]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/x86/mm/init_64.c
Merge branch 'linus' into x86/cleanups
[linux-2.6-omap-h63xx.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32
33 #include <asm/processor.h>
34 #include <asm/system.h>
35 #include <asm/uaccess.h>
36 #include <asm/pgtable.h>
37 #include <asm/pgalloc.h>
38 #include <asm/dma.h>
39 #include <asm/fixmap.h>
40 #include <asm/e820.h>
41 #include <asm/apic.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44 #include <asm/proto.h>
45 #include <asm/smp.h>
46 #include <asm/sections.h>
47 #include <asm/kdebug.h>
48 #include <asm/numa.h>
49 #include <asm/cacheflush.h>
50
51 /*
52  * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
53  * The direct mapping extends to max_pfn_mapped, so that we can directly access
54  * apertures, ACPI and other tables without having to play with fixmaps.
55  */
56 unsigned long max_low_pfn_mapped;
57 unsigned long max_pfn_mapped;
58
59 static unsigned long dma_reserve __initdata;
60
61 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
62
63 int direct_gbpages
64 #ifdef CONFIG_DIRECT_GBPAGES
65                                 = 1
66 #endif
67 ;
68
69 static int __init parse_direct_gbpages_off(char *arg)
70 {
71         direct_gbpages = 0;
72         return 0;
73 }
74 early_param("nogbpages", parse_direct_gbpages_off);
75
76 static int __init parse_direct_gbpages_on(char *arg)
77 {
78         direct_gbpages = 1;
79         return 0;
80 }
81 early_param("gbpages", parse_direct_gbpages_on);
82
83 /*
84  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
85  * physical space so we can cache the place of the first one and move
86  * around without checking the pgd every time.
87  */
88
89 int after_bootmem;
90
91 /*
92  * NOTE: This function is marked __ref because it calls __init function
93  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
94  */
95 static __ref void *spp_getpage(void)
96 {
97         void *ptr;
98
99         if (after_bootmem)
100                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
101         else
102                 ptr = alloc_bootmem_pages(PAGE_SIZE);
103
104         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
105                 panic("set_pte_phys: cannot allocate page data %s\n",
106                         after_bootmem ? "after bootmem" : "");
107         }
108
109         pr_debug("spp_getpage %p\n", ptr);
110
111         return ptr;
112 }
113
114 void
115 set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
116 {
117         pud_t *pud;
118         pmd_t *pmd;
119         pte_t *pte;
120
121         pud = pud_page + pud_index(vaddr);
122         if (pud_none(*pud)) {
123                 pmd = (pmd_t *) spp_getpage();
124                 pud_populate(&init_mm, pud, pmd);
125                 if (pmd != pmd_offset(pud, 0)) {
126                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
127                                 pmd, pmd_offset(pud, 0));
128                         return;
129                 }
130         }
131         pmd = pmd_offset(pud, vaddr);
132         if (pmd_none(*pmd)) {
133                 pte = (pte_t *) spp_getpage();
134                 pmd_populate_kernel(&init_mm, pmd, pte);
135                 if (pte != pte_offset_kernel(pmd, 0)) {
136                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
137                         return;
138                 }
139         }
140
141         pte = pte_offset_kernel(pmd, vaddr);
142         if (!pte_none(*pte) && pte_val(new_pte) &&
143             pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
144                 pte_ERROR(*pte);
145         set_pte(pte, new_pte);
146
147         /*
148          * It's enough to flush this one mapping.
149          * (PGE mappings get flushed as well)
150          */
151         __flush_tlb_one(vaddr);
152 }
153
154 void
155 set_pte_vaddr(unsigned long vaddr, pte_t pteval)
156 {
157         pgd_t *pgd;
158         pud_t *pud_page;
159
160         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
161
162         pgd = pgd_offset_k(vaddr);
163         if (pgd_none(*pgd)) {
164                 printk(KERN_ERR
165                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
166                 return;
167         }
168         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
169         set_pte_vaddr_pud(pud_page, vaddr, pteval);
170 }
171
172 /*
173  * Create large page table mappings for a range of physical addresses.
