]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/sparc64/mm/init.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[linux-2.6-omap-h63xx.git] / arch / sparc64 / mm / init.c
1 /*  $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/percpu.h>
27
28 #include <asm/head.h>
29 #include <asm/system.h>
30 #include <asm/page.h>
31 #include <asm/pgalloc.h>
32 #include <asm/pgtable.h>
33 #include <asm/oplib.h>
34 #include <asm/iommu.h>
35 #include <asm/io.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/dma.h>
40 #include <asm/starfire.h>
41 #include <asm/tlb.h>
42 #include <asm/spitfire.h>
43 #include <asm/sections.h>
44 #include <asm/tsb.h>
45 #include <asm/hypervisor.h>
46 #include <asm/prom.h>
47 #include <asm/sstate.h>
48 #include <asm/mdesc.h>
49
50 #define MAX_PHYS_ADDRESS        (1UL << 42UL)
51 #define KPTE_BITMAP_CHUNK_SZ    (256UL * 1024UL * 1024UL)
52 #define KPTE_BITMAP_BYTES       \
53         ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
54
55 unsigned long kern_linear_pte_xor[2] __read_mostly;
56
57 /* A bitmap, one bit for every 256MB of physical memory.  If the bit
58  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
59  * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
60  */
61 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
62
63 #ifndef CONFIG_DEBUG_PAGEALLOC
64 /* A special kernel TSB for 4MB and 256MB linear mappings.
65  * Space is allocated for this right after the trap table
66  * in arch/sparc64/kernel/head.S
67  */
68 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
69 #endif
70
71 #define MAX_BANKS       32
72
73 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
74 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
75 static int pavail_ents __initdata;
76 static int pavail_rescan_ents __initdata;
77
78 static int cmp_p64(const void *a, const void *b)
79 {
80         const struct linux_prom64_registers *x = a, *y = b;
81
82         if (x->phys_addr > y->phys_addr)
83                 return 1;
84         if (x->phys_addr < y->phys_addr)
85                 return -1;
86         return 0;
87 }
88
89 static void __init read_obp_memory(const char *property,
90                                    struct linux_prom64_registers *regs,
91                                    int *num_ents)
92 {
93         int node = prom_finddevice("/memory");
94         int prop_size = prom_getproplen(node, property);
95         int ents, ret, i;
96
97         ents = prop_size / sizeof(struct linux_prom64_registers);
98         if (ents > MAX_BANKS) {
99                 prom_printf("The machine has more %s property entries than "
100                             "this kernel can support (%d).\n",
101                             property, MAX_BANKS);
102                 prom_halt();
103         }
104
105         ret = prom_getproperty(node, property, (char *) regs, prop_size);
106         if (ret == -1) {
107                 prom_printf("Couldn't get %s property from /memory.\n");
108                 prom_halt();
109         }
110
111         /* Sanitize what we got from the firmware, by page aligning
112          * everything.
113          */
114         for (i = 0; i < ents; i++) {
115                 unsigned long base, size;
116
117                 base = regs[i].phys_addr;
118                 size = regs[i].reg_size;
119
120                 size &= PAGE_MASK;
121                 if (base & ~PAGE_MASK) {
122                         unsigned long new_base = PAGE_ALIGN(base);
123
124                         size -= new_base - base;
125                         if ((long) size < 0L)
126                                 size = 0UL;
127                         base = new_base;
128                 }
129                 if (size == 0UL) {
130                         /* If it is empty, simply get rid of it.
131                          * This simplifies the logic of the other
132                          * functions that process these arrays.
133                          */
134                         memmove(&regs[i], &regs[i + 1],
135                                 (ents - i - 1) * sizeof(regs[0]));
136                         i--;
137                         ents--;
138                         continue;
139                 }
140                 regs[i].phys_addr = base;
141                 regs[i].reg_size = size;
142         }
143
144         *num_ents = ents;
145
146         sort(regs, ents, sizeof(struct linux_prom64_registers),
147              cmp_p64, NULL);
148 }
149
150 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
151
152 /* Kernel physical address base and size in bytes.  */
153 unsigned long kern_base __read_mostly;
154 unsigned long kern_size __read_mostly;
155
156 /* Initial ramdisk setup */
157 extern unsigned long sparc_ramdisk_image64;
158 extern unsigned int sparc_ramdisk_image;
159 extern unsigned int sparc_ramdisk_size;
160
161 struct page *mem_map_zero __read_mostly;
162
163 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
164
165 unsigned long sparc64_kern_pri_context __read_mostly;
166 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
167 unsigned long sparc64_kern_sec_context __read_mostly;
168
169 int num_kernel_image_mappings;
170
171 #ifdef CONFIG_DEBUG_DCFLUSH
172 atomic_t dcpage_flushes = ATOMIC_INIT(0);
173 #ifdef CONFIG_SMP
174 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
175 #endif
176 #endif
177
178 inline void flush_dcache_page_impl(struct page *page)
179 {
180         BUG_ON(tlb_type == hypervisor);
181 #ifdef CONFIG_DEBUG_DCFLUSH
182         atomic_inc(&dcpage_flushes);
183 #endif
184
185 #ifdef DCACHE_ALIASING_POSSIBLE
186         __flush_dcache_page(page_address(page),
187                             ((tlb_type == spitfire) &&
188                              page_mapping(page) != NULL));
189 #else
190         if (page_mapping(page) != NULL &&
191             tlb_type == spitfire)
192                 __flush_icache_page(__pa(page_address(page)));
193 #endif
194 }
195
196 #define PG_dcache_dirty         PG_arch_1
197 #define PG_dcache_cpu_shift     32UL
198 #define PG_dcache_cpu_mask      \
199         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
200
201 #define dcache_dirty_cpu(page) \
202         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
203
204 static inline void set_dcache_dirty(struct page *page, int this_cpu)
205 {
206         unsigned long mask = this_cpu;
207         unsigned long non_cpu_bits;
208
209         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
210         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
211
212         __asm__ __volatile__("1:\n\t"
213                              "ldx       [%2], %%g7\n\t"
214                              "and       %%g7, %1, %%g1\n\t"
215                              "or        %%g1, %0, %%g1\n\t"
216                              "casx      [%2], %%g7, %%g1\n\t"
217                              "cmp       %%g7, %%g1\n\t"
218                              "membar    #StoreLoad | #StoreStore\n\t"
219                              "bne,pn    %%xcc, 1b\n\t"
220                              " nop"
221                              : /* no outputs */
222                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
223                              : "g1", "g7");
224 }
225
226 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
227 {
228         unsigned long mask = (1UL << PG_dcache_dirty);
229
230         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
231                              "1:\n\t"
232                              "ldx       [%2], %%g7\n\t"
233                              "srlx      %%g7, %4, %%g1\n\t"
234                              "and       %%g1, %3, %%g1\n\t"
235                              "cmp       %%g1, %0\n\t"
236                              "bne,pn    %%icc, 2f\n\t"
237                              " andn     %%g7, %1, %%g1\n\t"
238                              "casx      [%2], %%g7, %%g1\n\t"
239                              "cmp       %%g7, %%g1\n\t"
240                              "membar    #StoreLoad | #StoreStore\n\t"
241                              "bne,pn    %%xcc, 1b\n\t"
242                              " nop\n"
243                              "2:"
244                              : /* no outputs */
245                              : "r" (cpu), "r" (mask), "r" (&page->flags),
246                                "i" (PG_dcache_cpu_mask),
247                                "i" (PG_dcache_cpu_shift)
248                              : "g1", "g7");
249 }
250
251 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
252 {
253         unsigned long tsb_addr = (unsigned long) ent;
254
255         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
256                 tsb_addr = __pa(tsb_addr);
257
258         __tsb_insert(tsb_addr, tag, pte);
259 }
260
261 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
262 unsigned long _PAGE_SZBITS __read_mostly;
263
264 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
265 {
266         struct mm_struct *mm;
267         struct tsb *tsb;
268         unsigned long tag, flags;
269         unsigned long tsb_index, tsb_hash_shift;
270
271         if (tlb_type != hypervisor) {
272                 unsigned long pfn = pte_pfn(pte);
273                 unsigned long pg_flags;
274                 struct page *page;
275
276                 if (pfn_valid(pfn) &&
277                     (page = pfn_to_page(pfn), page_mapping(page)) &&
278                     ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
279                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
280                                    PG_dcache_cpu_mask);
281                         int this_cpu = get_cpu();
282
283                         /* This is just to optimize away some function calls
284                          * in the SMP case.
