]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/um/kernel/process_kern.c
[PATCH] uml: _switch_to code consolidation
[linux-2.6-omap-h63xx.git] / arch / um / kernel / process_kern.c
1 /* 
2  * Copyright (C) 2000, 2001, 2002 Jeff Dike (jdike@karaya.com)
3  * Copyright 2003 PathScale, Inc.
4  * Licensed under the GPL
5  */
6
7 #include "linux/config.h"
8 #include "linux/kernel.h"
9 #include "linux/sched.h"
10 #include "linux/interrupt.h"
11 #include "linux/string.h"
12 #include "linux/mm.h"
13 #include "linux/slab.h"
14 #include "linux/utsname.h"
15 #include "linux/fs.h"
16 #include "linux/utime.h"
17 #include "linux/smp_lock.h"
18 #include "linux/module.h"
19 #include "linux/init.h"
20 #include "linux/capability.h"
21 #include "linux/vmalloc.h"
22 #include "linux/spinlock.h"
23 #include "linux/proc_fs.h"
24 #include "linux/ptrace.h"
25 #include "linux/random.h"
26 #include "asm/unistd.h"
27 #include "asm/mman.h"
28 #include "asm/segment.h"
29 #include "asm/stat.h"
30 #include "asm/pgtable.h"
31 #include "asm/processor.h"
32 #include "asm/tlbflush.h"
33 #include "asm/uaccess.h"
34 #include "asm/user.h"
35 #include "user_util.h"
36 #include "kern_util.h"
37 #include "kern.h"
38 #include "signal_kern.h"
39 #include "signal_user.h"
40 #include "init.h"
41 #include "irq_user.h"
42 #include "mem_user.h"
43 #include "time_user.h"
44 #include "tlb.h"
45 #include "frame_kern.h"
46 #include "sigcontext.h"
47 #include "os.h"
48 #include "mode.h"
49 #include "mode_kern.h"
50 #include "choose-mode.h"
51
52 /* This is a per-cpu array.  A processor only modifies its entry and it only
53  * cares about its entry, so it's OK if another processor is modifying its
54  * entry.
55  */
56 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
57
58 int external_pid(void *t)
59 {
60         struct task_struct *task = t ? t : current;
61
62         return(CHOOSE_MODE_PROC(external_pid_tt, external_pid_skas, task));
63 }
64
65 int pid_to_processor_id(int pid)
66 {
67         int i;
68
69         for(i = 0; i < ncpus; i++){
70                 if(cpu_tasks[i].pid == pid) return(i);
71         }
72         return(-1);
73 }
74
75 void free_stack(unsigned long stack, int order)
76 {
77         free_pages(stack, order);
78 }
79
80 unsigned long alloc_stack(int order, int atomic)
81 {
82         unsigned long page;
83         int flags = GFP_KERNEL;
84
85         if(atomic) flags |= GFP_ATOMIC;
86         page = __get_free_pages(flags, order);
87         if(page == 0)
88                 return(0);
89         stack_protections(page);
90         return(page);
91 }
92
93 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
94 {
95         int pid;
96
97         current->thread.request.u.thread.proc = fn;
98         current->thread.request.u.thread.arg = arg;
99         pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
100                       &current->thread.regs, 0, NULL, NULL);
101         if(pid < 0)
102                 panic("do_fork failed in kernel_thread, errno = %d", pid);
103         return(pid);
104 }
105
106 void set_current(void *t)
107 {
108         struct task_struct *task = t;
109
110         cpu_tasks[task->thread_info->cpu] = ((struct cpu_task) 
111                 { external_pid(task), task });
112 }
113
114 void *_switch_to(void *prev, void *next, void *last)
115 {
116         struct task_struct *from = prev;
117         struct task_struct *to= next;
118
119         to->thread.prev_sched = from;
120         set_current(to);
121
122         CHOOSE_MODE_PROC(switch_to_tt, switch_to_skas, prev, next);
123
124         return(current->thread.prev_sched);
125
126 }
127
128 void interrupt_end(void)
129 {
130         if(need_resched()) schedule();
131         if(test_tsk_thread_flag(current, TIF_SIGPENDING)) do_signal();
132 }
133
134 void release_thread(struct task_struct *task)
135 {
136         CHOOSE_MODE(release_thread_tt(task), release_thread_skas(task));
137 }
138  
139 void exit_thread(void)
140 {
141         unprotect_stack((unsigned long) current_thread);
142 }
143  
144 void *get_current(void)
145 {
146         return(current);
