]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/sparc64/mm/init.c
8c2b50e8abc63d7696386f96d0ce06c62003c1fc
[linux-2.6-omap-h63xx.git] / arch / sparc64 / mm / init.c
1 /*  $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/percpu.h>
27 #include <linux/lmb.h>
28 #include <linux/mmzone.h>
29
30 #include <asm/head.h>
31 #include <asm/system.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/sstate.h>
50 #include <asm/mdesc.h>
51 #include <asm/cpudata.h>
52
53 #define MAX_PHYS_ADDRESS        (1UL << 42UL)
54 #define KPTE_BITMAP_CHUNK_SZ    (256UL * 1024UL * 1024UL)
55 #define KPTE_BITMAP_BYTES       \
56         ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
57
58 unsigned long kern_linear_pte_xor[2] __read_mostly;
59
60 /* A bitmap, one bit for every 256MB of physical memory.  If the bit
61  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
62  * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
63  */
64 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
65
66 #ifndef CONFIG_DEBUG_PAGEALLOC
67 /* A special kernel TSB for 4MB and 256MB linear mappings.
68  * Space is allocated for this right after the trap table
69  * in arch/sparc64/kernel/head.S
70  */
71 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
72 #endif
73
74 #define MAX_BANKS       32
75
76 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
77 static int pavail_ents __initdata;
78
79 static int cmp_p64(const void *a, const void *b)
80 {
81         const struct linux_prom64_registers *x = a, *y = b;
82
83         if (x->phys_addr > y->phys_addr)
84                 return 1;
85         if (x->phys_addr < y->phys_addr)
86                 return -1;
87         return 0;
88 }
89
90 static void __init read_obp_memory(const char *property,
91                                    struct linux_prom64_registers *regs,
92                                    int *num_ents)
93 {
94         int node = prom_finddevice("/memory");
95         int prop_size = prom_getproplen(node, property);
96         int ents, ret, i;
97
98         ents = prop_size / sizeof(struct linux_prom64_registers);
99         if (ents > MAX_BANKS) {
100                 prom_printf("The machine has more %s property entries than "
101                             "this kernel can support (%d).\n",
102                             property, MAX_BANKS);
103                 prom_halt();
104         }
105
106         ret = prom_getproperty(node, property, (char *) regs, prop_size);
107         if (ret == -1) {
108                 prom_printf("Couldn't get %s property from /memory.\n");
109                 prom_halt();
110         }
111
112         /* Sanitize what we got from the firmware, by page aligning
113          * everything.
114          */
115         for (i = 0; i < ents; i++) {
116                 unsigned long base, size;
117
118                 base = regs[i].phys_addr;
119                 size = regs[i].reg_size;
120
121                 size &= PAGE_MASK;
122                 if (base & ~PAGE_MASK) {
123                         unsigned long new_base = PAGE_ALIGN(base);
124
125                         size -= new_base - base;
126                         if ((long) size < 0L)
127                                 size = 0UL;
128                         base = new_base;
129                 }
130                 if (size == 0UL) {
131                         /* If it is empty, simply get rid of it.
132                          * This simplifies the logic of the other
133                          * functions that process these arrays.
134                          */
135                         memmove(&regs[i], &regs[i + 1],
136                                 (ents - i - 1) * sizeof(regs[0]));
137                         i--;
138                         ents--;
139                         continue;
140                 }
141                 regs[i].phys_addr = base;
142                 regs[i].reg_size = size;
143         }
144
145         *num_ents = ents;
146
147         sort(regs, ents, sizeof(struct linux_prom64_registers),
148              cmp_p64, NULL);
149 }
150
151 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
152
153 /* Kernel physical address base and size in bytes.  */
154 unsigned long kern_base __read_mostly;
155 unsigned long kern_size __read_mostly;
156
157 /* Initial ramdisk setup */
158 extern unsigned long sparc_ramdisk_image64;
159 extern unsigned int sparc_ramdisk_image;
160 extern unsigned int sparc_ramdisk_size;
161
162 struct page *mem_map_zero __read_mostly;
163
164 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
165
166 unsigned long sparc64_kern_pri_context __read_mostly;
167 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
168 unsigned long sparc64_kern_sec_context __read_mostly;
169
170 int num_kernel_image_mappings;
171
172 #ifdef CONFIG_DEBUG_DCFLUSH
173 atomic_t dcpage_flushes = ATOMIC_INIT(0);
174 #ifdef CONFIG_SMP
175 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
176 #endif
177 #endif
178
179 inline void flush_dcache_page_impl(struct page *page)
180 {
181         BUG_ON(tlb_type == hypervisor);
182 #ifdef CONFIG_DEBUG_DCFLUSH
183         atomic_inc(&dcpage_flushes);
184 #endif
185
186 #ifdef DCACHE_ALIASING_POSSIBLE
187         __flush_dcache_page(page_address(page),
188                             ((tlb_type == spitfire) &&
189                              page_mapping(page) != NULL));
190 #else
191         if (page_mapping(page) != NULL &&
192             tlb_type == spitfire)
193                 __flush_icache_page(__pa(page_address(page)));
194 #endif
195 }
196
197 #define PG_dcache_dirty         PG_arch_1
198 #define PG_dcache_cpu_shift     32UL
199 #define PG_dcache_cpu_mask      \
200         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
201
202 #define dcache_dirty_cpu(page) \
203         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
204
205 static inline void set_dcache_dirty(struct page *page, int this_cpu)
206 {
207         unsigned long mask = this_cpu;
208         unsigned long non_cpu_bits;
209
210         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
211         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
212
213         __asm__ __volatile__("1:\n\t"
214                              "ldx       [%2], %%g7\n\t"
215                              "and       %%g7, %1, %%g1\n\t"
216                              "or        %%g1, %0, %%g1\n\t"
217                              "casx      [%2], %%g7, %%g1\n\t"
218                              "cmp       %%g7, %%g1\n\t"
219                              "membar    #StoreLoad | #StoreStore\n\t"
220                              "bne,pn    %%xcc, 1b\n\t"
221                              " nop"
222                              : /* no outputs */
223                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
224                              : "g1", "g7");
225 }
226
227 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
228 {
229         unsigned long mask = (1UL << PG_dcache_dirty);
230
231         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
232                              "1:\n\t"
233                              "ldx       [%2], %%g7\n\t"
234                              "srlx      %%g7, %4, %%g1\n\t"
235                              "and       %%g1, %3, %%g1\n\t"
236                              "cmp       %%g1, %0\n\t"
237                              "bne,pn    %%icc, 2f\n\t"
238                              " andn     %%g7, %1, %%g1\n\t"
239                              "casx      [%2], %%g7, %%g1\n\t"
240                              "cmp       %%g7, %%g1\n\t"
241                              "membar    #StoreLoad | #StoreStore\n\t"
242                              "bne,pn    %%xcc, 1b\n\t"
243                              " nop\n"
244                              "2:"
245                              : /* no outputs */
246                              : "r" (cpu), "r" (mask), "r" (&page->flags),
247                                "i" (PG_dcache_cpu_mask),
248                                "i" (PG_dcache_cpu_shift)
249                              : "g1", "g7");
250 }
251
252 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
253 {
254         unsigned long tsb_addr = (unsigned long) ent;
255
256         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
257                 tsb_addr = __pa(tsb_addr);
258
259         __tsb_insert(tsb_addr, tag, pte);
260 }
261
262 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
263 unsigned long _PAGE_SZBITS __read_mostly;
264
265 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
266 {
267         struct mm_struct *mm;
268         struct tsb *tsb;
269         unsigned long tag, flags;
270         unsigned long tsb_index, tsb_hash_shift;
271
272         if (tlb_type != hypervisor) {
273                 unsigned long pfn = pte_pfn(pte);
274                 unsigned long pg_flags;
275                 struct page *page;
276
277                 if (pfn_valid(pfn) &&
278                     (page = pfn_to_page(pfn), page_mapping(page)) &&
279                     ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
280                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
281                                    PG_dcache_cpu_mask);
282                         int this_cpu = get_cpu();
283
284                         /* This is just to optimize away some function calls
285                          * in the SMP case.
286                          */
287                         if (cpu == this_cpu)
288                                 flush_dcache_page_impl(page);
289                         else
290                                 smp_flush_dcache_page_impl(page, cpu);
291
292                         clear_dcache_dirty_cpu(page, cpu);
293
294                         put_cpu();
295                 }
296         }
297
298         mm = vma->vm_mm;
299
300         tsb_index = MM_TSB_BASE;
301         tsb_hash_shift = PAGE_SHIFT;
302
303         spin_lock_irqsave(&mm->context.lock, flags);
304
305 #ifdef CONFIG_HUGETLB_PAGE
306         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
307                 if ((tlb_type == hypervisor &&
308                      (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
309                     (tlb_type != hypervisor &&
310                      (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
311                         tsb_index = MM_TSB_HUGE;
312                         tsb_hash_shift = HPAGE_SHIFT;
313                 }
314         }
315 #endif
316
317         tsb = mm->context.tsb_block[tsb_index].tsb;
318         tsb += ((address >> tsb_hash_shift) &
319                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
320         tag = (address >> 22UL);
321         tsb_insert(tsb, tag, pte_val(pte));
322
323         spin_unlock_irqrestore(&mm->context.lock, flags);
324 }
325
326 void flush_dcache_page(struct page *page)
327 {
328         struct address_space *mapping;
329         int this_cpu;
330
331         if (tlb_type == hypervisor)
332                 return;
333
334         /* Do not bother with the expensive D-cache flush if it
335          * is merely the zero page.  The 'bigcore' testcase in GDB
336          * causes this case to run millions of times.
