]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/x86/mm/init_64.c
5beb89683453472b3aff8674888ef3528ac05fb8
[linux-2.6-omap-h63xx.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32
33 #include <asm/processor.h>
34 #include <asm/bios_ebda.h>
35 #include <asm/system.h>
36 #include <asm/uaccess.h>
37 #include <asm/pgtable.h>
38 #include <asm/pgalloc.h>
39 #include <asm/dma.h>
40 #include <asm/fixmap.h>
41 #include <asm/e820.h>
42 #include <asm/apic.h>
43 #include <asm/tlb.h>
44 #include <asm/mmu_context.h>
45 #include <asm/proto.h>
46 #include <asm/smp.h>
47 #include <asm/sections.h>
48 #include <asm/kdebug.h>
49 #include <asm/numa.h>
50 #include <asm/cacheflush.h>
51
52 /*
53  * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
54  * The direct mapping extends to max_pfn_mapped, so that we can directly access
55  * apertures, ACPI and other tables without having to play with fixmaps.
56  */
57 unsigned long max_low_pfn_mapped;
58 unsigned long max_pfn_mapped;
59
60 static unsigned long dma_reserve __initdata;
61
62 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
63
64 int direct_gbpages
65 #ifdef CONFIG_DIRECT_GBPAGES
66                                 = 1
67 #endif
68 ;
69
70 static int __init parse_direct_gbpages_off(char *arg)
71 {
72         direct_gbpages = 0;
73         return 0;
74 }
75 early_param("nogbpages", parse_direct_gbpages_off);
76
77 static int __init parse_direct_gbpages_on(char *arg)
78 {
79         direct_gbpages = 1;
80         return 0;
81 }
82 early_param("gbpages", parse_direct_gbpages_on);
83
84 /*
85  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
86  * physical space so we can cache the place of the first one and move
87  * around without checking the pgd every time.
88  */
89
90 int after_bootmem;
91
92 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
93 EXPORT_SYMBOL_GPL(__supported_pte_mask);
94
95 static int do_not_nx __cpuinitdata;
96
97 /*
98  * noexec=on|off
99  * Control non-executable mappings for 64-bit processes.
100  *
101  * on   Enable (default)
102  * off  Disable
103  */
104 static int __init nonx_setup(char *str)
105 {
106         if (!str)
107                 return -EINVAL;
108         if (!strncmp(str, "on", 2)) {
109                 __supported_pte_mask |= _PAGE_NX;
110                 do_not_nx = 0;
111         } else if (!strncmp(str, "off", 3)) {
112                 do_not_nx = 1;
113                 __supported_pte_mask &= ~_PAGE_NX;
114         }
115         return 0;
116 }
117 early_param("noexec", nonx_setup);
118
119 void __cpuinit check_efer(void)
120 {
121         unsigned long efer;
122
123         rdmsrl(MSR_EFER, efer);
124         if (!(efer & EFER_NX) || do_not_nx)
125                 __supported_pte_mask &= ~_PAGE_NX;
126 }
127
128 int force_personality32;
129
130 /*
131  * noexec32=on|off
132  * Control non executable heap for 32bit processes.
133  * To control the stack too use noexec=off
134  *
135  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
136  * off  PROT_READ implies PROT_EXEC
137  */
138 static int __init nonx32_setup(char *str)
139 {
140         if (!strcmp(str, "on"))
141                 force_personality32 &= ~READ_IMPLIES_EXEC;
142         else if (!strcmp(str, "off"))
143                 force_personality32 |= READ_IMPLIES_EXEC;
144         return 1;
145 }
146 __setup("noexec32=", nonx32_setup);
147
148 /*
149  * NOTE: This function is marked __ref because it calls __init function
150  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
151  */
152 static __ref void *spp_getpage(void)
153 {
154         void *ptr;
155
156         if (after_bootmem)
157                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
158         else
159                 ptr = alloc_bootmem_pages(PAGE_SIZE);
160
161         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
162                 panic("set_pte_phys: cannot allocate page data %s\n",
163                         after_bootmem ? "after bootmem" : "");
164         }
165
166         pr_debug("spp_getpage %p\n", ptr);
167
168         return ptr;
169 }
170
171 void
172 set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
173 {
174         pud_t *pud;
175         pmd_t *pmd;
176         pte_t *pte;
177
178         pud = pud_page + pud_index(vaddr);
179         if (pud_none(*pud)) {
180                 pmd = (pmd_t *) spp_getpage();
181                 pud_populate(&init_mm, pud, pmd);
182                 if (pmd != pmd_offset(pud, 0)) {
183                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
184                                 pmd, pmd_offset(pud, 0));
185                         return;
186                 }
187         }
188         pmd = pmd_offset(pud, vaddr);
189         if (pmd_none(*pmd)) {
190                 pte = (pte_t *) spp_getpage();
191                 pmd_populate_kernel(&init_mm, pmd, pte);
192                 if (pte != pte_offset_kernel(pmd, 0)) {
193                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
194                         return;
195                 }
196         }
197
198         pte = pte_offset_kernel(pmd, vaddr);
199         if (!pte_none(*pte) && pte_val(new_pte) &&
200             pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
201                 pte_ERROR(*pte);
202         set_pte(pte, new_pte);
203
204         /*
205          * It's enough to flush this one mapping.
