]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/x86/kernel/cpu/common.c
x86: cpu/common.c: merge get_cpu_cap()
[linux-2.6-omap-h63xx.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/init.h>
2 #include <linux/kernel.h>
3 #include <linux/sched.h>
4 #include <linux/string.h>
5 #include <linux/bootmem.h>
6 #include <linux/bitops.h>
7 #include <linux/module.h>
8 #include <linux/kgdb.h>
9 #include <linux/topology.h>
10 #include <linux/delay.h>
11 #include <linux/smp.h>
12 #include <linux/percpu.h>
13 #include <asm/i387.h>
14 #include <asm/msr.h>
15 #include <asm/io.h>
16 #include <asm/linkage.h>
17 #include <asm/mmu_context.h>
18 #include <asm/mtrr.h>
19 #include <asm/mce.h>
20 #include <asm/pat.h>
21 #include <asm/asm.h>
22 #include <asm/numa.h>
23 #ifdef CONFIG_X86_LOCAL_APIC
24 #include <asm/mpspec.h>
25 #include <asm/apic.h>
26 #include <mach_apic.h>
27 #include <asm/genapic.h>
28 #endif
29
30 #include <asm/pda.h>
31 #include <asm/pgtable.h>
32 #include <asm/processor.h>
33 #include <asm/desc.h>
34 #include <asm/atomic.h>
35 #include <asm/proto.h>
36 #include <asm/sections.h>
37 #include <asm/setup.h>
38
39 #include "cpu.h"
40
41 static struct cpu_dev *this_cpu __cpuinitdata;
42
43 #ifdef CONFIG_X86_64
44 /* We need valid kernel segments for data and code in long mode too
45  * IRET will check the segment types  kkeil 2000/10/28
46  * Also sysret mandates a special GDT layout
47  */
48 /* The TLS descriptors are currently at a different place compared to i386.
49    Hopefully nobody expects them at a fixed place (Wine?) */
50 DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
51         [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
52         [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
53         [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
54         [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
55         [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
56         [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
57 } };
58 #else
59 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
60         [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
61         [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
62         [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
63         [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
64         /*
65          * Segments used for calling PnP BIOS have byte granularity.
66          * They code segments and data segments have fixed 64k limits,
67          * the transfer segment sizes are set at run time.
68          */
69         /* 32-bit code */
70         [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
71         /* 16-bit code */
72         [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
73         /* 16-bit data */
74         [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
75         /* 16-bit data */
76         [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
77         /* 16-bit data */
78         [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
79         /*
80          * The APM segments have byte granularity and their bases
81          * are set at run time.  All have 64k limits.
82          */
83         /* 32-bit code */
84         [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
85         /* 16-bit code */
86         [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
87         /* data */
88         [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
89
90         [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
91         [GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } },
92 } };
93 #endif
94 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
95
96 #ifdef CONFIG_X86_32
97 static int cachesize_override __cpuinitdata = -1;
98 static int disable_x86_serial_nr __cpuinitdata = 1;
99
100 static int __init cachesize_setup(char *str)
101 {
102         get_option(&str, &cachesize_override);
103         return 1;
104 }
105 __setup("cachesize=", cachesize_setup);
106
107 /*
108  * Naming convention should be: <Name> [(<Codename>)]
109  * This table only is used unless init_<vendor>() below doesn't set it;
110  * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
111  *
112  */
113
114 /* Look up CPU names by table lookup. */
115 static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
116 {
117         struct cpu_model_info *info;
118
119         if (c->x86_model >= 16)
120                 return NULL;    /* Range check */
121
122         if (!this_cpu)
123                 return NULL;
124
125         info = this_cpu->c_models;
126
127         while (info && info->family) {
128                 if (info->family == c->x86)
129                         return info->model_names[c->x86_model];
130                 info++;
131         }
132         return NULL;            /* Not found */
133 }
134
135 static int __init x86_fxsr_setup(char *s)
136 {
137         setup_clear_cpu_cap(X86_FEATURE_FXSR);
138         setup_clear_cpu_cap(X86_FEATURE_XMM);
139         return 1;
140 }
141 __setup("nofxsr", x86_fxsr_setup);
142
143 static int __init x86_sep_setup(char *s)
144 {
145         setup_clear_cpu_cap(X86_FEATURE_SEP);
146         return 1;
147 }
148 __setup("nosep", x86_sep_setup);
149
150 /* Standard macro to see if a specific flag is changeable */
151 static inline int flag_is_changeable_p(u32 flag)
152 {
153         u32 f1, f2;
154
155         asm("pushfl\n\t"
156             "pushfl\n\t"
157             "popl %0\n\t"
158             "movl %0,%1\n\t"
159             "xorl %2,%0\n\t"
160             "pushl %0\n\t"
161             "popfl\n\t"
162             "pushfl\n\t"
163             "popl %0\n\t"