337          */
338         if (page == ZERO_PAGE(0))
339                 return;
340
341         this_cpu = get_cpu();
342
343         mapping = page_mapping(page);
344         if (mapping && !mapping_mapped(mapping)) {
345                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
346                 if (dirty) {
347                         int dirty_cpu = dcache_dirty_cpu(page);
348
349                         if (dirty_cpu == this_cpu)
350                                 goto out;
351                         smp_flush_dcache_page_impl(page, dirty_cpu);
352                 }
353                 set_dcache_dirty(page, this_cpu);
354         } else {
355                 /* We could delay the flush for the !page_mapping
356                  * case too.  But that case is for exec env/arg
357                  * pages and those are %99 certainly going to get
358                  * faulted into the tlb (and thus flushed) anyways.
359                  */
360                 flush_dcache_page_impl(page);
361         }
362
363 out:
364         put_cpu();
365 }
366
367 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
368 {
369         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
370         if (tlb_type == spitfire) {
371                 unsigned long kaddr;
372
373                 /* This code only runs on Spitfire cpus so this is
374                  * why we can assume _PAGE_PADDR_4U.
375                  */
376                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
377                         unsigned long paddr, mask = _PAGE_PADDR_4U;
378
379                         if (kaddr >= PAGE_OFFSET)
380                                 paddr = kaddr & mask;
381                         else {
382                                 pgd_t *pgdp = pgd_offset_k(kaddr);
383                                 pud_t *pudp = pud_offset(pgdp, kaddr);
384                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
385                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
386
387                                 paddr = pte_val(*ptep) & mask;
388                         }
389                         __flush_icache_page(paddr);
390                 }
391         }
392 }
393
394 void show_mem(void)
395 {
396         unsigned long total = 0, reserved = 0;
397         unsigned long shared = 0, cached = 0;
398         pg_data_t *pgdat;
399
400         printk(KERN_INFO "Mem-info:\n");
401         show_free_areas();
402         printk(KERN_INFO "Free swap:       %6ldkB\n",
403                nr_swap_pages << (PAGE_SHIFT-10));
404         for_each_online_pgdat(pgdat) {
405                 unsigned long i, flags;
406
407                 pgdat_resize_lock(pgdat, &flags);
408                 for (i = 0; i < pgdat->node_spanned_pages; i++) {
409                         struct page *page = pgdat_page_nr(pgdat, i);
410                         total++;
411                         if (PageReserved(page))
412                                 reserved++;
413                         else if (PageSwapCache(page))
414                                 cached++;
415                         else if (page_count(page))
416                                 shared += page_count(page) - 1;
417                 }
418                 pgdat_resize_unlock(pgdat, &flags);
419         }
420
421         printk(KERN_INFO "%lu pages of RAM\n", total);
422         printk(KERN_INFO "%lu reserved pages\n", reserved);
423         printk(KERN_INFO "%lu pages shared\n", shared);
424         printk(KERN_INFO "%lu pages swap cached\n", cached);
425
426         printk(KERN_INFO "%lu pages dirty\n",
427                global_page_state(NR_FILE_DIRTY));
428         printk(KERN_INFO "%lu pages writeback\n",
429                global_page_state(NR_WRITEBACK));
430         printk(KERN_INFO "%lu pages mapped\n",
431                global_page_state(NR_FILE_MAPPED));
432         printk(KERN_INFO "%lu pages slab\n",
433                 global_page_state(NR_SLAB_RECLAIMABLE) +
434                 global_page_state(NR_SLAB_UNRECLAIMABLE));
435         printk(KERN_INFO "%lu pages pagetables\n",
436                global_page_state(NR_PAGETABLE));
437 }
438
439 void mmu_info(struct seq_file *m)
440 {
441         if (tlb_type == cheetah)
442                 seq_printf(m, "MMU Type\t: Cheetah\n");
443         else if (tlb_type == cheetah_plus)
444                 seq_printf(m, "MMU Type\t: Cheetah+\n");
445         else if (tlb_type == spitfire)
446                 seq_printf(m, "MMU Type\t: Spitfire\n");
447         else if (tlb_type == hypervisor)
448                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
449         else
450                 seq_printf(m, "MMU Type\t: ???\n");
451
452 #ifdef CONFIG_DEBUG_DCFLUSH
453         seq_printf(m, "DCPageFlushes\t: %d\n",
454                    atomic_read(&dcpage_flushes));
455 #ifdef CONFIG_SMP
456         seq_printf(m, "DCPageFlushesXC\t: %d\n",
457                    atomic_read(&dcpage_flushes_xcall));
458 #endif /* CONFIG_SMP */
459 #endif /* CONFIG_DEBUG_DCFLUSH */
460 }
461
462 struct linux_prom_translation {
463         unsigned long virt;
464         unsigned long size;
465         unsigned long data;
466 };
467
468 /* Exported for kernel TLB miss handling in ktlb.S */
469 struct linux_prom_translation prom_trans[512] __read_mostly;
470 unsigned int prom_trans_ents __read_mostly;
471
472 /* Exported for SMP bootup purposes. */
473 unsigned long kern_locked_tte_data;
474
475 /* The obp translations are saved based on 8k pagesize, since obp can
476  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
477  * HI_OBP_ADDRESS range are handled in ktlb.S.
478  */
479 static inline int in_obp_range(unsigned long vaddr)
480 {
481         return (vaddr >= LOW_OBP_ADDRESS &&
482                 vaddr < HI_OBP_ADDRESS);
483 }
484
485 static int cmp_ptrans(const void *a, const void *b)
486 {
487         const struct linux_prom_translation *x = a, *y = b;
488
489         if (x->virt > y->virt)
490                 return 1;
491         if (x->virt < y->virt)
492                 return -1;
493         return 0;
494 }
495
496 /* Read OBP translations property into 'prom_trans[]'.  */
497 static void __init read_obp_translations(void)
498 {
499         int n, node, ents, first, last, i;
500
501         node = prom_finddevice("/virtual-memory");
502         n = prom_getproplen(node, "translations");
503         if (unlikely(n == 0 || n == -1)) {
504                 prom_printf("prom_mappings: Couldn't get size.\n");
505                 prom_halt();
506         }
507         if (unlikely(n > sizeof(prom_trans))) {
508                 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
509                 prom_halt();
510         }
511
512         if ((n = prom_getproperty(node, "translations",
513                                   (char *)&prom_trans[0],
514                                   sizeof(prom_trans))) == -1) {
515                 prom_printf("prom_mappings: Couldn't get property.\n");
516                 prom_halt();
517         }
518
519         n = n / sizeof(struct linux_prom_translation);
520
521         ents = n;
522
523         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
524              cmp_ptrans, NULL);
525
526         /* Now kick out all the non-OBP entries.  */
527         for (i = 0; i < ents; i++) {
528                 if (in_obp_range(prom_trans[i].virt))
529                         break;
530         }
531         first = i;
532         for (; i < ents; i++) {
533                 if (!in_obp_range(prom_trans[i].virt))
534                         break;
535         }
536         last = i;
537
538         for (i = 0; i < (last - first); i++) {
539                 struct linux_prom_translation *src = &prom_trans[i + first];
540                 struct linux_prom_translation *dest = &prom_trans[i];
541
542                 *dest = *src;
543         }
544         for (; i < ents; i++) {
545                 struct linux_prom_translation *dest = &prom_trans[i];
546                 dest->virt = dest->size = dest->data = 0x0UL;
547         }
548
549         prom_trans_ents = last - first;
550
551         if (tlb_type == spitfire) {
552                 /* Clear diag TTE bits. */
553                 for (i = 0; i < prom_trans_ents; i++)
554                         prom_trans[i].data &= ~0x0003fe0000000000UL;
555         }
556 }
557
558 static void __init hypervisor_tlb_lock(unsigned long vaddr,
559                                        unsigned long pte,
560                                        unsigned long mmu)
561 {
562         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
563
564         if (ret != 0) {
565                 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
566                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
567                 prom_halt();
568         }
569 }
570
571 static unsigned long kern_large_tte(unsigned long paddr);
572
573 static void __init remap_kernel(void)
574 {
575         unsigned long phys_page, tte_vaddr, tte_data;
576         int i, tlb_ent = sparc64_highest_locked_tlbent();
577
578         tte_vaddr = (unsigned long) KERNBASE;
579         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
580         tte_data = kern_large_tte(phys_page);
581
582         kern_locked_tte_data = tte_data;
583
584         /* Now lock us into the TLBs via Hypervisor or OBP. */
585         if (tlb_type == hypervisor) {
586                 for (i = 0; i < num_kernel_image_mappings; i++) {
587                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
588                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
589                         tte_vaddr += 0x400000;
590                         tte_data += 0x400000;
591                 }
592         } else {
593                 for (i = 0; i < num_kernel_image_mappings; i++) {
594                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
595                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
596                         tte_vaddr += 0x400000;
597                         tte_data += 0x400000;
598                 }
599                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
600         }
601         if (tlb_type == cheetah_plus) {
602                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
603                                             CTX_CHEETAH_PLUS_NUC);
604                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
605                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
606         }
607 }
608
609
610 static void __init inherit_prom_mappings(void)
611 {
612         read_obp_translations();
613
614         /* Now fixup OBP's idea about where we really are mapped. */
615         printk("Remapping the kernel... ");
616         remap_kernel();
617         printk("done.\n");
618 }
619
620 void prom_world(int enter)
621 {
622         if (!enter)
623                 set_fs((mm_segment_t) { get_thread_current_ds() });
624
625         __asm__ __volatile__("flushw");
626 }
627
628 void __flush_dcache_range(unsigned long start, unsigned long end)
629 {
630         unsigned long va;
631
632         if (tlb_type == spitfire) {
633                 int n = 0;
634
635                 for (va = start; va < end; va += 32) {
636                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
637                         if (++n >= 512)
638                                 break;
639                 }
640         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
641                 start = __pa(start);
642                 end = __pa(end);
643                 for (va = start; va < end; va += 32)
644                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
645                                              "membar #Sync"
646                                              : /* no outputs */
647                                              : "r" (va),
648                                                "i" (ASI_DCACHE_INVALIDATE));
649         }
650 }
651
652 /* get_new_mmu_context() uses "cache + 1".  */
653 DEFINE_SPINLOCK(ctx_alloc_lock);
654 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
655 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
656 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
657 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
658
659 /* Caller does TLB context flushing on local CPU if necessary.