285                          */
286                         if (cpu == this_cpu)
287                                 flush_dcache_page_impl(page);
288                         else
289                                 smp_flush_dcache_page_impl(page, cpu);
290
291                         clear_dcache_dirty_cpu(page, cpu);
292
293                         put_cpu();
294                 }
295         }
296
297         mm = vma->vm_mm;
298
299         tsb_index = MM_TSB_BASE;
300         tsb_hash_shift = PAGE_SHIFT;
301
302         spin_lock_irqsave(&mm->context.lock, flags);
303
304 #ifdef CONFIG_HUGETLB_PAGE
305         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
306                 if ((tlb_type == hypervisor &&
307                      (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
308                     (tlb_type != hypervisor &&
309                      (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
310                         tsb_index = MM_TSB_HUGE;
311                         tsb_hash_shift = HPAGE_SHIFT;
312                 }
313         }
314 #endif
315
316         tsb = mm->context.tsb_block[tsb_index].tsb;
317         tsb += ((address >> tsb_hash_shift) &
318                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
319         tag = (address >> 22UL);
320         tsb_insert(tsb, tag, pte_val(pte));
321
322         spin_unlock_irqrestore(&mm->context.lock, flags);
323 }
324
325 void flush_dcache_page(struct page *page)
326 {
327         struct address_space *mapping;
328         int this_cpu;
329
330         if (tlb_type == hypervisor)
331                 return;
332
333         /* Do not bother with the expensive D-cache flush if it
334          * is merely the zero page.  The 'bigcore' testcase in GDB
335          * causes this case to run millions of times.
336          */
337         if (page == ZERO_PAGE(0))
338                 return;
339
340         this_cpu = get_cpu();
341
342         mapping = page_mapping(page);
343         if (mapping && !mapping_mapped(mapping)) {
344                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
345                 if (dirty) {
346                         int dirty_cpu = dcache_dirty_cpu(page);
347
348                         if (dirty_cpu == this_cpu)
349                                 goto out;
350                         smp_flush_dcache_page_impl(page, dirty_cpu);
351                 }
352                 set_dcache_dirty(page, this_cpu);
353         } else {
354                 /* We could delay the flush for the !page_mapping
355                  * case too.  But that case is for exec env/arg
356                  * pages and those are %99 certainly going to get
357                  * faulted into the tlb (and thus flushed) anyways.
358                  */
359                 flush_dcache_page_impl(page);
360         }
361
362 out:
363         put_cpu();
364 }
365
366 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
367 {
368         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
369         if (tlb_type == spitfire) {
370                 unsigned long kaddr;
371
372                 /* This code only runs on Spitfire cpus so this is
373                  * why we can assume _PAGE_PADDR_4U.
374                  */
375                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
376                         unsigned long paddr, mask = _PAGE_PADDR_4U;
377
378                         if (kaddr >= PAGE_OFFSET)
379                                 paddr = kaddr & mask;
380                         else {
381                                 pgd_t *pgdp = pgd_offset_k(kaddr);
382                                 pud_t *pudp = pud_offset(pgdp, kaddr);
383                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
384                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
385
386                                 paddr = pte_val(*ptep) & mask;
387                         }
388                         __flush_icache_page(paddr);
389                 }
390         }
391 }
392
393 void show_mem(void)
394 {
395         unsigned long total = 0, reserved = 0;
396         unsigned long shared = 0, cached = 0;
397         pg_data_t *pgdat;
398
399         printk(KERN_INFO "Mem-info:\n");
400         show_free_areas();
401         printk(KERN_INFO "Free swap:       %6ldkB\n",
402                nr_swap_pages << (PAGE_SHIFT-10));
403         for_each_online_pgdat(pgdat) {
404                 unsigned long i, flags;
405
406                 pgdat_resize_lock(pgdat, &flags);
407                 for (i = 0; i < pgdat->node_spanned_pages; i++) {
408                         struct page *page = pgdat_page_nr(pgdat, i);
409                         total++;
410                         if (PageReserved(page))
411                                 reserved++;
412                         else if (PageSwapCache(page))
413                                 cached++;
414                         else if (page_count(page))
415                                 shared += page_count(page) - 1;
416                 }
417                 pgdat_resize_unlock(pgdat, &flags);
418         }
419
420         printk(KERN_INFO "%lu pages of RAM\n", total);
421         printk(KERN_INFO "%lu reserved pages\n", reserved);
422         printk(KERN_INFO "%lu pages shared\n", shared);
423         printk(KERN_INFO "%lu pages swap cached\n", cached);
424
425         printk(KERN_INFO "%lu pages dirty\n",
426                global_page_state(NR_FILE_DIRTY));
427         printk(KERN_INFO "%lu pages writeback\n",
428                global_page_state(NR_WRITEBACK));
429         printk(KERN_INFO "%lu pages mapped\n",
430                global_page_state(NR_FILE_MAPPED));
431         printk(KERN_INFO "%lu pages slab\n",
432                 global_page_state(NR_SLAB_RECLAIMABLE) +
433                 global_page_state(NR_SLAB_UNRECLAIMABLE));
434         printk(KERN_INFO "%lu pages pagetables\n",
435                global_page_state(NR_PAGETABLE));
436 }
437
438 void mmu_info(struct seq_file *m)
439 {
440         if (tlb_type == cheetah)
441                 seq_printf(m, "MMU Type\t: Cheetah\n");
442         else if (tlb_type == cheetah_plus)
443                 seq_printf(m, "MMU Type\t: Cheetah+\n");
444         else if (tlb_type == spitfire)
445                 seq_printf(m, "MMU Type\t: Spitfire\n");
446         else if (tlb_type == hypervisor)
447                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
448         else
449                 seq_printf(m, "MMU Type\t: ???\n");
450
451 #ifdef CONFIG_DEBUG_DCFLUSH
452         seq_printf(m, "DCPageFlushes\t: %d\n",
453                    atomic_read(&dcpage_flushes));
454 #ifdef CONFIG_SMP
455         seq_printf(m, "DCPageFlushesXC\t: %d\n",
456                    atomic_read(&dcpage_flushes_xcall));
457 #endif /* CONFIG_SMP */
458 #endif /* CONFIG_DEBUG_DCFLUSH */
459 }
460
461 struct linux_prom_translation {
462         unsigned long virt;
463         unsigned long size;
464         unsigned long data;
465 };
466
467 /* Exported for kernel TLB miss handling in ktlb.S */
468 struct linux_prom_translation prom_trans[512] __read_mostly;
469 unsigned int prom_trans_ents __read_mostly;
470
471 /* Exported for SMP bootup purposes. */
472 unsigned long kern_locked_tte_data;
473
474 /* The obp translations are saved based on 8k pagesize, since obp can
475  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
476  * HI_OBP_ADDRESS range are handled in ktlb.S.
