]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/sparc64/mm/init.c
64d8e7623e0d52eb00cca50a242ec6b023d2a818
[linux-2.6-omap-h63xx.git] / arch / sparc64 / mm / init.c
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/percpu.h>
27 #include <linux/lmb.h>
28 #include <linux/mmzone.h>
29
30 #include <asm/head.h>
31 #include <asm/system.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/sstate.h>
50 #include <asm/mdesc.h>
51 #include <asm/cpudata.h>
52 #include <asm/irq.h>
53
54 #define MAX_PHYS_ADDRESS        (1UL << 42UL)
55 #define KPTE_BITMAP_CHUNK_SZ    (256UL * 1024UL * 1024UL)
56 #define KPTE_BITMAP_BYTES       \
57         ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
58
59 unsigned long kern_linear_pte_xor[2] __read_mostly;
60
61 /* A bitmap, one bit for every 256MB of physical memory.  If the bit
62  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
63  * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
64  */
65 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
66
67 #ifndef CONFIG_DEBUG_PAGEALLOC
68 /* A special kernel TSB for 4MB and 256MB linear mappings.
69  * Space is allocated for this right after the trap table
70  * in arch/sparc64/kernel/head.S
71  */
72 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
73 #endif
74
75 #define MAX_BANKS       32
76
77 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
78 static int pavail_ents __initdata;
79
80 static int cmp_p64(const void *a, const void *b)
81 {
82         const struct linux_prom64_registers *x = a, *y = b;
83
84         if (x->phys_addr > y->phys_addr)
85                 return 1;
86         if (x->phys_addr < y->phys_addr)
87                 return -1;
88         return 0;
89 }
90
91 static void __init read_obp_memory(const char *property,
92                                    struct linux_prom64_registers *regs,
93                                    int *num_ents)
94 {
95         int node = prom_finddevice("/memory");
96         int prop_size = prom_getproplen(node, property);
97         int ents, ret, i;
98
99         ents = prop_size / sizeof(struct linux_prom64_registers);
100         if (ents > MAX_BANKS) {
101                 prom_printf("The machine has more %s property entries than "
102                             "this kernel can support (%d).\n",
103                             property, MAX_BANKS);
104                 prom_halt();
105         }
106
107         ret = prom_getproperty(node, property, (char *) regs, prop_size);
108         if (ret == -1) {
109                 prom_printf("Couldn't get %s property from /memory.\n");
110                 prom_halt();
111         }
112
113         /* Sanitize what we got from the firmware, by page aligning
114          * everything.
115          */
116         for (i = 0; i < ents; i++) {
117                 unsigned long base, size;
118
119                 base = regs[i].phys_addr;
120                 size = regs[i].reg_size;
121
122                 size &= PAGE_MASK;
123                 if (base & ~PAGE_MASK) {
124                         unsigned long new_base = PAGE_ALIGN(base);
125
126                         size -= new_base - base;
127                         if ((long) size < 0L)
128                                 size = 0UL;
129                         base = new_base;
130                 }
131                 if (size == 0UL) {
132                         /* If it is empty, simply get rid of it.
133                          * This simplifies the logic of the other
134                          * functions that process these arrays.
135                          */
136                         memmove(&regs[i], &regs[i + 1],
137                                 (ents - i - 1) * sizeof(regs[0]));
138                         i--;
139                         ents--;
140                         continue;
141                 }
142                 regs[i].phys_addr = base;
143                 regs[i].reg_size = size;
144         }
145
146         *num_ents = ents;
147
148         sort(regs, ents, sizeof(struct linux_prom64_registers),
149              cmp_p64, NULL);
150 }
151
152 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
153
154 /* Kernel physical address base and size in bytes.  */
155 unsigned long kern_base __read_mostly;
156 unsigned long kern_size __read_mostly;
157
158 /* Initial ramdisk setup */
159 extern unsigned long sparc_ramdisk_image64;
160 extern unsigned int sparc_ramdisk_image;
161 extern unsigned int sparc_ramdisk_size;
162
163 struct page *mem_map_zero __read_mostly;
164 EXPORT_SYMBOL(mem_map_zero);
165
166 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
167
168 unsigned long sparc64_kern_pri_context __read_mostly;
169 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
170 unsigned long sparc64_kern_sec_context __read_mostly;
171
172 int num_kernel_image_mappings;
173
174 #ifdef CONFIG_DEBUG_DCFLUSH
175 atomic_t dcpage_flushes = ATOMIC_INIT(0);
176 #ifdef CONFIG_SMP
177 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
178 #endif
179 #endif
180
181 inline void flush_dcache_page_impl(struct page *page)
182 {
183         BUG_ON(tlb_type == hypervisor);
184 #ifdef CONFIG_DEBUG_DCFLUSH
185         atomic_inc(&dcpage_flushes);
186 #endif
187
188 #ifdef DCACHE_ALIASING_POSSIBLE
189         __flush_dcache_page(page_address(page),
190                             ((tlb_type == spitfire) &&
191                              page_mapping(page) != NULL));
192 #else
193         if (page_mapping(page) != NULL &&
194             tlb_type == spitfire)
195                 __flush_icache_page(__pa(page_address(page)));
196 #endif
197 }
198
199 #define PG_dcache_dirty         PG_arch_1
200 #define PG_dcache_cpu_shift     32UL
201 #define PG_dcache_cpu_mask      \
202         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
203
204 #define dcache_dirty_cpu(page) \
205         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
206
207 static inline void set_dcache_dirty(struct page *page, int this_cpu)
208 {
209         unsigned long mask = this_cpu;
210         unsigned long non_cpu_bits;
211
212         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
213         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
214
215         __asm__ __volatile__("1:\n\t"
216                              "ldx       [%2], %%g7\n\t"
217                              "and       %%g7, %1, %%g1\n\t"
218                              "or        %%g1, %0, %%g1\n\t"
219                              "casx      [%2], %%g7, %%g1\n\t"
220                              "cmp       %%g7, %%g1\n\t"
221                              "membar    #StoreLoad | #StoreStore\n\t"
222                              "bne,pn    %%xcc, 1b\n\t"
223                              " nop"
224                              : /* no outputs */
225                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
226                              : "g1", "g7");
227 }
228
229 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
230 {
231         unsigned long mask = (1UL << PG_dcache_dirty);
232
233         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
234                              "1:\n\t"
235                              "ldx       [%2], %%g7\n\t"
236                              "srlx      %%g7, %4, %%g1\n\t"
237                              "and       %%g1, %3, %%g1\n\t"
238                              "cmp       %%g1, %0\n\t"
239                              "bne,pn    %%icc, 2f\n\t"
240                              " andn     %%g7, %1, %%g1\n\t"