660  * The caller also ensures that CTX_VALID(mm->context) is false.
661  *
662  * We must be careful about boundary cases so that we never
663  * let the user have CTX 0 (nucleus) or we ever use a CTX
664  * version of zero (and thus NO_CONTEXT would not be caught
665  * by version mis-match tests in mmu_context.h).
666  *
667  * Always invoked with interrupts disabled.
668  */
669 void get_new_mmu_context(struct mm_struct *mm)
670 {
671         unsigned long ctx, new_ctx;
672         unsigned long orig_pgsz_bits;
673         unsigned long flags;
674         int new_version;
675
676         spin_lock_irqsave(&ctx_alloc_lock, flags);
677         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
678         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
679         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
680         new_version = 0;
681         if (new_ctx >= (1 << CTX_NR_BITS)) {
682                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
683                 if (new_ctx >= ctx) {
684                         int i;
685                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
686                                 CTX_FIRST_VERSION;
687                         if (new_ctx == 1)
688                                 new_ctx = CTX_FIRST_VERSION;
689
690                         /* Don't call memset, for 16 entries that's just
691                          * plain silly...
692                          */
693                         mmu_context_bmap[0] = 3;
694                         mmu_context_bmap[1] = 0;
695                         mmu_context_bmap[2] = 0;
696                         mmu_context_bmap[3] = 0;
697                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
698                                 mmu_context_bmap[i + 0] = 0;
699                                 mmu_context_bmap[i + 1] = 0;
700                                 mmu_context_bmap[i + 2] = 0;
701                                 mmu_context_bmap[i + 3] = 0;
702                         }
703                         new_version = 1;
704                         goto out;
705                 }
706         }
707         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
708         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
709 out:
710         tlb_context_cache = new_ctx;
711         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
712         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
713
714         if (unlikely(new_version))
715                 smp_new_mmu_context_version();
716 }
717
718 static int numa_enabled = 1;
719 static int numa_debug;
720
721 static int __init early_numa(char *p)
722 {
723         if (!p)
724                 return 0;
725
726         if (strstr(p, "off"))
727                 numa_enabled = 0;
728
729         if (strstr(p, "debug"))
730                 numa_debug = 1;
731
732         return 0;
733 }
734 early_param("numa", early_numa);
735
736 #define numadbg(f, a...) \
737 do {    if (numa_debug) \
738                 printk(KERN_INFO f, ## a); \
739 } while (0)
740
741 static void __init find_ramdisk(unsigned long phys_base)
742 {
743 #ifdef CONFIG_BLK_DEV_INITRD
744         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
745                 unsigned long ramdisk_image;
746
747                 /* Older versions of the bootloader only supported a
748                  * 32-bit physical address for the ramdisk image
749                  * location, stored at sparc_ramdisk_image.  Newer
750                  * SILO versions set sparc_ramdisk_image to zero and
751                  * provide a full 64-bit physical address at
752                  * sparc_ramdisk_image64.
753                  */
754                 ramdisk_image = sparc_ramdisk_image;
755                 if (!ramdisk_image)
756                         ramdisk_image = sparc_ramdisk_image64;
757
758                 /* Another bootloader quirk.  The bootloader normalizes
759                  * the physical address to KERNBASE, so we have to
760                  * factor that back out and add in the lowest valid
761                  * physical page address to get the true physical address.
762                  */
763                 ramdisk_image -= KERNBASE;
764                 ramdisk_image += phys_base;
765
766                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
767                         ramdisk_image, sparc_ramdisk_size);
768
769                 initrd_start = ramdisk_image;
770                 initrd_end = ramdisk_image + sparc_ramdisk_size;
771
772                 lmb_reserve(initrd_start, initrd_end);
773         }
774 #endif
775 }
776
777 struct node_mem_mask {
778         unsigned long mask;
779         unsigned long val;
780         unsigned long bootmem_paddr;
781 };
782 static struct node_mem_mask node_masks[MAX_NUMNODES];
783 static int num_node_masks;
784
785 int numa_cpu_lookup_table[NR_CPUS];
786 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
787
788 #ifdef CONFIG_NEED_MULTIPLE_NODES
789 static bootmem_data_t plat_node_bdata[MAX_NUMNODES];
790
791 struct mdesc_mblock {
792         u64     base;
793         u64     size;
794         u64     offset; /* RA-to-PA */
795 };
796 static struct mdesc_mblock *mblocks;
797 static int num_mblocks;
798
799 static unsigned long ra_to_pa(unsigned long addr)
800 {
801         int i;
802
803         for (i = 0; i < num_mblocks; i++) {
804                 struct mdesc_mblock *m = &mblocks[i];
805
806                 if (addr >= m->base &&
807                     addr < (m->base + m->size)) {
808                         addr += m->offset;
809                         break;
810                 }
811         }
812         return addr;
813 }
814
815 static int find_node(unsigned long addr)
816 {
817         int i;
818
819         addr = ra_to_pa(addr);
820         for (i = 0; i < num_node_masks; i++) {
821                 struct node_mem_mask *p = &node_masks[i];
822
823                 if ((addr & p->mask) == p->val)
824                         return i;
825         }
826         return -1;
827 }
828
829 static unsigned long nid_range(unsigned long start, unsigned long end,
830                                int *nid)
831 {
832         *nid = find_node(start);
833         start += PAGE_SIZE;
834         while (start < end) {
835                 int n = find_node(start);
836
837                 if (n != *nid)
838                         break;
839                 start += PAGE_SIZE;
840         }
841
842         return start;
843 }
844 #else
845 static unsigned long nid_range(unsigned long start, unsigned long end,
846                                int *nid)
847 {
848         *nid = 0;
849         return end;
850 }
851 #endif
852
853 /* This must be invoked after performing all of the necessary
854  * add_active_range() calls for 'nid'.  We need to be able to get
855  * correct data from get_pfn_range_for_nid().