477  */
478 static inline int in_obp_range(unsigned long vaddr)
479 {
480         return (vaddr >= LOW_OBP_ADDRESS &&
481                 vaddr < HI_OBP_ADDRESS);
482 }
483
484 static int cmp_ptrans(const void *a, const void *b)
485 {
486         const struct linux_prom_translation *x = a, *y = b;
487
488         if (x->virt > y->virt)
489                 return 1;
490         if (x->virt < y->virt)
491                 return -1;
492         return 0;
493 }
494
495 /* Read OBP translations property into 'prom_trans[]'.  */
496 static void __init read_obp_translations(void)
497 {
498         int n, node, ents, first, last, i;
499
500         node = prom_finddevice("/virtual-memory");
501         n = prom_getproplen(node, "translations");
502         if (unlikely(n == 0 || n == -1)) {
503                 prom_printf("prom_mappings: Couldn't get size.\n");
504                 prom_halt();
505         }
506         if (unlikely(n > sizeof(prom_trans))) {
507                 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
508                 prom_halt();
509         }
510
511         if ((n = prom_getproperty(node, "translations",
512                                   (char *)&prom_trans[0],
513                                   sizeof(prom_trans))) == -1) {
514                 prom_printf("prom_mappings: Couldn't get property.\n");
515                 prom_halt();
516         }
517
518         n = n / sizeof(struct linux_prom_translation);
519
520         ents = n;
521
522         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
523              cmp_ptrans, NULL);
524
525         /* Now kick out all the non-OBP entries.  */
526         for (i = 0; i < ents; i++) {
527                 if (in_obp_range(prom_trans[i].virt))
528                         break;
529         }
530         first = i;
531         for (; i < ents; i++) {
532                 if (!in_obp_range(prom_trans[i].virt))
533                         break;
534         }
535         last = i;
536
537         for (i = 0; i < (last - first); i++) {
538                 struct linux_prom_translation *src = &prom_trans[i + first];
539                 struct linux_prom_translation *dest = &prom_trans[i];
540
541                 *dest = *src;
542         }
543         for (; i < ents; i++) {
544                 struct linux_prom_translation *dest = &prom_trans[i];
545                 dest->virt = dest->size = dest->data = 0x0UL;
546         }
547
548         prom_trans_ents = last - first;
549
550         if (tlb_type == spitfire) {
551                 /* Clear diag TTE bits. */
552                 for (i = 0; i < prom_trans_ents; i++)
553                         prom_trans[i].data &= ~0x0003fe0000000000UL;
554         }
555 }
556
557 static void __init hypervisor_tlb_lock(unsigned long vaddr,
558                                        unsigned long pte,
559                                        unsigned long mmu)
560 {
561         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
562
563         if (ret != 0) {
564                 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
565                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
566                 prom_halt();
567         }
568 }
569
570 static unsigned long kern_large_tte(unsigned long paddr);
571
572 static void __init remap_kernel(void)
573 {
574         unsigned long phys_page, tte_vaddr, tte_data;
575         int i, tlb_ent = sparc64_highest_locked_tlbent();
576
577         tte_vaddr = (unsigned long) KERNBASE;
578         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
579         tte_data = kern_large_tte(phys_page);
580
581         kern_locked_tte_data = tte_data;
582
583         /* Now lock us into the TLBs via Hypervisor or OBP. */
584         if (tlb_type == hypervisor) {
585                 for (i = 0; i < num_kernel_image_mappings; i++) {
586                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
587                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
588                         tte_vaddr += 0x400000;
589                         tte_data += 0x400000;
590                 }
591         } else {
592                 for (i = 0; i < num_kernel_image_mappings; i++) {
593                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
594                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
595                         tte_vaddr += 0x400000;
596                         tte_data += 0x400000;
597                 }
598                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
599         }
600         if (tlb_type == cheetah_plus) {
601                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
602                                             CTX_CHEETAH_PLUS_NUC);
603                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
604                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
605         }
606 }
607
608
609 static void __init inherit_prom_mappings(void)
610 {
611         read_obp_translations();
612
613         /* Now fixup OBP's idea about where we really are mapped. */
614         printk("Remapping the kernel... ");
615         remap_kernel();
616         printk("done.\n");
617 }
618
619 void prom_world(int enter)
620 {
621         if (!enter)
622                 set_fs((mm_segment_t) { get_thread_current_ds() });
623
624         __asm__ __volatile__("flushw");
625 }
626
627 void __flush_dcache_range(unsigned long start, unsigned long end)
628 {
629         unsigned long va;
630
631         if (tlb_type == spitfire) {
632                 int n = 0;
633
634                 for (va = start; va < end; va += 32) {
635                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
636                         if (++n >= 512)
637                                 break;
638                 }
639         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
640                 start = __pa(start);
641                 end = __pa(end);
642                 for (va = start; va < end; va += 32)
643                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
644                                              "membar #Sync"
645                                              : /* no outputs */
646                                              : "r" (va),
647                                                "i" (ASI_DCACHE_INVALIDATE));
648         }
649 }
650
651 /* get_new_mmu_context() uses "cache + 1".  */
652 DEFINE_SPINLOCK(ctx_alloc_lock);
653 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
654 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
655 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
656 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
657
658 /* Caller does TLB context flushing on local CPU if necessary.
659  * The caller also ensures that CTX_VALID(mm->context) is false.
660  *
661  * We must be careful about boundary cases so that we never
662  * let the user have CTX 0 (nucleus) or we ever use a CTX
663  * version of zero (and thus NO_CONTEXT would not be caught
664  * by version mis-match tests in mmu_context.h).
665  *
666  * Always invoked with interrupts disabled.
667  */
668 void get_new_mmu_context(struct mm_struct *mm)
669 {
670         unsigned long ctx, new_ctx;
671         unsigned long orig_pgsz_bits;
672         unsigned long flags;
673         int new_version;
674
675         spin_lock_irqsave(&ctx_alloc_lock, flags);
676         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
677         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
678         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
679         new_version = 0;
680         if (new_ctx >= (1 << CTX_NR_BITS)) {
681                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
682                 if (new_ctx >= ctx) {
683                         int i;
684                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
685                                 CTX_FIRST_VERSION;
686                         if (new_ctx == 1)
687                                 new_ctx = CTX_FIRST_VERSION;
688
689                         /* Don't call memset, for 16 entries that's just
690                          * plain silly...
691                          */
692                         mmu_context_bmap[0] = 3;
693                         mmu_context_bmap[1] = 0;
694                         mmu_context_bmap[2] = 0;
695                         mmu_context_bmap[3] = 0;
696                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
697                                 mmu_context_bmap[i + 0] = 0;
698                                 mmu_context_bmap[i + 1] = 0;
699                                 mmu_context_bmap[i + 2] = 0;
700                                 mmu_context_bmap[i + 3] = 0;
701                         }
702                         new_version = 1;
703                         goto out;
704                 }
705         }
706         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
707         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
708 out:
709         tlb_context_cache = new_ctx;
710         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
711         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
712
713         if (unlikely(new_version))
714                 smp_new_mmu_context_version();
715 }
716
717 /* Find a free area for the bootmem map, avoiding the kernel image
718  * and the initial ramdisk.
