]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/x86/mm/init_64.c
Merge branch 'linus' into x86/cleanups
[linux-2.6-omap-h63xx.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32
33 #include <asm/processor.h>
34 #include <asm/system.h>
35 #include <asm/uaccess.h>
36 #include <asm/pgtable.h>
37 #include <asm/pgalloc.h>
38 #include <asm/dma.h>
39 #include <asm/fixmap.h>
40 #include <asm/e820.h>
41 #include <asm/apic.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44 #include <asm/proto.h>
45 #include <asm/smp.h>
46 #include <asm/sections.h>
47 #include <asm/kdebug.h>
48 #include <asm/numa.h>
49 #include <asm/cacheflush.h>
50
51 static unsigned long dma_reserve __initdata;
52
53 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
54
55 int direct_gbpages __meminitdata
56 #ifdef CONFIG_DIRECT_GBPAGES
57                                 = 1
58 #endif
59 ;
60
61 static int __init parse_direct_gbpages_off(char *arg)
62 {
63         direct_gbpages = 0;
64         return 0;
65 }
66 early_param("nogbpages", parse_direct_gbpages_off);
67
68 static int __init parse_direct_gbpages_on(char *arg)
69 {
70         direct_gbpages = 1;
71         return 0;
72 }
73 early_param("gbpages", parse_direct_gbpages_on);
74
75 /*
76  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
77  * physical space so we can cache the place of the first one and move
78  * around without checking the pgd every time.
79  */
80
81 void show_mem(void)
82 {
83         long i, total = 0, reserved = 0;
84         long shared = 0, cached = 0;
85         struct page *page;
86         pg_data_t *pgdat;
87
88         printk(KERN_INFO "Mem-info:\n");
89         show_free_areas();
90         for_each_online_pgdat(pgdat) {
91                 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
92                         /*
93                          * This loop can take a while with 256 GB and
94                          * 4k pages so defer the NMI watchdog:
95                          */
96                         if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
97                                 touch_nmi_watchdog();
98
99                         if (!pfn_valid(pgdat->node_start_pfn + i))
100                                 continue;
101
102                         page = pfn_to_page(pgdat->node_start_pfn + i);
103                         total++;
104                         if (PageReserved(page))
105                                 reserved++;
106                         else if (PageSwapCache(page))
107                                 cached++;
108                         else if (page_count(page))
109                                 shared += page_count(page) - 1;
110                 }
111         }
112         printk(KERN_INFO "%lu pages of RAM\n",          total);
113         printk(KERN_INFO "%lu reserved pages\n",        reserved);
114         printk(KERN_INFO "%lu pages shared\n",          shared);
115         printk(KERN_INFO "%lu pages swap cached\n",     cached);
116 }
117
118 int after_bootmem;
119
120 static __init void *spp_getpage(void)
121 {
122         void *ptr;
123
124         if (after_bootmem)
125                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
126         else
127                 ptr = alloc_bootmem_pages(PAGE_SIZE);
128
129         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
130                 panic("set_pte_phys: cannot allocate page data %s\n",
131                         after_bootmem ? "after bootmem" : "");
132         }
133
134         pr_debug("spp_getpage %p\n", ptr);
135
136         return ptr;
137 }
138
139 static void
140 set_pte_phys(unsigned long vaddr, unsigned long phys, pgprot_t prot)
141 {
142         pgd_t *pgd;
143         pud_t *pud;
144         pmd_t *pmd;
145         pte_t *pte, new_pte;
146
147         pr_debug("set_pte_phys %lx to %lx\n", vaddr, phys);
148
149         pgd = pgd_offset_k(vaddr);
150         if (pgd_none(*pgd)) {
151                 printk(KERN_ERR
152                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
153                 return;
154         }
155         pud = pud_offset(pgd, vaddr);
156         if (pud_none(*pud)) {
157                 pmd = (pmd_t *) spp_getpage();
158                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
159                 if (pmd != pmd_offset(pud, 0)) {
160                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
161                                 pmd, pmd_offset(pud, 0));
162                         return;
163                 }
164         }
165         pmd = pmd_offset(pud, vaddr);
166         if (pmd_none(*pmd)) {
167                 pte = (pte_t *) spp_getpage();
168                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
169                 if (pte != pte_offset_kernel(pmd, 0)) {
170                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
171                         return;
172                 }
173         }
174         new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
175
176         pte = pte_offset_kernel(pmd, vaddr);
177         if (!pte_none(*pte) && pte_val(new_pte) &&
178             pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
179                 pte_ERROR(*pte);
180         set_pte(pte, new_pte);
181
182         /*
183          * It's enough to flush this one mapping.
