]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/x86/mm/init_64.c
a1d33c58b49736fc49d88fe2b1cdda1d1481c1fa
[linux-2.6-omap-h63xx.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32
33 #include <asm/processor.h>
34 #include <asm/bios_ebda.h>
35 #include <asm/system.h>
36 #include <asm/uaccess.h>
37 #include <asm/pgtable.h>
38 #include <asm/pgalloc.h>
39 #include <asm/dma.h>
40 #include <asm/fixmap.h>
41 #include <asm/e820.h>
42 #include <asm/apic.h>
43 #include <asm/tlb.h>
44 #include <asm/mmu_context.h>
45 #include <asm/proto.h>
46 #include <asm/smp.h>
47 #include <asm/sections.h>
48 #include <asm/kdebug.h>
49 #include <asm/numa.h>
50 #include <asm/cacheflush.h>
51
52 /*
53  * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
54  * The direct mapping extends to max_pfn_mapped, so that we can directly access
55  * apertures, ACPI and other tables without having to play with fixmaps.
56  */
57 unsigned long max_low_pfn_mapped;
58 unsigned long max_pfn_mapped;
59
60 static unsigned long dma_reserve __initdata;
61
62 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
63
64 static int __init parse_direct_gbpages_off(char *arg)
65 {
66         direct_gbpages = 0;
67         return 0;
68 }
69 early_param("nogbpages", parse_direct_gbpages_off);
70
71 static int __init parse_direct_gbpages_on(char *arg)
72 {
73         direct_gbpages = 1;
74         return 0;
75 }
76 early_param("gbpages", parse_direct_gbpages_on);
77
78 /*
79  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
80  * physical space so we can cache the place of the first one and move
81  * around without checking the pgd every time.
82  */
83
84 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
85 EXPORT_SYMBOL_GPL(__supported_pte_mask);
86
87 static int do_not_nx __cpuinitdata;
88
89 /*
90  * noexec=on|off
91  * Control non-executable mappings for 64-bit processes.
92  *
93  * on   Enable (default)
94  * off  Disable
95  */
96 static int __init nonx_setup(char *str)
97 {
98         if (!str)
99                 return -EINVAL;
100         if (!strncmp(str, "on", 2)) {
101                 __supported_pte_mask |= _PAGE_NX;
102                 do_not_nx = 0;
103         } else if (!strncmp(str, "off", 3)) {
104                 do_not_nx = 1;
105                 __supported_pte_mask &= ~_PAGE_NX;
106         }
107         return 0;
108 }
109 early_param("noexec", nonx_setup);
110
111 void __cpuinit check_efer(void)
112 {
113         unsigned long efer;
114
115         rdmsrl(MSR_EFER, efer);
116         if (!(efer & EFER_NX) || do_not_nx)
117                 __supported_pte_mask &= ~_PAGE_NX;
118 }
119
120 int force_personality32;
121
122 /*
123  * noexec32=on|off
124  * Control non executable heap for 32bit processes.
125  * To control the stack too use noexec=off
126  *
127  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
128  * off  PROT_READ implies PROT_EXEC
129  */
130 static int __init nonx32_setup(char *str)
131 {
132         if (!strcmp(str, "on"))
133                 force_personality32 &= ~READ_IMPLIES_EXEC;
134         else if (!strcmp(str, "off"))
135                 force_personality32 |= READ_IMPLIES_EXEC;
136         return 1;
137 }
138 __setup("noexec32=", nonx32_setup);
139
140 /*
141  * NOTE: This function is marked __ref because it calls __init function
142  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
143  */
144 static __ref void *spp_getpage(void)
145 {
146         void *ptr;
147
148         if (after_bootmem)
149                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
150         else
151                 ptr = alloc_bootmem_pages(PAGE_SIZE);
152
153         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
154                 panic("set_pte_phys: cannot allocate page data %s\n",
155                         after_bootmem ? "after bootmem" : "");
156         }
157
158         pr_debug("spp_getpage %p\n", ptr);
159
160         return ptr;
161 }
162
163 void
164 set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
165 {
166         pud_t *pud;
167         pmd_t *pmd;
168         pte_t *pte;
169
170         pud = pud_page + pud_index(vaddr);
171         if (pud_none(*pud)) {
172                 pmd = (pmd_t *) spp_getpage();
173                 pud_populate(&init_mm, pud, pmd);
174                 if (pmd != pmd_offset(pud, 0)) {
175                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
176                                 pmd, pmd_offset(pud, 0));
177                         return;
178                 }
179         }
180         pmd = pmd_offset(pud, vaddr);
181         if (pmd_none(*pmd)) {
182                 pte = (pte_t *) spp_getpage();
183                 pmd_populate_kernel(&init_mm, pmd, pte);
184                 if (pte != pte_offset_kernel(pmd, 0)) {
185                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
186                         return;
187                 }
188         }
189
190         pte = pte_offset_kernel(pmd, vaddr);
191         set_pte(pte, new_pte);
192
193         /*
194          * It's enough to flush this one mapping.