241                              "casx      [%2], %%g7, %%g1\n\t"
242                              "cmp       %%g7, %%g1\n\t"
243                              "membar    #StoreLoad | #StoreStore\n\t"
244                              "bne,pn    %%xcc, 1b\n\t"
245                              " nop\n"
246                              "2:"
247                              : /* no outputs */
248                              : "r" (cpu), "r" (mask), "r" (&page->flags),
249                                "i" (PG_dcache_cpu_mask),
250                                "i" (PG_dcache_cpu_shift)
251                              : "g1", "g7");
252 }
253
254 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
255 {
256         unsigned long tsb_addr = (unsigned long) ent;
257
258         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
259                 tsb_addr = __pa(tsb_addr);
260
261         __tsb_insert(tsb_addr, tag, pte);
262 }
263
264 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
265 unsigned long _PAGE_SZBITS __read_mostly;
266
267 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
268 {
269         struct mm_struct *mm;
270         struct tsb *tsb;
271         unsigned long tag, flags;
272         unsigned long tsb_index, tsb_hash_shift;
273
274         if (tlb_type != hypervisor) {
275                 unsigned long pfn = pte_pfn(pte);
276                 unsigned long pg_flags;
277                 struct page *page;
278
279                 if (pfn_valid(pfn) &&
280                     (page = pfn_to_page(pfn), page_mapping(page)) &&
281                     ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
282                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
283                                    PG_dcache_cpu_mask);
284                         int this_cpu = get_cpu();
285
286                         /* This is just to optimize away some function calls
287                          * in the SMP case.
288                          */
289                         if (cpu == this_cpu)
290                                 flush_dcache_page_impl(page);
291                         else
292                                 smp_flush_dcache_page_impl(page, cpu);
293
294                         clear_dcache_dirty_cpu(page, cpu);
295
296                         put_cpu();
297                 }
298         }
299
300         mm = vma->vm_mm;
301
302         tsb_index = MM_TSB_BASE;
303         tsb_hash_shift = PAGE_SHIFT;
304
305         spin_lock_irqsave(&mm->context.lock, flags);
306
307 #ifdef CONFIG_HUGETLB_PAGE
308         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
309                 if ((tlb_type == hypervisor &&
310                      (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
311                     (tlb_type != hypervisor &&
312                      (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
313                         tsb_index = MM_TSB_HUGE;
314                         tsb_hash_shift = HPAGE_SHIFT;
315                 }
316         }
317 #endif
318
319         tsb = mm->context.tsb_block[tsb_index].tsb;
320         tsb += ((address >> tsb_hash_shift) &
321                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
322         tag = (address >> 22UL);
323         tsb_insert(tsb, tag, pte_val(pte));
324
325         spin_unlock_irqrestore(&mm->context.lock, flags);
326 }
327
328 void flush_dcache_page(struct page *page)
329 {
330         struct address_space *mapping;
331         int this_cpu;
332
333         if (tlb_type == hypervisor)
334                 return;
335
336         /* Do not bother with the expensive D-cache flush if it
337          * is merely the zero page.  The 'bigcore' testcase in GDB
338          * causes this case to run millions of times.
339          */
340         if (page == ZERO_PAGE(0))
341                 return;
342
343         this_cpu = get_cpu();
344
345         mapping = page_mapping(page);
346         if (mapping && !mapping_mapped(mapping)) {
347                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
348                 if (dirty) {
349                         int dirty_cpu = dcache_dirty_cpu(page);
350
351                         if (dirty_cpu == this_cpu)
352                                 goto out;
353                         smp_flush_dcache_page_impl(page, dirty_cpu);
354                 }
355                 set_dcache_dirty(page, this_cpu);
356         } else {
357                 /* We could delay the flush for the !page_mapping
358                  * case too.  But that case is for exec env/arg
359                  * pages and those are %99 certainly going to get
360                  * faulted into the tlb (and thus flushed) anyways.
361                  */
362                 flush_dcache_page_impl(page);
363         }
364
365 out:
366         put_cpu();
367 }
368
369 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
370 {
371         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
372         if (tlb_type == spitfire) {
373                 unsigned long kaddr;
374
375                 /* This code only runs on Spitfire cpus so this is
376                  * why we can assume _PAGE_PADDR_4U.
377                  */
378                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
379                         unsigned long paddr, mask = _PAGE_PADDR_4U;
380
381                         if (kaddr >= PAGE_OFFSET)
382                                 paddr = kaddr & mask;
383                         else {
384                                 pgd_t *pgdp = pgd_offset_k(kaddr);
385                                 pud_t *pudp = pud_offset(pgdp, kaddr);
386                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
387                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
388
389                                 paddr = pte_val(*ptep) & mask;
390                         }
391                         __flush_icache_page(paddr);
392                 }
393         }
394 }
395
396 void mmu_info(struct seq_file *m)
397 {
398         if (tlb_type == cheetah)
399                 seq_printf(m, "MMU Type\t: Cheetah\n");
400         else if (tlb_type == cheetah_plus)
401                 seq_printf(m, "MMU Type\t: Cheetah+\n");
402         else if (tlb_type == spitfire)
403                 seq_printf(m, "MMU Type\t: Spitfire\n");
404         else if (tlb_type == hypervisor)
405                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
406         else
407                 seq_printf(m, "MMU Type\t: ???\n");
408
409 #ifdef CONFIG_DEBUG_DCFLUSH
410         seq_printf(m, "DCPageFlushes\t: %d\n",
411                    atomic_read(&dcpage_flushes));
412 #ifdef CONFIG_SMP
413         seq_printf(m, "DCPageFlushesXC\t: %d\n",
414                    atomic_read(&dcpage_flushes_xcall));
415 #endif /* CONFIG_SMP */
416 #endif /* CONFIG_DEBUG_DCFLUSH */
417 }
418
419 struct linux_prom_translation {
420         unsigned long virt;
421         unsigned long size;
422         unsigned long data;
423 };
424
425 /* Exported for kernel TLB miss handling in ktlb.S */
426 struct linux_prom_translation prom_trans[512] __read_mostly;
427 unsigned int prom_trans_ents __read_mostly;
428
429 /* Exported for SMP bootup purposes. */
430 unsigned long kern_locked_tte_data;
431
432 /* The obp translations are saved based on 8k pagesize, since obp can
433  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
434  * HI_OBP_ADDRESS range are handled in ktlb.S.
