]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/x86/kernel/genx2apic_uv_x.c
x86: fix cpu_mask_to_apicid_and to include cpu_online_mask
[linux-2.6-omap-h63xx.git] / arch / x86 / kernel / genx2apic_uv_x.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * SGI UV APIC functions (note: not an Intel compatible APIC)
7  *
8  * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/threads.h>
13 #include <linux/cpumask.h>
14 #include <linux/string.h>
15 #include <linux/ctype.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/module.h>
19 #include <linux/hardirq.h>
20 #include <asm/smp.h>
21 #include <asm/ipi.h>
22 #include <asm/genapic.h>
23 #include <asm/pgtable.h>
24 #include <asm/uv/uv_mmrs.h>
25 #include <asm/uv/uv_hub.h>
26 #include <asm/uv/bios.h>
27
28 DEFINE_PER_CPU(int, x2apic_extra_bits);
29
30 static enum uv_system_type uv_system_type;
31
32 static int uv_acpi_madt_oem_check(char *oem_id, char *oem_table_id)
33 {
34         if (!strcmp(oem_id, "SGI")) {
35                 if (!strcmp(oem_table_id, "UVL"))
36                         uv_system_type = UV_LEGACY_APIC;
37                 else if (!strcmp(oem_table_id, "UVX"))
38                         uv_system_type = UV_X2APIC;
39                 else if (!strcmp(oem_table_id, "UVH")) {
40                         uv_system_type = UV_NON_UNIQUE_APIC;
41                         return 1;
42                 }
43         }
44         return 0;
45 }
46
47 enum uv_system_type get_uv_system_type(void)
48 {
49         return uv_system_type;
50 }
51
52 int is_uv_system(void)
53 {
54         return uv_system_type != UV_NONE;
55 }
56 EXPORT_SYMBOL_GPL(is_uv_system);
57
58 DEFINE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
59 EXPORT_PER_CPU_SYMBOL_GPL(__uv_hub_info);
60
61 struct uv_blade_info *uv_blade_info;
62 EXPORT_SYMBOL_GPL(uv_blade_info);
63
64 short *uv_node_to_blade;
65 EXPORT_SYMBOL_GPL(uv_node_to_blade);
66
67 short *uv_cpu_to_blade;
68 EXPORT_SYMBOL_GPL(uv_cpu_to_blade);
69
70 short uv_possible_blades;
71 EXPORT_SYMBOL_GPL(uv_possible_blades);
72
73 unsigned long sn_rtc_cycles_per_second;
74 EXPORT_SYMBOL(sn_rtc_cycles_per_second);
75
76 /* Start with all IRQs pointing to boot CPU.  IRQ balancing will shift them. */
77
78 static const struct cpumask *uv_target_cpus(void)
79 {
80         return cpumask_of(0);
81 }
82
83 static void uv_vector_allocation_domain(int cpu, struct cpumask *retmask)
84 {
85         cpumask_clear(retmask);
86         cpumask_set_cpu(cpu, retmask);
87 }
88
89 int uv_wakeup_secondary(int phys_apicid, unsigned int start_rip)
90 {
91         unsigned long val;
92         int pnode;
93
94         pnode = uv_apicid_to_pnode(phys_apicid);
95         val = (1UL << UVH_IPI_INT_SEND_SHFT) |
96             (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
97             (((long)start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
98             APIC_DM_INIT;
99         uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
100         mdelay(10);
101
102         val = (1UL << UVH_IPI_INT_SEND_SHFT) |
103             (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
104             (((long)start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
105             APIC_DM_STARTUP;
106         uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
107         return 0;
108 }
109
110 static void uv_send_IPI_one(int cpu, int vector)
111 {
112         unsigned long val, apicid, lapicid;
113         int pnode;
114
115         apicid = per_cpu(x86_cpu_to_apicid, cpu);
116         lapicid = apicid & 0x3f;                /* ZZZ macro needed */
117         pnode = uv_apicid_to_pnode(apicid);
118         val =
119             (1UL << UVH_IPI_INT_SEND_SHFT) | (lapicid <<
120                                               UVH_IPI_INT_APIC_ID_SHFT) |
121             (vector << UVH_IPI_INT_VECTOR_SHFT);
122         uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
123 }
124
125 static void uv_send_IPI_mask(const struct cpumask *mask, int vector)
126 {
127         unsigned int cpu;
128
129         for_each_cpu(cpu, mask)
130                 uv_send_IPI_one(cpu, vector);
131 }
132
133 static void uv_send_IPI_mask_allbutself(const struct cpumask *mask, int vector)
134 {
135         unsigned int cpu;
136         unsigned int this_cpu = smp_processor_id();
137
138         for_each_cpu(cpu, mask)
139                 if (cpu != this_cpu)
140                         uv_send_IPI_one(cpu, vector);
141 }
142
143 static void uv_send_IPI_allbutself(int vector)
144 {
145         unsigned int cpu;
146         unsigned int this_cpu = smp_processor_id();
147
148         for_each_online_cpu(cpu)
149                 if (cpu != this_cpu)
150                         uv_send_IPI_one(cpu, vector);
151 }
152
153 static void uv_send_IPI_all(int vector)
154 {
155         uv_send_IPI_mask(cpu_online_mask, vector);
156 }
157
158 static int uv_apic_id_registered(void)
159 {
160         return 1;
161 }
162
163 static void uv_init_apic_ldr(void)
164 {
165 }
166
167 static unsigned int uv_cpu_mask_to_apicid(const struct cpumask *cpumask)
168 {
169         int cpu;
170
171         /*
172          * We're using fixed IRQ delivery, can only return one phys APIC ID.