206          * (PGE mappings get flushed as well)
207          */
208         __flush_tlb_one(vaddr);
209 }
210
211 void
212 set_pte_vaddr(unsigned long vaddr, pte_t pteval)
213 {
214         pgd_t *pgd;
215         pud_t *pud_page;
216
217         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
218
219         pgd = pgd_offset_k(vaddr);
220         if (pgd_none(*pgd)) {
221                 printk(KERN_ERR
222                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
223                 return;
224         }
225         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
226         set_pte_vaddr_pud(pud_page, vaddr, pteval);
227 }
228
229 /*
230  * Create large page table mappings for a range of physical addresses.
231  */
232 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
233                                                 pgprot_t prot)
234 {
235         pgd_t *pgd;
236         pud_t *pud;
237         pmd_t *pmd;
238
239         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
240         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
241                 pgd = pgd_offset_k((unsigned long)__va(phys));
242                 if (pgd_none(*pgd)) {
243                         pud = (pud_t *) spp_getpage();
244                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
245                                                 _PAGE_USER));
246                 }
247                 pud = pud_offset(pgd, (unsigned long)__va(phys));
248                 if (pud_none(*pud)) {
249                         pmd = (pmd_t *) spp_getpage();
250                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
251                                                 _PAGE_USER));
252                 }
253                 pmd = pmd_offset(pud, phys);
254                 BUG_ON(!pmd_none(*pmd));
255                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
256         }
257 }
258
259 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
260 {
261         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
262 }
263
264 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
265 {
266         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
267 }
268
269 /*
270  * The head.S code sets up the kernel high mapping:
271  *
272  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
273  *
274  * phys_addr holds the negative offset to the kernel, which is added
275  * to the compile time generated pmds. This results in invalid pmds up
276  * to the point where we hit the physaddr 0 mapping.
277  *
278  * We limit the mappings to the region from _text to _end.  _end is
279  * rounded up to the 2MB boundary. This catches the invalid pmds as
280  * well, as they are located before _text:
281  */
282 void __init cleanup_highmap(void)
283 {
284         unsigned long vaddr = __START_KERNEL_map;
285         unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
286         pmd_t *pmd = level2_kernel_pgt;
287         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
288
289         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
290                 if (pmd_none(*pmd))
291                         continue;
292                 if (vaddr < (unsigned long) _text || vaddr > end)
293                         set_pmd(pmd, __pmd(0));
294         }
295 }
296
297 static unsigned long __initdata table_start;
298 static unsigned long __meminitdata table_end;
299 static unsigned long __meminitdata table_top;
300
301 static __ref void *alloc_low_page(unsigned long *phys)
302 {
303         unsigned long pfn = table_end++;
304         void *adr;
305
306         if (after_bootmem) {
307                 adr = (void *)get_zeroed_page(GFP_ATOMIC);
308                 *phys = __pa(adr);
309
310                 return adr;
311         }
312
313         if (pfn >= table_top)
314                 panic("alloc_low_page: ran out of memory");
315
316         adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
317         memset(adr, 0, PAGE_SIZE);
318         *phys  = pfn * PAGE_SIZE;
319         return adr;
320 }
321
322 static __ref void unmap_low_page(void *adr)
323 {
324         if (after_bootmem)
325                 return;
326
327         early_iounmap(adr, PAGE_SIZE);
328 }
329
330 static unsigned long __meminit
331 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
332               pgprot_t prot)
333 {
334         unsigned pages = 0;
335         unsigned long last_map_addr = end;
336         int i;
337
338         pte_t *pte = pte_page + pte_index(addr);
339
340         for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
341
342                 if (addr >= end) {
343                         if (!after_bootmem) {
344                                 for(; i < PTRS_PER_PTE; i++, pte++)
345                                         set_pte(pte, __pte(0));
346                         }
347                         break;
348                 }
349
350                 /*
351                  * We will re-use the existing mapping.