174  */
175 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
176                                                 pgprot_t prot)
177 {
178         pgd_t *pgd;
179         pud_t *pud;
180         pmd_t *pmd;
181
182         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
183         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
184                 pgd = pgd_offset_k((unsigned long)__va(phys));
185                 if (pgd_none(*pgd)) {
186                         pud = (pud_t *) spp_getpage();
187                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
188                                                 _PAGE_USER));
189                 }
190                 pud = pud_offset(pgd, (unsigned long)__va(phys));
191                 if (pud_none(*pud)) {
192                         pmd = (pmd_t *) spp_getpage();
193                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
194                                                 _PAGE_USER));
195                 }
196                 pmd = pmd_offset(pud, phys);
197                 BUG_ON(!pmd_none(*pmd));
198                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
199         }
200 }
201
202 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
203 {
204         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
205 }
206
207 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
208 {
209         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
210 }
211
212 /*
213  * The head.S code sets up the kernel high mapping:
214  *
215  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
216  *
217  * phys_addr holds the negative offset to the kernel, which is added
218  * to the compile time generated pmds. This results in invalid pmds up
219  * to the point where we hit the physaddr 0 mapping.
220  *
221  * We limit the mappings to the region from _text to _end.  _end is
222  * rounded up to the 2MB boundary. This catches the invalid pmds as
223  * well, as they are located before _text:
224  */
225 void __init cleanup_highmap(void)
226 {
227         unsigned long vaddr = __START_KERNEL_map;
228         unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
229         pmd_t *pmd = level2_kernel_pgt;
230         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
231
232         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
233                 if (pmd_none(*pmd))
234                         continue;
235                 if (vaddr < (unsigned long) _text || vaddr > end)
236                         set_pmd(pmd, __pmd(0));
237         }
238 }
239
240 static unsigned long __initdata table_start;
241 static unsigned long __meminitdata table_end;
242 static unsigned long __meminitdata table_top;
243
244 static __meminit void *alloc_low_page(unsigned long *phys)
245 {
246         unsigned long pfn = table_end++;
247         void *adr;
248
249         if (after_bootmem) {
250                 adr = (void *)get_zeroed_page(GFP_ATOMIC);
251                 *phys = __pa(adr);
252
253                 return adr;
254         }
255
256         if (pfn >= table_top)
257                 panic("alloc_low_page: ran out of memory");
258
259         adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
260         memset(adr, 0, PAGE_SIZE);
261         *phys  = pfn * PAGE_SIZE;
262         return adr;
263 }
264
265 static __meminit void unmap_low_page(void *adr)
266 {
267         if (after_bootmem)
268                 return;
269
270         early_iounmap(adr, PAGE_SIZE);
271 }
272
273 static unsigned long __meminit
274 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end)
275 {
276         unsigned pages = 0;
277         unsigned long last_map_addr = end;
278         int i;
279
280         pte_t *pte = pte_page + pte_index(addr);
281
282         for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
283
284                 if (addr >= end) {
285                         if (!after_bootmem) {
286                                 for(; i < PTRS_PER_PTE; i++, pte++)
287                                         set_pte(pte, __pte(0));
288                         }
289                         break;
290                 }
291
292                 if (pte_val(*pte))
293                         continue;
294
295                 if (0)
296                         printk("   pte=%p addr=%lx pte=%016lx\n",
297                                pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
298                 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL));
299                 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
300                 pages++;
301         }
302         update_page_count(PG_LEVEL_4K, pages);
303
304         return last_map_addr;
305 }
306
307 static unsigned long __meminit
308 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end)
309 {
310         pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
311
312         return phys_pte_init(pte, address, end);
313 }
314
315 static unsigned long __meminit
316 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
317                          unsigned long page_size_mask)
318 {
319         unsigned long pages = 0;
320         unsigned long last_map_addr = end;
321         unsigned long start = address;
322
323         int i = pmd_index(address);
324
325         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
326                 unsigned long pte_phys;
327                 pmd_t *pmd = pmd_page + pmd_index(address);
328                 pte_t *pte;
329
330                 if (address >= end) {