184          * (PGE mappings get flushed as well)
185          */
186         __flush_tlb_one(vaddr);
187 }
188
189 /*
190  * The head.S code sets up the kernel high mapping:
191  *
192  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
193  *
194  * phys_addr holds the negative offset to the kernel, which is added
195  * to the compile time generated pmds. This results in invalid pmds up
196  * to the point where we hit the physaddr 0 mapping.
197  *
198  * We limit the mappings to the region from _text to _end.  _end is
199  * rounded up to the 2MB boundary. This catches the invalid pmds as
200  * well, as they are located before _text:
201  */
202 void __init cleanup_highmap(void)
203 {
204         unsigned long vaddr = __START_KERNEL_map;
205         unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
206         pmd_t *pmd = level2_kernel_pgt;
207         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
208
209         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
210                 if (pmd_none(*pmd))
211                         continue;
212                 if (vaddr < (unsigned long) _text || vaddr > end)
213                         set_pmd(pmd, __pmd(0));
214         }
215 }
216
217 /* NOTE: this is meant to be run only at boot */
218 void __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
219 {
220         unsigned long address = __fix_to_virt(idx);
221
222         if (idx >= __end_of_fixed_addresses) {
223                 printk(KERN_ERR "Invalid __set_fixmap\n");
224                 return;
225         }
226         set_pte_phys(address, phys, prot);
227 }
228
229 static unsigned long __initdata table_start;
230 static unsigned long __meminitdata table_end;
231
232 static __meminit void *alloc_low_page(unsigned long *phys)
233 {
234         unsigned long pfn = table_end++;
235         void *adr;
236
237         if (after_bootmem) {
238                 adr = (void *)get_zeroed_page(GFP_ATOMIC);
239                 *phys = __pa(adr);
240
241                 return adr;
242         }
243
244         if (pfn >= end_pfn)
245                 panic("alloc_low_page: ran out of memory");
246
247         adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
248         memset(adr, 0, PAGE_SIZE);
249         *phys  = pfn * PAGE_SIZE;
250         return adr;
251 }
252
253 static __meminit void unmap_low_page(void *adr)
254 {
255         if (after_bootmem)
256                 return;
257
258         early_iounmap(adr, PAGE_SIZE);
259 }
260
261 /* Must run before zap_low_mappings */
262 __meminit void *early_ioremap(unsigned long addr, unsigned long size)
263 {
264         pmd_t *pmd, *last_pmd;
265         unsigned long vaddr;
266         int i, pmds;
267
268         pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
269         vaddr = __START_KERNEL_map;
270         pmd = level2_kernel_pgt;
271         last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
272
273         for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
274                 for (i = 0; i < pmds; i++) {
275                         if (pmd_present(pmd[i]))
276                                 goto continue_outer_loop;
277                 }
278                 vaddr += addr & ~PMD_MASK;
279                 addr &= PMD_MASK;
280
281                 for (i = 0; i < pmds; i++, addr += PMD_SIZE)
282                         set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
283                 __flush_tlb_all();
284
285                 return (void *)vaddr;
286 continue_outer_loop:
287                 ;
288         }
289         printk(KERN_ERR "early_ioremap(0x%lx, %lu) failed\n", addr, size);
290
291         return NULL;
292 }
293
294 /*
295  * To avoid virtual aliases later:
296  */
297 __meminit void early_iounmap(void *addr, unsigned long size)
298 {
299         unsigned long vaddr;
300         pmd_t *pmd;
301         int i, pmds;
302