195          * (PGE mappings get flushed as well)
196          */
197         __flush_tlb_one(vaddr);
198 }
199
200 void
201 set_pte_vaddr(unsigned long vaddr, pte_t pteval)
202 {
203         pgd_t *pgd;
204         pud_t *pud_page;
205
206         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
207
208         pgd = pgd_offset_k(vaddr);
209         if (pgd_none(*pgd)) {
210                 printk(KERN_ERR
211                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
212                 return;
213         }
214         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
215         set_pte_vaddr_pud(pud_page, vaddr, pteval);
216 }
217
218 /*
219  * Create large page table mappings for a range of physical addresses.
220  */
221 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
222                                                 pgprot_t prot)
223 {
224         pgd_t *pgd;
225         pud_t *pud;
226         pmd_t *pmd;
227
228         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
229         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
230                 pgd = pgd_offset_k((unsigned long)__va(phys));
231                 if (pgd_none(*pgd)) {
232                         pud = (pud_t *) spp_getpage();
233                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
234                                                 _PAGE_USER));
235                 }
236                 pud = pud_offset(pgd, (unsigned long)__va(phys));
237                 if (pud_none(*pud)) {
238                         pmd = (pmd_t *) spp_getpage();
239                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
240                                                 _PAGE_USER));
241                 }
242                 pmd = pmd_offset(pud, phys);
243                 BUG_ON(!pmd_none(*pmd));
244                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
245         }
246 }
247
248 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
249 {
250         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
251 }
252
253 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
254 {
255         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
256 }
257
258 /*
259  * The head.S code sets up the kernel high mapping:
260  *
261  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
262  *
263  * phys_addr holds the negative offset to the kernel, which is added
264  * to the compile time generated pmds. This results in invalid pmds up
265  * to the point where we hit the physaddr 0 mapping.
266  *
267  * We limit the mappings to the region from _text to _end.  _end is
268  * rounded up to the 2MB boundary. This catches the invalid pmds as
269  * well, as they are located before _text:
270  */
271 void __init cleanup_highmap(void)
272 {
273         unsigned long vaddr = __START_KERNEL_map;
274         unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
275         pmd_t *pmd = level2_kernel_pgt;
276         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
277
278         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
279                 if (pmd_none(*pmd))
280                         continue;
281                 if (vaddr < (unsigned long) _text || vaddr > end)
282                         set_pmd(pmd, __pmd(0));
283         }
284 }
285
286 extern unsigned long __initdata e820_table_start;
287 extern unsigned long __meminitdata e820_table_end;
288 extern unsigned long __meminitdata e820_table_top;
289
290 static __ref void *alloc_low_page(unsigned long *phys)
291 {
292         unsigned long pfn = e820_table_end++;
293         void *adr;
294
295         if (after_bootmem) {
296                 adr = (void *)get_zeroed_page(GFP_ATOMIC);
297                 *phys = __pa(adr);
298
299                 return adr;
300         }
301
302         if (pfn >= e820_table_top)
303                 panic("alloc_low_page: ran out of memory");
304
305         adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
306         memset(adr, 0, PAGE_SIZE);
307         *phys  = pfn * PAGE_SIZE;
308         return adr;
309 }
310
311 static __ref void unmap_low_page(void *adr)
312 {
313         if (after_bootmem)
314                 return;
315
316         early_iounmap(adr, PAGE_SIZE);
317 }
318
319 static unsigned long __meminit
320 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
321               pgprot_t prot)
322 {
323         unsigned pages = 0;
324         unsigned long last_map_addr = end;
325         int i;
326
327         pte_t *pte = pte_page + pte_index(addr);
328
329         for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
330
331                 if (addr >= end) {
332                         if (!after_bootmem) {
333                                 for(; i < PTRS_PER_PTE; i++, pte++)
334                                         set_pte(pte, __pte(0));
335                         }
336                         break;
337                 }
338
339                 /*
340                  * We will re-use the existing mapping.