147 }
148
149 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
150                 unsigned long stack_top, struct task_struct * p, 
151                 struct pt_regs *regs)
152 {
153         p->thread = (struct thread_struct) INIT_THREAD;
154         return(CHOOSE_MODE_PROC(copy_thread_tt, copy_thread_skas, nr, 
155                                 clone_flags, sp, stack_top, p, regs));
156 }
157
158 void initial_thread_cb(void (*proc)(void *), void *arg)
159 {
160         int save_kmalloc_ok = kmalloc_ok;
161
162         kmalloc_ok = 0;
163         CHOOSE_MODE_PROC(initial_thread_cb_tt, initial_thread_cb_skas, proc, 
164                          arg);
165         kmalloc_ok = save_kmalloc_ok;
166 }
167  
168 unsigned long stack_sp(unsigned long page)
169 {
170         return(page + PAGE_SIZE - sizeof(void *));
171 }
172
173 int current_pid(void)
174 {
175         return(current->pid);
176 }
177
178 void default_idle(void)
179 {
180         CHOOSE_MODE(uml_idle_timer(), (void) 0);
181
182         atomic_inc(&init_mm.mm_count);
183         current->mm = &init_mm;
184         current->active_mm = &init_mm;
185
186         while(1){
187                 /* endless idle loop with no priority at all */
188
189                 /*
190                  * although we are an idle CPU, we do not want to
191                  * get into the scheduler unnecessarily.
192                  */
193                 if(need_resched())
194                         schedule();
195                 
196                 idle_sleep(10);
197         }
198 }
199
200 void cpu_idle(void)
201 {
202         CHOOSE_MODE(init_idle_tt(), init_idle_skas());
203 }
204
205 int page_size(void)
206 {
207         return(PAGE_SIZE);
208 }
209
210 void *um_virt_to_phys(struct task_struct *task, unsigned long addr, 
211                       pte_t *pte_out)
212 {
213         pgd_t *pgd;
214         pud_t *pud;
215         pmd_t *pmd;
216         pte_t *pte;
217
218         if(task->mm == NULL) 
219                 return(ERR_PTR(-EINVAL));
220         pgd = pgd_offset(task->mm, addr);
221         if(!pgd_present(*pgd))
222                 return(ERR_PTR(-EINVAL));
223
224         pud = pud_offset(pgd, addr);
225         if(!pud_present(*pud))
226                 return(ERR_PTR(-EINVAL));
227
228         pmd = pmd_offset(pud, addr);
229         if(!pmd_present(*pmd)) 
230                 return(ERR_PTR(-EINVAL));
231
232         pte = pte_offset_kernel(pmd, addr);
233         if(!pte_present(*pte)) 
234                 return(ERR_PTR(-EINVAL));
235
236         if(pte_out != NULL)
237                 *pte_out = *pte;
238         return((void *) (pte_val(*pte) & PAGE_MASK) + (addr & ~PAGE_MASK));
239 }
240
241 char *current_cmd(void)
242 {
243 #if defined(CONFIG_SMP) || defined(CONFIG_HIGHMEM)
244         return("(Unknown)");
245 #else
246         void *addr = um_virt_to_phys(current, current->mm->arg_start, NULL);
247         return IS_ERR(addr) ? "(Unknown)": __va((unsigned long) addr);
248 #endif
249 }
250
251 void force_sigbus(void)
252 {
253         printk(KERN_ERR "Killing pid %d because of a lack of memory\n", 
254                current->pid);
255         lock_kernel();
256         sigaddset(&current->pending.signal, SIGBUS);
257         recalc_sigpending();
258         current->flags |= PF_SIGNALED;
259         do_exit(SIGBUS | 0x80);
260 }
261
262 void dump_thread(struct pt_regs *regs, struct user *u)
263 {
264 }
265
266 void enable_hlt(void)
267 {
268         panic("enable_hlt");
269 }
270
271 EXPORT_SYMBOL(enable_hlt);
272
273 void disable_hlt(void)
274 {
275         panic("disable_hlt");
276 }
277
278 EXPORT_SYMBOL(disable_hlt);
279
280 void *um_kmalloc(int size)
281 {
282         return(kmalloc(size, GFP_KERNEL));
283 }
284
285 void *um_kmalloc_atomic(int size)
286 {
287         return(kmalloc(size, GFP_ATOMIC));
288 }
289
290 void *um_vmalloc(int size)
291 {
292         return(vmalloc(size));
293 }
294
295 unsigned long get_fault_addr(void)
296 {
297         return((unsigned long) current->thread.fault_addr);
298 }
299
300 EXPORT_SYMBOL(get_fault_addr);