164             "popfl\n\t"
165             : "=&r" (f1), "=&r" (f2)
166             : "ir" (flag));
167
168         return ((f1^f2) & flag) != 0;
169 }
170
171 /* Probe for the CPUID instruction */
172 static int __cpuinit have_cpuid_p(void)
173 {
174         return flag_is_changeable_p(X86_EFLAGS_ID);
175 }
176
177 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
178 {
179         if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
180                 /* Disable processor serial number */
181                 unsigned long lo, hi;
182                 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
183                 lo |= 0x200000;
184                 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
185                 printk(KERN_NOTICE "CPU serial number disabled.\n");
186                 clear_cpu_cap(c, X86_FEATURE_PN);
187
188                 /* Disabling the serial number may affect the cpuid level */
189                 c->cpuid_level = cpuid_eax(0);
190         }
191 }
192
193 static int __init x86_serial_nr_setup(char *s)
194 {
195         disable_x86_serial_nr = 0;
196         return 1;
197 }
198 __setup("serialnumber", x86_serial_nr_setup);
199 #else
200 /* Probe for the CPUID instruction */
201 static inline int have_cpuid_p(void)
202 {
203         return 1;
204 }
205 #endif
206
207 __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
208
209 /* Current gdt points %fs at the "master" per-cpu area: after this,
210  * it's on the real one. */
211 void switch_to_new_gdt(void)
212 {
213         struct desc_ptr gdt_descr;
214
215         gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
216         gdt_descr.size = GDT_SIZE - 1;
217         load_gdt(&gdt_descr);
218 #ifdef CONFIG_X86_32
219         asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory");
220 #endif
221 }
222
223 static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
224
225 static void __cpuinit default_init(struct cpuinfo_x86 *c)
226 {
227 #ifdef CONFIG_X86_64
228         display_cacheinfo(c);
229 #else
230         /* Not much we can do here... */
231         /* Check if at least it has cpuid */
232         if (c->cpuid_level == -1) {
233                 /* No cpuid. It must be an ancient CPU */
234                 if (c->x86 == 4)
235                         strcpy(c->x86_model_id, "486");
236                 else if (c->x86 == 3)
237                         strcpy(c->x86_model_id, "386");
238         }
239 #endif
240 }
241
242 static struct cpu_dev __cpuinitdata default_cpu = {
243         .c_init = default_init,
244         .c_vendor = "Unknown",
245         .c_x86_vendor = X86_VENDOR_UNKNOWN,
246 };
247
248 int __cpuinit get_model_name(struct cpuinfo_x86 *c)
249 {
250         unsigned int *v;
251         char *p, *q;
252
253         if (c->extended_cpuid_level < 0x80000004)
254                 return 0;
255
256         v = (unsigned int *) c->x86_model_id;
257         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
258         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
259         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
260         c->x86_model_id[48] = 0;
261
262         /* Intel chips right-justify this string for some dumb reason;
263            undo that brain damage */
264         p = q = &c->x86_model_id[0];
265         while (*p == ' ')
266              p++;
267         if (p != q) {
268              while (*p)
269                   *q++ = *p++;
270              while (q <= &c->x86_model_id[48])
271                   *q++ = '\0';  /* Zero-pad the rest */
272         }
273
274         return 1;
275 }
276
277 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
278 {
279         unsigned int n, dummy, ebx, ecx, edx, l2size;
280
281         n = c->extended_cpuid_level;
282
283         if (n >= 0x80000005) {
284                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
285                 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
286                                 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
287                 c->x86_cache_size = (ecx>>24) + (edx>>24);
288 #ifdef CONFIG_X86_64
289                 /* On K8 L1 TLB is inclusive, so don't count it */
290                 c->x86_tlbsize = 0;
291 #endif
292         }
293
294         if (n < 0x80000006)     /* Some chips just has a large L1. */
295                 return;
296
297         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
298         l2size = ecx >> 16;
299
300 #ifdef CONFIG_X86_64
301         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
302 #else
303         /* do processor-specific cache resizing */
304         if (this_cpu->c_size_cache)
305                 l2size = this_cpu->c_size_cache(c, l2size);
306
307         /* Allow user to override all this if necessary. */
308         if (cachesize_override != -1)
309                 l2size = cachesize_override;
310
311         if (l2size == 0)
312                 return;         /* Again, no L2 cache is possible */
313 #endif
314
315         c->x86_cache_size = l2size;
316
317         printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
318                         l2size, ecx & 0xFF);
319 }
320
321 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
322 {
323 #ifdef CONFIG_X86_HT
324         u32 eax, ebx, ecx, edx;
325         int index_msb, core_bits;
326
327         if (!cpu_has(c, X86_FEATURE_HT))
328                 return;
329
330         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
331                 goto out;
332
333         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
334                 return;
335