856  */
857 static void __init allocate_node_data(int nid)
858 {
859         unsigned long paddr, num_pages, start_pfn, end_pfn;
860         struct pglist_data *p;
861
862 #ifdef CONFIG_NEED_MULTIPLE_NODES
863         paddr = lmb_alloc_nid(sizeof(struct pglist_data),
864                               SMP_CACHE_BYTES, nid, nid_range);
865         if (!paddr) {
866                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
867                 prom_halt();
868         }
869         NODE_DATA(nid) = __va(paddr);
870         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
871
872         NODE_DATA(nid)->bdata = &plat_node_bdata[nid];
873 #endif
874
875         p = NODE_DATA(nid);
876
877         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
878         p->node_start_pfn = start_pfn;
879         p->node_spanned_pages = end_pfn - start_pfn;
880
881         if (p->node_spanned_pages) {
882                 num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
883
884                 paddr = lmb_alloc_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid,
885                                       nid_range);
886                 if (!paddr) {
887                         prom_printf("Cannot allocate bootmap for nid[%d]\n",
888                                   nid);
889                         prom_halt();
890                 }
891                 node_masks[nid].bootmem_paddr = paddr;
892         }
893 }
894
895 static void init_node_masks_nonnuma(void)
896 {
897         int i;
898
899         numadbg("Initializing tables for non-numa.\n");
900
901         node_masks[0].mask = node_masks[0].val = 0;
902         num_node_masks = 1;
903
904         for (i = 0; i < NR_CPUS; i++)
905                 numa_cpu_lookup_table[i] = 0;
906
907         numa_cpumask_lookup_table[0] = CPU_MASK_ALL;
908 }
909
910 #ifdef CONFIG_NEED_MULTIPLE_NODES
911 struct pglist_data *node_data[MAX_NUMNODES];
912
913 EXPORT_SYMBOL(numa_cpu_lookup_table);
914 EXPORT_SYMBOL(numa_cpumask_lookup_table);
915 EXPORT_SYMBOL(node_data);
916
917 struct mdesc_mlgroup {
918         u64     node;
919         u64     latency;
920         u64     match;
921         u64     mask;
922 };
923 static struct mdesc_mlgroup *mlgroups;
924 static int num_mlgroups;
925
926 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
927                                    u32 cfg_handle)
928 {
929         u64 arc;
930
931         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
932                 u64 target = mdesc_arc_target(md, arc);
933                 const u64 *val;
934
935                 val = mdesc_get_property(md, target,
936                                          "cfg-handle", NULL);
937                 if (val && *val == cfg_handle)
938                         return 0;
939         }
940         return -ENODEV;
941 }
942
943 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
944                                     u32 cfg_handle)
945 {
946         u64 arc, candidate, best_latency = ~(u64)0;
947
948         candidate = MDESC_NODE_NULL;
949         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
950                 u64 target = mdesc_arc_target(md, arc);
951                 const char *name = mdesc_node_name(md, target);
952                 const u64 *val;
953
954                 if (strcmp(name, "pio-latency-group"))
955                         continue;
956
957                 val = mdesc_get_property(md, target, "latency", NULL);
958                 if (!val)
959                         continue;
960
961                 if (*val < best_latency) {
962                         candidate = target;
963                         best_latency = *val;
964                 }
965         }
966
967         if (candidate == MDESC_NODE_NULL)
968                 return -ENODEV;
969
970         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
971 }
972
973 int of_node_to_nid(struct device_node *dp)
974 {
975         const struct linux_prom64_registers *regs;
976         struct mdesc_handle *md;
977         u32 cfg_handle;
978         int count, nid;
979         u64 grp;
980
981         if (!mlgroups)
982                 return -1;
983
984         regs = of_get_property(dp, "reg", NULL);
985         if (!regs)
986                 return -1;
987
988         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
989
990         md = mdesc_grab();
991
992         count = 0;
993         nid = -1;
994         mdesc_for_each_node_by_name(md, grp, "group") {
995                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
996                         nid = count;
997                         break;
998                 }
999                 count++;
1000         }
1001
1002         mdesc_release(md);
1003
1004         return nid;
1005 }
1006
1007 static void add_node_ranges(void)
1008 {
1009         int i;
1010
1011         for (i = 0; i < lmb.memory.cnt; i++) {
1012                 unsigned long size = lmb_size_bytes(&lmb.memory, i);
1013                 unsigned long start, end;
1014
1015                 start = lmb.memory.region[i].base;
1016                 end = start + size;
1017                 while (start < end) {
1018                         unsigned long this_end;
1019                         int nid;
1020
1021                         this_end = nid_range(start, end, &nid);
1022
1023                         numadbg("Adding active range nid[%d] "
1024                                 "start[%lx] end[%lx]\n",
1025                                 nid, start, this_end);
1026
1027                         add_active_range(nid,
1028                                          start >> PAGE_SHIFT,
1029                                          this_end >> PAGE_SHIFT);
1030
1031                         start = this_end;
1032                 }
1033         }
1034 }
1035
1036 static int __init grab_mlgroups(struct mdesc_handle *md)
1037 {
1038         unsigned long paddr;
1039         int count = 0;
1040         u64 node;
1041
1042         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1043                 count++;
1044         if (!count)
1045                 return -ENOENT;
1046
1047         paddr = lmb_alloc(count * sizeof(struct mdesc_mlgroup),
1048                           SMP_CACHE_BYTES);
1049         if (!paddr)
1050                 return -ENOMEM;
1051
1052         mlgroups = __va(paddr);
1053         num_mlgroups = count;
1054
1055         count = 0;
1056         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1057                 struct mdesc_mlgroup *m = &mlgroups[count++];
1058                 const u64 *val;
1059
1060                 m->node = node;
1061
1062                 val = mdesc_get_property(md, node, "latency", NULL);
1063                 m->latency = *val;
1064                 val = mdesc_get_property(md, node, "address-match", NULL);
1065                 m->match = *val;
1066                 val = mdesc_get_property(md, node, "address-mask", NULL);
1067                 m->mask = *val;
1068
1069                 numadbg("MLGROUP[%d]: node[%lx] latency[%lx] "
1070                         "match[%lx] mask[%lx]\n",
1071                         count - 1, m->node, m->latency, m->match, m->mask);
1072         }
1073
1074         return 0;
1075 }
1076
1077 static int __init grab_mblocks(struct mdesc_handle *md)
1078 {
1079         unsigned long paddr;
1080         int count = 0;
1081         u64 node;
1082
1083         mdesc_for_each_node_by_name(md, node, "mblock")
1084                 count++;
1085         if (!count)
1086                 return -ENOENT;
1087
1088         paddr = lmb_alloc(count * sizeof(struct mdesc_mblock),
1089                           SMP_CACHE_BYTES);
1090         if (!paddr)
1091                 return -ENOMEM;
1092
1093         mblocks = __va(paddr);
1094         num_mblocks = count;
1095
1096         count = 0;
1097         mdesc_for_each_node_by_name(md, node, "mblock") {
1098                 struct mdesc_mblock *m = &mblocks[count++];
1099                 const u64 *val;
1100
1101                 val = mdesc_get_property(md, node, "base", NULL);
1102                 m->base = *val;
1103                 val = mdesc_get_property(md, node, "size", NULL);
1104                 m->size = *val;
1105                 val = mdesc_get_property(md, node,
1106                                          "address-congruence-offset", NULL);
1107                 m->offset = *val;
1108
1109                 numadbg("MBLOCK[%d]: base[%lx] size[%lx] offset[%lx]\n",
1110                         count - 1, m->base, m->size, m->offset);
1111         }
1112
1113         return 0;
1114 }
1115
1116 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1117                                                u64 grp, cpumask_t *mask)
1118 {
1119         u64 arc;
1120
1121         cpus_clear(*mask);
1122
1123         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1124                 u64 target = mdesc_arc_target(md, arc);
1125                 const char *name = mdesc_node_name(md, target);
1126                 const u64 *id;
1127
1128                 if (strcmp(name, "cpu"))
1129                         continue;
1130                 id = mdesc_get_property(md, target, "id", NULL);
1131                 if (*id < NR_CPUS)
1132                         cpu_set(*id, *mask);
1133         }
1134 }
1135
1136 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1137 {
1138         int i;
1139
1140         for (i = 0; i < num_mlgroups; i++) {
1141                 struct mdesc_mlgroup *m = &mlgroups[i];
1142                 if (m->node == node)
1143                         return m;
1144         }
1145         return NULL;
1146 }
1147
1148 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1149                                       int index)
1150 {
1151         struct mdesc_mlgroup *candidate = NULL;
1152         u64 arc, best_latency = ~(u64)0;
1153         struct node_mem_mask *n;
1154
1155         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1156                 u64 target = mdesc_arc_target(md, arc);
1157                 struct mdesc_mlgroup *m = find_mlgroup(target);
1158                 if (!m)
1159                         continue;
1160                 if (m->latency < best_latency) {
1161                         candidate = m;
1162                         best_latency = m->latency;
1163                 }
1164         }
1165         if (!candidate)
1166                 return -ENOENT;
1167
1168         if (num_node_masks != index) {
1169                 printk(KERN_ERR "Inconsistent NUMA state, "
1170                        "index[%d] != num_node_masks[%d]\n",
1171                        index, num_node_masks);
1172                 return -EINVAL;
1173         }
1174
1175         n = &node_masks[num_node_masks++];
1176
1177         n->mask = candidate->mask;
1178         n->val = candidate->match;
1179
1180         numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%lx])\n",
1181                 index, n->mask, n->val, candidate->latency);
1182
1183         return 0;
1184 }
1185
1186 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1187                                          int index)
1188 {
1189         cpumask_t mask;
1190         int cpu;
1191
1192         numa_parse_mdesc_group_cpus(md, grp, &mask);
1193
1194         for_each_cpu_mask(cpu, mask)
1195                 numa_cpu_lookup_table[cpu] = index;
1196         numa_cpumask_lookup_table[index] = mask;
1197
1198         if (numa_debug) {
1199                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1200                 for_each_cpu_mask(cpu, mask)