173          * May as well be the first.
174          */
175         cpu = cpumask_first(cpumask);
176         if ((unsigned)cpu < nr_cpu_ids)
177                 return per_cpu(x86_cpu_to_apicid, cpu);
178         else
179                 return BAD_APICID;
180 }
181
182 static unsigned int uv_cpu_mask_to_apicid_and(const struct cpumask *cpumask,
183                                               const struct cpumask *andmask)
184 {
185         int cpu;
186
187         /*
188          * We're using fixed IRQ delivery, can only return one phys APIC ID.
189          * May as well be the first.
190          */
191         for_each_cpu_and(cpu, cpumask, andmask)
192                 if (cpumask_test_cpu(cpu, cpu_online_mask))
193                         break;
194         if (cpu < nr_cpu_ids)
195                 return per_cpu(x86_cpu_to_apicid, cpu);
196         return BAD_APICID;
197 }
198
199 static unsigned int get_apic_id(unsigned long x)
200 {
201         unsigned int id;
202
203         WARN_ON(preemptible() && num_online_cpus() > 1);
204         id = x | __get_cpu_var(x2apic_extra_bits);
205
206         return id;
207 }
208
209 static unsigned long set_apic_id(unsigned int id)
210 {
211         unsigned long x;
212
213         /* maskout x2apic_extra_bits ? */
214         x = id;
215         return x;
216 }
217
218 static unsigned int uv_read_apic_id(void)
219 {
220
221         return get_apic_id(apic_read(APIC_ID));
222 }
223
224 static unsigned int phys_pkg_id(int index_msb)
225 {
226         return uv_read_apic_id() >> index_msb;
227 }
228
229 static void uv_send_IPI_self(int vector)
230 {
231         apic_write(APIC_SELF_IPI, vector);
232 }
233
234 struct genapic apic_x2apic_uv_x = {
235         .name = "UV large system",
236         .acpi_madt_oem_check = uv_acpi_madt_oem_check,
237         .int_delivery_mode = dest_Fixed,
238         .int_dest_mode = (APIC_DEST_PHYSICAL != 0),
239         .target_cpus = uv_target_cpus,
240         .vector_allocation_domain = uv_vector_allocation_domain,
241         .apic_id_registered = uv_apic_id_registered,
242         .init_apic_ldr = uv_init_apic_ldr,
243         .send_IPI_all = uv_send_IPI_all,
244         .send_IPI_allbutself = uv_send_IPI_allbutself,
245         .send_IPI_mask = uv_send_IPI_mask,
246         .send_IPI_mask_allbutself = uv_send_IPI_mask_allbutself,
247         .send_IPI_self = uv_send_IPI_self,
248         .cpu_mask_to_apicid = uv_cpu_mask_to_apicid,
249         .cpu_mask_to_apicid_and = uv_cpu_mask_to_apicid_and,
250         .phys_pkg_id = phys_pkg_id,
251         .get_apic_id = get_apic_id,
252         .set_apic_id = set_apic_id,
253         .apic_id_mask = (0xFFFFFFFFu),
254 };
255
256 static __cpuinit void set_x2apic_extra_bits(int pnode)
257 {
258         __get_cpu_var(x2apic_extra_bits) = (pnode << 6);
259 }
260
261 /*
262  * Called on boot cpu.