336         cpuid(1, &eax, &ebx, &ecx, &edx);
337
338         smp_num_siblings = (ebx & 0xff0000) >> 16;
339
340         if (smp_num_siblings == 1) {
341                 printk(KERN_INFO  "CPU: Hyper-Threading is disabled\n");
342         } else if (smp_num_siblings > 1) {
343
344                 if (smp_num_siblings > NR_CPUS) {
345                         printk(KERN_WARNING "CPU: Unsupported number of siblings %d",
346                                         smp_num_siblings);
347                         smp_num_siblings = 1;
348                         return;
349                 }
350
351                 index_msb = get_count_order(smp_num_siblings);
352 #ifdef CONFIG_X86_64
353                 c->phys_proc_id = phys_pkg_id(index_msb);
354 #else
355                 c->phys_proc_id = phys_pkg_id(c->initial_apicid, index_msb);
356 #endif
357
358                 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
359
360                 index_msb = get_count_order(smp_num_siblings);
361
362                 core_bits = get_count_order(c->x86_max_cores);
363
364 #ifdef CONFIG_X86_64
365                 c->cpu_core_id = phys_pkg_id(index_msb) &
366                                                ((1 << core_bits) - 1);
367 #else
368                 c->cpu_core_id = phys_pkg_id(c->initial_apicid, index_msb) &
369                                                ((1 << core_bits) - 1);
370 #endif
371         }
372
373 out:
374         if ((c->x86_max_cores * smp_num_siblings) > 1) {
375                 printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
376                        c->phys_proc_id);
377                 printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
378                        c->cpu_core_id);
379         }
380 #endif
381 }
382
383 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
384 {
385         char *v = c->x86_vendor_id;
386         int i;
387         static int printed;
388
389         for (i = 0; i < X86_VENDOR_NUM; i++) {
390                 if (!cpu_devs[i])
391                         break;
392
393                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
394                     (cpu_devs[i]->c_ident[1] &&
395                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
396                         this_cpu = cpu_devs[i];
397                         c->x86_vendor = this_cpu->c_x86_vendor;
398                         return;
399                 }
400         }
401
402         if (!printed) {
403                 printed++;
404                 printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n");
405                 printk(KERN_ERR "CPU: Your system may be unstable.\n");
406         }
407
408         c->x86_vendor = X86_VENDOR_UNKNOWN;
409         this_cpu = &default_cpu;
410 }
411
412 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
413 {
414         /* Get vendor name */
415         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
416               (unsigned int *)&c->x86_vendor_id[0],
417               (unsigned int *)&c->x86_vendor_id[8],
418               (unsigned int *)&c->x86_vendor_id[4]);
419
420         c->x86 = 4;
421         /* Intel-defined flags: level 0x00000001 */
422         if (c->cpuid_level >= 0x00000001) {
423                 u32 junk, tfms, cap0, misc;
424                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
425                 c->x86 = (tfms >> 8) & 0xf;
426                 c->x86_model = (tfms >> 4) & 0xf;
427                 c->x86_mask = tfms & 0xf;
428                 if (c->x86 == 0xf)
429                         c->x86 += (tfms >> 20) & 0xff;
430                 if (c->x86 >= 0x6)
431                         c->x86_model += ((tfms >> 16) & 0xf) << 4;
432                 if (cap0 & (1<<19)) {
433                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
434                         c->x86_cache_alignment = c->x86_clflush_size;
435                 }
436         }
437 }
438
439 static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
440 {
441         u32 tfms, xlvl;
442         u32 ebx;
443
444         /* Intel-defined flags: level 0x00000001 */
445         if (c->cpuid_level >= 0x00000001) {
446                 u32 capability, excap;
447                 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
448                 c->x86_capability[0] = capability;
449                 c->x86_capability[4] = excap;
450         }
451
452         /* AMD-defined flags: level 0x80000001 */
453         xlvl = cpuid_eax(0x80000000);
454         c->extended_cpuid_level = xlvl;
455         if ((xlvl & 0xffff0000) == 0x80000000) {
456                 if (xlvl >= 0x80000001) {
457                         c->x86_capability[1] = cpuid_edx(0x80000001);
458                         c->x86_capability[6] = cpuid_ecx(0x80000001);
459                 }
460         }
461
462 #ifdef CONFIG_X86_64
463         /* Transmeta-defined flags: level 0x80860001 */
464         xlvl = cpuid_eax(0x80860000);
465         if ((xlvl & 0xffff0000) == 0x80860000) {
466                 /* Don't set x86_cpuid_level here for now to not confuse. */
467                 if (xlvl >= 0x80860001)
468                         c->x86_capability[2] = cpuid_edx(0x80860001);
469         }
470
471         if (c->extended_cpuid_level >= 0x80000007)
472                 c->x86_power = cpuid_edx(0x80000007);
473
474         if (c->extended_cpuid_level >= 0x80000008) {
475                 u32 eax = cpuid_eax(0x80000008);
476
477                 c->x86_virt_bits = (eax >> 8) & 0xff;
478                 c->x86_phys_bits = eax & 0xff;
479         }
480 #endif
481 }
482 /*
483  * Do minimum CPU detection early.
