (table_start == -1UL)
489                 panic("Cannot find space for the kernel page tables");
490
491         table_start >>= PAGE_SHIFT;
492         table_end = table_start;
493         table_top = table_start + (tables >> PAGE_SHIFT);
494
495         printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
496                 end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
497 }
498
499 static void __init init_gbpages(void)
500 {
501         if (direct_gbpages && cpu_has_gbpages)
502                 printk(KERN_INFO "Using GB pages for direct mapping\n");
503         else
504                 direct_gbpages = 0;
505 }
506
507 static int is_kernel(unsigned long pfn)
508 {
509         unsigned long pg_addresss = pfn << PAGE_SHIFT;
510
511         if (pg_addresss >= (unsigned long) __pa(_text) &&
512             pg_addresss <= (unsigned long) __pa(_end))
513                 return 1;
514
515         return 0;
516 }
517
518 static unsigned long __init kernel_physical_mapping_init(unsigned long start,
519                                                 unsigned long end,
520                                                 unsigned long page_size_mask)
521 {
522
523         unsigned long next, last_map_addr;
524         u64 cached_supported_pte_mask = __supported_pte_mask;
525         unsigned long cache_start = start;
526         unsigned long cache_end = end;
527
528         /*
529          * First iteration will setup identity mapping using large/small pages
530          * based on page_size_mask, with other attributes same as set by
531          * the early code in head_64.S
532          *
533          * Second iteration will setup the appropriate attributes
534          * as desired for the kernel identity mapping.
535          *
536          * This two pass mechanism conforms to the TLB app note which says:
537          *
538          *     "Software should not write to a paging-structure entry in a way
539          *      that would change, for any linear address, both the page size
540          *      and either the page frame or attributes."
541          *
542          * For now, only difference between very early PTE attributes used in
543          * head_64.S and here is _PAGE_NX.
544          */
545         BUILD_BUG_ON((__PAGE_KERNEL_LARGE & ~__PAGE_KERNEL_IDENT_LARGE_EXEC)
546                      != _PAGE_NX);
547         __supported_pte_mask &= ~(_PAGE_NX);
548         physical_mapping_iter = 1;
549
550 repeat:
551         last_map_addr = cache_end;
552
553         start = (unsigned long)__va(cache_start);
554         end = (unsigned long)__va(cache_end);
555
556         for (; start < end; start = next) {
557                 pgd_t *pgd = pgd_offset_k(start);
558                 unsigned long pud_phys;
559                 pud_t *pud;
560
561                 next = (start + PGDIR_SIZE) & PGDIR_MASK;
562                 if (next > end)
563                         next = end;
564
565                 if (pgd_val(*pgd)) {
566                         /*
567                          * Static identity mappings will be overwritten
568                          * with run-time mappings. For example, this allows
569                          * the static 0-1GB identity mapping to be mapped
570                          * non-executable with this.
571                          */
572                         if (is_kernel(pte_pfn(*((pte_t *) pgd))))
573                                 goto realloc;
574
575                         last_map_addr = phys_pud_update(pgd, __pa(start),
576                                                  __pa(end), page_size_mask);
577                         continue;
578                 }
579
580 realloc:
581                 pud = alloc_low_page(&pud_phys);
582                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
583                                                  page_size_mask);
584                 unmap_low_page(pud);
585
586                 spin_lock(&init_mm.page_table_lock);
587                 pgd_populate(&init_mm, pgd, __va(pud_phys));
588                 spin_unlock(&init_mm.page_table_lock);
589         }
590         __flush_tlb_all();
591
592         if (physical_mapping_iter == 1) {
593                 physical_mapping_iter = 2;
594                 /*
595                  * Second iteration will set the actual desired PTE attributes.