352                  * Xen for example has some special requirements, like mapping
353                  * pagetable pages as RO. So assume someone who pre-setup
354                  * these mappings are more intelligent.
355                  */
356                 if (pte_val(*pte))
357                         continue;
358
359                 if (0)
360                         printk("   pte=%p addr=%lx pte=%016lx\n",
361                                pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
362                 pages++;
363                 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
364                 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
365         }
366
367         update_page_count(PG_LEVEL_4K, pages);
368
369         return last_map_addr;
370 }
371
372 static unsigned long __meminit
373 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
374                 pgprot_t prot)
375 {
376         pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
377
378         return phys_pte_init(pte, address, end, prot);
379 }
380
381 static unsigned long __meminit
382 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
383               unsigned long page_size_mask, pgprot_t prot)
384 {
385         unsigned long pages = 0;
386         unsigned long last_map_addr = end;
387
388         int i = pmd_index(address);
389
390         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
391                 unsigned long pte_phys;
392                 pmd_t *pmd = pmd_page + pmd_index(address);
393                 pte_t *pte;
394                 pgprot_t new_prot = prot;
395
396                 if (address >= end) {
397                         if (!after_bootmem) {
398                                 for (; i < PTRS_PER_PMD; i++, pmd++)
399                                         set_pmd(pmd, __pmd(0));
400                         }
401                         break;
402                 }
403
404                 if (pmd_val(*pmd)) {
405                         if (!pmd_large(*pmd)) {
406                                 spin_lock(&init_mm.page_table_lock);
407                                 last_map_addr = phys_pte_update(pmd, address,
408                                                                 end, prot);
409                                 spin_unlock(&init_mm.page_table_lock);
410                                 continue;
411                         }
412                         /*
413                          * If we are ok with PG_LEVEL_2M mapping, then we will
414                          * use the existing mapping,
415                          *
416                          * Otherwise, we will split the large page mapping but
417                          * use the same existing protection bits except for
418                          * large page, so that we don't violate Intel's TLB
419                          * Application note (317080) which says, while changing
420                          * the page sizes, new and old translations should
421                          * not differ with respect to page frame and
422                          * attributes.
423                          */
424                         if (page_size_mask & (1 << PG_LEVEL_2M))
425                                 continue;
426                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
427                 }
428
429                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
430                         pages++;
431                         spin_lock(&init_mm.page_table_lock);
432                         set_pte((pte_t *)pmd,
433                                 pfn_pte(address >> PAGE_SHIFT,
434                                         __pgprot(pgprot_val(prot) | _PAGE_PSE)));
435                         spin_unlock(&init_mm.page_table_lock);
436                         last_map_addr = (address & PMD_MASK) + PMD_SIZE;
437                         continue;
438                 }
439
440                 pte = alloc_low_page(&pte_phys);
441                 last_map_addr = phys_pte_init(pte, address, end, new_prot);
442                 unmap_low_page(pte);
443
444                 spin_lock(&init_mm.page_table_lock);
445                 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
446                 spin_unlock(&init_mm.page_table_lock);
447         }
448         update_page_count(PG_LEVEL_2M, pages);
449         return last_map_addr;
450 }
451
452 static unsigned long __meminit
453 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
454                 unsigned long page_size_mask, pgprot_t prot)
455 {
456         pmd_t *pmd = pmd_offset(pud, 0);
457         unsigned long last_map_addr;
458
459         last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
460         __flush_tlb_all();
461         return last_map_addr;
462 }
463
464 static unsigned long __meminit
465 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
466                          unsigned long page_size_mask)
467 {
468         unsigned long pages = 0;
469         unsigned long last_map_addr = end;
470         int i = pud_index(addr);
471
472         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
473                 unsigned long pmd_phys;
474                 pud_t *pud = pud_page + pud_index(addr);
475                 pmd_t *pmd;
476                 pgprot_t prot = PAGE_KERNEL;
477
478                 if (addr >= end)
479                         break;
480
481                 if (!after_bootmem &&
482                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
483                         set_pud(pud, __pud(0));
484                         continue;
485                 }
486
487                 if (pud_val(*pud)) {
488                         if (!pud_large(*pud)) {
489                                 last_map_addr = phys_pmd_update(pud, addr, end,
490                                                          page_size_mask, prot);
491                                 continue;
492                         }
493                         /*
494                          * If we are ok with PG_LEVEL_1G mapping, then we will
495                          * use the existing mapping.