484  * Fields really needed: vendor, cpuid_level, family, model, mask,
485  * cache alignment.
486  * The others are not touched to avoid unwanted side effects.
487  *
488  * WARNING: this function is only called on the BP.  Don't add code here
489  * that is supposed to run on all CPUs.
490  */
491 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
492 {
493         c->x86_clflush_size = 32;
494         c->x86_cache_alignment = c->x86_clflush_size;
495
496         if (!have_cpuid_p())
497                 return;
498
499         memset(&c->x86_capability, 0, sizeof c->x86_capability);
500
501         c->extended_cpuid_level = 0;
502
503         cpu_detect(c);
504
505         get_cpu_vendor(c);
506
507         get_cpu_cap(c);
508
509         if (this_cpu->c_early_init)
510                 this_cpu->c_early_init(c);
511
512         validate_pat_support(c);
513 }
514
515 void __init early_cpu_init(void)
516 {
517         struct cpu_dev **cdev;
518         int count = 0;
519
520         printk("KERNEL supported cpus:\n");
521         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
522                 struct cpu_dev *cpudev = *cdev;
523                 unsigned int j;
524
525                 if (count >= X86_VENDOR_NUM)
526                         break;
527                 cpu_devs[count] = cpudev;
528                 count++;
529
530                 for (j = 0; j < 2; j++) {
531                         if (!cpudev->c_ident[j])
532                                 continue;
533                         printk("  %s %s\n", cpudev->c_vendor,
534                                 cpudev->c_ident[j]);
535                 }
536         }
537
538         early_identify_cpu(&boot_cpu_data);
539 }
540
541 /*
542  * The NOPL instruction is supposed to exist on all CPUs with
543  * family >= 6, unfortunately, that's not true in practice because
544  * of early VIA chips and (more importantly) broken virtualizers that
545  * are not easy to detect.  Hence, probe for it based on first
546  * principles.
547  */
548 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
549 {
550         const u32 nopl_signature = 0x888c53b1; /* Random number */
551         u32 has_nopl = nopl_signature;
552
553         clear_cpu_cap(c, X86_FEATURE_NOPL);
554         if (c->x86 >= 6) {
555                 asm volatile("\n"
556                              "1:      .byte 0x0f,0x1f,0xc0\n" /* nopl %eax */
557                              "2:\n"
558                              "        .section .fixup,\"ax\"\n"
559                              "3:      xor %0,%0\n"
560                              "        jmp 2b\n"
561                              "        .previous\n"
562                              _ASM_EXTABLE(1b,3b)
563                              : "+a" (has_nopl));
564
565                 if (has_nopl == nopl_signature)
566                         set_cpu_cap(c, X86_FEATURE_NOPL);
567         }
568 }
569
570 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
571 {
572         if (!have_cpuid_p())
573                 return;
574
575         c->extended_cpuid_level = 0;
576
577         cpu_detect(c);
578
579         get_cpu_vendor(c);
580
581         get_cpu_cap(c);
582
583         if (c->cpuid_level >= 0x00000001) {
584                 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
585 #ifdef CONFIG_X86_HT
586                 c->apicid = phys_pkg_id(c->initial_apicid, 0);
587                 c->phys_proc_id = c->initial_apicid;
588 #else
589                 c->apicid = c->initial_apicid;
590 #endif
591         }
592
593         if (c->extended_cpuid_level >= 0x80000004)
594                 get_model_name(c); /* Default name */
595
596         init_scattered_cpuid_features(c);
597         detect_nopl(c);
598 }
599
600 /*
601  * This does the hard work of actually picking apart the CPU stuff...