331                         if (!after_bootmem) {
332                                 for (; i < PTRS_PER_PMD; i++, pmd++)
333                                         set_pmd(pmd, __pmd(0));
334                         }
335                         break;
336                 }
337
338                 if (pmd_val(*pmd)) {
339                         if (!pmd_large(*pmd))
340                                 last_map_addr = phys_pte_update(pmd, address,
341                                                                  end);
342                         /* Count entries we're using from level2_ident_pgt */
343                         if (start == 0)
344                                 pages++;
345                         continue;
346                 }
347
348                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
349                         pages++;
350                         set_pte((pte_t *)pmd,
351                                 pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
352                         last_map_addr = (address & PMD_MASK) + PMD_SIZE;
353                         continue;
354                 }
355
356                 pte = alloc_low_page(&pte_phys);
357                 last_map_addr = phys_pte_init(pte, address, end);
358                 unmap_low_page(pte);
359
360                 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
361         }
362         update_page_count(PG_LEVEL_2M, pages);
363         return last_map_addr;
364 }
365
366 static unsigned long __meminit
367 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
368                          unsigned long page_size_mask)
369 {
370         pmd_t *pmd = pmd_offset(pud, 0);
371         unsigned long last_map_addr;
372
373         spin_lock(&init_mm.page_table_lock);
374         last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask);
375         spin_unlock(&init_mm.page_table_lock);
376         __flush_tlb_all();
377         return last_map_addr;
378 }
379
380 static unsigned long __meminit
381 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
382                          unsigned long page_size_mask)
383 {
384         unsigned long pages = 0;
385         unsigned long last_map_addr = end;
386         int i = pud_index(addr);
387
388         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
389                 unsigned long pmd_phys;
390                 pud_t *pud = pud_page + pud_index(addr);
391                 pmd_t *pmd;
392
393                 if (addr >= end)
394                         break;
395
396                 if (!after_bootmem &&
397                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
398                         set_pud(pud, __pud(0));
399                         continue;
400                 }
401
402                 if (pud_val(*pud)) {
403                         if (!pud_large(*pud))
404                                 last_map_addr = phys_pmd_update(pud, addr, end,
405                                                          page_size_mask);
406                         continue;
407                 }
408
409                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
410                         pages++;
411                         set_pte((pte_t *)pud,
412                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
413                         last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
414                         continue;
415                 }
416
417                 pmd = alloc_low_page(&pmd_phys);
418
419                 spin_lock(&init_mm.page_table_lock);
420                 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask);
421                 unmap_low_page(pmd);
422                 pud_populate(&init_mm, pud, __va(pmd_phys));
423                 spin_unlock(&init_mm.page_table_lock);
424
425         }
426         __flush_tlb_all();
427         update_page_count(PG_LEVEL_1G, pages);
428
429         return last_map_addr;
430 }
431
432 static unsigned long __meminit
433 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
434                  unsigned long page_size_mask)
435 {
436         pud_t *pud;
437
438         pud = (pud_t *)pgd_page_vaddr(*pgd);
439
440         return phys_pud_init(pud, addr, end, page_size_mask);
441 }
442
443 static void __init find_early_table_space(unsigned long end)
444 {
445         unsigned long puds, pmds, ptes, tables, start;
446
447         puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
448         tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
449         if (direct_gbpages) {
450                 unsigned long extra;
451                 extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
452                 pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
453         } else
454                 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
455         tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
456
457         if (cpu_has_pse) {
458                 unsigned long extra;
459                 extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
460                 ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
461         } else
462                 ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
463         tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
464
465         /*
466          * RED-PEN putting page tables only on node 0 could
467          * cause a hotspot and fill up ZONE_DMA. The page tables
468          * need roughly 0.5KB per GB.