341                  * Xen for example has some special requirements, like mapping
342                  * pagetable pages as RO. So assume someone who pre-setup
343                  * these mappings are more intelligent.
344                  */
345                 if (pte_val(*pte)) {
346                         pages++;
347                         continue;
348                 }
349
350                 if (0)
351                         printk("   pte=%p addr=%lx pte=%016lx\n",
352                                pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
353                 pages++;
354                 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
355                 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
356         }
357
358         update_page_count(PG_LEVEL_4K, pages);
359
360         return last_map_addr;
361 }
362
363 static unsigned long __meminit
364 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
365                 pgprot_t prot)
366 {
367         pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
368
369         return phys_pte_init(pte, address, end, prot);
370 }
371
372 static unsigned long __meminit
373 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
374               unsigned long page_size_mask, pgprot_t prot)
375 {
376         unsigned long pages = 0;
377         unsigned long last_map_addr = end;
378
379         int i = pmd_index(address);
380
381         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
382                 unsigned long pte_phys;
383                 pmd_t *pmd = pmd_page + pmd_index(address);
384                 pte_t *pte;
385                 pgprot_t new_prot = prot;
386
387                 if (address >= end) {
388                         if (!after_bootmem) {
389                                 for (; i < PTRS_PER_PMD; i++, pmd++)
390                                         set_pmd(pmd, __pmd(0));
391                         }
392                         break;
393                 }
394
395                 if (pmd_val(*pmd)) {
396                         if (!pmd_large(*pmd)) {
397                                 spin_lock(&init_mm.page_table_lock);
398                                 last_map_addr = phys_pte_update(pmd, address,
399                                                                 end, prot);
400                                 spin_unlock(&init_mm.page_table_lock);
401                                 continue;
402                         }
403                         /*
404                          * If we are ok with PG_LEVEL_2M mapping, then we will
405                          * use the existing mapping,
406                          *
407                          * Otherwise, we will split the large page mapping but
408                          * use the same existing protection bits except for
409                          * large page, so that we don't violate Intel's TLB
410                          * Application note (317080) which says, while changing
411                          * the page sizes, new and old translations should
412                          * not differ with respect to page frame and
413                          * attributes.
414                          */
415                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
416                                 pages++;
417                                 continue;
418                         }
419                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
420                 }
421
422                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
423                         pages++;
424                         spin_lock(&init_mm.page_table_lock);
425                         set_pte((pte_t *)pmd,
426                                 pfn_pte(address >> PAGE_SHIFT,
427                                         __pgprot(pgprot_val(prot) | _PAGE_PSE)));
428                         spin_unlock(&init_mm.page_table_lock);
429                         last_map_addr = (address & PMD_MASK) + PMD_SIZE;
430                         continue;
431                 }
432
433                 pte = alloc_low_page(&pte_phys);
434                 last_map_addr = phys_pte_init(pte, address, end, new_prot);
435                 unmap_low_page(pte);
436
437                 spin_lock(&init_mm.page_table_lock);
438                 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
439                 spin_unlock(&init_mm.page_table_lock);
440         }
441         update_page_count(PG_LEVEL_2M, pages);
442         return last_map_addr;
443 }
444
445 static unsigned long __meminit
446 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
447                 unsigned long page_size_mask, pgprot_t prot)
448 {
449         pmd_t *pmd = pmd_offset(pud, 0);
450         unsigned long last_map_addr;
451
452         last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
453         __flush_tlb_all();
454         return last_map_addr;
455 }
456
457 static unsigned long __meminit
458 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
459                          unsigned long page_size_mask)
460 {
461         unsigned long pages = 0;
462         unsigned long last_map_addr = end;
463         int i = pud_index(addr);
464
465         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
466                 unsigned long pmd_phys;
467                 pud_t *pud = pud_page + pud_index(addr);
468                 pmd_t *pmd;
469                 pgprot_t prot = PAGE_KERNEL;
470
471                 if (addr >= end)
472                         break;
473
474                 if (!after_bootmem &&
475                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
476                         set_pud(pud, __pud(0));
477                         continue;
478                 }
479
480                 if (pud_val(*pud)) {
481                         if (!pud_large(*pud)) {
482                                 last_map_addr = phys_pmd_update(pud, addr, end,
483                                                          page_size_mask, prot);
484                                 continue;
485                         }
486                         /*
487                          * If we are ok with PG_LEVEL_1G mapping, then we will
488                          * use the existing mapping.