263  */
264 static __init int boot_pnode_to_blade(int pnode)
265 {
266         int blade;
267
268         for (blade = 0; blade < uv_num_possible_blades(); blade++)
269                 if (pnode == uv_blade_info[blade].pnode)
270                         return blade;
271         BUG();
272 }
273
274 struct redir_addr {
275         unsigned long redirect;
276         unsigned long alias;
277 };
278
279 #define DEST_SHIFT UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR_DEST_BASE_SHFT
280
281 static __initdata struct redir_addr redir_addrs[] = {
282         {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR, UVH_SI_ALIAS0_OVERLAY_CONFIG},
283         {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_1_MMR, UVH_SI_ALIAS1_OVERLAY_CONFIG},
284         {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_2_MMR, UVH_SI_ALIAS2_OVERLAY_CONFIG},
285 };
286
287 static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size)
288 {
289         union uvh_si_alias0_overlay_config_u alias;
290         union uvh_rh_gam_alias210_redirect_config_2_mmr_u redirect;
291         int i;
292
293         for (i = 0; i < ARRAY_SIZE(redir_addrs); i++) {
294                 alias.v = uv_read_local_mmr(redir_addrs[i].alias);
295                 if (alias.s.base == 0) {
296                         *size = (1UL << alias.s.m_alias);
297                         redirect.v = uv_read_local_mmr(redir_addrs[i].redirect);
298                         *base = (unsigned long)redirect.s.dest_base << DEST_SHIFT;
299                         return;
300                 }
301         }
302         BUG();
303 }
304
305 static __init void map_low_mmrs(void)
306 {
307         init_extra_mapping_uc(UV_GLOBAL_MMR32_BASE, UV_GLOBAL_MMR32_SIZE);
308         init_extra_mapping_uc(UV_LOCAL_MMR_BASE, UV_LOCAL_MMR_SIZE);
309 }
310
311 enum map_type {map_wb, map_uc};
312
313 static __init void map_high(char *id, unsigned long base, int shift,
314                             int max_pnode, enum map_type map_type)
315 {
316         unsigned long bytes, paddr;
317
318         paddr = base << shift;
319         bytes = (1UL << shift) * (max_pnode + 1);
320         printk(KERN_INFO "UV: Map %s_HI 0x%lx - 0x%lx\n", id, paddr,
321                                                 paddr + bytes);
322         if (map_type == map_uc)
323                 init_extra_mapping_uc(paddr, bytes);
324         else
325                 init_extra_mapping_wb(paddr, bytes);
326
327 }
328 static __init void map_gru_high(int max_pnode)
329 {
330         union uvh_rh_gam_gru_overlay_config_mmr_u gru;
331         int shift = UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_SHFT;
332
333         gru.v = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR);
334         if (gru.s.enable)
335                 map_high("GRU", gru.s.base, shift, max_pnode, map_wb);
336 }
337
338 static __init void map_config_high(int max_pnode)
339 {
340         union uvh_rh_gam_cfg_overlay_config_mmr_u cfg;
341         int shift = UVH_RH_GAM_CFG_OVERLAY_CONFIG_MMR_BASE_SHFT;
342
343         cfg.v = uv_read_local_mmr(UVH_RH_GAM_CFG_OVERLAY_CONFIG_MMR);
344         if (cfg.s.enable)
345                 map_high("CONFIG", cfg.s.base, shift, max_pnode, map_uc);
346 }
347
348 static __init void map_mmr_high(int max_pnode)
349 {
350         union uvh_rh_gam_mmr_overlay_config_mmr_u mmr;
351         int shift = UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR_BASE_SHFT;
352
353         mmr.v = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR);
354         if (mmr.s.enable)
355                 map_high("MMR", mmr.s.base, shift, max_pnode, map_uc);
356 }
357
358 static __init void map_mmioh_high(int max_pnode)
359 {
360         union uvh_rh_gam_mmioh_overlay_config_mmr_u mmioh;
361         int shift = UVH_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR_BASE_SHFT;
362
363         mmioh.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR);
364         if (mmioh.s.enable)
365                 map_high("MMIOH", mmioh.s.base, shift, max_pnode, map_uc);
366 }
367
368 static __init void uv_rtc_init(void)
369 {
370         long status;
371         u64 ticks_per_sec;
372
373         status = uv_bios_freq_base(BIOS_FREQ_BASE_REALTIME_CLOCK,
374                                         &ticks_per_sec);
375         if (status != BIOS_STATUS_SUCCESS || ticks_per_sec < 100000) {
376                 printk(KERN_WARNING
377                         "unable to determine platform RTC clock frequency, "
378                         "guessing.\n");
379                 /* BIOS gives wrong value for clock freq. so guess */
380                 sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
381         } else
382                 sn_rtc_cycles_per_second = ticks_per_sec;
383 }
384
385 /*
386  * Called on each cpu to initialize the per_cpu UV data area.