469          */
470         start = 0x8000;
471         table_start = find_e820_area(start, end, tables, PAGE_SIZE);
472         if (table_start == -1UL)
473                 panic("Cannot find space for the kernel page tables");
474
475         table_start >>= PAGE_SHIFT;
476         table_end = table_start;
477         table_top = table_start + (tables >> PAGE_SHIFT);
478
479         printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
480                 end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
481 }
482
483 static void __init init_gbpages(void)
484 {
485         if (direct_gbpages && cpu_has_gbpages)
486                 printk(KERN_INFO "Using GB pages for direct mapping\n");
487         else
488                 direct_gbpages = 0;
489 }
490
491 static unsigned long __init kernel_physical_mapping_init(unsigned long start,
492                                                 unsigned long end,
493                                                 unsigned long page_size_mask)
494 {
495
496         unsigned long next, last_map_addr = end;
497
498         start = (unsigned long)__va(start);
499         end = (unsigned long)__va(end);
500
501         for (; start < end; start = next) {
502                 pgd_t *pgd = pgd_offset_k(start);
503                 unsigned long pud_phys;
504                 pud_t *pud;
505
506                 next = (start + PGDIR_SIZE) & PGDIR_MASK;
507                 if (next > end)
508                         next = end;
509
510                 if (pgd_val(*pgd)) {
511                         last_map_addr = phys_pud_update(pgd, __pa(start),
512                                                  __pa(end), page_size_mask);
513                         continue;
514                 }
515
516                 if (after_bootmem)
517                         pud = pud_offset(pgd, start & PGDIR_MASK);
518                 else
519                         pud = alloc_low_page(&pud_phys);
520
521                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
522                                                  page_size_mask);
523                 unmap_low_page(pud);
524                 pgd_populate(&init_mm, pgd_offset_k(start),
525                              __va(pud_phys));
526         }
527
528         return last_map_addr;
529 }
530
531 struct map_range {
532         unsigned long start;
533         unsigned long end;
534         unsigned page_size_mask;
535 };
536
537 #define NR_RANGE_MR 5
538
539 static int save_mr(struct map_range *mr, int nr_range,
540                    unsigned long start_pfn, unsigned long end_pfn,
541                    unsigned long page_size_mask)
542 {
543
544         if (start_pfn < end_pfn) {
545                 if (nr_range >= NR_RANGE_MR)
546                         panic("run out of range for init_memory_mapping\n");
547                 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
548                 mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
549                 mr[nr_range].page_size_mask = page_size_mask;
550                 nr_range++;
551         }
552
553         return nr_range;
554 }
555
556 /*
557  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
558  * This runs before bootmem is initialized and gets pages directly from
559  * the physical memory. To access them they are temporarily mapped.
560  */
561 unsigned long __init_refok init_memory_mapping(unsigned long start,
562                                                unsigned long end)
563 {
564         unsigned long last_map_addr = 0;
565         unsigned long page_size_mask = 0;
566         unsigned long start_pfn, end_pfn;
567
568         struct map_range mr[NR_RANGE_MR];
569         int nr_range, i;
570
571         printk(KERN_INFO "init_memory_mapping\n");
572
573         /*
574          * Find space for the kernel direct mapping tables.
575          *
576          * Later we should allocate these tables in the local node of the
577          * memory mapped. Unfortunately this is done currently before the
578          * nodes are discovered.
579          */
580         if (!after_bootmem)
581                 init_gbpages();
582
583         if (direct_gbpages)
584                 page_size_mask |= 1 << PG_LEVEL_1G;
585         if (cpu_has_pse)
586                 page_size_mask |= 1 << PG_LEVEL_2M;
587
588         memset(mr, 0, sizeof(mr));
589         nr_range = 0;
590
591         /* head if not big page alignment ?*/
592         start_pfn = start >> PAGE_SHIFT;
593         end_pfn = ((start + (PMD_SIZE - 1)) >> PMD_SHIFT)
594                         << (PMD_SHIFT - PAGE_SHIFT);
595         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
596
597         /* big page (2M) range*/
598         start_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT)
599                          << (PMD_SHIFT - PAGE_SHIFT);
600         end_pfn = ((start + (PUD_SIZE - 1))>>PUD_SHIFT)
601                          << (PUD_SHIFT - PAGE_SHIFT);
602         if (end_pfn > ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT)))
603                 end_pfn = ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT));
604         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
605                         page_size_mask & (1<<PG_LEVEL_2M));
606
607         /* big page (1G) range */
608         start_pfn = end_pfn;
609         end_pfn = (end>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
610         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