602  */
603 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
604 {
605         int i;
606
607         c->loops_per_jiffy = loops_per_jiffy;
608         c->x86_cache_size = -1;
609         c->x86_vendor = X86_VENDOR_UNKNOWN;
610         c->cpuid_level = -1;    /* CPUID not detected */
611         c->x86_model = c->x86_mask = 0; /* So far unknown... */
612         c->x86_vendor_id[0] = '\0'; /* Unset */
613         c->x86_model_id[0] = '\0';  /* Unset */
614         c->x86_max_cores = 1;
615         c->x86_clflush_size = 32;
616         memset(&c->x86_capability, 0, sizeof c->x86_capability);
617
618         if (!have_cpuid_p()) {
619                 /*
620                  * First of all, decide if this is a 486 or higher
621                  * It's a 486 if we can modify the AC flag
622                  */
623                 if (flag_is_changeable_p(X86_EFLAGS_AC))
624                         c->x86 = 4;
625                 else
626                         c->x86 = 3;
627         }
628
629         generic_identify(c);
630
631         if (this_cpu->c_identify)
632                 this_cpu->c_identify(c);
633
634         /*
635          * Vendor-specific initialization.  In this section we
636          * canonicalize the feature flags, meaning if there are
637          * features a certain CPU supports which CPUID doesn't
638          * tell us, CPUID claiming incorrect flags, or other bugs,
639          * we handle them here.
640          *
641          * At the end of this section, c->x86_capability better
642          * indicate the features this CPU genuinely supports!
643          */
644         if (this_cpu->c_init)
645                 this_cpu->c_init(c);
646
647         /* Disable the PN if appropriate */
648         squash_the_stupid_serial_number(c);
649
650         /*
651          * The vendor-specific functions might have changed features.  Now
652          * we do "generic changes."
653          */
654
655         /* If the model name is still unset, do table lookup. */
656         if (!c->x86_model_id[0]) {
657                 char *p;
658                 p = table_lookup_model(c);
659                 if (p)
660                         strcpy(c->x86_model_id, p);
661                 else
662                         /* Last resort... */
663                         sprintf(c->x86_model_id, "%02x/%02x",
664                                 c->x86, c->x86_model);
665         }
666
667         /*
668          * On SMP, boot_cpu_data holds the common feature set between
669          * all CPUs; so make sure that we indicate which features are
670          * common between the CPUs.  The first time this routine gets
671          * executed, c == &boot_cpu_data.
672          */
673         if (c != &boot_cpu_data) {
674                 /* AND the already accumulated flags with these */
675                 for (i = 0; i < NCAPINTS; i++)
676                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
677         }
678
679         /* Clear all flags overriden by options */
680         for (i = 0; i < NCAPINTS; i++)
681                 c->x86_capability[i] &= ~cleared_cpu_caps[i];
682
683         /* Init Machine Check Exception if available. */
684         mcheck_init(c);
685
686         select_idle_routine(c);
687 }
688
689 void __init identify_boot_cpu(void)
690 {
691         identify_cpu(&boot_cpu_data);
692         sysenter_setup();
693         enable_sep_cpu();
694 }
695
696 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
697 {
698         BUG_ON(c == &boot_cpu_data);
699         identify_cpu(c);
700         enable_sep_cpu();
701         mtrr_ap_init();
702 }
703
704 struct msr_range {
705         unsigned min;
706         unsigned max;
707 };
708
709 static struct msr_range msr_range_array[] __cpuinitdata = {
710         { 0x00000000, 0x00000418},
711         { 0xc0000000, 0xc000040b},
712         { 0xc0010000, 0xc0010142},
713         { 0xc0011000, 0xc001103b},
714 };
715
716 static void __cpuinit print_cpu_msr(void)
717 {
718         unsigned index;
719         u64 val;
720         int i;
721         unsigned index_min, index_max;
722
723         for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
724                 index_min = msr_range_array[i].min;
725                 index_max = msr_range_array[i].max;
726                 for (index = index_min; index < index_max; index++) {
727                         if (rdmsrl_amd_safe(index, &val))
728                                 continue;
729                         printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
730                 }
731         }
732 }
733
734 static int show_msr __cpuinitdata;
735 static __init int setup_show_msr(char *arg)
736 {
737         int num;
738
739         get_option(&arg, &num);
740
741         if (num > 0)
742                 show_msr = num;
743         return 1;
744 }
745 __setup("show_msr=", setup_show_msr);
746
747 static __init int setup_noclflush(char *arg)
748 {