435  */
436 static inline int in_obp_range(unsigned long vaddr)
437 {
438         return (vaddr >= LOW_OBP_ADDRESS &&
439                 vaddr < HI_OBP_ADDRESS);
440 }
441
442 static int cmp_ptrans(const void *a, const void *b)
443 {
444         const struct linux_prom_translation *x = a, *y = b;
445
446         if (x->virt > y->virt)
447                 return 1;
448         if (x->virt < y->virt)
449                 return -1;
450         return 0;
451 }
452
453 /* Read OBP translations property into 'prom_trans[]'.  */
454 static void __init read_obp_translations(void)
455 {
456         int n, node, ents, first, last, i;
457
458         node = prom_finddevice("/virtual-memory");
459         n = prom_getproplen(node, "translations");
460         if (unlikely(n == 0 || n == -1)) {
461                 prom_printf("prom_mappings: Couldn't get size.\n");
462                 prom_halt();
463         }
464         if (unlikely(n > sizeof(prom_trans))) {
465                 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
466                 prom_halt();
467         }
468
469         if ((n = prom_getproperty(node, "translations",
470                                   (char *)&prom_trans[0],
471                                   sizeof(prom_trans))) == -1) {
472                 prom_printf("prom_mappings: Couldn't get property.\n");
473                 prom_halt();
474         }
475
476         n = n / sizeof(struct linux_prom_translation);
477
478         ents = n;
479
480         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
481              cmp_ptrans, NULL);
482
483         /* Now kick out all the non-OBP entries.  */
484         for (i = 0; i < ents; i++) {
485                 if (in_obp_range(prom_trans[i].virt))
486                         break;
487         }
488         first = i;
489         for (; i < ents; i++) {
490                 if (!in_obp_range(prom_trans[i].virt))
491                         break;
492         }
493         last = i;
494
495         for (i = 0; i < (last - first); i++) {
496                 struct linux_prom_translation *src = &prom_trans[i + first];
497                 struct linux_prom_translation *dest = &prom_trans[i];
498
499                 *dest = *src;
500         }
501         for (; i < ents; i++) {
502                 struct linux_prom_translation *dest = &prom_trans[i];
503                 dest->virt = dest->size = dest->data = 0x0UL;
504         }
505
506         prom_trans_ents = last - first;
507
508         if (tlb_type == spitfire) {
509                 /* Clear diag TTE bits. */
510                 for (i = 0; i < prom_trans_ents; i++)
511                         prom_trans[i].data &= ~0x0003fe0000000000UL;
512         }
513 }
514
515 static void __init hypervisor_tlb_lock(unsigned long vaddr,
516                                        unsigned long pte,
517                                        unsigned long mmu)
518 {
519         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
520
521         if (ret != 0) {
522                 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
523                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
524                 prom_halt();
525         }
526 }
527
528 static unsigned long kern_large_tte(unsigned long paddr);
529
530 static void __init remap_kernel(void)
531 {
532         unsigned long phys_page, tte_vaddr, tte_data;
533         int i, tlb_ent = sparc64_highest_locked_tlbent();
534
535         tte_vaddr = (unsigned long) KERNBASE;
536         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
537         tte_data = kern_large_tte(phys_page);
538
539         kern_locked_tte_data = tte_data;
540
541         /* Now lock us into the TLBs via Hypervisor or OBP. */
542         if (tlb_type == hypervisor) {
543                 for (i = 0; i < num_kernel_image_mappings; i++) {
544                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
545                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
546                         tte_vaddr += 0x400000;
547                         tte_data += 0x400000;
548                 }
549         } else {
550                 for (i = 0; i < num_kernel_image_mappings; i++) {
551                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
552                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
553                         tte_vaddr += 0x400000;
554                         tte_data += 0x400000;
555                 }
556                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
557         }
558         if (tlb_type == cheetah_plus) {
559                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
560                                             CTX_CHEETAH_PLUS_NUC);
561                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
562                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
563         }
564 }
565
566
567 static void __init inherit_prom_mappings(void)
568 {
569         /* Now fixup OBP's idea about where we really are mapped. */
570         printk("Remapping the kernel... ");
571         remap_kernel();
572         printk("done.\n");
573 }
574
575 void prom_world(int enter)
576 {
577         if (!enter)
578                 set_fs((mm_segment_t) { get_thread_current_ds() });
579
580         __asm__ __volatile__("flushw");
581 }
582
583 void __flush_dcache_range(unsigned long start, unsigned long end)
584 {
585         unsigned long va;
586
587         if (tlb_type == spitfire) {
588                 int n = 0;
589
590                 for (va = start; va < end; va += 32) {
591                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
592                         if (++n >= 512)
593                                 break;
594                 }
595         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
596                 start = __pa(start);
597                 end = __pa(end);
598                 for (va = start; va < end; va += 32)
599                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
600                                              "membar #Sync"
601                                              : /* no outputs */
602                                              : "r" (va),
603                                                "i" (ASI_DCACHE_INVALIDATE));
604         }
605 }
606
607 /* get_new_mmu_context() uses "cache + 1".  */
608 DEFINE_SPINLOCK(ctx_alloc_lock);
609 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
610 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
611 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
612 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
613
614 /* Caller does TLB context flushing on local CPU if necessary.