611                                 page_size_mask &
612                                  ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
613
614         /* tail is not big page (1G) alignment */
615         start_pfn = end_pfn;
616         end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
617         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
618                         page_size_mask & (1<<PG_LEVEL_2M));
619
620         /* tail is not big page (2M) alignment */
621         start_pfn = end_pfn;
622         end_pfn = end>>PAGE_SHIFT;
623         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
624
625         /* try to merge same page size and continuous */
626         for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
627                 unsigned long old_start;
628                 if (mr[i].end != mr[i+1].start ||
629                     mr[i].page_size_mask != mr[i+1].page_size_mask)
630                         continue;
631                 /* move it */
632                 old_start = mr[i].start;
633                 memmove(&mr[i], &mr[i+1],
634                          (nr_range - 1 - i) * sizeof (struct map_range));
635                 mr[i].start = old_start;
636                 nr_range--;
637         }
638
639         for (i = 0; i < nr_range; i++)
640                 printk(KERN_DEBUG " %010lx - %010lx page %s\n",
641                                 mr[i].start, mr[i].end,
642                         (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
643                          (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
644
645         if (!after_bootmem)
646                 find_early_table_space(end);
647
648         for (i = 0; i < nr_range; i++)
649                 last_map_addr = kernel_physical_mapping_init(
650                                         mr[i].start, mr[i].end,
651                                         mr[i].page_size_mask);
652
653         if (!after_bootmem)
654                 mmu_cr4_features = read_cr4();
655         __flush_tlb_all();
656
657         if (!after_bootmem && table_end > table_start)
658                 reserve_early(table_start << PAGE_SHIFT,
659                                  table_end << PAGE_SHIFT, "PGTABLE");
660
661         printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
662                          last_map_addr, end);
663
664         if (!after_bootmem)
665                 early_memtest(start, end);
666
667         return last_map_addr >> PAGE_SHIFT;
668 }
669
670 #ifndef CONFIG_NUMA
671 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
672 {
673         unsigned long bootmap_size, bootmap;
674
675         bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
676         bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
677                                  PAGE_SIZE);
678         if (bootmap == -1L)
679                 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
680         /* don't touch min_low_pfn */
681         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
682                                          0, end_pfn);
683         e820_register_active_regions(0, start_pfn, end_pfn);
684         free_bootmem_with_active_regions(0, end_pfn);
685         early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
686         reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
687 }
688
689 void __init paging_init(void)
690 {
691         unsigned long max_zone_pfns[MAX_NR_ZONES];
692
693         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
694         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
695         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
696         max_zone_pfns[ZONE_NORMAL] = max_pfn;
697
698         memory_present(0, 0, max_pfn);
699         sparse_init();
700         free_area_init_nodes(max_zone_pfns);
701 }
702 #endif
703
704 /*
705  * Memory hotplug specific functions
706  */
707 #ifdef CONFIG_MEMORY_HOTPLUG
708 /*
709  * Memory is added always to NORMAL zone. This means you will never get
710  * additional DMA/DMA32 memory.
711  */
712 int arch_add_memory(int nid, u64 start, u64 size)
713 {
714         struct pglist_data *pgdat = NODE_DATA(nid);
715         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
716         unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
717         unsigned long nr_pages = size >> PAGE_SHIFT;
718         int ret;
719
720         last_mapped_pfn = init_memory_mapping(start, start + size-1);
721         if (last_mapped_pfn > max_pfn_mapped)
722                 max_pfn_mapped = last_mapped_pfn;
723
724         ret = __add_pages(zone, start_pfn, nr_pages);
725         WARN_ON(1);
726
727         return ret;
728 }
729 EXPORT_SYMBOL_GPL(arch_add_memory);
730
731 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
732 int memory_add_physaddr_to_nid(u64 start)
733 {
734         return 0;
735 }
736 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
737 #endif
738
739 #endif /* CONFIG_MEMORY_HOTPLUG */
740
741 /*
742  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
743  * is valid. The argument is a physical page number.
744  *
745  *
746  * On x86, access has to be given to the first megabyte of ram because that area
747  * contains bios code and data regions used by X and dosemu and similar apps.
748  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
749  * mmio resources as well as potential bios/acpi data regions.