719  */
720 static unsigned long __init choose_bootmap_pfn(unsigned long start_pfn,
721                                                unsigned long end_pfn)
722 {
723         unsigned long avoid_start, avoid_end, bootmap_size;
724         int i;
725
726         bootmap_size = bootmem_bootmap_pages(end_pfn - start_pfn);
727         bootmap_size <<= PAGE_SHIFT;
728
729         avoid_start = avoid_end = 0;
730 #ifdef CONFIG_BLK_DEV_INITRD
731         avoid_start = initrd_start;
732         avoid_end = PAGE_ALIGN(initrd_end);
733 #endif
734
735         for (i = 0; i < pavail_ents; i++) {
736                 unsigned long start, end;
737
738                 start = pavail[i].phys_addr;
739                 end = start + pavail[i].reg_size;
740
741                 while (start < end) {
742                         if (start >= kern_base &&
743                             start < PAGE_ALIGN(kern_base + kern_size)) {
744                                 start = PAGE_ALIGN(kern_base + kern_size);
745                                 continue;
746                         }
747                         if (start >= avoid_start && start < avoid_end) {
748                                 start = avoid_end;
749                                 continue;
750                         }
751
752                         if ((end - start) < bootmap_size)
753                                 break;
754
755                         if (start < kern_base &&
756                             (start + bootmap_size) > kern_base) {
757                                 start = PAGE_ALIGN(kern_base + kern_size);
758                                 continue;
759                         }
760
761                         if (start < avoid_start &&
762                             (start + bootmap_size) > avoid_start) {
763                                 start = avoid_end;
764                                 continue;
765                         }
766
767                         /* OK, it doesn't overlap anything, use it.  */
768                         return start >> PAGE_SHIFT;
769                 }
770         }
771
772         prom_printf("Cannot find free area for bootmap, aborting.\n");
773         prom_halt();
774 }
775
776 static void __init trim_pavail(unsigned long *cur_size_p,
777                                unsigned long *end_of_phys_p)
778 {
779         unsigned long to_trim = *cur_size_p - cmdline_memory_size;
780         unsigned long avoid_start, avoid_end;
781         int i;
782
783         to_trim = PAGE_ALIGN(to_trim);
784
785         avoid_start = avoid_end = 0;
786 #ifdef CONFIG_BLK_DEV_INITRD
787         avoid_start = initrd_start;
788         avoid_end = PAGE_ALIGN(initrd_end);
789 #endif
790
791         /* Trim some pavail[] entries in order to satisfy the
792          * requested "mem=xxx" kernel command line specification.
793          *
794          * We must not trim off the kernel image area nor the
795          * initial ramdisk range (if any).  Also, we must not trim
796          * any pavail[] entry down to zero in order to preserve
797          * the invariant that all pavail[] entries have a non-zero
798          * size which is assumed by all of the code in here.
799          */
800         for (i = 0; i < pavail_ents; i++) {
801                 unsigned long start, end, kern_end;
802                 unsigned long trim_low, trim_high, n;
803
804                 kern_end = PAGE_ALIGN(kern_base + kern_size);
805
806                 trim_low = start = pavail[i].phys_addr;
807                 trim_high = end = start + pavail[i].reg_size;
808
809                 if (kern_base >= start &&
810                     kern_base < end) {
811                         trim_low = kern_base;
812                         if (kern_end >= end)
813                                 continue;
814                 }
815                 if (kern_end >= start &&
816                     kern_end < end) {
817                         trim_high = kern_end;
818                 }
819                 if (avoid_start &&
820                     avoid_start >= start &&
821                     avoid_start < end) {
822                         if (trim_low > avoid_start)
823                                 trim_low = avoid_start;
824                         if (avoid_end >= end)
825                                 continue;
826                 }
827                 if (avoid_end &&
828                     avoid_end >= start &&
829                     avoid_end < end) {
830                         if (trim_high < avoid_end)
831                                 trim_high = avoid_end;
832                 }
833
834                 if (trim_high <= trim_low)
835                         continue;
836
837                 if (trim_low == start && trim_high == end) {
838                         /* Whole chunk is available for trimming.
839                          * Trim all except one page, in order to keep
840                          * entry non-empty.
841                          */
842                         n = (end - start) - PAGE_SIZE;
843                         if (n > to_trim)
844                                 n = to_trim;
845
846                         if (n) {
847                                 pavail[i].phys_addr += n;
848                                 pavail[i].reg_size -= n;
849                                 to_trim -= n;
850                         }
851                 } else {
852                         n = (trim_low - start);
853                         if (n > to_trim)
854                                 n = to_trim;
855
856                         if (n) {
857                                 pavail[i].phys_addr += n;
858                                 pavail[i].reg_size -= n;
859                                 to_trim -= n;
860                         }
861                         if (to_trim) {
862                                 n = end - trim_high;
863                                 if (n > to_trim)
864                                         n = to_trim;
865                                 if (n) {
866                                         pavail[i].reg_size -= n;
867                                         to_trim -= n;
868                                 }
869                         }
870                 }
871
872                 if (!to_trim)
873                         break;
874         }
875
876         /* Recalculate.  */
877         *cur_size_p = 0UL;
878         for (i = 0; i < pavail_ents; i++) {
879                 *end_of_phys_p = pavail[i].phys_addr +
880                         pavail[i].reg_size;
881                 *cur_size_p += pavail[i].reg_size;
882         }
883 }
884
885 /* About pages_avail, this is the value we will use to calculate
886  * the zholes_size[] argument given to free_area_init_node().  The
887  * page allocator uses this to calculate nr_kernel_pages,
888  * nr_all_pages and zone->present_pages.  On NUMA it is used
889  * to calculate zone->min_unmapped_pages and zone->min_slab_pages.
890  *
891  * So this number should really be set to what the page allocator
892  * actually ends up with.  This means:
893  * 1) It should include bootmem map pages, we'll release those.
894  * 2) It should not include the kernel image, except for the
895  *    __init sections which we will also release.
896  * 3) It should include the initrd image, since we'll release
897  *    that too.
898  */
899 static unsigned long __init bootmem_init(unsigned long *pages_avail,
900                                          unsigned long phys_base)
901 {
902         unsigned long bootmap_size, end_pfn;
903         unsigned long end_of_phys_memory = 0UL;
904         unsigned long bootmap_pfn, bytes_avail, size;
905         int i;
906
907         bytes_avail = 0UL;
908         for (i = 0; i < pavail_ents; i++) {
909                 end_of_phys_memory = pavail[i].phys_addr +
910                         pavail[i].reg_size;
911                 bytes_avail += pavail[i].reg_size;
912         }
913
914         /* Determine the location of the initial ramdisk before trying
915          * to honor the "mem=xxx" command line argument.  We must know
916          * where the kernel image and the ramdisk image are so that we
917          * do not trim those two areas from the physical memory map.
918          */
919
920 #ifdef CONFIG_BLK_DEV_INITRD
921         /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
922         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
923                 unsigned long ramdisk_image = sparc_ramdisk_image ?
924                         sparc_ramdisk_image : sparc_ramdisk_image64;
925                 ramdisk_image -= KERNBASE;
926                 initrd_start = ramdisk_image + phys_base;
927                 initrd_end = initrd_start + sparc_ramdisk_size;
928                 if (initrd_end > end_of_phys_memory) {
929                         printk(KERN_CRIT "initrd extends beyond end of memory "
930                                          "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
931                                initrd_end, end_of_phys_memory);
932                         initrd_start = 0;
933                         initrd_end = 0;
934                 }
935         }
936 #endif  
937
938         if (cmdline_memory_size &&
939             bytes_avail > cmdline_memory_size)
940                 trim_pavail(&bytes_avail,
941                             &end_of_phys_memory);
942
943         *pages_avail = bytes_avail >> PAGE_SHIFT;
944
945         end_pfn = end_of_phys_memory >> PAGE_SHIFT;
946
947         /* Initialize the boot-time allocator. */
948         max_pfn = max_low_pfn = end_pfn;
949         min_low_pfn = (phys_base >> PAGE_SHIFT);
950
951         bootmap_pfn = choose_bootmap_pfn(min_low_pfn, end_pfn);
952
953         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn,
954                                          min_low_pfn, end_pfn);
955
956         /* Now register the available physical memory with the
957          * allocator.