301
302 void not_implemented(void)
303 {
304         printk(KERN_DEBUG "Something isn't implemented in here\n");
305 }
306
307 EXPORT_SYMBOL(not_implemented);
308
309 int user_context(unsigned long sp)
310 {
311         unsigned long stack;
312
313         stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
314         return(stack != (unsigned long) current_thread);
315 }
316
317 extern void remove_umid_dir(void);
318
319 __uml_exitcall(remove_umid_dir);
320
321 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
322
323 void do_uml_exitcalls(void)
324 {
325         exitcall_t *call;
326
327         call = &__uml_exitcall_end;
328         while (--call >= &__uml_exitcall_begin)
329                 (*call)();
330 }
331
332 char *uml_strdup(char *string)
333 {
334         return kstrdup(string, GFP_KERNEL);
335 }
336
337 int copy_to_user_proc(void __user *to, void *from, int size)
338 {
339         return(copy_to_user(to, from, size));
340 }
341
342 int copy_from_user_proc(void *to, void __user *from, int size)
343 {
344         return(copy_from_user(to, from, size));
345 }
346
347 int clear_user_proc(void __user *buf, int size)
348 {
349         return(clear_user(buf, size));
350 }
351
352 int strlen_user_proc(char __user *str)
353 {
354         return(strlen_user(str));
355 }
356
357 int smp_sigio_handler(void)
358 {
359 #ifdef CONFIG_SMP
360         int cpu = current_thread->cpu;
361         IPI_handler(cpu);
362         if(cpu != 0)
363                 return(1);
364 #endif
365         return(0);
366 }
367
368 int um_in_interrupt(void)
369 {
370         return(in_interrupt());
371 }
372
373 int cpu(void)
374 {
375         return(current_thread->cpu);
376 }
377
378 static atomic_t using_sysemu = ATOMIC_INIT(0);
379 int sysemu_supported;
380
381 void set_using_sysemu(int value)
382 {
383         if (value > sysemu_supported)
384                 return;
385         atomic_set(&using_sysemu, value);
386 }
387
388 int get_using_sysemu(void)
389 {
390         return atomic_read(&using_sysemu);
391 }
392
393 static int proc_read_sysemu(char *buf, char **start, off_t offset, int size,int *eof, void *data)
394 {
395         if (snprintf(buf, size, "%d\n", get_using_sysemu()) < size) /*No overflow*/
396                 *eof = 1;
397
398         return strlen(buf);
399 }
400
401 static int proc_write_sysemu(struct file *file,const char *buf, unsigned long count,void *data)
402 {
403         char tmp[2];
404
405         if (copy_from_user(tmp, buf, 1))
406                 return -EFAULT;
407
408         if (tmp[0] >= '0' && tmp[0] <= '2')
409                 set_using_sysemu(tmp[0] - '0');
410         return count; /*We use the first char, but pretend to write everything*/
411 }
412
413 int __init make_proc_sysemu(void)
414 {
415         struct proc_dir_entry *ent;
416         if (!sysemu_supported)
417                 return 0;
418
419         ent = create_proc_entry("sysemu", 0600, &proc_root);
420
421         if (ent == NULL)
422         {
423                 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
424                 return(0);
425         }
426
427         ent->read_proc  = proc_read_sysemu;
428         ent->write_proc = proc_write_sysemu;
429
430         return 0;
431 }
432
433 late_initcall(make_proc_sysemu);
434
435 int singlestepping(void * t)
436 {
437         struct task_struct *task = t ? t : current;
438
439         if ( ! (task->ptrace & PT_DTRACE) )
440                 return(0);
441
442         if (task->thread.singlestep_syscall)
443                 return(1);
444
445         return 2;
446 }
447
448 /*
449  * Only x86 and x86_64 have an arch_align_stack().
450  * All other arches have "#define arch_align_stack(x) (x)"
451  * in their asm/system.h
452  * As this is included in UML from asm-um/system-generic.h,
453  * we can use it to behave as the subarch does.
454  */
455 #ifndef arch_align_stack
456 unsigned long arch_align_stack(unsigned long sp)
457 {
458         if (randomize_va_space)
459                 sp -= get_random_int() % 8192;
460         return sp & ~0xf;
461 }
462 #endif