596                  */
597                 __supported_pte_mask = cached_supported_pte_mask;
598                 goto repeat;
599         }
600
601         return last_map_addr;
602 }
603
604 struct map_range {
605         unsigned long start;
606         unsigned long end;
607         unsigned page_size_mask;
608 };
609
610 #define NR_RANGE_MR 5
611
612 static int save_mr(struct map_range *mr, int nr_range,
613                    unsigned long start_pfn, unsigned long end_pfn,
614                    unsigned long page_size_mask)
615 {
616
617         if (start_pfn < end_pfn) {
618                 if (nr_range >= NR_RANGE_MR)
619                         panic("run out of range for init_memory_mapping\n");
620                 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
621                 mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
622                 mr[nr_range].page_size_mask = page_size_mask;
623                 nr_range++;
624         }
625
626         return nr_range;
627 }
628
629 /*
630  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
631  * This runs before bootmem is initialized and gets pages directly from
632  * the physical memory. To access them they are temporarily mapped.
633  */
634 unsigned long __init_refok init_memory_mapping(unsigned long start,
635                                                unsigned long end)
636 {
637         unsigned long last_map_addr = 0;
638         unsigned long page_size_mask = 0;
639         unsigned long start_pfn, end_pfn;
640
641         struct map_range mr[NR_RANGE_MR];
642         int nr_range, i;
643
644         printk(KERN_INFO "init_memory_mapping\n");
645
646         /*
647          * Find space for the kernel direct mapping tables.
648          *
649          * Later we should allocate these tables in the local node of the
650          * memory mapped. Unfortunately this is done currently before the
651          * nodes are discovered.
652          */
653         if (!after_bootmem)
654                 init_gbpages();
655
656         if (direct_gbpages)
657                 page_size_mask |= 1 << PG_LEVEL_1G;
658         if (cpu_has_pse)
659                 page_size_mask |= 1 << PG_LEVEL_2M;
660
661         memset(mr, 0, sizeof(mr));
662         nr_range = 0;
663
664         /* head if not big page alignment ?*/
665         start_pfn = start >> PAGE_SHIFT;
666         end_pfn = ((start + (PMD_SIZE - 1)) >> PMD_SHIFT)
667                         << (PMD_SHIFT - PAGE_SHIFT);
668         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
669
670         /* big page (2M) range*/
671         start_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT)
672                          << (PMD_SHIFT - PAGE_SHIFT);
673         end_pfn = ((start + (PUD_SIZE - 1))>>PUD_SHIFT)
674                          << (PUD_SHIFT - PAGE_SHIFT);
675         if (end_pfn > ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT)))
676                 end_pfn = ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT));
677         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
678                         page_size_mask & (1<<PG_LEVEL_2M));
679
680         /* big page (1G) range */
681         start_pfn = end_pfn;
682         end_pfn = (end>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
683         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
684                                 page_size_mask &
685                                  ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
686
687         /* tail is not big page (1G) alignment */
688         start_pfn = end_pfn;
689         end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
690         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
691                         page_size_mask & (1<<PG_LEVEL_2M));
692
693         /* tail is not big page (2M) alignment */
694         start_pfn = end_pfn;
695         end_pfn = end>>PAGE_SHIFT;
696         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
697
698         /* try to merge same page size and continuous */
699         for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
700                 unsigned long old_start;
701                 if (mr[i].end != mr[i+1].start ||
702                     mr[i].page_size_mask != mr[i+1].page_size_mask)
703                         continue;
704                 /* move it */
705                 old_start = mr[i].start;
706                 memmove(&mr[i], &mr[i+1],
707                          (nr_range - 1 - i) * sizeof (struct map_range));
708                 mr[i].start = old_start;
709                 nr_range--;
710         }
711
712         for (i = 0; i < nr_range; i++)
713                 printk(KERN_DEBUG " %010lx - %010lx page %s\n",
714                                 mr[i].start, mr[i].end,
715                         (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
716                          (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
717
718         if (!after_bootmem)
719                 find_early_table_space(end);
720
721         for (i = 0; i < nr_range; i++)
722                 last_map_addr = kernel_physical_mapping_init(
723                                         mr[i].start, mr[i].end,
724                                         mr[i].page_size_mask);
725
726         if (!after_bootmem)
727                 mmu_cr4_features = read_cr4();
728         __flush_tlb_all();
729
730         if (!after_bootmem && table_end > table_start)
731                 reserve_early(table_start << PAGE_SHIFT,
732                                  table_end << PAGE_SHIFT, "PGTABLE");
733
734         printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
735                          last_map_addr, end);
736
737         if (!after_bootmem)
738                 early_memtest(start, end);
739
740         return last_map_addr >> PAGE_SHIFT;
741 }
742
743 #ifndef CONFIG_NUMA
744 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
745 {
746         unsigned long bootmap_size, bootmap;
747
748         bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
749         bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
750                                  PAGE_SIZE);
751         if (bootmap == -1L)
752                 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
753         /* don't touch min_low_pfn */
754         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
755                                          0, end_pfn);
756         e820_register_active_regions(0, start_pfn, end_pfn);
757         free_bootmem_with_active_regions(0, end_pfn);
758         early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
759         reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
760 }
761
762 void __init paging_init(void)
763 {
764         unsigned long max_zone_pfns[MAX_NR_ZONES];
765
766         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
767         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
768         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
769         max_zone_pfns[ZONE_NORMAL] = max_pfn;
770
771         memory_present(0, 0, max_pfn);
772         sparse_init();
773         free_area_init_nodes(max_zone_pfns);
774 }
775 #endif
776
777 /*
778  * Memory hotplug specific functions
779  */
780 #ifdef CONFIG_MEMORY_HOTPLUG
781 /*
782  * Memory is added always to NORMAL zone. This means you will never get
783  * additional DMA/DMA32 memory.