303         vaddr = (unsigned long)addr;
304         pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
305         pmd = level2_kernel_pgt + pmd_index(vaddr);
306
307         for (i = 0; i < pmds; i++)
308                 pmd_clear(pmd + i);
309
310         __flush_tlb_all();
311 }
312
313 static unsigned long __meminit
314 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
315 {
316         int i = pmd_index(address);
317
318         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
319                 pmd_t *pmd = pmd_page + pmd_index(address);
320
321                 if (address >= end) {
322                         if (!after_bootmem) {
323                                 for (; i < PTRS_PER_PMD; i++, pmd++)
324                                         set_pmd(pmd, __pmd(0));
325                         }
326                         break;
327                 }
328
329                 if (pmd_val(*pmd))
330                         continue;
331
332                 set_pte((pte_t *)pmd,
333                         pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
334         }
335         return address;
336 }
337
338 static unsigned long __meminit
339 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
340 {
341         pmd_t *pmd = pmd_offset(pud, 0);
342         unsigned long last_map_addr;
343
344         spin_lock(&init_mm.page_table_lock);
345         last_map_addr = phys_pmd_init(pmd, address, end);
346         spin_unlock(&init_mm.page_table_lock);
347         __flush_tlb_all();
348         return last_map_addr;
349 }
350
351 static unsigned long __meminit
352 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
353 {
354         unsigned long last_map_addr = end;
355         int i = pud_index(addr);
356
357         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
358                 unsigned long pmd_phys;
359                 pud_t *pud = pud_page + pud_index(addr);
360                 pmd_t *pmd;
361
362                 if (addr >= end)
363                         break;
364
365                 if (!after_bootmem &&
366                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
367                         set_pud(pud, __pud(0));
368                         continue;
369                 }
370
371                 if (pud_val(*pud)) {
372                         if (!pud_large(*pud))
373                                 last_map_addr = phys_pmd_update(pud, addr, end);
374                         continue;
375                 }
376
377                 if (direct_gbpages) {
378                         set_pte((pte_t *)pud,
379                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
380                         last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
381                         continue;
382                 }
383
384                 pmd = alloc_low_page(&pmd_phys);
385
386                 spin_lock(&init_mm.page_table_lock);
387                 set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
388                 last_map_addr = phys_pmd_init(pmd, addr, end);
389                 spin_unlock(&init_mm.page_table_lock);
390
391                 unmap_low_page(pmd);
392         }
393         __flush_tlb_all();
394
395         return last_map_addr >> PAGE_SHIFT;
396 }
397
398 static void __init find_early_table_space(unsigned long end)
399 {
400         unsigned long puds, pmds, tables, start;
401
402         puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
403         tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
404         if (!direct_gbpages) {
405                 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
406                 tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
407         }
408
409         /*
410          * RED-PEN putting page tables only on node 0 could
411          * cause a hotspot and fill up ZONE_DMA. The page tables
412          * need roughly 0.5KB per GB.