958          */
959         for (i = 0; i < pavail_ents; i++)
960                 free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
961
962 #ifdef CONFIG_BLK_DEV_INITRD
963         if (initrd_start) {
964                 size = initrd_end - initrd_start;
965
966                 /* Reserve the initrd image area. */
967                 reserve_bootmem(initrd_start, size, BOOTMEM_DEFAULT);
968
969                 initrd_start += PAGE_OFFSET;
970                 initrd_end += PAGE_OFFSET;
971         }
972 #endif
973         /* Reserve the kernel text/data/bss. */
974         reserve_bootmem(kern_base, kern_size, BOOTMEM_DEFAULT);
975         *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
976
977         /* Add back in the initmem pages. */
978         size = ((unsigned long)(__init_end) & PAGE_MASK) -
979                 PAGE_ALIGN((unsigned long)__init_begin);
980         *pages_avail += size >> PAGE_SHIFT;
981
982         /* Reserve the bootmem map.   We do not account for it
983          * in pages_avail because we will release that memory
984          * in free_all_bootmem.
985          */
986         size = bootmap_size;
987         reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size, BOOTMEM_DEFAULT);
988
989         for (i = 0; i < pavail_ents; i++) {
990                 unsigned long start_pfn, end_pfn;
991
992                 start_pfn = pavail[i].phys_addr >> PAGE_SHIFT;
993                 end_pfn = (start_pfn + (pavail[i].reg_size >> PAGE_SHIFT));
994                 memory_present(0, start_pfn, end_pfn);
995         }
996
997         sparse_init();
998
999         return end_pfn;
1000 }
1001
1002 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1003 static int pall_ents __initdata;
1004
1005 #ifdef CONFIG_DEBUG_PAGEALLOC
1006 static unsigned long __ref kernel_map_range(unsigned long pstart,
1007                                             unsigned long pend, pgprot_t prot)
1008 {
1009         unsigned long vstart = PAGE_OFFSET + pstart;
1010         unsigned long vend = PAGE_OFFSET + pend;
1011         unsigned long alloc_bytes = 0UL;
1012
1013         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1014                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1015                             vstart, vend);
1016                 prom_halt();
1017         }
1018
1019         while (vstart < vend) {
1020                 unsigned long this_end, paddr = __pa(vstart);
1021                 pgd_t *pgd = pgd_offset_k(vstart);
1022                 pud_t *pud;
1023                 pmd_t *pmd;
1024                 pte_t *pte;
1025
1026                 pud = pud_offset(pgd, vstart);
1027                 if (pud_none(*pud)) {
1028                         pmd_t *new;
1029
1030                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1031                         alloc_bytes += PAGE_SIZE;
1032                         pud_populate(&init_mm, pud, new);
1033                 }
1034
1035                 pmd = pmd_offset(pud, vstart);
1036                 if (!pmd_present(*pmd)) {
1037                         pte_t *new;
1038
1039                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1040                         alloc_bytes += PAGE_SIZE;
1041                         pmd_populate_kernel(&init_mm, pmd, new);
1042                 }
1043
1044                 pte = pte_offset_kernel(pmd, vstart);
1045                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1046                 if (this_end > vend)
1047                         this_end = vend;
1048
1049                 while (vstart < this_end) {
1050                         pte_val(*pte) = (paddr | pgprot_val(prot));
1051
1052                         vstart += PAGE_SIZE;
1053                         paddr += PAGE_SIZE;
1054                         pte++;
1055                 }
1056         }
1057
1058         return alloc_bytes;
1059 }
1060
1061 extern unsigned int kvmap_linear_patch[1];
1062 #endif /* CONFIG_DEBUG_PAGEALLOC */
1063
1064 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1065 {
1066         const unsigned long shift_256MB = 28;
1067         const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1068         const unsigned long size_256MB = (1UL << shift_256MB);
1069
1070         while (start < end) {
1071                 long remains;
1072
1073                 remains = end - start;
1074                 if (remains < size_256MB)
1075                         break;
1076
1077                 if (start & mask_256MB) {
1078                         start = (start + size_256MB) & ~mask_256MB;
1079                         continue;
1080                 }
1081
1082                 while (remains >= size_256MB) {
1083                         unsigned long index = start >> shift_256MB;
1084
1085                         __set_bit(index, kpte_linear_bitmap);
1086
1087                         start += size_256MB;
1088                         remains -= size_256MB;
1089                 }
1090         }
1091 }
1092
1093 static void __init init_kpte_bitmap(void)
1094 {
1095         unsigned long i;
1096
1097         for (i = 0; i < pall_ents; i++) {
1098                 unsigned long phys_start, phys_end;
1099
1100                 phys_start = pall[i].phys_addr;
1101                 phys_end = phys_start + pall[i].reg_size;
1102
1103                 mark_kpte_bitmap(phys_start, phys_end);
1104         }
1105 }
1106
1107 static void __init kernel_physical_mapping_init(void)
1108 {
1109 #ifdef CONFIG_DEBUG_PAGEALLOC
1110         unsigned long i, mem_alloced = 0UL;
1111
1112         for (i = 0; i < pall_ents; i++) {
1113                 unsigned long phys_start, phys_end;
1114
1115                 phys_start = pall[i].phys_addr;
1116                 phys_end = phys_start + pall[i].reg_size;
1117
1118                 mem_alloced += kernel_map_range(phys_start, phys_end,
1119                                                 PAGE_KERNEL);
1120         }
1121
1122         printk("Allocated %ld bytes for kernel page tables.\n",
1123                mem_alloced);
1124
1125         kvmap_linear_patch[0] = 0x01000000; /* nop */
1126         flushi(&kvmap_linear_patch[0]);
1127
1128         __flush_tlb_all();
1129 #endif
1130 }
1131
1132 #ifdef CONFIG_DEBUG_PAGEALLOC
1133 void kernel_map_pages(struct page *page, int numpages, int enable)
1134 {
1135         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1136         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1137
1138         kernel_map_range(phys_start, phys_end,
1139                          (enable ? PAGE_KERNEL : __pgprot(0)));
1140
1141         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1142                                PAGE_OFFSET + phys_end);
1143
1144         /* we should perform an IPI and flush all tlbs,
1145          * but that can deadlock->flush only current cpu.