750  */
751 int devmem_is_allowed(unsigned long pagenr)
752 {
753         if (pagenr <= 256)
754                 return 1;
755         if (!page_is_ram(pagenr))
756                 return 1;
757         return 0;
758 }
759
760
761 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
762                          kcore_modules, kcore_vsyscall;
763
764 void __init mem_init(void)
765 {
766         long codesize, reservedpages, datasize, initsize;
767
768         pci_iommu_alloc();
769
770         /* clear_bss() already clear the empty_zero_page */
771
772         reservedpages = 0;
773
774         /* this will put all low memory onto the freelists */
775 #ifdef CONFIG_NUMA
776         totalram_pages = numa_free_all_bootmem();
777 #else
778         totalram_pages = free_all_bootmem();
779 #endif
780         reservedpages = max_pfn - totalram_pages -
781                                         absent_pages_in_range(0, max_pfn);
782         after_bootmem = 1;
783
784         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
785         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
786         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
787
788         /* Register memory areas for /proc/kcore */
789         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
790         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
791                    VMALLOC_END-VMALLOC_START);
792         kclist_add(&kcore_kernel, &_stext, _end - _stext);
793         kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
794         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
795                                  VSYSCALL_END - VSYSCALL_START);
796
797         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
798                                 "%ldk reserved, %ldk data, %ldk init)\n",
799                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
800                 max_pfn << (PAGE_SHIFT-10),
801                 codesize >> 10,
802                 reservedpages << (PAGE_SHIFT-10),
803                 datasize >> 10,
804                 initsize >> 10);
805
806         cpa_init();
807 }
808
809 void free_init_pages(char *what, unsigned long begin, unsigned long end)
810 {
811         unsigned long addr = begin;
812
813         if (addr >= end)
814                 return;
815
816         /*
817          * If debugging page accesses then do not free this memory but
818          * mark them not present - any buggy init-section access will
819          * create a kernel page fault:
820          */
821 #ifdef CONFIG_DEBUG_PAGEALLOC
822         printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
823                 begin, PAGE_ALIGN(end));
824         set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
825 #else
826         printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
827
828         for (; addr < end; addr += PAGE_SIZE) {
829                 ClearPageReserved(virt_to_page(addr));
830                 init_page_count(virt_to_page(addr));
831                 memset((void *)(addr & ~(PAGE_SIZE-1)),
832                         POISON_FREE_INITMEM, PAGE_SIZE);
833                 free_page(addr);
834                 totalram_pages++;
835         }
836 #endif
837 }
838
839 void free_initmem(void)
840 {
841         free_init_pages("unused kernel memory",
842                         (unsigned long)(&__init_begin),
843                         (unsigned long)(&__init_end));
844 }
845
846 #ifdef CONFIG_DEBUG_RODATA
847 const int rodata_test_data = 0xC3;
848 EXPORT_SYMBOL_GPL(rodata_test_data);
849
850 void mark_rodata_ro(void)
851 {
852         unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
853         unsigned long rodata_start =
854                 ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
855
856 #ifdef CONFIG_DYNAMIC_FTRACE
857         /* Dynamic tracing modifies the kernel text section */
858         start = rodata_start;
859 #endif
860
861         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
862                (end - start) >> 10);
863         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
864
865         /*
866          * The rodata section (but not the kernel text!) should also be
867          * not-executable.
868          */
869         set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
870
871         rodata_test();
872
873 #ifdef CONFIG_CPA_DEBUG
874         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
875         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
876
877         printk(KERN_INFO "Testing CPA: again\n");
878         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
879 #endif
880 }
881
882 #endif
883
884 #ifdef CONFIG_BLK_DEV_INITRD
885 void free_initrd_mem(unsigned long start, unsigned long end)
886 {
887         free_init_pages("initrd memory", start, end);
888 }
889 #endif
890
891 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
892                                    int flags)
893 {
894 #ifdef CONFIG_NUMA
895         int nid, next_nid;
896         int ret;
897 #endif
898         unsigned long pfn = phys >> PAGE_SHIFT;
899
900         if (pfn >= max_pfn) {
901                 /*
902                  * This can happen with kdump kernels when accessing
903                  * firmware tables:
904                  */
905                 if (pfn < max_pfn_mapped)
906                         return -EFAULT;
907
908                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
909                                 phys, len);
910                 return -EFAULT;
911         }
912
913         /* Should check here against the e820 map to avoid double free */
914 #ifdef CONFIG_NUMA
915         nid = phys_to_nid(phys);
916         next_nid = phys_to_nid(phys + len - 1);
917         if (nid == next_nid)
918                 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
919         else
920                 ret = reserve_bootmem(phys, len, flags);
921
922         if (ret != 0)
923                 return ret;
924
925 #else
926         reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
927 #endif
928
929         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