413          */
414         start = 0x8000;
415         table_start = find_e820_area(start, end, tables, PAGE_SIZE);
416         if (table_start == -1UL)
417                 panic("Cannot find space for the kernel page tables");
418
419         table_start >>= PAGE_SHIFT;
420         table_end = table_start;
421
422         early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
423                 end, table_start << PAGE_SHIFT,
424                 (table_start << PAGE_SHIFT) + tables);
425 }
426
427 static void __init init_gbpages(void)
428 {
429         if (direct_gbpages && cpu_has_gbpages)
430                 printk(KERN_INFO "Using GB pages for direct mapping\n");
431         else
432                 direct_gbpages = 0;
433 }
434
435 #ifdef CONFIG_MEMTEST_BOOTPARAM
436
437 static void __init memtest(unsigned long start_phys, unsigned long size,
438                                  unsigned pattern)
439 {
440         unsigned long i;
441         unsigned long *start;
442         unsigned long start_bad;
443         unsigned long last_bad;
444         unsigned long val;
445         unsigned long start_phys_aligned;
446         unsigned long count;
447         unsigned long incr;
448
449         switch (pattern) {
450         case 0:
451                 val = 0UL;
452                 break;
453         case 1:
454                 val = -1UL;
455                 break;
456         case 2:
457                 val = 0x5555555555555555UL;
458                 break;
459         case 3:
460                 val = 0xaaaaaaaaaaaaaaaaUL;
461                 break;
462         default:
463                 return;
464         }
465
466         incr = sizeof(unsigned long);
467         start_phys_aligned = ALIGN(start_phys, incr);
468         count = (size - (start_phys_aligned - start_phys))/incr;
469         start = __va(start_phys_aligned);
470         start_bad = 0;
471         last_bad = 0;
472
473         for (i = 0; i < count; i++)
474                 start[i] = val;
475         for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
476                 if (*start != val) {
477                         if (start_phys_aligned == last_bad + incr) {
478                                 last_bad += incr;
479                         } else {
480                                 if (start_bad) {
481                                         printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
482                                                 val, start_bad, last_bad + incr);
483                                         reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
484                                 }
485                                 start_bad = last_bad = start_phys_aligned;
486                         }
487                 }
488         }
489         if (start_bad) {
490                 printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
491                         val, start_bad, last_bad + incr);
492                 reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
493         }
494
495 }
496
497 static int memtest_pattern __initdata = CONFIG_MEMTEST_BOOTPARAM_VALUE;
498
499 static int __init parse_memtest(char *arg)
500 {
501         if (arg)
502                 memtest_pattern = simple_strtoul(arg, NULL, 0);
503         return 0;
504 }
505
506 early_param("memtest", parse_memtest);
507
508 static void __init early_memtest(unsigned long start, unsigned long end)
509 {
510         u64 t_start, t_size;
511         unsigned pattern;
512
513         if (!memtest_pattern)
514                 return;
515
516         printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
517         for (pattern = 0; pattern < memtest_pattern; pattern++) {
518                 t_start = start;
519                 t_size = 0;
520                 while (t_start < end) {
521                         t_start = find_e820_area_size(t_start, &t_size, 1);
522
523                         /* done ? */
524                         if (t_start >= end)
525                                 break;
526                         if (t_start + t_size > end)
527                                 t_size = end - t_start;
528
529                         printk(KERN_CONT "\n  %016llx - %016llx pattern %d",
530                                 t_start, t_start + t_size, pattern);
531
532                         memtest(t_start, t_size, pattern);
533
534                         t_start += t_size;
535                 }
536         }
537         printk(KERN_CONT "\n");
538 }
539 #else
540 static void __init early_memtest(unsigned long start, unsigned long end)
541 {
542 }
543 #endif
544
545 /*
546  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
547  * This runs before bootmem is initialized and gets pages directly from
548  * the physical memory. To access them they are temporarily mapped.
549  */
550 unsigned long __init_refok init_memory_mapping(unsigned long start, unsigned long end)
551 {
552         unsigned long next, last_map_addr = end;
553         unsigned long start_phys = start, end_phys = end;
554
555         printk(KERN_INFO "init_memory_mapping\n");
556
557         /*
558          * Find space for the kernel direct mapping tables.
559          *
560          * Later we should allocate these tables in the local node of the
561          * memory mapped. Unfortunately this is done currently before the
562          * nodes are discovered.