1146          */
1147         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1148                                  PAGE_OFFSET + phys_end);
1149 }
1150 #endif
1151
1152 unsigned long __init find_ecache_flush_span(unsigned long size)
1153 {
1154         int i;
1155
1156         for (i = 0; i < pavail_ents; i++) {
1157                 if (pavail[i].reg_size >= size)
1158                         return pavail[i].phys_addr;
1159         }
1160
1161         return ~0UL;
1162 }
1163
1164 static void __init tsb_phys_patch(void)
1165 {
1166         struct tsb_ldquad_phys_patch_entry *pquad;
1167         struct tsb_phys_patch_entry *p;
1168
1169         pquad = &__tsb_ldquad_phys_patch;
1170         while (pquad < &__tsb_ldquad_phys_patch_end) {
1171                 unsigned long addr = pquad->addr;
1172
1173                 if (tlb_type == hypervisor)
1174                         *(unsigned int *) addr = pquad->sun4v_insn;
1175                 else
1176                         *(unsigned int *) addr = pquad->sun4u_insn;
1177                 wmb();
1178                 __asm__ __volatile__("flush     %0"
1179                                      : /* no outputs */
1180                                      : "r" (addr));
1181
1182                 pquad++;
1183         }
1184
1185         p = &__tsb_phys_patch;
1186         while (p < &__tsb_phys_patch_end) {
1187                 unsigned long addr = p->addr;
1188
1189                 *(unsigned int *) addr = p->insn;
1190                 wmb();
1191                 __asm__ __volatile__("flush     %0"
1192                                      : /* no outputs */
1193                                      : "r" (addr));
1194
1195                 p++;
1196         }
1197 }
1198
1199 /* Don't mark as init, we give this to the Hypervisor.  */
1200 #ifndef CONFIG_DEBUG_PAGEALLOC
1201 #define NUM_KTSB_DESCR  2
1202 #else
1203 #define NUM_KTSB_DESCR  1
1204 #endif
1205 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1206 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1207
1208 static void __init sun4v_ktsb_init(void)
1209 {
1210         unsigned long ktsb_pa;
1211
1212         /* First KTSB for PAGE_SIZE mappings.  */
1213         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1214
1215         switch (PAGE_SIZE) {
1216         case 8 * 1024:
1217         default:
1218                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1219                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1220                 break;
1221
1222         case 64 * 1024:
1223                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1224                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1225                 break;
1226
1227         case 512 * 1024:
1228                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1229                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1230                 break;
1231
1232         case 4 * 1024 * 1024:
1233                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1234                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1235                 break;
1236         };
1237
1238         ktsb_descr[0].assoc = 1;
1239         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1240         ktsb_descr[0].ctx_idx = 0;
1241         ktsb_descr[0].tsb_base = ktsb_pa;
1242         ktsb_descr[0].resv = 0;
1243
1244 #ifndef CONFIG_DEBUG_PAGEALLOC
1245         /* Second KTSB for 4MB/256MB mappings.  */
1246         ktsb_pa = (kern_base +
1247                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1248
1249         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1250         ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1251                                    HV_PGSZ_MASK_256MB);
1252         ktsb_descr[1].assoc = 1;
1253         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1254         ktsb_descr[1].ctx_idx = 0;
1255         ktsb_descr[1].tsb_base = ktsb_pa;
1256         ktsb_descr[1].resv = 0;
1257 #endif
1258 }
1259
1260 void __cpuinit sun4v_ktsb_register(void)
1261 {
1262         unsigned long pa, ret;
1263
1264         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1265
1266         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1267         if (ret != 0) {
1268                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1269                             "errors with %lx\n", pa, ret);
1270                 prom_halt();
1271         }
1272 }
1273
1274 /* paging_init() sets up the page tables */
1275
1276 extern void cheetah_ecache_flush_init(void);
1277 extern void sun4v_patch_tlb_handlers(void);
1278
1279 extern void cpu_probe(void);
1280 extern void central_probe(void);
1281
1282 static unsigned long last_valid_pfn;
1283 pgd_t swapper_pg_dir[2048];
1284
1285 static void sun4u_pgprot_init(void);
1286 static void sun4v_pgprot_init(void);
1287
1288 /* Dummy function */
1289 void __init setup_per_cpu_areas(void)
1290 {
1291 }
1292
1293 void __init paging_init(void)
1294 {
1295         unsigned long end_pfn, pages_avail, shift, phys_base;
1296         unsigned long real_end, i;
1297
1298         /* These build time checkes make sure that the dcache_dirty_cpu()
1299          * page->flags usage will work.
1300          *
1301          * When a page gets marked as dcache-dirty, we store the
1302          * cpu number starting at bit 32 in the page->flags.  Also,
1303          * functions like clear_dcache_dirty_cpu use the cpu mask
1304          * in 13-bit signed-immediate instruction fields.
1305          */
1306         BUILD_BUG_ON(FLAGS_RESERVED != 32);
1307         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1308                      ilog2(roundup_pow_of_two(NR_CPUS)) > FLAGS_RESERVED);
1309         BUILD_BUG_ON(NR_CPUS > 4096);
1310
1311         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1312         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1313
1314         sstate_booting();
1315
1316         /* Invalidate both kernel TSBs.  */
1317         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1318 #ifndef CONFIG_DEBUG_PAGEALLOC
1319         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1320 #endif
1321
1322         if (tlb_type == hypervisor)
1323                 sun4v_pgprot_init();
1324         else
1325                 sun4u_pgprot_init();
1326
1327         if (tlb_type == cheetah_plus ||
1328             tlb_type == hypervisor)
1329                 tsb_phys_patch();
1330
1331         if (tlb_type == hypervisor) {
1332                 sun4v_patch_tlb_handlers();
1333                 sun4v_ktsb_init();
1334         }
1335
1336         /* Find available physical memory... */
1337         read_obp_memory("available", &pavail[0], &pavail_ents);
1338
1339         phys_base = 0xffffffffffffffffUL;
1340         for (i = 0; i < pavail_ents; i++)
1341                 phys_base = min(phys_base, pavail[i].phys_addr);
1342
1343         set_bit(0, mmu_context_bmap);
1344
1345         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1346
1347         real_end = (unsigned long)_end;
1348         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1349         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1350                num_kernel_image_mappings);
1351
1352         /* Set kernel pgd to upper alias so physical page computations
1353          * work.
1354          */
1355         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1356         
1357         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1358
1359         /* Now can init the kernel/bad page tables. */
1360         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1361                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1362         
1363         inherit_prom_mappings();
1364         
1365         read_obp_memory("reg", &pall[0], &pall_ents);
1366
1367         init_kpte_bitmap();
1368
1369         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1370         setup_tba();
1371
1372         __flush_tlb_all();
1373
1374         if (tlb_type == hypervisor)
1375                 sun4v_ktsb_register();
1376
1377         /* Setup bootmem... */
1378         pages_avail = 0;
1379         last_valid_pfn = end_pfn = bootmem_init(&pages_avail, phys_base);
1380
1381         max_mapnr = last_valid_pfn;
1382
1383         kernel_physical_mapping_init();
1384
1385         real_setup_per_cpu_areas();
1386
1387         prom_build_devicetree();
1388
1389         if (tlb_type == hypervisor)
1390                 sun4v_mdesc_init();
1391
1392         {
1393                 unsigned long zones_size[MAX_NR_ZONES];
1394                 unsigned long zholes_size[MAX_NR_ZONES];
1395                 int znum;
1396
1397                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1398                         zones_size[znum] = zholes_size[znum] = 0;
1399
1400                 zones_size[ZONE_NORMAL] = end_pfn;
1401                 zholes_size[ZONE_NORMAL] = end_pfn - pages_avail;
1402
1403                 free_area_init_node(0, &contig_page_data, zones_size,
1404                                     __pa(PAGE_OFFSET) >> PAGE_SHIFT,
1405                                     zholes_size);
1406         }
1407
1408         printk("Booting Linux...\n");
1409
1410         central_probe();
1411         cpu_probe();
1412 }
1413
1414 static void __init taint_real_pages(void)
1415 {
1416         int i;
1417
1418         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1419
1420         /* Find changes discovered in the physmem available rescan and
1421          * reserve the lost portions in the bootmem maps.