1201                         printk("%d ", cpu);
1202                 printk("]\n");
1203         }
1204
1205         return numa_attach_mlgroup(md, grp, index);
1206 }
1207
1208 static int __init numa_parse_mdesc(void)
1209 {
1210         struct mdesc_handle *md = mdesc_grab();
1211         int i, err, count;
1212         u64 node;
1213
1214         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1215         if (node == MDESC_NODE_NULL) {
1216                 mdesc_release(md);
1217                 return -ENOENT;
1218         }
1219
1220         err = grab_mblocks(md);
1221         if (err < 0)
1222                 goto out;
1223
1224         err = grab_mlgroups(md);
1225         if (err < 0)
1226                 goto out;
1227
1228         count = 0;
1229         mdesc_for_each_node_by_name(md, node, "group") {
1230                 err = numa_parse_mdesc_group(md, node, count);
1231                 if (err < 0)
1232                         break;
1233                 count++;
1234         }
1235
1236         add_node_ranges();
1237
1238         for (i = 0; i < num_node_masks; i++) {
1239                 allocate_node_data(i);
1240                 node_set_online(i);
1241         }
1242
1243         err = 0;
1244 out:
1245         mdesc_release(md);
1246         return err;
1247 }
1248
1249 static int __init numa_parse_sun4u(void)
1250 {
1251         return -1;
1252 }
1253
1254 static int __init bootmem_init_numa(void)
1255 {
1256         int err = -1;
1257
1258         numadbg("bootmem_init_numa()\n");
1259
1260         if (numa_enabled) {
1261                 if (tlb_type == hypervisor)
1262                         err = numa_parse_mdesc();
1263                 else
1264                         err = numa_parse_sun4u();
1265         }
1266         return err;
1267 }
1268
1269 #else
1270
1271 static int bootmem_init_numa(void)
1272 {
1273         return -1;
1274 }
1275
1276 #endif
1277
1278 static void __init bootmem_init_nonnuma(void)
1279 {
1280         unsigned long top_of_ram = lmb_end_of_DRAM();
1281         unsigned long total_ram = lmb_phys_mem_size();
1282         unsigned int i;
1283
1284         numadbg("bootmem_init_nonnuma()\n");
1285
1286         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1287                top_of_ram, total_ram);
1288         printk(KERN_INFO "Memory hole size: %ldMB\n",
1289                (top_of_ram - total_ram) >> 20);
1290
1291         init_node_masks_nonnuma();
1292
1293         for (i = 0; i < lmb.memory.cnt; i++) {
1294                 unsigned long size = lmb_size_bytes(&lmb.memory, i);
1295                 unsigned long start_pfn, end_pfn;
1296
1297                 if (!size)
1298                         continue;
1299
1300                 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
1301                 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
1302                 add_active_range(0, start_pfn, end_pfn);
1303         }
1304
1305         allocate_node_data(0);
1306
1307         node_set_online(0);
1308 }
1309
1310 static void __init reserve_range_in_node(int nid, unsigned long start,
1311                                          unsigned long end)
1312 {
1313         numadbg("    reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1314                 nid, start, end);
1315         while (start < end) {
1316                 unsigned long this_end;
1317                 int n;
1318
1319                 this_end = nid_range(start, end, &n);
1320                 if (n == nid) {
1321                         numadbg("      MATCH reserving range [%lx:%lx]\n",
1322                                 start, this_end);
1323                         reserve_bootmem_node(NODE_DATA(nid), start,
1324                                              (this_end - start), BOOTMEM_DEFAULT);
1325                 } else
1326                         numadbg("      NO MATCH, advancing start to %lx\n",
1327                                 this_end);
1328
1329                 start = this_end;
1330         }
1331 }
1332
1333 static void __init trim_reserved_in_node(int nid)
1334 {
1335         int i;
1336
1337         numadbg("  trim_reserved_in_node(%d)\n", nid);
1338
1339         for (i = 0; i < lmb.reserved.cnt; i++) {
1340                 unsigned long start = lmb.reserved.region[i].base;
1341                 unsigned long size = lmb_size_bytes(&lmb.reserved, i);
1342                 unsigned long end = start + size;
1343
1344                 reserve_range_in_node(nid, start, end);
1345         }
1346 }
1347
1348 static void __init bootmem_init_one_node(int nid)
1349 {
1350         struct pglist_data *p;
1351
1352         numadbg("bootmem_init_one_node(%d)\n", nid);
1353
1354         p = NODE_DATA(nid);
1355
1356         if (p->node_spanned_pages) {
1357                 unsigned long paddr = node_masks[nid].bootmem_paddr;
1358                 unsigned long end_pfn;
1359
1360                 end_pfn = p->node_start_pfn + p->node_spanned_pages;
1361
1362                 numadbg("  init_bootmem_node(%d, %lx, %lx, %lx)\n",
1363                         nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1364
1365                 init_bootmem_node(p, paddr >> PAGE_SHIFT,
1366                                   p->node_start_pfn, end_pfn);
1367
1368                 numadbg("  free_bootmem_with_active_regions(%d, %lx)\n",
1369                         nid, end_pfn);
1370                 free_bootmem_with_active_regions(nid, end_pfn);
1371
1372                 trim_reserved_in_node(nid);
1373
1374                 numadbg("  sparse_memory_present_with_active_regions(%d)\n",
1375                         nid);
1376                 sparse_memory_present_with_active_regions(nid);
1377         }
1378 }
1379
1380 static unsigned long __init bootmem_init(unsigned long phys_base)
1381 {
1382         unsigned long end_pfn;
1383         int nid;
1384
1385         end_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
1386         max_pfn = max_low_pfn = end_pfn;
1387         min_low_pfn = (phys_base >> PAGE_SHIFT);
1388
1389         if (bootmem_init_numa() < 0)
1390                 bootmem_init_nonnuma();
1391
1392         /* XXX cpu notifier XXX */
1393
1394         for_each_online_node(nid)
1395                 bootmem_init_one_node(nid);
1396
1397         sparse_init();
1398
1399         return end_pfn;
1400 }
1401
1402 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1403 static int pall_ents __initdata;
1404
1405 #ifdef CONFIG_DEBUG_PAGEALLOC
1406 static unsigned long __ref kernel_map_range(unsigned long pstart,
1407                                             unsigned long pend, pgprot_t prot)
1408 {
1409         unsigned long vstart = PAGE_OFFSET + pstart;
1410         unsigned long vend = PAGE_OFFSET + pend;
1411         unsigned long alloc_bytes = 0UL;
1412
1413         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1414                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1415                             vstart, vend);
1416                 prom_halt();
1417         }
1418
1419         while (vstart < vend) {
1420                 unsigned long this_end, paddr = __pa(vstart);
1421                 pgd_t *pgd = pgd_offset_k(vstart);
1422                 pud_t *pud;
1423                 pmd_t *pmd;
1424                 pte_t *pte;
1425
1426                 pud = pud_offset(pgd, vstart);
1427                 if (pud_none(*pud)) {
1428                         pmd_t *new;
1429
1430                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1431                         alloc_bytes += PAGE_SIZE;
1432                         pud_populate(&init_mm, pud, new);
1433                 }
1434
1435                 pmd = pmd_offset(pud, vstart);
1436                 if (!pmd_present(*pmd)) {
1437                         pte_t *new;
1438
1439                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1440                         alloc_bytes += PAGE_SIZE;
1441                         pmd_populate_kernel(&init_mm, pmd, new);
1442                 }
1443
1444                 pte = pte_offset_kernel(pmd, vstart);
1445                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1446                 if (this_end > vend)
1447                         this_end = vend;
1448
1449                 while (vstart < this_end) {
1450                         pte_val(*pte) = (paddr | pgprot_val(prot));
1451
1452                         vstart += PAGE_SIZE;
1453                         paddr += PAGE_SIZE;
1454                         pte++;
1455                 }
1456         }
1457
1458         return alloc_bytes;
1459 }
1460
1461 extern unsigned int kvmap_linear_patch[1];
1462 #endif /* CONFIG_DEBUG_PAGEALLOC */
1463
1464 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1465 {
1466         const unsigned long shift_256MB = 28;
1467         const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1468         const unsigned long size_256MB = (1UL << shift_256MB);
1469
1470         while (start < end) {
1471                 long remains;
1472
1473                 remains = end - start;
1474                 if (remains < size_256MB)
1475                         break;
1476
1477                 if (start & mask_256MB) {
1478                         start = (start + size_256MB) & ~mask_256MB;
1479                         continue;
1480                 }
1481
1482                 while (remains >= size_256MB) {
1483                         unsigned long index = start >> shift_256MB;
1484
1485                         __set_bit(index, kpte_linear_bitmap);
1486
1487                         start += size_256MB;
1488                         remains -= size_256MB;
1489                 }
1490         }
1491 }
1492
1493 static void __init init_kpte_bitmap(void)
1494 {
1495         unsigned long i;
1496
1497         for (i = 0; i < pall_ents; i++) {
1498                 unsigned long phys_start, phys_end;
1499
1500                 phys_start = pall[i].phys_addr;
1501                 phys_end = phys_start + pall[i].reg_size;
1502
1503                 mark_kpte_bitmap(phys_start, phys_end);
1504         }
1505 }
1506
1507 static void __init kernel_physical_mapping_init(void)
1508 {
1509 #ifdef CONFIG_DEBUG_PAGEALLOC
1510         unsigned long i, mem_alloced = 0UL;
1511
1512         for (i = 0; i < pall_ents; i++) {
1513                 unsigned long phys_start, phys_end;
1514
1515                 phys_start = pall[i].phys_addr;
1516                 phys_end = phys_start + pall[i].reg_size;
1517
1518                 mem_alloced += kernel_map_range(phys_start, phys_end,
1519                                                 PAGE_KERNEL);
1520         }
1521
1522         printk("Allocated %ld bytes for kernel page tables.\n",
1523                mem_alloced);
1524
1525         kvmap_linear_patch[0] = 0x01000000; /* nop */
1526         flushi(&kvmap_linear_patch[0]);
1527
1528         __flush_tlb_all();
1529 #endif
1530 }
1531
1532 #ifdef CONFIG_DEBUG_PAGEALLOC
1533 void kernel_map_pages(struct page *page, int numpages, int enable)
1534 {
1535         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1536         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1537
1538         kernel_map_range(phys_start, phys_end,
1539                          (enable ? PAGE_KERNEL : __pgprot(0)));
1540
1541         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1542                                PAGE_OFFSET + phys_end);
1543
1544         /* we should perform an IPI and flush all tlbs,
1545          * but that can deadlock->flush only current cpu.