784  */
785 int arch_add_memory(int nid, u64 start, u64 size)
786 {
787         struct pglist_data *pgdat = NODE_DATA(nid);
788         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
789         unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
790         unsigned long nr_pages = size >> PAGE_SHIFT;
791         int ret;
792
793         last_mapped_pfn = init_memory_mapping(start, start + size-1);
794         if (last_mapped_pfn > max_pfn_mapped)
795                 max_pfn_mapped = last_mapped_pfn;
796
797         ret = __add_pages(zone, start_pfn, nr_pages);
798         WARN_ON(1);
799
800         return ret;
801 }
802 EXPORT_SYMBOL_GPL(arch_add_memory);
803
804 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
805 int memory_add_physaddr_to_nid(u64 start)
806 {
807         return 0;
808 }
809 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
810 #endif
811
812 #endif /* CONFIG_MEMORY_HOTPLUG */
813
814 /*
815  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
816  * is valid. The argument is a physical page number.
817  *
818  *
819  * On x86, access has to be given to the first megabyte of ram because that area
820  * contains bios code and data regions used by X and dosemu and similar apps.
821  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
822  * mmio resources as well as potential bios/acpi data regions.
823  */
824 int devmem_is_allowed(unsigned long pagenr)
825 {
826         if (pagenr <= 256)
827                 return 1;
828         if (!page_is_ram(pagenr))
829                 return 1;
830         return 0;
831 }
832
833
834 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
835                          kcore_modules, kcore_vsyscall;
836
837 void __init mem_init(void)
838 {
839         long codesize, reservedpages, datasize, initsize;
840
841         pci_iommu_alloc();
842
843         /* clear_bss() already clear the empty_zero_page */
844
845         reservedpages = 0;
846
847         /* this will put all low memory onto the freelists */
848 #ifdef CONFIG_NUMA
849         totalram_pages = numa_free_all_bootmem();
850 #else
851         totalram_pages = free_all_bootmem();
852 #endif
853         reservedpages = max_pfn - totalram_pages -
854                                         absent_pages_in_range(0, max_pfn);
855         after_bootmem = 1;
856
857         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
858         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
859         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
860
861         /* Register memory areas for /proc/kcore */
862         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
863         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
864                    VMALLOC_END-VMALLOC_START);
865         kclist_add(&kcore_kernel, &_stext, _end - _stext);
866         kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
867         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
868                                  VSYSCALL_END - VSYSCALL_START);
869
870         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
871                                 "%ldk reserved, %ldk data, %ldk init)\n",
872                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
873                 max_pfn << (PAGE_SHIFT-10),
874                 codesize >> 10,
875                 reservedpages << (PAGE_SHIFT-10),
876                 datasize >> 10,
877                 initsize >> 10);
878
879         cpa_init();
880 }
881
882 void free_init_pages(char *what, unsigned long begin, unsigned long end)
883 {
884         unsigned long addr = begin;
885
886         if (addr >= end)
887                 return;
888
889         /*
890          * If debugging page accesses then do not free this memory but
891          * mark them not present - any buggy init-section access will
892          * create a kernel page fault:
893          */
894 #ifdef CONFIG_DEBUG_PAGEALLOC
895         printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
896                 begin, PAGE_ALIGN(end));
897         set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
898 #else
899         printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
900
901         for (; addr < end; addr += PAGE_SIZE) {
902                 ClearPageReserved(virt_to_page(addr));
903                 init_page_count(virt_to_page(addr));
904                 memset((void *)(addr & ~(PAGE_SIZE-1)),
905                         POISON_FREE_INITMEM, PAGE_SIZE);
906                 free_page(addr);
907                 totalram_pages++;
908         }