1422          */
1423         for (i = 0; i < pavail_ents; i++) {
1424                 unsigned long old_start, old_end;
1425
1426                 old_start = pavail[i].phys_addr;
1427                 old_end = old_start +
1428                         pavail[i].reg_size;
1429                 while (old_start < old_end) {
1430                         int n;
1431
1432                         for (n = 0; n < pavail_rescan_ents; n++) {
1433                                 unsigned long new_start, new_end;
1434
1435                                 new_start = pavail_rescan[n].phys_addr;
1436                                 new_end = new_start +
1437                                         pavail_rescan[n].reg_size;
1438
1439                                 if (new_start <= old_start &&
1440                                     new_end >= (old_start + PAGE_SIZE)) {
1441                                         set_bit(old_start >> 22,
1442                                                 sparc64_valid_addr_bitmap);
1443                                         goto do_next_page;
1444                                 }
1445                         }
1446                         reserve_bootmem(old_start, PAGE_SIZE, BOOTMEM_DEFAULT);
1447
1448                 do_next_page:
1449                         old_start += PAGE_SIZE;
1450                 }
1451         }
1452 }
1453
1454 int __init page_in_phys_avail(unsigned long paddr)
1455 {
1456         int i;
1457
1458         paddr &= PAGE_MASK;
1459
1460         for (i = 0; i < pavail_rescan_ents; i++) {
1461                 unsigned long start, end;
1462
1463                 start = pavail_rescan[i].phys_addr;
1464                 end = start + pavail_rescan[i].reg_size;
1465
1466                 if (paddr >= start && paddr < end)
1467                         return 1;
1468         }
1469         if (paddr >= kern_base && paddr < (kern_base + kern_size))
1470                 return 1;
1471 #ifdef CONFIG_BLK_DEV_INITRD
1472         if (paddr >= __pa(initrd_start) &&
1473             paddr < __pa(PAGE_ALIGN(initrd_end)))
1474                 return 1;
1475 #endif
1476
1477         return 0;
1478 }
1479
1480 void __init mem_init(void)
1481 {
1482         unsigned long codepages, datapages, initpages;
1483         unsigned long addr, last;
1484         int i;
1485
1486         i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1487         i += 1;
1488         sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1489         if (sparc64_valid_addr_bitmap == NULL) {
1490                 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1491                 prom_halt();
1492         }
1493         memset(sparc64_valid_addr_bitmap, 0, i << 3);
1494
1495         addr = PAGE_OFFSET + kern_base;
1496         last = PAGE_ALIGN(kern_size) + addr;
1497         while (addr < last) {
1498                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1499                 addr += PAGE_SIZE;
1500         }
1501
1502         taint_real_pages();
1503
1504         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1505
1506         /* We subtract one to account for the mem_map_zero page
1507          * allocated below.
1508          */
1509         totalram_pages = num_physpages = free_all_bootmem() - 1;
1510
1511         /*
1512          * Set up the zero page, mark it reserved, so that page count
1513          * is not manipulated when freeing the page from user ptes.
1514          */
1515         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1516         if (mem_map_zero == NULL) {
1517                 prom_printf("paging_init: Cannot alloc zero page.\n");
1518                 prom_halt();
1519         }
1520         SetPageReserved(mem_map_zero);
1521
1522         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1523         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1524         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1525         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1526         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1527         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1528
1529         printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1530                nr_free_pages() << (PAGE_SHIFT-10),
1531                codepages << (PAGE_SHIFT-10),
1532                datapages << (PAGE_SHIFT-10), 
1533                initpages << (PAGE_SHIFT-10), 
1534                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1535
1536         if (tlb_type == cheetah || tlb_type == cheetah_plus)
1537                 cheetah_ecache_flush_init();
1538 }
1539
1540 void free_initmem(void)
1541 {
1542         unsigned long addr, initend;
1543
1544         /*
1545          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1546          */
1547         addr = PAGE_ALIGN((unsigned long)(__init_begin));
1548         initend = (unsigned long)(__init_end) & PAGE_MASK;
1549         for (; addr < initend; addr += PAGE_SIZE) {
1550                 unsigned long page;
1551                 struct page *p;
1552
1553                 page = (addr +
1554                         ((unsigned long) __va(kern_base)) -
1555                         ((unsigned long) KERNBASE));
1556                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1557                 p = virt_to_page(page);
1558
1559                 ClearPageReserved(p);
1560                 init_page_count(p);
1561                 __free_page(p);
1562                 num_physpages++;
1563                 totalram_pages++;
1564         }
1565 }
1566
1567 #ifdef CONFIG_BLK_DEV_INITRD
1568 void free_initrd_mem(unsigned long start, unsigned long end)
1569 {
1570         if (start < end)
1571                 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1572         for (; start < end; start += PAGE_SIZE) {
1573                 struct page *p = virt_to_page(start);
1574
1575                 ClearPageReserved(p);
1576                 init_page_count(p);
1577                 __free_page(p);
1578                 num_physpages++;
1579                 totalram_pages++;
1580         }
1581 }
1582 #endif
1583
1584 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
1585 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
1586 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1587 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1588 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1589 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1590
1591 pgprot_t PAGE_KERNEL __read_mostly;
1592 EXPORT_SYMBOL(PAGE_KERNEL);
1593
1594 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
1595 pgprot_t PAGE_COPY __read_mostly;
1596
1597 pgprot_t PAGE_SHARED __read_mostly;
1598 EXPORT_SYMBOL(PAGE_SHARED);
1599
1600 pgprot_t PAGE_EXEC __read_mostly;
1601 unsigned long pg_iobits __read_mostly;
1602
1603 unsigned long _PAGE_IE __read_mostly;
1604 EXPORT_SYMBOL(_PAGE_IE);
1605
1606 unsigned long _PAGE_E __read_mostly;
1607 EXPORT_SYMBOL(_PAGE_E);
1608
1609 unsigned long _PAGE_CACHE __read_mostly;
1610 EXPORT_SYMBOL(_PAGE_CACHE);
1611
1612 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1613
1614 #define VMEMMAP_CHUNK_SHIFT     22
1615 #define VMEMMAP_CHUNK           (1UL << VMEMMAP_CHUNK_SHIFT)
1616 #define VMEMMAP_CHUNK_MASK      ~(VMEMMAP_CHUNK - 1UL)
1617 #define VMEMMAP_ALIGN(x)        (((x)+VMEMMAP_CHUNK-1UL)&VMEMMAP_CHUNK_MASK)
1618
1619 #define VMEMMAP_SIZE    ((((1UL << MAX_PHYSADDR_BITS) >> PAGE_SHIFT) * \
1620                           sizeof(struct page *)) >> VMEMMAP_CHUNK_SHIFT)
1621 unsigned long vmemmap_table[VMEMMAP_SIZE];
1622
1623 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
1624 {
1625         unsigned long vstart = (unsigned long) start;
1626         unsigned long vend = (unsigned long) (start + nr);
1627         unsigned long phys_start = (vstart - VMEMMAP_BASE);
1628         unsigned long phys_end = (vend - VMEMMAP_BASE);
1629         unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
1630         unsigned long end = VMEMMAP_ALIGN(phys_end);
1631         unsigned long pte_base;
1632
1633         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
1634                     _PAGE_CP_4U | _PAGE_CV_4U |
1635                     _PAGE_P_4U | _PAGE_W_4U);
1636         if (tlb_type == hypervisor)
1637                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
1638                             _PAGE_CP_4V | _PAGE_CV_4V |
1639                             _PAGE_P_4V | _PAGE_W_4V);
1640
1641         for (; addr < end; addr += VMEMMAP_CHUNK) {
1642                 unsigned long *vmem_pp =
1643                         vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
1644                 void *block;
1645
1646                 if (!(*vmem_pp & _PAGE_VALID)) {
1647                         block = vmemmap_alloc_block(1UL << 22, node);
1648                         if (!block)
1649                                 return -ENOMEM;
1650
1651                         *vmem_pp = pte_base | __pa(block);
1652
1653                         printk(KERN_INFO "[%p-%p] page_structs=%lu "
1654                                "node=%d entry=%lu/%lu\n", start, block, nr,
1655                                node,
1656                                addr >> VMEMMAP_CHUNK_SHIFT,
1657                                VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
1658                 }
1659         }
1660         return 0;
1661 }
1662 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
1663
1664 static void prot_init_common(unsigned long page_none,
1665                              unsigned long page_shared,
1666                              unsigned long page_copy,
1667                              unsigned long page_readonly,
1668                              unsigned long page_exec_bit)
1669 {
1670         PAGE_COPY = __pgprot(page_copy);
1671         PAGE_SHARED = __pgprot(page_shared);
1672
1673         protection_map[0x0] = __pgprot(page_none);
1674         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
1675         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
1676         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
1677         protection_map[0x4] = __pgprot(page_readonly);
1678         protection_map[0x5] = __pgprot(page_readonly);
1679         protection_map[0x6] = __pgprot(page_copy);
1680         protection_map[0x7] = __pgprot(page_copy);
1681         protection_map[0x8] = __pgprot(page_none);
1682         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
1683         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
1684         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
1685         protection_map[0xc] = __pgprot(page_readonly);