615  * The caller also ensures that CTX_VALID(mm->context) is false.
616  *
617  * We must be careful about boundary cases so that we never
618  * let the user have CTX 0 (nucleus) or we ever use a CTX
619  * version of zero (and thus NO_CONTEXT would not be caught
620  * by version mis-match tests in mmu_context.h).
621  *
622  * Always invoked with interrupts disabled.
623  */
624 void get_new_mmu_context(struct mm_struct *mm)
625 {
626         unsigned long ctx, new_ctx;
627         unsigned long orig_pgsz_bits;
628         unsigned long flags;
629         int new_version;
630
631         spin_lock_irqsave(&ctx_alloc_lock, flags);
632         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
633         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
634         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
635         new_version = 0;
636         if (new_ctx >= (1 << CTX_NR_BITS)) {
637                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
638                 if (new_ctx >= ctx) {
639                         int i;
640                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
641                                 CTX_FIRST_VERSION;
642                         if (new_ctx == 1)
643                                 new_ctx = CTX_FIRST_VERSION;
644
645                         /* Don't call memset, for 16 entries that's just
646                          * plain silly...
647                          */
648                         mmu_context_bmap[0] = 3;
649                         mmu_context_bmap[1] = 0;
650                         mmu_context_bmap[2] = 0;
651                         mmu_context_bmap[3] = 0;
652                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
653                                 mmu_context_bmap[i + 0] = 0;
654                                 mmu_context_bmap[i + 1] = 0;
655                                 mmu_context_bmap[i + 2] = 0;
656                                 mmu_context_bmap[i + 3] = 0;
657                         }
658                         new_version = 1;
659                         goto out;
660                 }
661         }
662         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
663         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
664 out:
665         tlb_context_cache = new_ctx;
666         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
667         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
668
669         if (unlikely(new_version))
670                 smp_new_mmu_context_version();
671 }
672
673 static int numa_enabled = 1;
674 static int numa_debug;
675
676 static int __init early_numa(char *p)
677 {
678         if (!p)
679                 return 0;
680
681         if (strstr(p, "off"))
682                 numa_enabled = 0;
683
684         if (strstr(p, "debug"))
685                 numa_debug = 1;
686
687         return 0;
688 }
689 early_param("numa", early_numa);
690
691 #define numadbg(f, a...) \
692 do {    if (numa_debug) \
693                 printk(KERN_INFO f, ## a); \
694 } while (0)
695
696 static void __init find_ramdisk(unsigned long phys_base)
697 {
698 #ifdef CONFIG_BLK_DEV_INITRD
699         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
700                 unsigned long ramdisk_image;
701
702                 /* Older versions of the bootloader only supported a
703                  * 32-bit physical address for the ramdisk image
704                  * location, stored at sparc_ramdisk_image.  Newer
705                  * SILO versions set sparc_ramdisk_image to zero and
706                  * provide a full 64-bit physical address at
707                  * sparc_ramdisk_image64.
708                  */
709                 ramdisk_image = sparc_ramdisk_image;
710                 if (!ramdisk_image)
711                         ramdisk_image = sparc_ramdisk_image64;
712
713                 /* Another bootloader quirk.  The bootloader normalizes
714                  * the physical address to KERNBASE, so we have to
715                  * factor that back out and add in the lowest valid
716                  * physical page address to get the true physical address.
717                  */
718                 ramdisk_image -= KERNBASE;
719                 ramdisk_image += phys_base;
720
721                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
722                         ramdisk_image, sparc_ramdisk_size);
723
724                 initrd_start = ramdisk_image;
725                 initrd_end = ramdisk_image + sparc_ramdisk_size;
726
727                 lmb_reserve(initrd_start, sparc_ramdisk_size);
728
729                 initrd_start += PAGE_OFFSET;
730                 initrd_end += PAGE_OFFSET;
731         }
732 #endif
733 }
734
735 struct node_mem_mask {
736         unsigned long mask;
737         unsigned long val;
738         unsigned long bootmem_paddr;
739 };
740 static struct node_mem_mask node_masks[MAX_NUMNODES];
741 static int num_node_masks;
742
743 int numa_cpu_lookup_table[NR_CPUS];
744 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
745
746 #ifdef CONFIG_NEED_MULTIPLE_NODES
747
748 struct mdesc_mblock {
749         u64     base;
750         u64     size;
751         u64     offset; /* RA-to-PA */
752 };
753 static struct mdesc_mblock *mblocks;
754 static int num_mblocks;
755
756 static unsigned long ra_to_pa(unsigned long addr)
757 {
758         int i;
759
760         for (i = 0; i < num_mblocks; i++) {
761                 struct mdesc_mblock *m = &mblocks[i];
762
763                 if (addr >= m->base &&
764                     addr < (m->base + m->size)) {
765                         addr += m->offset;
766                         break;
767                 }
768         }
769         return addr;
770 }
771
772 static int find_node(unsigned long addr)
773 {
774         int i;
775
776         addr = ra_to_pa(addr);
777         for (i = 0; i < num_node_masks; i++) {
778                 struct node_mem_mask *p = &node_masks[i];
779
780                 if ((addr & p->mask) == p->val)
781                         return i;
782         }
783         return -1;
784 }
785
786 static unsigned long nid_range(unsigned long start, unsigned long end,
787                                int *nid)
788 {
789         *nid = find_node(start);
790         start += PAGE_SIZE;
791         while (start < end) {
792                 int n = find_node(start);
793
794                 if (n != *nid)
795                         break;
796                 start += PAGE_SIZE;
797         }
798
799         if (start > end)
800                 start = end;
801
802         return start;
803 }
804 #else
805 static unsigned long nid_range(unsigned long start, unsigned long end,
806                                int *nid)
807 {
808         *nid = 0;
809         return end;
810 }
811 #endif
812
813 /* This must be invoked after performing all of the necessary
814  * add_active_range() calls for 'nid'.  We need to be able to get
815  * correct data from get_pfn_range_for_nid().