489                          *
490                          * Otherwise, we will split the gbpage mapping but use
491                          * the same existing protection  bits except for large
492                          * page, so that we don't violate Intel's TLB
493                          * Application note (317080) which says, while changing
494                          * the page sizes, new and old translations should
495                          * not differ with respect to page frame and
496                          * attributes.
497                          */
498                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
499                                 pages++;
500                                 continue;
501                         }
502                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
503                 }
504
505                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
506                         pages++;
507                         spin_lock(&init_mm.page_table_lock);
508                         set_pte((pte_t *)pud,
509                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
510                         spin_unlock(&init_mm.page_table_lock);
511                         last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
512                         continue;
513                 }
514
515                 pmd = alloc_low_page(&pmd_phys);
516                 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
517                                               prot);
518                 unmap_low_page(pmd);
519
520                 spin_lock(&init_mm.page_table_lock);
521                 pud_populate(&init_mm, pud, __va(pmd_phys));
522                 spin_unlock(&init_mm.page_table_lock);
523         }
524         __flush_tlb_all();
525
526         update_page_count(PG_LEVEL_1G, pages);
527
528         return last_map_addr;
529 }
530
531 static unsigned long __meminit
532 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
533                  unsigned long page_size_mask)
534 {
535         pud_t *pud;
536
537         pud = (pud_t *)pgd_page_vaddr(*pgd);
538
539         return phys_pud_init(pud, addr, end, page_size_mask);
540 }
541
542 unsigned long __meminit
543 kernel_physical_mapping_init(unsigned long start,
544                              unsigned long end,
545                              unsigned long page_size_mask)
546 {
547
548         unsigned long next, last_map_addr = end;
549
550         start = (unsigned long)__va(start);
551         end = (unsigned long)__va(end);
552
553         for (; start < end; start = next) {
554                 pgd_t *pgd = pgd_offset_k(start);
555                 unsigned long pud_phys;
556                 pud_t *pud;
557
558                 next = (start + PGDIR_SIZE) & PGDIR_MASK;
559                 if (next > end)
560                         next = end;
561
562                 if (pgd_val(*pgd)) {
563                         last_map_addr = phys_pud_update(pgd, __pa(start),
564                                                  __pa(end), page_size_mask);
565                         continue;
566                 }
567
568                 pud = alloc_low_page(&pud_phys);
569                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
570                                                  page_size_mask);
571                 unmap_low_page(pud);
572
573                 spin_lock(&init_mm.page_table_lock);
574                 pgd_populate(&init_mm, pgd, __va(pud_phys));
575                 spin_unlock(&init_mm.page_table_lock);
576         }
577         __flush_tlb_all();
578
579         return last_map_addr;
580 }
581
582 #ifndef CONFIG_NUMA
583 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
584 {
585         unsigned long bootmap_size, bootmap;
586
587         bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
588         bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
589                                  PAGE_SIZE);
590         if (bootmap == -1L)
591                 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
592         /* don't touch min_low_pfn */
593         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
594                                          0, end_pfn);
595         e820_register_active_regions(0, start_pfn, end_pfn);
596         free_bootmem_with_active_regions(0, end_pfn);
597         early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
598         reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
599 }
600
601 void __init paging_init(void)
602 {
603         unsigned long max_zone_pfns[MAX_NR_ZONES];
604
605         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
606         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
607         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
608         max_zone_pfns[ZONE_NORMAL] = max_pfn;
609
610         memory_present(0, 0, max_pfn);
611         sparse_init();
612         free_area_init_nodes(max_zone_pfns);
613 }
614 #endif
615
616 /*
617  * Memory hotplug specific functions
618  */
619 #ifdef CONFIG_MEMORY_HOTPLUG
620 /*
621  * Memory is added always to NORMAL zone. This means you will never get
622  * additional DMA/DMA32 memory.