909 #endif
910 }
911
912 void free_initmem(void)
913 {
914         free_init_pages("unused kernel memory",
915                         (unsigned long)(&__init_begin),
916                         (unsigned long)(&__init_end));
917 }
918
919 #ifdef CONFIG_DEBUG_RODATA
920 const int rodata_test_data = 0xC3;
921 EXPORT_SYMBOL_GPL(rodata_test_data);
922
923 void mark_rodata_ro(void)
924 {
925         unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
926         unsigned long rodata_start =
927                 ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
928
929 #ifdef CONFIG_DYNAMIC_FTRACE
930         /* Dynamic tracing modifies the kernel text section */
931         start = rodata_start;
932 #endif
933
934         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
935                (end - start) >> 10);
936         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
937
938         /*
939          * The rodata section (but not the kernel text!) should also be
940          * not-executable.
941          */
942         set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
943
944         rodata_test();
945
946 #ifdef CONFIG_CPA_DEBUG
947         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
948         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
949
950         printk(KERN_INFO "Testing CPA: again\n");
951         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
952 #endif
953 }
954
955 #endif
956
957 #ifdef CONFIG_BLK_DEV_INITRD
958 void free_initrd_mem(unsigned long start, unsigned long end)
959 {
960         free_init_pages("initrd memory", start, end);
961 }
962 #endif
963
964 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
965                                    int flags)
966 {
967 #ifdef CONFIG_NUMA
968         int nid, next_nid;
969         int ret;
970 #endif
971         unsigned long pfn = phys >> PAGE_SHIFT;
972
973         if (pfn >= max_pfn) {
974                 /*
975                  * This can happen with kdump kernels when accessing
976                  * firmware tables:
977                  */
978                 if (pfn < max_pfn_mapped)
979                         return -EFAULT;
980
981                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
982                                 phys, len);
983                 return -EFAULT;
984         }
985
986         /* Should check here against the e820 map to avoid double free */
987 #ifdef CONFIG_NUMA
988         nid = phys_to_nid(phys);
989         next_nid = phys_to_nid(phys + len - 1);
990         if (nid == next_nid)
991                 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
992         else
993                 ret = reserve_bootmem(phys, len, flags);
994
995         if (ret != 0)
996                 return ret;
997
998 #else
999         reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
1000 #endif
1001
1002         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
1003                 dma_reserve += len / PAGE_SIZE;
1004                 set_dma_reserve(dma_reserve);
1005         }
1006
1007         return 0;
1008 }
1009
1010 int kern_addr_valid(unsigned long addr)
1011 {
1012         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1013         pgd_t *pgd;
1014         pud_t *pud;
1015         pmd_t *pmd;
1016         pte_t *pte;
1017
1018         if (above != 0 && above != -1UL)
1019                 return 0;
1020
1021         pgd = pgd_offset_k(addr);
1022         if (pgd_none(*pgd))
1023                 return 0;
1024
1025         pud = pud_offset(pgd, addr);
1026         if (pud_none(*pud))
1027                 return 0;
1028
1029         pmd = pmd_offset(pud, addr);
1030         if (pmd_none(*pmd))
1031                 return 0;
1032
1033         if (pmd_large(*pmd))
1034                 return pfn_valid(pmd_pfn(*pmd));
1035
1036         pte = pte_offset_kernel(pmd, addr);
1037         if (pte_none(*pte))
1038                 return 0;
1039
1040         return pfn_valid(pte_pfn(*pte));
1041 }
1042
1043 /*
1044  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
1045  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
1046  * not need special handling anymore:
1047  */
1048 static struct vm_area_struct gate_vma = {
1049         .vm_start       = VSYSCALL_START,
1050         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
1051         .vm_page_prot   = PAGE_READONLY_EXEC,
1052         .vm_flags       = VM_READ | VM_EXEC
1053 };
1054
1055 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
1056 {
1057 #ifdef CONFIG_IA32_EMULATION