816  */
817 static void __init allocate_node_data(int nid)
818 {
819         unsigned long paddr, num_pages, start_pfn, end_pfn;
820         struct pglist_data *p;
821
822 #ifdef CONFIG_NEED_MULTIPLE_NODES
823         paddr = lmb_alloc_nid(sizeof(struct pglist_data),
824                               SMP_CACHE_BYTES, nid, nid_range);
825         if (!paddr) {
826                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
827                 prom_halt();
828         }
829         NODE_DATA(nid) = __va(paddr);
830         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
831
832         NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
833 #endif
834
835         p = NODE_DATA(nid);
836
837         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
838         p->node_start_pfn = start_pfn;
839         p->node_spanned_pages = end_pfn - start_pfn;
840
841         if (p->node_spanned_pages) {
842                 num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
843
844                 paddr = lmb_alloc_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid,
845                                       nid_range);
846                 if (!paddr) {
847                         prom_printf("Cannot allocate bootmap for nid[%d]\n",
848                                   nid);
849                         prom_halt();
850                 }
851                 node_masks[nid].bootmem_paddr = paddr;
852         }
853 }
854
855 static void init_node_masks_nonnuma(void)
856 {
857         int i;
858
859         numadbg("Initializing tables for non-numa.\n");
860
861         node_masks[0].mask = node_masks[0].val = 0;
862         num_node_masks = 1;
863
864         for (i = 0; i < NR_CPUS; i++)
865                 numa_cpu_lookup_table[i] = 0;
866
867         numa_cpumask_lookup_table[0] = CPU_MASK_ALL;
868 }
869
870 #ifdef CONFIG_NEED_MULTIPLE_NODES
871 struct pglist_data *node_data[MAX_NUMNODES];
872
873 EXPORT_SYMBOL(numa_cpu_lookup_table);
874 EXPORT_SYMBOL(numa_cpumask_lookup_table);
875 EXPORT_SYMBOL(node_data);
876
877 struct mdesc_mlgroup {
878         u64     node;
879         u64     latency;
880         u64     match;
881         u64     mask;
882 };
883 static struct mdesc_mlgroup *mlgroups;
884 static int num_mlgroups;
885
886 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
887                                    u32 cfg_handle)
888 {
889         u64 arc;
890
891         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
892                 u64 target = mdesc_arc_target(md, arc);
893                 const u64 *val;
894
895                 val = mdesc_get_property(md, target,
896                                          "cfg-handle", NULL);
897                 if (val && *val == cfg_handle)
898                         return 0;
899         }
900         return -ENODEV;
901 }
902
903 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
904                                     u32 cfg_handle)
905 {
906         u64 arc, candidate, best_latency = ~(u64)0;
907
908         candidate = MDESC_NODE_NULL;
909         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
910                 u64 target = mdesc_arc_target(md, arc);
911                 const char *name = mdesc_node_name(md, target);
912                 const u64 *val;
913
914                 if (strcmp(name, "pio-latency-group"))
915                         continue;
916
917                 val = mdesc_get_property(md, target, "latency", NULL);
918                 if (!val)
919                         continue;
920
921                 if (*val < best_latency) {
922                         candidate = target;
923                         best_latency = *val;
924                 }
925         }
926
927         if (candidate == MDESC_NODE_NULL)
928                 return -ENODEV;
929
930         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
931 }
932
933 int of_node_to_nid(struct device_node *dp)
934 {
935         const struct linux_prom64_registers *regs;
936         struct mdesc_handle *md;
937         u32 cfg_handle;
938         int count, nid;
939         u64 grp;
940
941         if (!mlgroups)
942                 return -1;
943
944         regs = of_get_property(dp, "reg", NULL);
945         if (!regs)
946                 return -1;
947
948         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
949
950         md = mdesc_grab();
951
952         count = 0;
953         nid = -1;
954         mdesc_for_each_node_by_name(md, grp, "group") {
955                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
956                         nid = count;
957                         break;
958                 }
959                 count++;
960         }
961
962         mdesc_release(md);
963
964         return nid;
965 }
966
967 static void add_node_ranges(void)
968 {
969         int i;
970
971         for (i = 0; i < lmb.memory.cnt; i++) {
972                 unsigned long size = lmb_size_bytes(&lmb.memory, i);
973                 unsigned long start, end;
974
975                 start = lmb.memory.region[i].base;
976                 end = start + size;
977                 while (start < end) {
978                         unsigned long this_end;
979                         int nid;
980
981                         this_end = nid_range(start, end, &nid);
982
983                         numadbg("Adding active range nid[%d] "
984                                 "start[%lx] end[%lx]\n",
985                                 nid, start, this_end);
986
987                         add_active_range(nid,
988                                          start >> PAGE_SHIFT,
989                                          this_end >> PAGE_SHIFT);
990
991                         start = this_end;
992                 }
993         }
994 }
995
996 static int __init grab_mlgroups(struct mdesc_handle *md)
997 {
998         unsigned long paddr;
999         int count = 0;
1000         u64 node;
1001
1002         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1003                 count++;
1004         if (!count)
1005                 return -ENOENT;
1006
1007         paddr = lmb_alloc(count * sizeof(struct mdesc_mlgroup),
1008                           SMP_CACHE_BYTES);
1009         if (!paddr)
1010                 return -ENOMEM;
1011
1012         mlgroups = __va(paddr);
1013         num_mlgroups = count;
1014
1015         count = 0;
1016         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1017                 struct mdesc_mlgroup *m = &mlgroups[count++];
1018                 const u64 *val;
1019
1020                 m->node = node;
1021
1022                 val = mdesc_get_property(md, node, "latency", NULL);
1023                 m->latency = *val;