496                          *
497                          * Otherwise, we will split the gbpage mapping but use
498                          * the same existing protection  bits except for large
499                          * page, so that we don't violate Intel's TLB
500                          * Application note (317080) which says, while changing
501                          * the page sizes, new and old translations should
502                          * not differ with respect to page frame and
503                          * attributes.
504                          */
505                         if (page_size_mask & (1 << PG_LEVEL_1G))
506                                 continue;
507                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
508                 }
509
510                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
511                         pages++;
512                         spin_lock(&init_mm.page_table_lock);
513                         set_pte((pte_t *)pud,
514                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
515                         spin_unlock(&init_mm.page_table_lock);
516                         last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
517                         continue;
518                 }
519
520                 pmd = alloc_low_page(&pmd_phys);
521                 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
522                                               prot);
523                 unmap_low_page(pmd);
524
525                 spin_lock(&init_mm.page_table_lock);
526                 pud_populate(&init_mm, pud, __va(pmd_phys));
527                 spin_unlock(&init_mm.page_table_lock);
528         }
529         __flush_tlb_all();
530
531         update_page_count(PG_LEVEL_1G, pages);
532
533         return last_map_addr;
534 }
535
536 static unsigned long __meminit
537 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
538                  unsigned long page_size_mask)
539 {
540         pud_t *pud;
541
542         pud = (pud_t *)pgd_page_vaddr(*pgd);
543
544         return phys_pud_init(pud, addr, end, page_size_mask);
545 }
546
547 static void __init find_early_table_space(unsigned long end, int use_pse,
548                                           int use_gbpages)
549 {
550         unsigned long puds, pmds, ptes, tables, start;
551
552         puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
553         tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
554         if (use_gbpages) {
555                 unsigned long extra;
556                 extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
557                 pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
558         } else
559                 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
560         tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
561
562         if (use_pse) {
563                 unsigned long extra;
564                 extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
565                 ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
566         } else
567                 ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
568         tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
569
570         /*
571          * RED-PEN putting page tables only on node 0 could
572          * cause a hotspot and fill up ZONE_DMA. The page tables
573          * need roughly 0.5KB per GB.
574          */
575         start = 0x8000;
576         table_start = find_e820_area(start, end, tables, PAGE_SIZE);
577         if (table_start == -1UL)
578                 panic("Cannot find space for the kernel page tables");
579
580         table_start >>= PAGE_SHIFT;
581         table_end = table_start;
582         table_top = table_start + (tables >> PAGE_SHIFT);
583
584         printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
585                 end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
586 }
587
588 static void __init init_gbpages(void)
589 {
590         if (direct_gbpages && cpu_has_gbpages)
591                 printk(KERN_INFO "Using GB pages for direct mapping\n");
592         else
593                 direct_gbpages = 0;
594 }
595
596 static unsigned long __init kernel_physical_mapping_init(unsigned long start,
597                                                 unsigned long end,
598                                                 unsigned long page_size_mask)
599 {
600
601         unsigned long next, last_map_addr = end;
602
603         start = (unsigned long)__va(start);
604         end = (unsigned long)__va(end);
605
606         for (; start < end; start = next) {
607                 pgd_t *pgd = pgd_offset_k(start);
608                 unsigned long pud_phys;
609                 pud_t *pud;
610
611                 next = (start + PGDIR_SIZE) & PGDIR_MASK;
612                 if (next > end)
613                         next = end;
614
615                 if (pgd_val(*pgd)) {
616                         last_map_addr = phys_pud_update(pgd, __pa(start),
617                                                  __pa(end), page_size_mask);
618                         continue;
619                 }
620
621                 pud = alloc_low_page(&pud_phys);
622                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
623                                                  page_size_mask);
624                 unmap_low_page(pud);
625
626                 spin_lock(&init_mm.page_table_lock);
627                 pgd_populate(&init_mm, pgd, __va(pud_phys));
628                 spin_unlock(&init_mm.page_table_lock);
629         }
630         __flush_tlb_all();
631
632         return last_map_addr;
633 }
634
635 struct map_range {
636         unsigned long start;
637         unsigned long end;
638         unsigned page_size_mask;
639 };
640
641 #define NR_RANGE_MR 5
642
643 static int save_mr(struct map_range *mr, int nr_range,
644                    unsigned long start_pfn, unsigned long end_pfn,
645                    unsigned long page_size_mask)
646 {
647
648         if (start_pfn < end_pfn) {
649                 if (nr_range >= NR_RANGE_MR)
650                         panic("run out of range for init_memory_mapping\n");
651                 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
652                 mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
653                 mr[nr_range].page_size_mask = page_size_mask;
654                 nr_range++;
655         }
656
657         return nr_range;
658 }
659
660 /*
661  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
662  * This runs before bootmem is initialized and gets pages directly from
663  * the physical memory. To access them they are temporarily mapped.