1058         if (test_tsk_thread_flag(tsk, TIF_IA32))
1059                 return NULL;
1060 #endif
1061         return &gate_vma;
1062 }
1063
1064 int in_gate_area(struct task_struct *task, unsigned long addr)
1065 {
1066         struct vm_area_struct *vma = get_gate_vma(task);
1067
1068         if (!vma)
1069                 return 0;
1070
1071         return (addr >= vma->vm_start) && (addr < vma->vm_end);
1072 }
1073
1074 /*
1075  * Use this when you have no reliable task/vma, typically from interrupt
1076  * context. It is less reliable than using the task's vma and may give
1077  * false positives:
1078  */
1079 int in_gate_area_no_task(unsigned long addr)
1080 {
1081         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
1082 }
1083
1084 const char *arch_vma_name(struct vm_area_struct *vma)
1085 {
1086         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
1087                 return "[vdso]";
1088         if (vma == &gate_vma)
1089                 return "[vsyscall]";
1090         return NULL;
1091 }
1092
1093 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1094 /*
1095  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1096  */
1097 static long __meminitdata addr_start, addr_end;
1098 static void __meminitdata *p_start, *p_end;
1099 static int __meminitdata node_start;
1100
1101 int __meminit
1102 vmemmap_populate(struct page *start_page, unsigned long size, int node)
1103 {
1104         unsigned long addr = (unsigned long)start_page;
1105         unsigned long end = (unsigned long)(start_page + size);
1106         unsigned long next;
1107         pgd_t *pgd;
1108         pud_t *pud;
1109         pmd_t *pmd;
1110
1111         for (; addr < end; addr = next) {
1112                 void *p = NULL;
1113
1114                 pgd = vmemmap_pgd_populate(addr, node);
1115                 if (!pgd)
1116                         return -ENOMEM;
1117
1118                 pud = vmemmap_pud_populate(pgd, addr, node);
1119                 if (!pud)
1120                         return -ENOMEM;
1121
1122                 if (!cpu_has_pse) {
1123                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1124                         pmd = vmemmap_pmd_populate(pud, addr, node);
1125
1126                         if (!pmd)
1127                                 return -ENOMEM;
1128
1129                         p = vmemmap_pte_populate(pmd, addr, node);
1130
1131                         if (!p)
1132                                 return -ENOMEM;
1133
1134                         addr_end = addr + PAGE_SIZE;
1135                         p_end = p + PAGE_SIZE;
1136                 } else {
1137                         next = pmd_addr_end(addr, end);
1138
1139                         pmd = pmd_offset(pud, addr);
1140                         if (pmd_none(*pmd)) {
1141                                 pte_t entry;
1142
1143                                 p = vmemmap_alloc_block(PMD_SIZE, node);
1144                                 if (!p)
1145                                         return -ENOMEM;
1146
1147                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1148                                                 PAGE_KERNEL_LARGE);
1149                                 set_pmd(pmd, __pmd(pte_val(entry)));
1150
1151                                 /* check to see if we have contiguous blocks */
1152                                 if (p_end != p || node_start != node) {
1153                                         if (p_start)
1154                                                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1155                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1156                                         addr_start = addr;
1157                                         node_start = node;
1158                                         p_start = p;
1159                                 }
1160
1161                                 addr_end = addr + PMD_SIZE;
1162                                 p_end = p + PMD_SIZE;
1163                         } else
1164                                 vmemmap_verify((pte_t *)pmd, node, addr, next);
1165                 }
1166
1167         }
1168         return 0;
1169 }
1170
1171 void __meminit vmemmap_populate_print_last(void)
1172 {
1173         if (p_start) {
1174                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1175                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1176                 p_start = NULL;
1177                 p_end = NULL;
1178                 node_start = 0;
1179         }
1180 }
1181 #endif