749         setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
750         return 1;
751 }
752 __setup("noclflush", setup_noclflush);
753
754 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
755 {
756         char *vendor = NULL;
757
758         if (c->x86_vendor < X86_VENDOR_NUM)
759                 vendor = this_cpu->c_vendor;
760         else if (c->cpuid_level >= 0)
761                 vendor = c->x86_vendor_id;
762
763         if (vendor && strncmp(c->x86_model_id, vendor, strlen(vendor)))
764                 printk(KERN_CONT "%s ", vendor);
765
766         if (c->x86_model_id[0])
767                 printk(KERN_CONT "%s", c->x86_model_id);
768         else
769                 printk(KERN_CONT "%d86", c->x86);
770
771         if (c->x86_mask || c->cpuid_level >= 0)
772                 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
773         else
774                 printk(KERN_CONT "\n");
775
776 #ifdef CONFIG_SMP
777         if (c->cpu_index < show_msr)
778                 print_cpu_msr();
779 #else
780         if (show_msr)
781                 print_cpu_msr();
782 #endif
783 }
784
785 static __init int setup_disablecpuid(char *arg)
786 {
787         int bit;
788         if (get_option(&arg, &bit) && bit < NCAPINTS*32)
789                 setup_clear_cpu_cap(bit);
790         else
791                 return 0;
792         return 1;
793 }
794 __setup("clearcpuid=", setup_disablecpuid);
795
796 cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
797
798 #ifdef CONFIG_X86_64
799 struct x8664_pda **_cpu_pda __read_mostly;
800 EXPORT_SYMBOL(_cpu_pda);
801
802 struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
803
804 char boot_cpu_stack[IRQSTACKSIZE] __page_aligned_bss;
805
806 unsigned long __supported_pte_mask __read_mostly = ~0UL;
807 EXPORT_SYMBOL_GPL(__supported_pte_mask);
808
809 static int do_not_nx __cpuinitdata;
810
811 /* noexec=on|off
812 Control non executable mappings for 64bit processes.
813
814 on      Enable(default)
815 off     Disable
816 */
817 static int __init nonx_setup(char *str)
818 {
819         if (!str)
820                 return -EINVAL;
821         if (!strncmp(str, "on", 2)) {
822                 __supported_pte_mask |= _PAGE_NX;
823                 do_not_nx = 0;
824         } else if (!strncmp(str, "off", 3)) {
825                 do_not_nx = 1;
826                 __supported_pte_mask &= ~_PAGE_NX;
827         }
828         return 0;
829 }
830 early_param("noexec", nonx_setup);
831
832 int force_personality32;
833
834 /* noexec32=on|off
835 Control non executable heap for 32bit processes.
836 To control the stack too use noexec=off
837
838 on      PROT_READ does not imply PROT_EXEC for 32bit processes (default)
839 off     PROT_READ implies PROT_EXEC
840 */
841 static int __init nonx32_setup(char *str)
842 {
843         if (!strcmp(str, "on"))
844                 force_personality32 &= ~READ_IMPLIES_EXEC;
845         else if (!strcmp(str, "off"))
846                 force_personality32 |= READ_IMPLIES_EXEC;
847         return 1;
848 }
849 __setup("noexec32=", nonx32_setup);
850
851 void pda_init(int cpu)
852 {
853         struct x8664_pda *pda = cpu_pda(cpu);
854
855         /* Setup up data that may be needed in __get_free_pages early */
856         loadsegment(fs, 0);
857         loadsegment(gs, 0);
858         /* Memory clobbers used to order PDA accessed */
859         mb();
860         wrmsrl(MSR_GS_BASE, pda);
861         mb();
862
863         pda->cpunumber = cpu;
864         pda->irqcount = -1;
865         pda->kernelstack = (unsigned long)stack_thread_info() -
866                                  PDA_STACKOFFSET + THREAD_SIZE;
867         pda->active_mm = &init_mm;
868         pda->mmu_state = 0;
869
870         if (cpu == 0) {
871                 /* others are initialized in smpboot.c */
872                 pda->pcurrent = &init_task;
873                 pda->irqstackptr = boot_cpu_stack;
874                 pda->irqstackptr += IRQSTACKSIZE - 64;
875         } else {
876                 if (!pda->irqstackptr) {
877                         pda->irqstackptr = (char *)
878                                 __get_free_pages(GFP_ATOMIC, IRQSTACK_ORDER);
879                         if (!pda->irqstackptr)
880                                 panic("cannot allocate irqstack for cpu %d",
881                                       cpu);
882                         pda->irqstackptr += IRQSTACKSIZE - 64;
883                 }
884
885                 if (pda->nodenumber == 0 && cpu_to_node(cpu) != NUMA_NO_NODE)
886                         pda->nodenumber = cpu_to_node(cpu);
887         }
888 }
889
890 char boot_exception_stacks[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ +
891                            DEBUG_STKSZ] __page_aligned_bss;
892
893 extern asmlinkage void ignore_sysret(void);
894
895 /* May not be marked __init: used by software suspend */
896 void syscall_init(void)
897 {
898         /*
899          * LSTAR and STAR live in a bit strange symbiosis.