563          */
564         if (!after_bootmem) {
565                 init_gbpages();
566                 find_early_table_space(end);
567         }
568
569         start = (unsigned long)__va(start);
570         end = (unsigned long)__va(end);
571
572         for (; start < end; start = next) {
573                 pgd_t *pgd = pgd_offset_k(start);
574                 unsigned long pud_phys;
575                 pud_t *pud;
576
577                 if (after_bootmem)
578                         pud = pud_offset(pgd, start & PGDIR_MASK);
579                 else
580                         pud = alloc_low_page(&pud_phys);
581
582                 next = start + PGDIR_SIZE;
583                 if (next > end)
584                         next = end;
585                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next));
586                 if (!after_bootmem)
587                         set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
588                 unmap_low_page(pud);
589         }
590
591         if (!after_bootmem)
592                 mmu_cr4_features = read_cr4();
593         __flush_tlb_all();
594
595         if (!after_bootmem)
596                 reserve_early(table_start << PAGE_SHIFT,
597                                  table_end << PAGE_SHIFT, "PGTABLE");
598
599         if (!after_bootmem)
600                 early_memtest(start_phys, end_phys);
601
602         return last_map_addr;
603 }
604
605 #ifndef CONFIG_NUMA
606 void __init paging_init(void)
607 {
608         unsigned long max_zone_pfns[MAX_NR_ZONES];
609
610         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
611         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
612         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
613         max_zone_pfns[ZONE_NORMAL] = end_pfn;
614
615         memory_present(0, 0, end_pfn);
616         sparse_init();
617         free_area_init_nodes(max_zone_pfns);
618 }
619 #endif
620
621 /*
622  * Memory hotplug specific functions
623  */
624 #ifdef CONFIG_MEMORY_HOTPLUG
625 /*
626  * Memory is added always to NORMAL zone. This means you will never get
627  * additional DMA/DMA32 memory.
628  */
629 int arch_add_memory(int nid, u64 start, u64 size)
630 {
631         struct pglist_data *pgdat = NODE_DATA(nid);
632         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
633         unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
634         unsigned long nr_pages = size >> PAGE_SHIFT;
635         int ret;
636
637         last_mapped_pfn = init_memory_mapping(start, start + size-1);
638         if (last_mapped_pfn > max_pfn_mapped)
639                 max_pfn_mapped = last_mapped_pfn;
640
641         ret = __add_pages(zone, start_pfn, nr_pages);
642         WARN_ON(1);
643
644         return ret;
645 }
646 EXPORT_SYMBOL_GPL(arch_add_memory);
647
648 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
649 int memory_add_physaddr_to_nid(u64 start)
650 {
651         return 0;
652 }
653 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
654 #endif
655
656 #endif /* CONFIG_MEMORY_HOTPLUG */
657
658 /*
659  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
660  * is valid. The argument is a physical page number.
661  *
662  *
663  * On x86, access has to be given to the first megabyte of ram because that area
664  * contains bios code and data regions used by X and dosemu and similar apps.
665  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
666  * mmio resources as well as potential bios/acpi data regions.
667  */
668 int devmem_is_allowed(unsigned long pagenr)
669 {
670         if (pagenr <= 256)
671                 return 1;
672         if (!page_is_ram(pagenr))
673                 return 1;
674         return 0;
675 }
676
677
678 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
679                          kcore_modules, kcore_vsyscall;
680
681 void __init mem_init(void)
682 {
683         long codesize, reservedpages, datasize, initsize;
684
685         pci_iommu_alloc();
686
687         /* clear_bss() already clear the empty_zero_page */
688
689         reservedpages = 0;
690
691         /* this will put all low memory onto the freelists */
692 #ifdef CONFIG_NUMA
693         totalram_pages = numa_free_all_bootmem();
694 #else
695         totalram_pages = free_all_bootmem();
696 #endif
697         reservedpages = end_pfn - totalram_pages -
698                                         absent_pages_in_range(0, end_pfn);
699         after_bootmem = 1;
700
701         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
702         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
703         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
704
705         /* Register memory areas for /proc/kcore */
706         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
707         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