1686         protection_map[0xd] = __pgprot(page_readonly);
1687         protection_map[0xe] = __pgprot(page_shared);
1688         protection_map[0xf] = __pgprot(page_shared);
1689 }
1690
1691 static void __init sun4u_pgprot_init(void)
1692 {
1693         unsigned long page_none, page_shared, page_copy, page_readonly;
1694         unsigned long page_exec_bit;
1695
1696         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1697                                 _PAGE_CACHE_4U | _PAGE_P_4U |
1698                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1699                                 _PAGE_EXEC_4U);
1700         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1701                                        _PAGE_CACHE_4U | _PAGE_P_4U |
1702                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1703                                        _PAGE_EXEC_4U | _PAGE_L_4U);
1704         PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
1705
1706         _PAGE_IE = _PAGE_IE_4U;
1707         _PAGE_E = _PAGE_E_4U;
1708         _PAGE_CACHE = _PAGE_CACHE_4U;
1709
1710         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
1711                      __ACCESS_BITS_4U | _PAGE_E_4U);
1712
1713 #ifdef CONFIG_DEBUG_PAGEALLOC
1714         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
1715                 0xfffff80000000000;
1716 #else
1717         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
1718                 0xfffff80000000000;
1719 #endif
1720         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
1721                                    _PAGE_P_4U | _PAGE_W_4U);
1722
1723         /* XXX Should use 256MB on Panther. XXX */
1724         kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1725
1726         _PAGE_SZBITS = _PAGE_SZBITS_4U;
1727         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
1728                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
1729                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
1730
1731
1732         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
1733         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1734                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
1735         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1736                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1737         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1738                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1739
1740         page_exec_bit = _PAGE_EXEC_4U;
1741
1742         prot_init_common(page_none, page_shared, page_copy, page_readonly,
1743                          page_exec_bit);
1744 }
1745
1746 static void __init sun4v_pgprot_init(void)
1747 {
1748         unsigned long page_none, page_shared, page_copy, page_readonly;
1749         unsigned long page_exec_bit;
1750
1751         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
1752                                 _PAGE_CACHE_4V | _PAGE_P_4V |
1753                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
1754                                 _PAGE_EXEC_4V);
1755         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
1756         PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
1757
1758         _PAGE_IE = _PAGE_IE_4V;
1759         _PAGE_E = _PAGE_E_4V;
1760         _PAGE_CACHE = _PAGE_CACHE_4V;
1761
1762 #ifdef CONFIG_DEBUG_PAGEALLOC
1763         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
1764                 0xfffff80000000000;
1765 #else
1766         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
1767                 0xfffff80000000000;
1768 #endif
1769         kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1770                                    _PAGE_P_4V | _PAGE_W_4V);
1771
1772 #ifdef CONFIG_DEBUG_PAGEALLOC
1773         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
1774                 0xfffff80000000000;
1775 #else
1776         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1777                 0xfffff80000000000;
1778 #endif
1779         kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1780                                    _PAGE_P_4V | _PAGE_W_4V);
1781
1782         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
1783                      __ACCESS_BITS_4V | _PAGE_E_4V);
1784
1785         _PAGE_SZBITS = _PAGE_SZBITS_4V;
1786         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
1787                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
1788                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
1789                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
1790
1791         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
1792         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1793                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
1794         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1795                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1796         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1797                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1798
1799         page_exec_bit = _PAGE_EXEC_4V;
1800
1801         prot_init_common(page_none, page_shared, page_copy, page_readonly,
1802                          page_exec_bit);
1803 }
1804
1805 unsigned long pte_sz_bits(unsigned long sz)
1806 {
1807         if (tlb_type == hypervisor) {
1808                 switch (sz) {
1809                 case 8 * 1024:
1810                 default:
1811                         return _PAGE_SZ8K_4V;
1812                 case 64 * 1024:
1813                         return _PAGE_SZ64K_4V;
1814                 case 512 * 1024:
1815                         return _PAGE_SZ512K_4V;
1816                 case 4 * 1024 * 1024:
1817                         return _PAGE_SZ4MB_4V;
1818                 };
1819         } else {
1820                 switch (sz) {
1821                 case 8 * 1024:
1822                 default:
1823                         return _PAGE_SZ8K_4U;
1824                 case 64 * 1024:
1825                         return _PAGE_SZ64K_4U;
1826                 case 512 * 1024:
1827                         return _PAGE_SZ512K_4U;
1828                 case 4 * 1024 * 1024:
1829                         return _PAGE_SZ4MB_4U;
1830                 };
1831         }
1832 }
1833
1834 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
1835 {
1836         pte_t pte;
1837
1838         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
1839         pte_val(pte) |= (((unsigned long)space) << 32);
1840         pte_val(pte) |= pte_sz_bits(page_size);
1841
1842         return pte;
1843 }
1844
1845 static unsigned long kern_large_tte(unsigned long paddr)
1846 {
1847         unsigned long val;
1848
1849         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
1850                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
1851                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
1852         if (tlb_type == hypervisor)
1853                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
1854                        _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
1855                        _PAGE_EXEC_4V | _PAGE_W_4V);
1856
1857         return val | paddr;
1858 }
1859
1860 /* If not locked, zap it. */
1861 void __flush_tlb_all(void)
1862 {
1863         unsigned long pstate;
1864         int i;
1865
1866         __asm__ __volatile__("flushw\n\t"
1867                              "rdpr      %%pstate, %0\n\t"
1868                              "wrpr      %0, %1, %%pstate"
1869                              : "=r" (pstate)
1870                              : "i" (PSTATE_IE));
1871         if (tlb_type == hypervisor) {
1872                 sun4v_mmu_demap_all();
1873         } else if (tlb_type == spitfire) {
1874                 for (i = 0; i < 64; i++) {
1875                         /* Spitfire Errata #32 workaround */
1876                         /* NOTE: Always runs on spitfire, so no
1877                          *       cheetah+ page size encodings.
1878                          */
1879                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
1880                                              "flush     %%g6"
1881                                              : /* No outputs */
1882                                              : "r" (0),
1883                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1884
1885                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
1886                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1887                                                      "membar #Sync"
1888                                                      : /* no outputs */
1889                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
1890                                 spitfire_put_dtlb_data(i, 0x0UL);
1891                         }
1892
1893                         /* Spitfire Errata #32 workaround */
1894                         /* NOTE: Always runs on spitfire, so no
1895                          *       cheetah+ page size encodings.
1896                          */
1897                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
1898                                              "flush     %%g6"
1899                                              : /* No outputs */
1900                                              : "r" (0),
1901                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1902
1903                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
1904                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1905                                                      "membar #Sync"
1906                                                      : /* no outputs */
1907                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
1908                                 spitfire_put_itlb_data(i, 0x0UL);
1909                         }
1910                 }
1911         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1912                 cheetah_flush_dtlb_all();
1913                 cheetah_flush_itlb_all();
1914         }
1915         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
1916                              : : "r" (pstate));
1917 }
1918
1919 #ifdef CONFIG_MEMORY_HOTPLUG
1920
1921 void online_page(struct page *page)
1922 {
1923         ClearPageReserved(page);
1924         init_page_count(page);
1925         __free_page(page);
1926         totalram_pages++;
1927         num_physpages++;
1928 }
1929
1930 #endif /* CONFIG_MEMORY_HOTPLUG */