1024                 val = mdesc_get_property(md, node, "address-match", NULL);
1025                 m->match = *val;
1026                 val = mdesc_get_property(md, node, "address-mask", NULL);
1027                 m->mask = *val;
1028
1029                 numadbg("MLGROUP[%d]: node[%lx] latency[%lx] "
1030                         "match[%lx] mask[%lx]\n",
1031                         count - 1, m->node, m->latency, m->match, m->mask);
1032         }
1033
1034         return 0;
1035 }
1036
1037 static int __init grab_mblocks(struct mdesc_handle *md)
1038 {
1039         unsigned long paddr;
1040         int count = 0;
1041         u64 node;
1042
1043         mdesc_for_each_node_by_name(md, node, "mblock")
1044                 count++;
1045         if (!count)
1046                 return -ENOENT;
1047
1048         paddr = lmb_alloc(count * sizeof(struct mdesc_mblock),
1049                           SMP_CACHE_BYTES);
1050         if (!paddr)
1051                 return -ENOMEM;
1052
1053         mblocks = __va(paddr);
1054         num_mblocks = count;
1055
1056         count = 0;
1057         mdesc_for_each_node_by_name(md, node, "mblock") {
1058                 struct mdesc_mblock *m = &mblocks[count++];
1059                 const u64 *val;
1060
1061                 val = mdesc_get_property(md, node, "base", NULL);
1062                 m->base = *val;
1063                 val = mdesc_get_property(md, node, "size", NULL);
1064                 m->size = *val;
1065                 val = mdesc_get_property(md, node,
1066                                          "address-congruence-offset", NULL);
1067                 m->offset = *val;
1068
1069                 numadbg("MBLOCK[%d]: base[%lx] size[%lx] offset[%lx]\n",
1070                         count - 1, m->base, m->size, m->offset);
1071         }
1072
1073         return 0;
1074 }
1075
1076 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1077                                                u64 grp, cpumask_t *mask)
1078 {
1079         u64 arc;
1080
1081         cpus_clear(*mask);
1082
1083         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1084                 u64 target = mdesc_arc_target(md, arc);
1085                 const char *name = mdesc_node_name(md, target);
1086                 const u64 *id;
1087
1088                 if (strcmp(name, "cpu"))
1089                         continue;
1090                 id = mdesc_get_property(md, target, "id", NULL);
1091                 if (*id < NR_CPUS)
1092                         cpu_set(*id, *mask);
1093         }
1094 }
1095
1096 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1097 {
1098         int i;
1099
1100         for (i = 0; i < num_mlgroups; i++) {
1101                 struct mdesc_mlgroup *m = &mlgroups[i];
1102                 if (m->node == node)
1103                         return m;
1104         }
1105         return NULL;
1106 }
1107
1108 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1109                                       int index)
1110 {
1111         struct mdesc_mlgroup *candidate = NULL;
1112         u64 arc, best_latency = ~(u64)0;
1113         struct node_mem_mask *n;
1114
1115         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1116                 u64 target = mdesc_arc_target(md, arc);
1117                 struct mdesc_mlgroup *m = find_mlgroup(target);
1118                 if (!m)
1119                         continue;
1120                 if (m->latency < best_latency) {
1121                         candidate = m;
1122                         best_latency = m->latency;
1123                 }
1124         }
1125         if (!candidate)
1126                 return -ENOENT;
1127
1128         if (num_node_masks != index) {
1129                 printk(KERN_ERR "Inconsistent NUMA state, "
1130                        "index[%d] != num_node_masks[%d]\n",
1131                        index, num_node_masks);
1132                 return -EINVAL;
1133         }
1134
1135         n = &node_masks[num_node_masks++];
1136
1137         n->mask = candidate->mask;
1138         n->val = candidate->match;
1139
1140         numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%lx])\n",
1141                 index, n->mask, n->val, candidate->latency);
1142
1143         return 0;
1144 }
1145
1146 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1147                                          int index)
1148 {
1149         cpumask_t mask;
1150         int cpu;
1151
1152         numa_parse_mdesc_group_cpus(md, grp, &mask);
1153
1154         for_each_cpu_mask(cpu, mask)
1155                 numa_cpu_lookup_table[cpu] = index;
1156         numa_cpumask_lookup_table[index] = mask;
1157
1158         if (numa_debug) {
1159                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1160                 for_each_cpu_mask(cpu, mask)
1161                         printk("%d ", cpu);
1162                 printk("]\n");
1163         }
1164
1165         return numa_attach_mlgroup(md, grp, index);
1166 }
1167
1168 static int __init numa_parse_mdesc(void)
1169 {
1170         struct mdesc_handle *md = mdesc_grab();
1171         int i, err, count;
1172         u64 node;
1173
1174         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1175         if (node == MDESC_NODE_NULL) {
1176                 mdesc_release(md);
1177                 return -ENOENT;
1178         }
1179
1180         err = grab_mblocks(md);
1181         if (err < 0)
1182                 goto out;
1183
1184         err = grab_mlgroups(md);
1185         if (err < 0)
1186                 goto out;
1187
1188         count = 0;
1189         mdesc_for_each_node_by_name(md, node, "group") {
1190                 err = numa_parse_mdesc_group(md, node, count);
1191                 if (err < 0)
1192                         break;
1193                 count++;
1194         }
1195
1196         add_node_ranges();
1197
1198         for (i = 0; i < num_node_masks; i++) {
1199                 allocate_node_data(i);
1200                 node_set_online(i);
1201         }
1202
1203         err = 0;
1204 out:
1205         mdesc_release(md);
1206         return err;
1207 }
1208
1209 static int __init numa_parse_sun4u(void)
1210 {
1211         return -1;
1212 }
1213
1214 static int __init bootmem_init_numa(void)
1215 {
1216         int err = -1;
1217
1218         numadbg("bootmem_init_numa()\n");
1219
1220         if (numa_enabled) {
1221                 if (tlb_type == hypervisor)
1222                         err = numa_parse_mdesc();
1223                 else
1224                         err = numa_parse_sun4u();
1225         }
1226         return err;
1227 }
1228
1229 #else
1230
1231 static int bootmem_init_numa(void)
1232 {
1233         return -1;
1234 }
1235
1236 #endif