664  */
665 unsigned long __init_refok init_memory_mapping(unsigned long start,
666                                                unsigned long end)
667 {
668         unsigned long last_map_addr = 0;
669         unsigned long page_size_mask = 0;
670         unsigned long start_pfn, end_pfn;
671
672         struct map_range mr[NR_RANGE_MR];
673         int nr_range, i;
674         int use_pse, use_gbpages;
675
676         printk(KERN_INFO "init_memory_mapping\n");
677
678         /*
679          * Find space for the kernel direct mapping tables.
680          *
681          * Later we should allocate these tables in the local node of the
682          * memory mapped. Unfortunately this is done currently before the
683          * nodes are discovered.
684          */
685         if (!after_bootmem)
686                 init_gbpages();
687
688 #ifdef CONFIG_DEBUG_PAGEALLOC
689         /*
690          * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
691          * This will simplify cpa(), which otherwise needs to support splitting
692          * large pages into small in interrupt context, etc.
693          */
694         use_pse = use_gbpages = 0;
695 #else
696         use_pse = cpu_has_pse;
697         use_gbpages = direct_gbpages;
698 #endif
699
700         if (use_gbpages)
701                 page_size_mask |= 1 << PG_LEVEL_1G;
702         if (use_pse)
703                 page_size_mask |= 1 << PG_LEVEL_2M;
704
705         memset(mr, 0, sizeof(mr));
706         nr_range = 0;
707
708         /* head if not big page alignment ?*/
709         start_pfn = start >> PAGE_SHIFT;
710         end_pfn = ((start + (PMD_SIZE - 1)) >> PMD_SHIFT)
711                         << (PMD_SHIFT - PAGE_SHIFT);
712         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
713
714         /* big page (2M) range*/
715         start_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT)
716                          << (PMD_SHIFT - PAGE_SHIFT);
717         end_pfn = ((start + (PUD_SIZE - 1))>>PUD_SHIFT)
718                          << (PUD_SHIFT - PAGE_SHIFT);
719         if (end_pfn > ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT)))
720                 end_pfn = ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT));
721         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
722                         page_size_mask & (1<<PG_LEVEL_2M));
723
724         /* big page (1G) range */
725         start_pfn = end_pfn;
726         end_pfn = (end>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
727         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
728                                 page_size_mask &
729                                  ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
730
731         /* tail is not big page (1G) alignment */
732         start_pfn = end_pfn;
733         end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
734         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
735                         page_size_mask & (1<<PG_LEVEL_2M));
736
737         /* tail is not big page (2M) alignment */
738         start_pfn = end_pfn;
739         end_pfn = end>>PAGE_SHIFT;
740         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
741
742         /* try to merge same page size and continuous */
743         for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
744                 unsigned long old_start;
745                 if (mr[i].end != mr[i+1].start ||
746                     mr[i].page_size_mask != mr[i+1].page_size_mask)
747                         continue;
748                 /* move it */
749                 old_start = mr[i].start;
750                 memmove(&mr[i], &mr[i+1],
751                          (nr_range - 1 - i) * sizeof (struct map_range));
752                 mr[i].start = old_start;
753                 nr_range--;
754         }
755
756         for (i = 0; i < nr_range; i++)
757                 printk(KERN_DEBUG " %010lx - %010lx page %s\n",
758                                 mr[i].start, mr[i].end,
759                         (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
760                          (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
761
762         if (!after_bootmem)
763                 find_early_table_space(end, use_pse, use_gbpages);
764
765         for (i = 0; i < nr_range; i++)
766                 last_map_addr = kernel_physical_mapping_init(
767                                         mr[i].start, mr[i].end,
768                                         mr[i].page_size_mask);
769
770         if (!after_bootmem)
771                 mmu_cr4_features = read_cr4();
772         __flush_tlb_all();
773
774         if (!after_bootmem && table_end > table_start)
775                 reserve_early(table_start << PAGE_SHIFT,
776                                  table_end << PAGE_SHIFT, "PGTABLE");
777
778         printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
779                          last_map_addr, end);
780
781         if (!after_bootmem)
782                 early_memtest(start, end);
783
784         return last_map_addr >> PAGE_SHIFT;
785 }