387  *      ZZZ hotplug not supported yet
388  */
389 void __cpuinit uv_cpu_init(void)
390 {
391         /* CPU 0 initilization will be done via uv_system_init. */
392         if (!uv_blade_info)
393                 return;
394
395         uv_blade_info[uv_numa_blade_id()].nr_online_cpus++;
396
397         if (get_uv_system_type() == UV_NON_UNIQUE_APIC)
398                 set_x2apic_extra_bits(uv_hub_info->pnode);
399 }
400
401
402 void __init uv_system_init(void)
403 {
404         union uvh_si_addr_map_config_u m_n_config;
405         union uvh_node_id_u node_id;
406         unsigned long gnode_upper, lowmem_redir_base, lowmem_redir_size;
407         int bytes, nid, cpu, lcpu, pnode, blade, i, j, m_val, n_val;
408         int max_pnode = 0;
409         unsigned long mmr_base, present;
410
411         map_low_mmrs();
412
413         m_n_config.v = uv_read_local_mmr(UVH_SI_ADDR_MAP_CONFIG);
414         m_val = m_n_config.s.m_skt;
415         n_val = m_n_config.s.n_skt;
416         mmr_base =
417             uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR) &
418             ~UV_MMR_ENABLE;
419         printk(KERN_DEBUG "UV: global MMR base 0x%lx\n", mmr_base);
420
421         for(i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++)
422                 uv_possible_blades +=
423                   hweight64(uv_read_local_mmr( UVH_NODE_PRESENT_TABLE + i * 8));
424         printk(KERN_DEBUG "UV: Found %d blades\n", uv_num_possible_blades());
425
426         bytes = sizeof(struct uv_blade_info) * uv_num_possible_blades();
427         uv_blade_info = kmalloc(bytes, GFP_KERNEL);
428
429         get_lowmem_redirect(&lowmem_redir_base, &lowmem_redir_size);
430
431         bytes = sizeof(uv_node_to_blade[0]) * num_possible_nodes();
432         uv_node_to_blade = kmalloc(bytes, GFP_KERNEL);
433         memset(uv_node_to_blade, 255, bytes);
434
435         bytes = sizeof(uv_cpu_to_blade[0]) * num_possible_cpus();
436         uv_cpu_to_blade = kmalloc(bytes, GFP_KERNEL);
437         memset(uv_cpu_to_blade, 255, bytes);
438
439         blade = 0;
440         for (i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) {
441                 present = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8);
442                 for (j = 0; j < 64; j++) {
443                         if (!test_bit(j, &present))
444                                 continue;
445                         uv_blade_info[blade].pnode = (i * 64 + j);
446                         uv_blade_info[blade].nr_possible_cpus = 0;
447                         uv_blade_info[blade].nr_online_cpus = 0;
448                         blade++;
449                 }
450         }
451
452         node_id.v = uv_read_local_mmr(UVH_NODE_ID);
453         gnode_upper = (((unsigned long)node_id.s.node_id) &
454                        ~((1 << n_val) - 1)) << m_val;
455
456         uv_bios_init();
457         uv_bios_get_sn_info(0, &uv_type, &sn_partition_id,
458                             &uv_coherency_id, &uv_region_size);
459         uv_rtc_init();
460
461         for_each_present_cpu(cpu) {
462                 nid = cpu_to_node(cpu);
463                 pnode = uv_apicid_to_pnode(per_cpu(x86_cpu_to_apicid, cpu));
464                 blade = boot_pnode_to_blade(pnode);
465                 lcpu = uv_blade_info[blade].nr_possible_cpus;
466                 uv_blade_info[blade].nr_possible_cpus++;
467
468                 uv_cpu_hub_info(cpu)->lowmem_remap_base = lowmem_redir_base;
469                 uv_cpu_hub_info(cpu)->lowmem_remap_top =
470                                         lowmem_redir_base + lowmem_redir_size;
471                 uv_cpu_hub_info(cpu)->m_val = m_val;
472                 uv_cpu_hub_info(cpu)->n_val = m_val;
473                 uv_cpu_hub_info(cpu)->numa_blade_id = blade;
474                 uv_cpu_hub_info(cpu)->blade_processor_id = lcpu;
475                 uv_cpu_hub_info(cpu)->pnode = pnode;
476                 uv_cpu_hub_info(cpu)->pnode_mask = (1 << n_val) - 1;
477                 uv_cpu_hub_info(cpu)->gpa_mask = (1 << (m_val + n_val)) - 1;
478                 uv_cpu_hub_info(cpu)->gnode_upper = gnode_upper;
479                 uv_cpu_hub_info(cpu)->global_mmr_base = mmr_base;
480                 uv_cpu_hub_info(cpu)->coherency_domain_number = uv_coherency_id;
481                 uv_node_to_blade[nid] = blade;
482                 uv_cpu_to_blade[cpu] = blade;
483                 max_pnode = max(pnode, max_pnode);
484
485                 printk(KERN_DEBUG "UV: cpu %d, apicid 0x%x, pnode %d, nid %d, "
486                         "lcpu %d, blade %d\n",
487                         cpu, per_cpu(x86_cpu_to_apicid, cpu), pnode, nid,
488                         lcpu, blade);
489         }
490
491         map_gru_high(max_pnode);
492         map_mmr_high(max_pnode);
493         map_config_high(max_pnode);
494         map_mmioh_high(max_pnode);
495
496         uv_cpu_init();
497 }