623  */
624 int arch_add_memory(int nid, u64 start, u64 size)
625 {
626         struct pglist_data *pgdat = NODE_DATA(nid);
627         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
628         unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
629         unsigned long nr_pages = size >> PAGE_SHIFT;
630         int ret;
631
632         last_mapped_pfn = init_memory_mapping(start, start + size);
633         if (last_mapped_pfn > max_pfn_mapped)
634                 max_pfn_mapped = last_mapped_pfn;
635
636         ret = __add_pages(nid, zone, start_pfn, nr_pages);
637         WARN_ON_ONCE(ret);
638
639         return ret;
640 }
641 EXPORT_SYMBOL_GPL(arch_add_memory);
642
643 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
644 int memory_add_physaddr_to_nid(u64 start)
645 {
646         return 0;
647 }
648 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
649 #endif
650
651 #endif /* CONFIG_MEMORY_HOTPLUG */
652
653 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
654                          kcore_modules, kcore_vsyscall;
655
656 void __init mem_init(void)
657 {
658         long codesize, reservedpages, datasize, initsize;
659         unsigned long absent_pages;
660
661         pci_iommu_alloc();
662
663         /* clear_bss() already clear the empty_zero_page */
664
665         reservedpages = 0;
666
667         /* this will put all low memory onto the freelists */
668 #ifdef CONFIG_NUMA
669         totalram_pages = numa_free_all_bootmem();
670 #else
671         totalram_pages = free_all_bootmem();
672 #endif
673
674         absent_pages = absent_pages_in_range(0, max_pfn);
675         reservedpages = max_pfn - totalram_pages - absent_pages;
676         after_bootmem = 1;
677
678         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
679         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
680         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
681
682         /* Register memory areas for /proc/kcore */
683         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
684         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
685                    VMALLOC_END-VMALLOC_START);
686         kclist_add(&kcore_kernel, &_stext, _end - _stext);
687         kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
688         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
689                                  VSYSCALL_END - VSYSCALL_START);
690
691         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
692                          "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
693                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
694                 max_pfn << (PAGE_SHIFT-10),
695                 codesize >> 10,
696                 absent_pages << (PAGE_SHIFT-10),
697                 reservedpages << (PAGE_SHIFT-10),
698                 datasize >> 10,
699                 initsize >> 10);
700 }
701
702 #ifdef CONFIG_DEBUG_RODATA
703 const int rodata_test_data = 0xC3;
704 EXPORT_SYMBOL_GPL(rodata_test_data);
705
706 void mark_rodata_ro(void)
707 {
708         unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
709         unsigned long rodata_start =
710                 ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
711
712 #ifdef CONFIG_DYNAMIC_FTRACE
713         /* Dynamic tracing modifies the kernel text section */
714         start = rodata_start;
715 #endif
716
717         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
718                (end - start) >> 10);
719         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
720
721         /*
722          * The rodata section (but not the kernel text!) should also be
723          * not-executable.
724          */
725         set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
726
727         rodata_test();
728
729 #ifdef CONFIG_CPA_DEBUG
730         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
731         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
732
733         printk(KERN_INFO "Testing CPA: again\n");
734         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
735 #endif
736 }
737
738 #endif
739
740 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
741                                    int flags)
742 {
743 #ifdef CONFIG_NUMA
744         int nid, next_nid;
745         int ret;
746 #endif
747         unsigned long pfn = phys >> PAGE_SHIFT;
748
749         if (pfn >= max_pfn) {
750                 /*
751                  * This can happen with kdump kernels when accessing
752                  * firmware tables:
753                  */
754                 if (pfn < max_pfn_mapped)
755                         return -EFAULT;
756
757                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
758                                 phys, len);
759                 return -EFAULT;
760         }
761
762         /* Should check here against the e820 map to avoid double free */
763 #ifdef CONFIG_NUMA
764         nid = phys_to_nid(phys);
765         next_nid = phys_to_nid(phys + len - 1);
766         if (nid == next_nid)
767                 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
768         else
769                 ret = reserve_bootmem(phys, len, flags);
770
771         if (ret != 0)
772                 return ret;
773
774 #else
775         reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
776 #endif
777
778         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
779                 dma_reserve += len / PAGE_SIZE;
780                 set_dma_reserve(dma_reserve);
781         }
782
783         return 0;
784 }
785
786 int kern_addr_valid(unsigned long addr)
787 {
788         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
789         pgd_t *pgd;