900          * They both write to the same internal register. STAR allows to
901          * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
902          */
903         wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32);
904         wrmsrl(MSR_LSTAR, system_call);
905         wrmsrl(MSR_CSTAR, ignore_sysret);
906
907 #ifdef CONFIG_IA32_EMULATION
908         syscall32_cpu_init();
909 #endif
910
911         /* Flags to clear on syscall */
912         wrmsrl(MSR_SYSCALL_MASK,
913                X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
914 }
915
916 void __cpuinit check_efer(void)
917 {
918         unsigned long efer;
919
920         rdmsrl(MSR_EFER, efer);
921         if (!(efer & EFER_NX) || do_not_nx)
922                 __supported_pte_mask &= ~_PAGE_NX;
923 }
924
925 unsigned long kernel_eflags;
926
927 /*
928  * Copies of the original ist values from the tss are only accessed during
929  * debugging, no special alignment required.
930  */
931 DEFINE_PER_CPU(struct orig_ist, orig_ist);
932
933 #else
934
935 /* Make sure %fs is initialized properly in idle threads */
936 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
937 {
938         memset(regs, 0, sizeof(struct pt_regs));
939         regs->fs = __KERNEL_PERCPU;
940         return regs;
941 }
942 #endif
943
944 /*
945  * cpu_init() initializes state that is per-CPU. Some data is already
946  * initialized (naturally) in the bootstrap process, such as the GDT
947  * and IDT. We reload them nevertheless, this function acts as a
948  * 'CPU state barrier', nothing should get across.
949  * A lot of state is already set up in PDA init for 64 bit
950  */
951 #ifdef CONFIG_X86_64
952 void __cpuinit cpu_init(void)
953 {
954         int cpu = stack_smp_processor_id();
955         struct tss_struct *t = &per_cpu(init_tss, cpu);
956         struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
957         unsigned long v;
958         char *estacks = NULL;
959         struct task_struct *me;
960         int i;
961
962         /* CPU 0 is initialised in head64.c */
963         if (cpu != 0)
964                 pda_init(cpu);
965         else
966                 estacks = boot_exception_stacks;
967
968         me = current;
969
970         if (cpu_test_and_set(cpu, cpu_initialized))
971                 panic("CPU#%d already initialized!\n", cpu);
972
973         printk(KERN_INFO "Initializing CPU#%d\n", cpu);
974
975         clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
976
977         /*
978          * Initialize the per-CPU GDT with the boot GDT,
979          * and set up the GDT descriptor:
980          */
981
982         switch_to_new_gdt();
983         load_idt((const struct desc_ptr *)&idt_descr);
984
985         memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
986         syscall_init();
987
988         wrmsrl(MSR_FS_BASE, 0);
989         wrmsrl(MSR_KERNEL_GS_BASE, 0);
990         barrier();
991
992         check_efer();
993         if (cpu != 0 && x2apic)
994                 enable_x2apic();
995
996         /*
997          * set up and load the per-CPU TSS
998          */
999         if (!orig_ist->ist[0]) {
1000                 static const unsigned int order[N_EXCEPTION_STACKS] = {
1001                   [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STACK_ORDER,
1002                   [DEBUG_STACK - 1] = DEBUG_STACK_ORDER
1003                 };
1004                 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1005                         if (cpu) {
1006                                 estacks = (char *)__get_free_pages(GFP_ATOMIC, order[v]);
1007                                 if (!estacks)
1008                                         panic("Cannot allocate exception "
1009                                               "stack %ld %d\n", v, cpu);
1010                         }
1011                         estacks += PAGE_SIZE << order[v];
1012                         orig_ist->ist[v] = t->x86_tss.ist[v] =
1013                                         (unsigned long)estacks;
1014                 }
1015         }
1016
1017         t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1018         /*
1019          * <= is required because the CPU will access up to
1020          * 8 bits beyond the end of the IO permission bitmap.