786
787 #ifndef CONFIG_NUMA
788 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
789 {
790         unsigned long bootmap_size, bootmap;
791
792         bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
793         bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
794                                  PAGE_SIZE);
795         if (bootmap == -1L)
796                 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
797         /* don't touch min_low_pfn */
798         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
799                                          0, end_pfn);
800         e820_register_active_regions(0, start_pfn, end_pfn);
801         free_bootmem_with_active_regions(0, end_pfn);
802         early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
803         reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
804 }
805
806 void __init paging_init(void)
807 {
808         unsigned long max_zone_pfns[MAX_NR_ZONES];
809
810         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
811         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
812         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
813         max_zone_pfns[ZONE_NORMAL] = max_pfn;
814
815         memory_present(0, 0, max_pfn);
816         sparse_init();
817         free_area_init_nodes(max_zone_pfns);
818 }
819 #endif
820
821 /*
822  * Memory hotplug specific functions
823  */
824 #ifdef CONFIG_MEMORY_HOTPLUG
825 /*
826  * Memory is added always to NORMAL zone. This means you will never get
827  * additional DMA/DMA32 memory.
828  */
829 int arch_add_memory(int nid, u64 start, u64 size)
830 {
831         struct pglist_data *pgdat = NODE_DATA(nid);
832         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
833         unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
834         unsigned long nr_pages = size >> PAGE_SHIFT;
835         int ret;
836
837         last_mapped_pfn = init_memory_mapping(start, start + size-1);
838         if (last_mapped_pfn > max_pfn_mapped)
839                 max_pfn_mapped = last_mapped_pfn;
840
841         ret = __add_pages(zone, start_pfn, nr_pages);
842         WARN_ON(1);
843
844         return ret;
845 }
846 EXPORT_SYMBOL_GPL(arch_add_memory);
847
848 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
849 int memory_add_physaddr_to_nid(u64 start)
850 {
851         return 0;
852 }
853 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
854 #endif
855
856 #endif /* CONFIG_MEMORY_HOTPLUG */
857
858 /*
859  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
860  * is valid. The argument is a physical page number.
861  *
862  *
863  * On x86, access has to be given to the first megabyte of ram because that area
864  * contains bios code and data regions used by X and dosemu and similar apps.
865  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
866  * mmio resources as well as potential bios/acpi data regions.
867  */
868 int devmem_is_allowed(unsigned long pagenr)
869 {
870         if (pagenr <= 256)
871                 return 1;
872         if (!page_is_ram(pagenr))
873                 return 1;
874         return 0;
875 }
876
877
878 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
879                          kcore_modules, kcore_vsyscall;
880
881 void __init mem_init(void)
882 {
883         long codesize, reservedpages, datasize, initsize;
884
885         start_periodic_check_for_corruption();
886
887         pci_iommu_alloc();
888
889         /* clear_bss() already clear the empty_zero_page */
890
891         reservedpages = 0;
892
893         /* this will put all low memory onto the freelists */
894 #ifdef CONFIG_NUMA
895         totalram_pages = numa_free_all_bootmem();
896 #else
897         totalram_pages = free_all_bootmem();
898 #endif
899         reservedpages = max_pfn - totalram_pages -
900                                         absent_pages_in_range(0, max_pfn);
901         after_bootmem = 1;
902
903         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
904         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
905         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
906
907         /* Register memory areas for /proc/kcore */
908         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
909         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
910                    VMALLOC_END-VMALLOC_START);
911         kclist_add(&kcore_kernel, &_stext, _end - _stext);
912         kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
913         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
914                                  VSYSCALL_END - VSYSCALL_START);
915
916         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
917                                 "%ldk reserved, %ldk data, %ldk init)\n",
918                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
919                 max_pfn << (PAGE_SHIFT-10),
920                 codesize >> 10,
921                 reservedpages << (PAGE_SHIFT-10),
922                 datasize >> 10,
923                 initsize >> 10);
924 }
925
926 void free_init_pages(char *what, unsigned long begin, unsigned long end)