790         pud_t *pud;
791         pmd_t *pmd;
792         pte_t *pte;
793
794         if (above != 0 && above != -1UL)
795                 return 0;
796
797         pgd = pgd_offset_k(addr);
798         if (pgd_none(*pgd))
799                 return 0;
800
801         pud = pud_offset(pgd, addr);
802         if (pud_none(*pud))
803                 return 0;
804
805         pmd = pmd_offset(pud, addr);
806         if (pmd_none(*pmd))
807                 return 0;
808
809         if (pmd_large(*pmd))
810                 return pfn_valid(pmd_pfn(*pmd));
811
812         pte = pte_offset_kernel(pmd, addr);
813         if (pte_none(*pte))
814                 return 0;
815
816         return pfn_valid(pte_pfn(*pte));
817 }
818
819 /*
820  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
821  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
822  * not need special handling anymore:
823  */
824 static struct vm_area_struct gate_vma = {
825         .vm_start       = VSYSCALL_START,
826         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
827         .vm_page_prot   = PAGE_READONLY_EXEC,
828         .vm_flags       = VM_READ | VM_EXEC
829 };
830
831 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
832 {
833 #ifdef CONFIG_IA32_EMULATION
834         if (test_tsk_thread_flag(tsk, TIF_IA32))
835                 return NULL;
836 #endif
837         return &gate_vma;
838 }
839
840 int in_gate_area(struct task_struct *task, unsigned long addr)
841 {
842         struct vm_area_struct *vma = get_gate_vma(task);
843
844         if (!vma)
845                 return 0;
846
847         return (addr >= vma->vm_start) && (addr < vma->vm_end);
848 }
849
850 /*
851  * Use this when you have no reliable task/vma, typically from interrupt
852  * context. It is less reliable than using the task's vma and may give
853  * false positives:
854  */
855 int in_gate_area_no_task(unsigned long addr)
856 {
857         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
858 }
859
860 const char *arch_vma_name(struct vm_area_struct *vma)
861 {
862         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
863                 return "[vdso]";
864         if (vma == &gate_vma)
865                 return "[vsyscall]";
866         return NULL;
867 }
868
869 #ifdef CONFIG_SPARSEMEM_VMEMMAP
870 /*
871  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
872  */
873 static long __meminitdata addr_start, addr_end;
874 static void __meminitdata *p_start, *p_end;
875 static int __meminitdata node_start;
876
877 int __meminit
878 vmemmap_populate(struct page *start_page, unsigned long size, int node)
879 {
880         unsigned long addr = (unsigned long)start_page;
881         unsigned long end = (unsigned long)(start_page + size);
882         unsigned long next;
883         pgd_t *pgd;
884         pud_t *pud;
885         pmd_t *pmd;
886
887         for (; addr < end; addr = next) {
888                 void *p = NULL;
889
890                 pgd = vmemmap_pgd_populate(addr, node);
891                 if (!pgd)
892                         return -ENOMEM;
893
894                 pud = vmemmap_pud_populate(pgd, addr, node);
895                 if (!pud)
896                         return -ENOMEM;
897
898                 if (!cpu_has_pse) {
899                         next = (addr + PAGE_SIZE) & PAGE_MASK;
900                         pmd = vmemmap_pmd_populate(pud, addr, node);
901
902                         if (!pmd)
903                                 return -ENOMEM;
904
905                         p = vmemmap_pte_populate(pmd, addr, node);
906
907                         if (!p)
908                                 return -ENOMEM;
909
910                         addr_end = addr + PAGE_SIZE;
911                         p_end = p + PAGE_SIZE;
912                 } else {
913                         next = pmd_addr_end(addr, end);
914
915                         pmd = pmd_offset(pud, addr);
916                         if (pmd_none(*pmd)) {
917                                 pte_t entry;
918
919                                 p = vmemmap_alloc_block(PMD_SIZE, node);
920                                 if (!p)
921                                         return -ENOMEM;
922
923                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
924                                                 PAGE_KERNEL_LARGE);
925                                 set_pmd(pmd, __pmd(pte_val(entry)));
926
927                                 /* check to see if we have contiguous blocks */
928                                 if (p_end != p || node_start != node) {
929                                         if (p_start)
930                                                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
931                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
932                                         addr_start = addr;
933                                         node_start = node;
934                                         p_start = p;
935                                 }
936
937                                 addr_end = addr + PMD_SIZE;
938                                 p_end = p + PMD_SIZE;
939                         } else
940                                 vmemmap_verify((pte_t *)pmd, node, addr, next);
941                 }
942
943         }
944         return 0;
945 }
946
947 void __meminit vmemmap_populate_print_last(void)
948 {
949         if (p_start) {
950                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
951                         addr_start, addr_end-1, p_start, p_end-1, node_start);
952                 p_start = NULL;
953                 p_end = NULL;
954                 node_start = 0;
955         }
956 }
957 #endif