1021          */
1022         for (i = 0; i <= IO_BITMAP_LONGS; i++)
1023                 t->io_bitmap[i] = ~0UL;
1024
1025         atomic_inc(&init_mm.mm_count);
1026         me->active_mm = &init_mm;
1027         if (me->mm)
1028                 BUG();
1029         enter_lazy_tlb(&init_mm, me);
1030
1031         load_sp0(t, &current->thread);
1032         set_tss_desc(cpu, t);
1033         load_TR_desc();
1034         load_LDT(&init_mm.context);
1035
1036 #ifdef CONFIG_KGDB
1037         /*
1038          * If the kgdb is connected no debug regs should be altered.  This
1039          * is only applicable when KGDB and a KGDB I/O module are built
1040          * into the kernel and you are using early debugging with
1041          * kgdbwait. KGDB will control the kernel HW breakpoint registers.
1042          */
1043         if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
1044                 arch_kgdb_ops.correct_hw_break();
1045         else {
1046 #endif
1047         /*
1048          * Clear all 6 debug registers:
1049          */
1050
1051         set_debugreg(0UL, 0);
1052         set_debugreg(0UL, 1);
1053         set_debugreg(0UL, 2);
1054         set_debugreg(0UL, 3);
1055         set_debugreg(0UL, 6);
1056         set_debugreg(0UL, 7);
1057 #ifdef CONFIG_KGDB
1058         /* If the kgdb is connected no debug regs should be altered. */
1059         }
1060 #endif
1061
1062         fpu_init();
1063
1064         raw_local_save_flags(kernel_eflags);
1065
1066         if (is_uv_system())
1067                 uv_cpu_init();
1068 }
1069
1070 #else
1071
1072 void __cpuinit cpu_init(void)
1073 {
1074         int cpu = smp_processor_id();
1075         struct task_struct *curr = current;
1076         struct tss_struct *t = &per_cpu(init_tss, cpu);
1077         struct thread_struct *thread = &curr->thread;
1078
1079         if (cpu_test_and_set(cpu, cpu_initialized)) {
1080                 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1081                 for (;;) local_irq_enable();
1082         }
1083
1084         printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1085
1086         if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1087                 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1088
1089         load_idt(&idt_descr);
1090         switch_to_new_gdt();
1091
1092         /*
1093          * Set up and load the per-CPU TSS and LDT
1094          */
1095         atomic_inc(&init_mm.mm_count);
1096         curr->active_mm = &init_mm;
1097         if (curr->mm)
1098                 BUG();
1099         enter_lazy_tlb(&init_mm, curr);
1100
1101         load_sp0(t, thread);
1102         set_tss_desc(cpu, t);
1103         load_TR_desc();
1104         load_LDT(&init_mm.context);
1105
1106 #ifdef CONFIG_DOUBLEFAULT
1107         /* Set up doublefault TSS pointer in the GDT */
1108         __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1109 #endif
1110
1111         /* Clear %gs. */
1112         asm volatile ("mov %0, %%gs" : : "r" (0));
1113
1114         /* Clear all 6 debug registers: */
1115         set_debugreg(0, 0);
1116         set_debugreg(0, 1);
1117         set_debugreg(0, 2);
1118         set_debugreg(0, 3);
1119         set_debugreg(0, 6);
1120         set_debugreg(0, 7);
1121
1122         /*
1123          * Force FPU initialization:
1124          */
1125         if (cpu_has_xsave)
1126                 current_thread_info()->status = TS_XSAVE;
1127         else
1128                 current_thread_info()->status = 0;
1129         clear_used_math();
1130         mxcsr_feature_mask_init();
1131
1132         /*
1133          * Boot processor to setup the FP and extended state context info.
1134          */
1135         if (!smp_processor_id())
1136                 init_thread_xstate();
1137
1138         xsave_init();
1139 }
1140
1141 #ifdef CONFIG_HOTPLUG_CPU
1142 void __cpuinit cpu_uninit(void)
1143 {
1144         int cpu = raw_smp_processor_id();
1145         cpu_clear(cpu, cpu_initialized);
1146
1147         /* lazy TLB state */
1148         per_cpu(cpu_tlbstate, cpu).state = 0;
1149         per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm;
1150 }
1151 #endif
1152
1153 #endif