708                    VMALLOC_END-VMALLOC_START);
709         kclist_add(&kcore_kernel, &_stext, _end - _stext);
710         kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
711         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
712                                  VSYSCALL_END - VSYSCALL_START);
713
714         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
715                                 "%ldk reserved, %ldk data, %ldk init)\n",
716                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
717                 end_pfn << (PAGE_SHIFT-10),
718                 codesize >> 10,
719                 reservedpages << (PAGE_SHIFT-10),
720                 datasize >> 10,
721                 initsize >> 10);
722
723         cpa_init();
724 }
725
726 void free_init_pages(char *what, unsigned long begin, unsigned long end)
727 {
728         unsigned long addr = begin;
729
730         if (addr >= end)
731                 return;
732
733         /*
734          * If debugging page accesses then do not free this memory but
735          * mark them not present - any buggy init-section access will
736          * create a kernel page fault:
737          */
738 #ifdef CONFIG_DEBUG_PAGEALLOC
739         printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
740                 begin, PAGE_ALIGN(end));
741         set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
742 #else
743         printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
744
745         for (; addr < end; addr += PAGE_SIZE) {
746                 ClearPageReserved(virt_to_page(addr));
747                 init_page_count(virt_to_page(addr));
748                 memset((void *)(addr & ~(PAGE_SIZE-1)),
749                         POISON_FREE_INITMEM, PAGE_SIZE);
750                 free_page(addr);
751                 totalram_pages++;
752         }
753 #endif
754 }
755
756 void free_initmem(void)
757 {
758         free_init_pages("unused kernel memory",
759                         (unsigned long)(&__init_begin),
760                         (unsigned long)(&__init_end));
761 }
762
763 #ifdef CONFIG_DEBUG_RODATA
764 const int rodata_test_data = 0xC3;
765 EXPORT_SYMBOL_GPL(rodata_test_data);
766
767 void mark_rodata_ro(void)
768 {
769         unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
770
771         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
772                (end - start) >> 10);
773         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
774
775         /*
776          * The rodata section (but not the kernel text!) should also be
777          * not-executable.
778          */
779         start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
780         set_memory_nx(start, (end - start) >> PAGE_SHIFT);
781
782         rodata_test();
783
784 #ifdef CONFIG_CPA_DEBUG
785         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
786         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
787
788         printk(KERN_INFO "Testing CPA: again\n");
789         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
790 #endif
791 }
792
793 #endif
794
795 #ifdef CONFIG_BLK_DEV_INITRD
796 void free_initrd_mem(unsigned long start, unsigned long end)
797 {
798         free_init_pages("initrd memory", start, end);
799 }
800 #endif
801
802 void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
803 {
804 #ifdef CONFIG_NUMA
805         int nid, next_nid;
806 #endif
807         unsigned long pfn = phys >> PAGE_SHIFT;
808
809         if (pfn >= end_pfn) {
810                 /*
811                  * This can happen with kdump kernels when accessing
812                  * firmware tables:
813                  */
814                 if (pfn < max_pfn_mapped)
815                         return;
816
817                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
818                                 phys, len);
819                 return;
820         }
821
822         /* Should check here against the e820 map to avoid double free */
823 #ifdef CONFIG_NUMA
824         nid = phys_to_nid(phys);
825         next_nid = phys_to_nid(phys + len - 1);
826         if (nid == next_nid)
827                 reserve_bootmem_node(NODE_DATA(nid), phys, len, BOOTMEM_DEFAULT);
828         else
829                 reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
830 #else
831         reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
832 #endif
833
834         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
835                 dma_reserve += len / PAGE_SIZE;
836                 set_dma_reserve(dma_reserve);
837         }
838 }
839
840 int kern_addr_valid(unsigned long addr)
841 {
842         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
843         pgd_t *pgd;
844         pud_t *pud;
845         pmd_t *pmd;
846         pte_t *pte;
847
848         if (above != 0 && above != -1UL)
849                 return 0;