927 {
928         unsigned long addr = begin;
929
930         if (addr >= end)
931                 return;
932
933         /*
934          * If debugging page accesses then do not free this memory but
935          * mark them not present - any buggy init-section access will
936          * create a kernel page fault:
937          */
938 #ifdef CONFIG_DEBUG_PAGEALLOC
939         printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
940                 begin, PAGE_ALIGN(end));
941         set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
942 #else
943         printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
944
945         for (; addr < end; addr += PAGE_SIZE) {
946                 ClearPageReserved(virt_to_page(addr));
947                 init_page_count(virt_to_page(addr));
948                 memset((void *)(addr & ~(PAGE_SIZE-1)),
949                         POISON_FREE_INITMEM, PAGE_SIZE);
950                 free_page(addr);
951                 totalram_pages++;
952         }
953 #endif
954 }
955
956 void free_initmem(void)
957 {
958         free_init_pages("unused kernel memory",
959                         (unsigned long)(&__init_begin),
960                         (unsigned long)(&__init_end));
961 }
962
963 #ifdef CONFIG_DEBUG_RODATA
964 const int rodata_test_data = 0xC3;
965 EXPORT_SYMBOL_GPL(rodata_test_data);
966
967 void mark_rodata_ro(void)
968 {
969         unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
970         unsigned long rodata_start =
971                 ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
972
973 #ifdef CONFIG_DYNAMIC_FTRACE
974         /* Dynamic tracing modifies the kernel text section */
975         start = rodata_start;
976 #endif
977
978         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
979                (end - start) >> 10);
980         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
981
982         /*
983          * The rodata section (but not the kernel text!) should also be
984          * not-executable.
985          */
986         set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
987
988         rodata_test();
989
990 #ifdef CONFIG_CPA_DEBUG
991         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
992         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
993
994         printk(KERN_INFO "Testing CPA: again\n");
995         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
996 #endif
997 }
998
999 #endif
1000
1001 #ifdef CONFIG_BLK_DEV_INITRD
1002 void free_initrd_mem(unsigned long start, unsigned long end)
1003 {
1004         free_init_pages("initrd memory", start, end);
1005 }
1006 #endif
1007
1008 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
1009                                    int flags)
1010 {
1011 #ifdef CONFIG_NUMA
1012         int nid, next_nid;
1013         int ret;
1014 #endif
1015         unsigned long pfn = phys >> PAGE_SHIFT;
1016
1017         if (pfn >= max_pfn) {
1018                 /*
1019                  * This can happen with kdump kernels when accessing
1020                  * firmware tables:
1021                  */
1022                 if (pfn < max_pfn_mapped)
1023                         return -EFAULT;
1024
1025                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
1026                                 phys, len);
1027                 return -EFAULT;
1028         }
1029
1030         /* Should check here against the e820 map to avoid double free */
1031 #ifdef CONFIG_NUMA
1032         nid = phys_to_nid(phys);
1033         next_nid = phys_to_nid(phys + len - 1);
1034         if (nid == next_nid)
1035                 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
1036         else
1037                 ret = reserve_bootmem(phys, len, flags);
1038
1039         if (ret != 0)
1040                 return ret;
1041
1042 #else
1043         reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
1044 #endif
1045
1046         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
1047                 dma_reserve += len / PAGE_SIZE;
1048                 set_dma_reserve(dma_reserve);
1049         }
1050
1051         return 0;
1052 }
1053
1054 int kern_addr_valid(unsigned long addr)
1055 {
1056         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1057         pgd_t *pgd;
1058         pud_t *pud;
1059         pmd_t *pmd;
1060         pte_t *pte;
1061
1062         if (above != 0 && above != -1UL)
1063                 return 0;
1064
1065         pgd = pgd_offset_k(addr);
1066         if (pgd_none(*pgd))
1067                 return 0;
1068
1069         pud = pud_offset(pgd, addr);
1070         if (pud_none(*pud))
1071                 return 0;
1072
1073         pmd = pmd_offset(pud, addr);
1074         if (pmd_none(*pmd))
1075                 return 0;
1076
1077         if (pmd_large(*pmd))
1078                 return pfn_valid(pmd_pfn(*pmd));
1079
1080         pte = pte_offset_kernel(pmd, addr);
1081         if (pte_none(*pte))
1082                 return 0;
1083
1084         return pfn_valid(pte_pfn(*pte));
1085 }
1086
1087 /*