1237
1238 static void __init bootmem_init_nonnuma(void)
1239 {
1240         unsigned long top_of_ram = lmb_end_of_DRAM();
1241         unsigned long total_ram = lmb_phys_mem_size();
1242         unsigned int i;
1243
1244         numadbg("bootmem_init_nonnuma()\n");
1245
1246         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1247                top_of_ram, total_ram);
1248         printk(KERN_INFO "Memory hole size: %ldMB\n",
1249                (top_of_ram - total_ram) >> 20);
1250
1251         init_node_masks_nonnuma();
1252
1253         for (i = 0; i < lmb.memory.cnt; i++) {
1254                 unsigned long size = lmb_size_bytes(&lmb.memory, i);
1255                 unsigned long start_pfn, end_pfn;
1256
1257                 if (!size)
1258                         continue;
1259
1260                 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
1261                 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
1262                 add_active_range(0, start_pfn, end_pfn);
1263         }
1264
1265         allocate_node_data(0);
1266
1267         node_set_online(0);
1268 }
1269
1270 static void __init reserve_range_in_node(int nid, unsigned long start,
1271                                          unsigned long end)
1272 {
1273         numadbg("    reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1274                 nid, start, end);
1275         while (start < end) {
1276                 unsigned long this_end;
1277                 int n;
1278
1279                 this_end = nid_range(start, end, &n);
1280                 if (n == nid) {
1281                         numadbg("      MATCH reserving range [%lx:%lx]\n",
1282                                 start, this_end);
1283                         reserve_bootmem_node(NODE_DATA(nid), start,
1284                                              (this_end - start), BOOTMEM_DEFAULT);
1285                 } else
1286                         numadbg("      NO MATCH, advancing start to %lx\n",
1287                                 this_end);
1288
1289                 start = this_end;
1290         }
1291 }
1292
1293 static void __init trim_reserved_in_node(int nid)
1294 {
1295         int i;
1296
1297         numadbg("  trim_reserved_in_node(%d)\n", nid);
1298
1299         for (i = 0; i < lmb.reserved.cnt; i++) {
1300                 unsigned long start = lmb.reserved.region[i].base;
1301                 unsigned long size = lmb_size_bytes(&lmb.reserved, i);
1302                 unsigned long end = start + size;
1303
1304                 reserve_range_in_node(nid, start, end);
1305         }
1306 }
1307
1308 static void __init bootmem_init_one_node(int nid)
1309 {
1310         struct pglist_data *p;
1311
1312         numadbg("bootmem_init_one_node(%d)\n", nid);
1313
1314         p = NODE_DATA(nid);
1315
1316         if (p->node_spanned_pages) {
1317                 unsigned long paddr = node_masks[nid].bootmem_paddr;
1318                 unsigned long end_pfn;
1319
1320                 end_pfn = p->node_start_pfn + p->node_spanned_pages;
1321
1322                 numadbg("  init_bootmem_node(%d, %lx, %lx, %lx)\n",
1323                         nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1324
1325                 init_bootmem_node(p, paddr >> PAGE_SHIFT,
1326                                   p->node_start_pfn, end_pfn);
1327
1328                 numadbg("  free_bootmem_with_active_regions(%d, %lx)\n",
1329                         nid, end_pfn);
1330                 free_bootmem_with_active_regions(nid, end_pfn);
1331
1332                 trim_reserved_in_node(nid);
1333
1334                 numadbg("  sparse_memory_present_with_active_regions(%d)\n",
1335                         nid);
1336                 sparse_memory_present_with_active_regions(nid);
1337         }
1338 }
1339
1340 static unsigned long __init bootmem_init(unsigned long phys_base)
1341 {
1342         unsigned long end_pfn;
1343         int nid;
1344
1345         end_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
1346         max_pfn = max_low_pfn = end_pfn;
1347         min_low_pfn = (phys_base >> PAGE_SHIFT);
1348
1349         if (bootmem_init_numa() < 0)
1350                 bootmem_init_nonnuma();
1351
1352         /* XXX cpu notifier XXX */
1353
1354         for_each_online_node(nid)
1355                 bootmem_init_one_node(nid);
1356
1357         sparse_init();
1358
1359         return end_pfn;
1360 }
1361
1362 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1363 static int pall_ents __initdata;
1364
1365 #ifdef CONFIG_DEBUG_PAGEALLOC
1366 static unsigned long __ref kernel_map_range(unsigned long pstart,
1367                                             unsigned long pend, pgprot_t prot)
1368 {
1369         unsigned long vstart = PAGE_OFFSET + pstart;
1370         unsigned long vend = PAGE_OFFSET + pend;
1371         unsigned long alloc_bytes = 0UL;
1372
1373         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1374                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1375                             vstart, vend);
1376                 prom_halt();
1377         }
1378
1379         while (vstart < vend) {
1380                 unsigned long this_end, paddr = __pa(vstart);
1381                 pgd_t *pgd = pgd_offset_k(vstart);
1382                 pud_t *pud;
1383                 pmd_t *pmd;
1384                 pte_t *pte;
1385
1386                 pud = pud_offset(pgd, vstart);
1387                 if (pud_none(*pud)) {
1388                         pmd_t *new;
1389
1390                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1391                         alloc_bytes += PAGE_SIZE;
1392                         pud_populate(&init_mm, pud, new);
1393                 }
1394
1395                 pmd = pmd_offset(pud, vstart);
1396                 if (!pmd_present(*pmd)) {
1397                         pte_t *new;
1398
1399                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1400                         alloc_bytes += PAGE_SIZE;
1401                         pmd_populate_kernel(&init_mm, pmd, new);
1402                 }
1403
1404                 pte = pte_offset_kernel(pmd, vstart);
1405                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1406                 if (this_end > vend)
1407                         this_end = vend;
1408
1409                 while (vstart < this_end) {
1410                         pte_val(*pte) = (paddr | pgprot_val(prot));
1411
1412                         vstart += PAGE_SIZE;
1413                         paddr += PAGE_SIZE;
1414                         pte++;
1415                 }
1416         }
1417
1418         return alloc_bytes;
1419 }
1420
1421 extern unsigned int kvmap_linear_patch[1];