850
851         pgd = pgd_offset_k(addr);
852         if (pgd_none(*pgd))
853                 return 0;
854
855         pud = pud_offset(pgd, addr);
856         if (pud_none(*pud))
857                 return 0;
858
859         pmd = pmd_offset(pud, addr);
860         if (pmd_none(*pmd))
861                 return 0;
862
863         if (pmd_large(*pmd))
864                 return pfn_valid(pmd_pfn(*pmd));
865
866         pte = pte_offset_kernel(pmd, addr);
867         if (pte_none(*pte))
868                 return 0;
869
870         return pfn_valid(pte_pfn(*pte));
871 }
872
873 /*
874  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
875  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
876  * not need special handling anymore:
877  */
878 static struct vm_area_struct gate_vma = {
879         .vm_start       = VSYSCALL_START,
880         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
881         .vm_page_prot   = PAGE_READONLY_EXEC,
882         .vm_flags       = VM_READ | VM_EXEC
883 };
884
885 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
886 {
887 #ifdef CONFIG_IA32_EMULATION
888         if (test_tsk_thread_flag(tsk, TIF_IA32))
889                 return NULL;
890 #endif
891         return &gate_vma;
892 }
893
894 int in_gate_area(struct task_struct *task, unsigned long addr)
895 {
896         struct vm_area_struct *vma = get_gate_vma(task);
897
898         if (!vma)
899                 return 0;
900
901         return (addr >= vma->vm_start) && (addr < vma->vm_end);
902 }
903
904 /*
905  * Use this when you have no reliable task/vma, typically from interrupt
906  * context. It is less reliable than using the task's vma and may give
907  * false positives:
908  */
909 int in_gate_area_no_task(unsigned long addr)
910 {
911         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
912 }
913
914 const char *arch_vma_name(struct vm_area_struct *vma)
915 {
916         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
917                 return "[vdso]";
918         if (vma == &gate_vma)
919                 return "[vsyscall]";
920         return NULL;
921 }
922
923 #ifdef CONFIG_SPARSEMEM_VMEMMAP
924 /*
925  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
926  */
927 static long __meminitdata addr_start, addr_end;
928 static void __meminitdata *p_start, *p_end;
929 static int __meminitdata node_start;
930
931 int __meminit
932 vmemmap_populate(struct page *start_page, unsigned long size, int node)
933 {
934         unsigned long addr = (unsigned long)start_page;
935         unsigned long end = (unsigned long)(start_page + size);
936         unsigned long next;
937         pgd_t *pgd;
938         pud_t *pud;
939         pmd_t *pmd;
940
941         for (; addr < end; addr = next) {
942                 next = pmd_addr_end(addr, end);
943
944                 pgd = vmemmap_pgd_populate(addr, node);
945                 if (!pgd)
946                         return -ENOMEM;
947
948                 pud = vmemmap_pud_populate(pgd, addr, node);
949                 if (!pud)
950                         return -ENOMEM;
951
952                 pmd = pmd_offset(pud, addr);
953                 if (pmd_none(*pmd)) {
954                         pte_t entry;
955                         void *p;
956
957                         p = vmemmap_alloc_block(PMD_SIZE, node);
958                         if (!p)
959                                 return -ENOMEM;
960
961                         entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
962                                                         PAGE_KERNEL_LARGE);
963                         set_pmd(pmd, __pmd(pte_val(entry)));
964
965                         /* check to see if we have contiguous blocks */
966                         if (p_end != p || node_start != node) {
967                                 if (p_start)
968                                         printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
969                                                 addr_start, addr_end-1, p_start, p_end-1, node_start);
970                                 addr_start = addr;
971                                 node_start = node;
972                                 p_start = p;
973                         }
974                         addr_end = addr + PMD_SIZE;
975                         p_end = p + PMD_SIZE;
976                 } else {
977                         vmemmap_verify((pte_t *)pmd, node, addr, next);
978                 }
979         }
980         return 0;
981 }
982
983 void __meminit vmemmap_populate_print_last(void)
984 {
985         if (p_start) {
986                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
987                         addr_start, addr_end-1, p_start, p_end-1, node_start);
988                 p_start = NULL;
989                 p_end = NULL;
990                 node_start = 0;
991         }
992 }
993 #endif