1546          */
1547         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1548                                  PAGE_OFFSET + phys_end);
1549 }
1550 #endif
1551
1552 unsigned long __init find_ecache_flush_span(unsigned long size)
1553 {
1554         int i;
1555
1556         for (i = 0; i < pavail_ents; i++) {
1557                 if (pavail[i].reg_size >= size)
1558                         return pavail[i].phys_addr;
1559         }
1560
1561         return ~0UL;
1562 }
1563
1564 static void __init tsb_phys_patch(void)
1565 {
1566         struct tsb_ldquad_phys_patch_entry *pquad;
1567         struct tsb_phys_patch_entry *p;
1568
1569         pquad = &__tsb_ldquad_phys_patch;
1570         while (pquad < &__tsb_ldquad_phys_patch_end) {
1571                 unsigned long addr = pquad->addr;
1572
1573                 if (tlb_type == hypervisor)
1574                         *(unsigned int *) addr = pquad->sun4v_insn;
1575                 else
1576                         *(unsigned int *) addr = pquad->sun4u_insn;
1577                 wmb();
1578                 __asm__ __volatile__("flush     %0"
1579                                      : /* no outputs */
1580                                      : "r" (addr));
1581
1582                 pquad++;
1583         }
1584
1585         p = &__tsb_phys_patch;
1586         while (p < &__tsb_phys_patch_end) {
1587                 unsigned long addr = p->addr;
1588
1589                 *(unsigned int *) addr = p->insn;
1590                 wmb();
1591                 __asm__ __volatile__("flush     %0"
1592                                      : /* no outputs */
1593                                      : "r" (addr));
1594
1595                 p++;
1596         }
1597 }
1598
1599 /* Don't mark as init, we give this to the Hypervisor.  */
1600 #ifndef CONFIG_DEBUG_PAGEALLOC
1601 #define NUM_KTSB_DESCR  2
1602 #else
1603 #define NUM_KTSB_DESCR  1
1604 #endif
1605 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1606 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1607
1608 static void __init sun4v_ktsb_init(void)
1609 {
1610         unsigned long ktsb_pa;
1611
1612         /* First KTSB for PAGE_SIZE mappings.  */
1613         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1614
1615         switch (PAGE_SIZE) {
1616         case 8 * 1024:
1617         default:
1618                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1619                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1620                 break;
1621
1622         case 64 * 1024:
1623                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1624                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1625                 break;
1626
1627         case 512 * 1024:
1628                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1629                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1630                 break;
1631
1632         case 4 * 1024 * 1024:
1633                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1634                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1635                 break;
1636         };
1637
1638         ktsb_descr[0].assoc = 1;
1639         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1640         ktsb_descr[0].ctx_idx = 0;
1641         ktsb_descr[0].tsb_base = ktsb_pa;
1642         ktsb_descr[0].resv = 0;
1643
1644 #ifndef CONFIG_DEBUG_PAGEALLOC
1645         /* Second KTSB for 4MB/256MB mappings.  */
1646         ktsb_pa = (kern_base +
1647                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1648
1649         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1650         ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1651                                    HV_PGSZ_MASK_256MB);
1652         ktsb_descr[1].assoc = 1;
1653         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1654         ktsb_descr[1].ctx_idx = 0;
1655         ktsb_descr[1].tsb_base = ktsb_pa;
1656         ktsb_descr[1].resv = 0;
1657 #endif
1658 }
1659
1660 void __cpuinit sun4v_ktsb_register(void)
1661 {
1662         unsigned long pa, ret;
1663
1664         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1665
1666         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1667         if (ret != 0) {
1668                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1669                             "errors with %lx\n", pa, ret);
1670                 prom_halt();
1671         }
1672 }
1673
1674 /* paging_init() sets up the page tables */
1675
1676 extern void central_probe(void);
1677
1678 static unsigned long last_valid_pfn;
1679 pgd_t swapper_pg_dir[2048];
1680
1681 static void sun4u_pgprot_init(void);
1682 static void sun4v_pgprot_init(void);
1683
1684 /* Dummy function */
1685 void __init setup_per_cpu_areas(void)
1686 {
1687 }
1688
1689 void __init paging_init(void)
1690 {
1691         unsigned long end_pfn, shift, phys_base;
1692         unsigned long real_end, i;
1693
1694         /* These build time checkes make sure that the dcache_dirty_cpu()
1695          * page->flags usage will work.
1696          *
1697          * When a page gets marked as dcache-dirty, we store the
1698          * cpu number starting at bit 32 in the page->flags.  Also,
1699          * functions like clear_dcache_dirty_cpu use the cpu mask
1700          * in 13-bit signed-immediate instruction fields.
1701          */
1702
1703         /*
1704          * Page flags must not reach into upper 32 bits that are used
1705          * for the cpu number
1706          */
1707         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1708
1709         /*
1710          * The bit fields placed in the high range must not reach below
1711          * the 32 bit boundary. Otherwise we cannot place the cpu field
1712          * at the 32 bit boundary.
1713          */
1714         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1715                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1716
1717         BUILD_BUG_ON(NR_CPUS > 4096);
1718
1719         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1720         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1721
1722         sstate_booting();
1723
1724         /* Invalidate both kernel TSBs.  */
1725         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1726 #ifndef CONFIG_DEBUG_PAGEALLOC
1727         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1728 #endif
1729
1730         if (tlb_type == hypervisor)
1731                 sun4v_pgprot_init();
1732         else
1733                 sun4u_pgprot_init();
1734
1735         if (tlb_type == cheetah_plus ||
1736             tlb_type == hypervisor)
1737                 tsb_phys_patch();
1738
1739         if (tlb_type == hypervisor) {
1740                 sun4v_patch_tlb_handlers();
1741                 sun4v_ktsb_init();
1742         }
1743
1744         lmb_init();
1745
1746         /* Find available physical memory... */
1747         read_obp_memory("available", &pavail[0], &pavail_ents);
1748
1749         phys_base = 0xffffffffffffffffUL;
1750         for (i = 0; i < pavail_ents; i++) {
1751                 phys_base = min(phys_base, pavail[i].phys_addr);
1752                 lmb_add(pavail[i].phys_addr, pavail[i].reg_size);
1753         }
1754
1755         lmb_reserve(kern_base, kern_size);
1756
1757         find_ramdisk(phys_base);
1758
1759         if (cmdline_memory_size)
1760                 lmb_enforce_memory_limit(phys_base + cmdline_memory_size);
1761
1762         lmb_analyze();
1763         lmb_dump_all();
1764
1765         set_bit(0, mmu_context_bmap);
1766
1767         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1768
1769         real_end = (unsigned long)_end;
1770         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1771         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1772                num_kernel_image_mappings);
1773
1774         /* Set kernel pgd to upper alias so physical page computations
1775          * work.
1776          */
1777         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1778         
1779         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1780
1781         /* Now can init the kernel/bad page tables. */
1782         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1783                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1784         
1785         inherit_prom_mappings();
1786         
1787         read_obp_memory("reg", &pall[0], &pall_ents);
1788
1789         init_kpte_bitmap();
1790
1791         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1792         setup_tba();
1793
1794         __flush_tlb_all();
1795
1796         if (tlb_type == hypervisor)
1797                 sun4v_ktsb_register();
1798
1799         /* We must setup the per-cpu areas before we pull in the
1800          * PROM and the MDESC.  The code there fills in cpu and
1801          * other information into per-cpu data structures.