930                 dma_reserve += len / PAGE_SIZE;
931                 set_dma_reserve(dma_reserve);
932         }
933
934         return 0;
935 }
936
937 int kern_addr_valid(unsigned long addr)
938 {
939         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
940         pgd_t *pgd;
941         pud_t *pud;
942         pmd_t *pmd;
943         pte_t *pte;
944
945         if (above != 0 && above != -1UL)
946                 return 0;
947
948         pgd = pgd_offset_k(addr);
949         if (pgd_none(*pgd))
950                 return 0;
951
952         pud = pud_offset(pgd, addr);
953         if (pud_none(*pud))
954                 return 0;
955
956         pmd = pmd_offset(pud, addr);
957         if (pmd_none(*pmd))
958                 return 0;
959
960         if (pmd_large(*pmd))
961                 return pfn_valid(pmd_pfn(*pmd));
962
963         pte = pte_offset_kernel(pmd, addr);
964         if (pte_none(*pte))
965                 return 0;
966
967         return pfn_valid(pte_pfn(*pte));
968 }
969
970 /*
971  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
972  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
973  * not need special handling anymore:
974  */
975 static struct vm_area_struct gate_vma = {
976         .vm_start       = VSYSCALL_START,
977         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
978         .vm_page_prot   = PAGE_READONLY_EXEC,
979         .vm_flags       = VM_READ | VM_EXEC
980 };
981
982 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
983 {
984 #ifdef CONFIG_IA32_EMULATION
985         if (test_tsk_thread_flag(tsk, TIF_IA32))
986                 return NULL;
987 #endif
988         return &gate_vma;
989 }
990
991 int in_gate_area(struct task_struct *task, unsigned long addr)
992 {
993         struct vm_area_struct *vma = get_gate_vma(task);
994
995         if (!vma)
996                 return 0;
997
998         return (addr >= vma->vm_start) && (addr < vma->vm_end);
999 }
1000
1001 /*
1002  * Use this when you have no reliable task/vma, typically from interrupt
1003  * context. It is less reliable than using the task's vma and may give
1004  * false positives:
1005  */
1006 int in_gate_area_no_task(unsigned long addr)
1007 {
1008         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
1009 }
1010
1011 const char *arch_vma_name(struct vm_area_struct *vma)
1012 {
1013         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
1014                 return "[vdso]";
1015         if (vma == &gate_vma)
1016                 return "[vsyscall]";
1017         return NULL;
1018 }
1019
1020 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1021 /*
1022  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1023  */
1024 static long __meminitdata addr_start, addr_end;
1025 static void __meminitdata *p_start, *p_end;
1026 static int __meminitdata node_start;
1027
1028 int __meminit
1029 vmemmap_populate(struct page *start_page, unsigned long size, int node)
1030 {
1031         unsigned long addr = (unsigned long)start_page;
1032         unsigned long end = (unsigned long)(start_page + size);
1033         unsigned long next;
1034         pgd_t *pgd;
1035         pud_t *pud;
1036         pmd_t *pmd;
1037
1038         for (; addr < end; addr = next) {
1039                 void *p = NULL;
1040
1041                 pgd = vmemmap_pgd_populate(addr, node);
1042                 if (!pgd)
1043                         return -ENOMEM;
1044
1045                 pud = vmemmap_pud_populate(pgd, addr, node);
1046                 if (!pud)
1047                         return -ENOMEM;
1048
1049                 if (!cpu_has_pse) {
1050                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1051                         pmd = vmemmap_pmd_populate(pud, addr, node);
1052
1053                         if (!pmd)
1054                                 return -ENOMEM;
1055
1056                         p = vmemmap_pte_populate(pmd, addr, node);
1057
1058                         if (!p)
1059                                 return -ENOMEM;
1060
1061                         addr_end = addr + PAGE_SIZE;
1062                         p_end = p + PAGE_SIZE;
1063                 } else {
1064                         next = pmd_addr_end(addr, end);
1065
1066                         pmd = pmd_offset(pud, addr);
1067                         if (pmd_none(*pmd)) {
1068                                 pte_t entry;
1069
1070                                 p = vmemmap_alloc_block(PMD_SIZE, node);
1071                                 if (!p)
1072                                         return -ENOMEM;
1073
1074                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1075                                                 PAGE_KERNEL_LARGE);
1076                                 set_pmd(pmd, __pmd(pte_val(entry)));
1077
1078                                 /* check to see if we have contiguous blocks */
1079                                 if (p_end != p || node_start != node) {
1080                                         if (p_start)
1081                                                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1082                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1083                                         addr_start = addr;
1084                                         node_start = node;
1085                                         p_start = p;
1086                                 }
1087
1088                                 addr_end = addr + PMD_SIZE;
1089                                 p_end = p + PMD_SIZE;
1090                         } else
1091                                 vmemmap_verify((pte_t *)pmd, node, addr, next);
1092                 }
1093
1094         }
1095         return 0;
1096 }
1097
1098 void __meminit vmemmap_populate_print_last(void)
1099 {
1100         if (p_start) {
1101                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1102                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1103                 p_start = NULL;
1104                 p_end = NULL;
1105                 node_start = 0;
1106         }
1107 }
1108 #endif