1088  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
1089  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
1090  * not need special handling anymore:
1091  */
1092 static struct vm_area_struct gate_vma = {
1093         .vm_start       = VSYSCALL_START,
1094         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
1095         .vm_page_prot   = PAGE_READONLY_EXEC,
1096         .vm_flags       = VM_READ | VM_EXEC
1097 };
1098
1099 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
1100 {
1101 #ifdef CONFIG_IA32_EMULATION
1102         if (test_tsk_thread_flag(tsk, TIF_IA32))
1103                 return NULL;
1104 #endif
1105         return &gate_vma;
1106 }
1107
1108 int in_gate_area(struct task_struct *task, unsigned long addr)
1109 {
1110         struct vm_area_struct *vma = get_gate_vma(task);
1111
1112         if (!vma)
1113                 return 0;
1114
1115         return (addr >= vma->vm_start) && (addr < vma->vm_end);
1116 }
1117
1118 /*
1119  * Use this when you have no reliable task/vma, typically from interrupt
1120  * context. It is less reliable than using the task's vma and may give
1121  * false positives:
1122  */
1123 int in_gate_area_no_task(unsigned long addr)
1124 {
1125         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
1126 }
1127
1128 const char *arch_vma_name(struct vm_area_struct *vma)
1129 {
1130         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
1131                 return "[vdso]";
1132         if (vma == &gate_vma)
1133                 return "[vsyscall]";
1134         return NULL;
1135 }
1136
1137 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1138 /*
1139  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1140  */
1141 static long __meminitdata addr_start, addr_end;
1142 static void __meminitdata *p_start, *p_end;
1143 static int __meminitdata node_start;
1144
1145 int __meminit
1146 vmemmap_populate(struct page *start_page, unsigned long size, int node)
1147 {
1148         unsigned long addr = (unsigned long)start_page;
1149         unsigned long end = (unsigned long)(start_page + size);
1150         unsigned long next;
1151         pgd_t *pgd;
1152         pud_t *pud;
1153         pmd_t *pmd;
1154
1155         for (; addr < end; addr = next) {
1156                 void *p = NULL;
1157
1158                 pgd = vmemmap_pgd_populate(addr, node);
1159                 if (!pgd)
1160                         return -ENOMEM;
1161
1162                 pud = vmemmap_pud_populate(pgd, addr, node);
1163                 if (!pud)
1164                         return -ENOMEM;
1165
1166                 if (!cpu_has_pse) {
1167                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1168                         pmd = vmemmap_pmd_populate(pud, addr, node);
1169
1170                         if (!pmd)
1171                                 return -ENOMEM;
1172
1173                         p = vmemmap_pte_populate(pmd, addr, node);
1174
1175                         if (!p)
1176                                 return -ENOMEM;
1177
1178                         addr_end = addr + PAGE_SIZE;
1179                         p_end = p + PAGE_SIZE;
1180                 } else {
1181                         next = pmd_addr_end(addr, end);
1182
1183                         pmd = pmd_offset(pud, addr);
1184                         if (pmd_none(*pmd)) {
1185                                 pte_t entry;
1186
1187                                 p = vmemmap_alloc_block(PMD_SIZE, node);
1188                                 if (!p)
1189                                         return -ENOMEM;
1190
1191                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1192                                                 PAGE_KERNEL_LARGE);
1193                                 set_pmd(pmd, __pmd(pte_val(entry)));
1194
1195                                 /* check to see if we have contiguous blocks */
1196                                 if (p_end != p || node_start != node) {
1197                                         if (p_start)
1198                                                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1199                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1200                                         addr_start = addr;
1201                                         node_start = node;
1202                                         p_start = p;
1203                                 }
1204
1205                                 addr_end = addr + PMD_SIZE;
1206                                 p_end = p + PMD_SIZE;
1207                         } else
1208                                 vmemmap_verify((pte_t *)pmd, node, addr, next);
1209                 }
1210
1211         }
1212         return 0;
1213 }
1214
1215 void __meminit vmemmap_populate_print_last(void)
1216 {
1217         if (p_start) {
1218                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1219                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1220                 p_start = NULL;
1221                 p_end = NULL;
1222                 node_start = 0;
1223         }
1224 }
1225 #endif