1802          */
1803         real_setup_per_cpu_areas();
1804
1805         prom_build_devicetree();
1806
1807         if (tlb_type == hypervisor)
1808                 sun4v_mdesc_init();
1809
1810         /* Setup bootmem... */
1811         last_valid_pfn = end_pfn = bootmem_init(phys_base);
1812
1813 #ifndef CONFIG_NEED_MULTIPLE_NODES
1814         max_mapnr = last_valid_pfn;
1815 #endif
1816         kernel_physical_mapping_init();
1817
1818         {
1819                 unsigned long max_zone_pfns[MAX_NR_ZONES];
1820
1821                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1822
1823                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1824
1825                 free_area_init_nodes(max_zone_pfns);
1826         }
1827
1828         printk("Booting Linux...\n");
1829
1830         central_probe();
1831         cpu_probe();
1832 }
1833
1834 int __init page_in_phys_avail(unsigned long paddr)
1835 {
1836         int i;
1837
1838         paddr &= PAGE_MASK;
1839
1840         for (i = 0; i < pavail_ents; i++) {
1841                 unsigned long start, end;
1842
1843                 start = pavail[i].phys_addr;
1844                 end = start + pavail[i].reg_size;
1845
1846                 if (paddr >= start && paddr < end)
1847                         return 1;
1848         }
1849         if (paddr >= kern_base && paddr < (kern_base + kern_size))
1850                 return 1;
1851 #ifdef CONFIG_BLK_DEV_INITRD
1852         if (paddr >= __pa(initrd_start) &&
1853             paddr < __pa(PAGE_ALIGN(initrd_end)))
1854                 return 1;
1855 #endif
1856
1857         return 0;
1858 }
1859
1860 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1861 static int pavail_rescan_ents __initdata;
1862
1863 /* Certain OBP calls, such as fetching "available" properties, can
1864  * claim physical memory.  So, along with initializing the valid
1865  * address bitmap, what we do here is refetch the physical available
1866  * memory list again, and make sure it provides at least as much
1867  * memory as 'pavail' does.
1868  */
1869 static void setup_valid_addr_bitmap_from_pavail(void)
1870 {
1871         int i;
1872
1873         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1874
1875         for (i = 0; i < pavail_ents; i++) {
1876                 unsigned long old_start, old_end;
1877
1878                 old_start = pavail[i].phys_addr;
1879                 old_end = old_start + pavail[i].reg_size;
1880                 while (old_start < old_end) {
1881                         int n;
1882
1883                         for (n = 0; n < pavail_rescan_ents; n++) {
1884                                 unsigned long new_start, new_end;
1885
1886                                 new_start = pavail_rescan[n].phys_addr;
1887                                 new_end = new_start +
1888                                         pavail_rescan[n].reg_size;
1889
1890                                 if (new_start <= old_start &&
1891                                     new_end >= (old_start + PAGE_SIZE)) {
1892                                         set_bit(old_start >> 22,
1893                                                 sparc64_valid_addr_bitmap);
1894                                         goto do_next_page;
1895                                 }
1896                         }
1897
1898                         prom_printf("mem_init: Lost memory in pavail\n");
1899                         prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1900                                     pavail[i].phys_addr,
1901                                     pavail[i].reg_size);
1902                         prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1903                                     pavail_rescan[i].phys_addr,
1904                                     pavail_rescan[i].reg_size);
1905                         prom_printf("mem_init: Cannot continue, aborting.\n");
1906                         prom_halt();
1907
1908                 do_next_page:
1909                         old_start += PAGE_SIZE;
1910                 }
1911         }
1912 }
1913
1914 void __init mem_init(void)
1915 {
1916         unsigned long codepages, datapages, initpages;
1917         unsigned long addr, last;
1918         int i;
1919
1920         i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1921         i += 1;
1922         sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1923         if (sparc64_valid_addr_bitmap == NULL) {
1924                 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1925                 prom_halt();
1926         }
1927         memset(sparc64_valid_addr_bitmap, 0, i << 3);
1928
1929         addr = PAGE_OFFSET + kern_base;
1930         last = PAGE_ALIGN(kern_size) + addr;
1931         while (addr < last) {
1932                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1933                 addr += PAGE_SIZE;
1934         }
1935
1936         setup_valid_addr_bitmap_from_pavail();
1937
1938         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1939
1940 #ifdef CONFIG_NEED_MULTIPLE_NODES
1941         for_each_online_node(i) {
1942                 if (NODE_DATA(i)->node_spanned_pages != 0) {
1943                         totalram_pages +=
1944                                 free_all_bootmem_node(NODE_DATA(i));
1945                 }
1946         }
1947 #else
1948         totalram_pages = free_all_bootmem();
1949 #endif
1950
1951         /* We subtract one to account for the mem_map_zero page
1952          * allocated below.
1953          */
1954         totalram_pages -= 1;
1955         num_physpages = totalram_pages;
1956
1957         /*
1958          * Set up the zero page, mark it reserved, so that page count
1959          * is not manipulated when freeing the page from user ptes.
1960          */
1961         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1962         if (mem_map_zero == NULL) {
1963                 prom_printf("paging_init: Cannot alloc zero page.\n");
1964                 prom_halt();
1965         }
1966         SetPageReserved(mem_map_zero);
1967
1968         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1969         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1970         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1971         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1972         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1973         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1974
1975         printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1976                nr_free_pages() << (PAGE_SHIFT-10),
1977                codepages << (PAGE_SHIFT-10),
1978                datapages << (PAGE_SHIFT-10), 
1979                initpages << (PAGE_SHIFT-10), 
1980                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1981
1982         if (tlb_type == cheetah || tlb_type == cheetah_plus)
1983                 cheetah_ecache_flush_init();
1984 }
1985
1986 void free_initmem(void)
1987 {
1988         unsigned long addr, initend;
1989
1990         /*
1991          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1992          */
1993         addr = PAGE_ALIGN((unsigned long)(__init_begin));
1994         initend = (unsigned long)(__init_end) & PAGE_MASK;
1995         for (; addr < initend; addr += PAGE_SIZE) {
1996                 unsigned long page;
1997                 struct page *p;
1998
1999                 page = (addr +
2000                         ((unsigned long) __va(kern_base)) -
2001                         ((unsigned long) KERNBASE));
2002                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2003                 p = virt_to_page(page);
2004
2005                 ClearPageReserved(p);
2006                 init_page_count(p);
2007                 __free_page(p);
2008                 num_physpages++;
2009                 totalram_pages++;
2010         }
2011 }
2012
2013 #ifdef CONFIG_BLK_DEV_INITRD
2014 void free_initrd_mem(unsigned long start, unsigned long end)
2015 {
2016         if (start < end)
2017                 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2018         for (; start < end; start += PAGE_SIZE) {
2019                 struct page *p = virt_to_page(start);
2020
2021                 ClearPageReserved(p);
2022                 init_page_count(p);
2023                 __free_page(p);
2024                 num_physpages++;
2025                 totalram_pages++;
2026         }
2027 }
2028 #endif
2029
2030 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2031 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2032 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2033 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2034 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2035 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2036
2037 pgprot_t PAGE_KERNEL __read_mostly;
2038 EXPORT_SYMBOL(PAGE_KERNEL);
2039
2040 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2041 pgprot_t PAGE_COPY __read_mostly;
2042
2043 pgprot_t PAGE_SHARED __read_mostly;
2044 EXPORT_SYMBOL(PAGE_SHARED);
2045
2046 pgprot_t PAGE_EXEC __read_mostly;
2047 unsigned long pg_iobits __read_mostly;
2048
2049 unsigned long _PAGE_IE __read_mostly;
2050 EXPORT_SYMBOL(_PAGE_IE);
2051
2052 unsigned long _PAGE_E __read_mostly;
2053 EXPORT_SYMBOL(_PAGE_E);
2054
2055 unsigned long _PAGE_CACHE __read_mostly;
2056 EXPORT_SYMBOL(_PAGE_CACHE);
2057
2058 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2059
2060 #define VMEMMAP_CHUNK_SHIFT     22
2061 #define VMEMMAP_CHUNK           (1UL << VMEMMAP_CHUNK_SHIFT)
2062 #define VMEMMAP_CHUNK_MASK      ~(VMEMMAP_CHUNK - 1UL)
2063 #define VMEMMAP_ALIGN(x)        (((x)+VMEMMAP_CHUNK-1UL)&VMEMMAP_CHUNK_MASK)
2064
2065 #define VMEMMAP_SIZE    ((((1UL << MAX_PHYSADDR_BITS) >> PAGE_SHIFT) * \
2066                           sizeof(struct page *)) >> VMEMMAP_CHUNK_SHIFT)
2067 unsigned long vmemmap_table[VMEMMAP_SIZE];
2068
2069 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2070 {
2071         unsigned long vstart = (unsigned long) start;
2072         unsigned long vend = (unsigned long) (start + nr);
2073         unsigned long phys_start = (vstart - VMEMMAP_BASE);
2074         unsigned long phys_end = (vend - VMEMMAP_BASE);
2075         unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2076         unsigned long end = VMEMMAP_ALIGN(phys_end);
2077         unsigned long pte_base;
2078
2079         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2080                     _PAGE_CP_4U | _PAGE_CV_4U |
2081                     _PAGE_P_4U | _PAGE_W_4U);
2082         if (tlb_type == hypervisor)
2083                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2084                             _PAGE_CP_4V | _PAGE_CV_4V |
2085                             _PAGE_P_4V | _PAGE_W_4V);
2086
2087         for (; addr < end; addr += VMEMMAP_CHUNK) {
2088                 unsigned long *vmem_pp =
2089                         vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2090                 void *block;
2091
2092                 if (!(*vmem_pp & _PAGE_VALID)) {
2093                         block = vmemmap_alloc_block(1UL << 22, node);
2094                         if (!block)
2095                                 return -ENOMEM;
2096
2097                         *vmem_pp = pte_base | __pa(block);
2098
2099                         printk(KERN_INFO "[%p-%p] page_structs=%lu "
2100                                "node=%d entry=%lu/%lu\n", start, block, nr,
2101                                node,
2102                                addr >> VMEMMAP_CHUNK_SHIFT,
2103                                VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
2104                 }
2105         }
2106         return 0;
2107 }
2108 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2109
2110 static void prot_init_common(unsigned long page_none,
2111                              unsigned long page_shared,
2112                              unsigned long page_copy,
2113                              unsigned long page_readonly,
2114                              unsigned long page_exec_bit)
2115 {
2116         PAGE_COPY = __pgprot(page_copy);
2117         PAGE_SHARED = __pgprot(page_shared);
2118
2119         protection_map[0x0] = __pgprot(page_none);
2120         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2121         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2122         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2123         protection_map[0x4] = __pgprot(page_readonly);
2124         protection_map[0x5] = __pgprot(page_readonly);
2125         protection_map[0x6] = __pgprot(page_copy);
2126         protection_map[0x7] = __pgprot(page_copy);
2127         protection_map[0x8] = __pgprot(page_none);
2128         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2129         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2130         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2131         protection_map[0xc] = __pgprot(page_readonly);
2132         protection_map[0xd] = __pgprot(page_readonly);
2133         protection_map[0xe] = __pgprot(page_shared);
2134         protection_map[0xf] = __pgprot(page_shared);
2135 }
2136
2137 static void __init sun4u_pgprot_init(void)
2138 {
2139         unsigned long page_none, page_shared, page_copy, page_readonly;
2140         unsigned long page_exec_bit;
2141
2142         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2143                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2144                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2145                                 _PAGE_EXEC_4U);
2146         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2147                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2148                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2149                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2150         PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
2151
2152         _PAGE_IE = _PAGE_IE_4U;
2153         _PAGE_E = _PAGE_E_4U;
2154         _PAGE_CACHE = _PAGE_CACHE_4U;
2155
2156         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2157                      __ACCESS_BITS_4U | _PAGE_E_4U);
2158
2159 #ifdef CONFIG_DEBUG_PAGEALLOC
2160         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2161                 0xfffff80000000000;
2162 #else
2163         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2164                 0xfffff80000000000;
2165 #endif
2166         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2167                                    _PAGE_P_4U | _PAGE_W_4U);
2168
2169         /* XXX Should use 256MB on Panther. XXX */
2170         kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2171
2172         _PAGE_SZBITS = _PAGE_SZBITS_4U;
2173         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2174                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2175                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2176
2177
2178         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2179         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2180                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2181         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2182                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2183         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2184                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2185
2186         page_exec_bit = _PAGE_EXEC_4U;
2187
2188         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2189                          page_exec_bit);
2190 }
2191
2192 static void __init sun4v_pgprot_init(void)
2193 {
2194         unsigned long page_none, page_shared, page_copy, page_readonly;
2195         unsigned long page_exec_bit;
2196
2197         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2198                                 _PAGE_CACHE_4V | _PAGE_P_4V |
2199                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2200                                 _PAGE_EXEC_4V);
2201         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2202         PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
2203
2204         _PAGE_IE = _PAGE_IE_4V;
2205         _PAGE_E = _PAGE_E_4V;
2206         _PAGE_CACHE = _PAGE_CACHE_4V;
2207
2208 #ifdef CONFIG_DEBUG_PAGEALLOC
2209         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2210                 0xfffff80000000000;
2211 #else
2212         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2213                 0xfffff80000000000;
2214 #endif
2215         kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2216                                    _PAGE_P_4V | _PAGE_W_4V);
2217
2218 #ifdef CONFIG_DEBUG_PAGEALLOC
2219         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2220                 0xfffff80000000000;
2221 #else
2222         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2223                 0xfffff80000000000;
2224 #endif
2225         kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2226                                    _PAGE_P_4V | _PAGE_W_4V);
2227
2228         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2229                      __ACCESS_BITS_4V | _PAGE_E_4V);
2230
2231         _PAGE_SZBITS = _PAGE_SZBITS_4V;
2232         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2233                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2234                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2235                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2236
2237         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2238         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2239                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2240         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2241                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2242         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2243                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2244
2245         page_exec_bit = _PAGE_EXEC_4V;
2246
2247         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2248                          page_exec_bit);
2249 }
2250
2251 unsigned long pte_sz_bits(unsigned long sz)
2252 {
2253         if (tlb_type == hypervisor) {
2254                 switch (sz) {
2255                 case 8 * 1024:
2256                 default:
2257                         return _PAGE_SZ8K_4V;
2258                 case 64 * 1024:
2259                         return _PAGE_SZ64K_4V;
2260                 case 512 * 1024:
2261                         return _PAGE_SZ512K_4V;
2262                 case 4 * 1024 * 1024:
2263                         return _PAGE_SZ4MB_4V;
2264                 };
2265         } else {
2266                 switch (sz) {
2267                 case 8 * 1024:
2268                 default:
2269                         return _PAGE_SZ8K_4U;
2270                 case 64 * 1024:
2271                         return _PAGE_SZ64K_4U;
2272                 case 512 * 1024:
2273                         return _PAGE_SZ512K_4U;
2274                 case 4 * 1024 * 1024:
2275                         return _PAGE_SZ4MB_4U;
2276                 };
2277         }
2278 }
2279
2280 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2281 {
2282         pte_t pte;
2283
2284         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2285         pte_val(pte) |= (((unsigned long)space) << 32);
2286         pte_val(pte) |= pte_sz_bits(page_size);
2287
2288         return pte;
2289 }
2290
2291 static unsigned long kern_large_tte(unsigned long paddr)
2292 {
2293         unsigned long val;
2294
2295         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2296                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2297                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2298         if (tlb_type == hypervisor)
2299                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2300                        _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2301                        _PAGE_EXEC_4V | _PAGE_W_4V);
2302
2303         return val | paddr;
2304 }
2305
2306 /* If not locked, zap it. */
2307 void __flush_tlb_all(void)
2308 {
2309         unsigned long pstate;
2310         int i;
2311
2312         __asm__ __volatile__("flushw\n\t"
2313                              "rdpr      %%pstate, %0\n\t"
2314                              "wrpr      %0, %1, %%pstate"
2315                              : "=r" (pstate)
2316                              : "i" (PSTATE_IE));
2317         if (tlb_type == hypervisor) {
2318                 sun4v_mmu_demap_all();
2319         } else if (tlb_type == spitfire) {
2320                 for (i = 0; i < 64; i++) {
2321                         /* Spitfire Errata #32 workaround */
2322                         /* NOTE: Always runs on spitfire, so no
2323                          *       cheetah+ page size encodings.
2324                          */
2325                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2326                                              "flush     %%g6"
2327                                              : /* No outputs */
2328                                              : "r" (0),
2329                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2330
2331                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2332                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2333                                                      "membar #Sync"
2334                                                      : /* no outputs */
2335                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2336                                 spitfire_put_dtlb_data(i, 0x0UL);
2337                         }
2338
2339                         /* Spitfire Errata #32 workaround */
2340                         /* NOTE: Always runs on spitfire, so no
2341                          *       cheetah+ page size encodings.
2342                          */
2343                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2344                                              "flush     %%g6"
2345                                              : /* No outputs */
2346                                              : "r" (0),
2347                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2348
2349                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2350                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2351                                                      "membar #Sync"
2352                                                      : /* no outputs */
2353                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2354                                 spitfire_put_itlb_data(i, 0x0UL);
2355                         }
2356                 }
2357         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2358                 cheetah_flush_dtlb_all();
2359                 cheetah_flush_itlb_all();
2360         }
2361         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2362                              : : "r" (pstate));
2363 }
2364
2365 #ifdef CONFIG_MEMORY_HOTPLUG
2366
2367 void online_page(struct page *page)
2368 {
2369         ClearPageReserved(page);
2370         init_page_count(page);
2371         __free_page(page);
2372         totalram_pages++;
2373         num_physpages++;
2374 }
2375
2376 #endif /* CONFIG_MEMORY_HOTPLUG */