1422 #endif /* CONFIG_DEBUG_PAGEALLOC */
1423
1424 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1425 {
1426         const unsigned long shift_256MB = 28;
1427         const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1428         const unsigned long size_256MB = (1UL << shift_256MB);
1429
1430         while (start < end) {
1431                 long remains;
1432
1433                 remains = end - start;
1434                 if (remains < size_256MB)
1435                         break;
1436
1437                 if (start & mask_256MB) {
1438                         start = (start + size_256MB) & ~mask_256MB;
1439                         continue;
1440                 }
1441
1442                 while (remains >= size_256MB) {
1443                         unsigned long index = start >> shift_256MB;
1444
1445                         __set_bit(index, kpte_linear_bitmap);
1446
1447                         start += size_256MB;
1448                         remains -= size_256MB;
1449                 }
1450         }
1451 }
1452
1453 static void __init init_kpte_bitmap(void)
1454 {
1455         unsigned long i;
1456
1457         for (i = 0; i < pall_ents; i++) {
1458                 unsigned long phys_start, phys_end;
1459
1460                 phys_start = pall[i].phys_addr;
1461                 phys_end = phys_start + pall[i].reg_size;
1462
1463                 mark_kpte_bitmap(phys_start, phys_end);
1464         }
1465 }
1466
1467 static void __init kernel_physical_mapping_init(void)
1468 {
1469 #ifdef CONFIG_DEBUG_PAGEALLOC
1470         unsigned long i, mem_alloced = 0UL;
1471
1472         for (i = 0; i < pall_ents; i++) {
1473                 unsigned long phys_start, phys_end;
1474
1475                 phys_start = pall[i].phys_addr;
1476                 phys_end = phys_start + pall[i].reg_size;
1477
1478                 mem_alloced += kernel_map_range(phys_start, phys_end,
1479                                                 PAGE_KERNEL);
1480         }
1481
1482         printk("Allocated %ld bytes for kernel page tables.\n",
1483                mem_alloced);
1484
1485         kvmap_linear_patch[0] = 0x01000000; /* nop */
1486         flushi(&kvmap_linear_patch[0]);
1487
1488         __flush_tlb_all();
1489 #endif
1490 }
1491
1492 #ifdef CONFIG_DEBUG_PAGEALLOC
1493 void kernel_map_pages(struct page *page, int numpages, int enable)
1494 {
1495         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1496         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1497
1498         kernel_map_range(phys_start, phys_end,
1499                          (enable ? PAGE_KERNEL : __pgprot(0)));
1500
1501         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1502                                PAGE_OFFSET + phys_end);
1503
1504         /* we should perform an IPI and flush all tlbs,
1505          * but that can deadlock->flush only current cpu.
1506          */
1507         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1508                                  PAGE_OFFSET + phys_end);
1509 }
1510 #endif
1511
1512 unsigned long __init find_ecache_flush_span(unsigned long size)
1513 {
1514         int i;
1515
1516         for (i = 0; i < pavail_ents; i++) {
1517                 if (pavail[i].reg_size >= size)
1518                         return pavail[i].phys_addr;
1519         }
1520
1521         return ~0UL;
1522 }
1523
1524 static void __init tsb_phys_patch(void)
1525 {
1526         struct tsb_ldquad_phys_patch_entry *pquad;
1527         struct tsb_phys_patch_entry *p;
1528
1529         pquad = &__tsb_ldquad_phys_patch;
1530         while (pquad < &__tsb_ldquad_phys_patch_end) {
1531                 unsigned long addr = pquad->addr;
1532
1533                 if (tlb_type == hypervisor)
1534                         *(unsigned int *) addr = pquad->sun4v_insn;
1535                 else
1536                         *(unsigned int *) addr = pquad->sun4u_insn;
1537                 wmb();
1538                 __asm__ __volatile__("flush     %0"
1539                                      : /* no outputs */
1540                                      : "r" (addr));
1541
1542                 pquad++;
1543         }
1544
1545         p = &__tsb_phys_patch;
1546         while (p < &__tsb_phys_patch_end) {
1547                 unsigned long addr = p->addr;
1548
1549                 *(unsigned int *) addr = p->insn;
1550                 wmb();
1551                 __asm__ __volatile__("flush     %0"
1552                                      : /* no outputs */
1553                                      : "r" (addr));
1554
1555                 p++;
1556         }
1557 }
1558
1559 /* Don't mark as init, we give this to the Hypervisor.  */
1560 #ifndef CONFIG_DEBUG_PAGEALLOC
1561 #define NUM_KTSB_DESCR  2
1562 #else
1563 #define NUM_KTSB_DESCR  1
1564 #endif
1565 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1566 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1567
1568 static void __init sun4v_ktsb_init(void)
1569 {
1570         unsigned long ktsb_pa;
1571
1572         /* First KTSB for PAGE_SIZE mappings.  */
1573         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1574
1575         switch (PAGE_SIZE) {
1576         case 8 * 1024:
1577         default:
1578                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1579                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1580                 break;
1581
1582         case 64 * 1024:
1583                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1584                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1585                 break;
1586
1587         case 512 * 1024:
1588                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1589                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1590                 break;
1591
1592         case 4 * 1024 * 1024:
1593                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1594                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1595                 break;
1596         };
1597
1598         ktsb_descr[0].assoc = 1;
1599         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1600         ktsb_descr[0].ctx_idx = 0;
1601         ktsb_descr[0].tsb_base = ktsb_pa;
1602         ktsb_descr[0].resv = 0;
1603
1604 #ifndef CONFIG_DEBUG_PAGEALLOC
1605         /* Second KTSB for 4MB/256MB mappings.  */
1606         ktsb_pa = (kern_base +
1607                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1608
1609         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1610         ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1611                                    HV_PGSZ_MASK_256MB);
1612         ktsb_descr[1].assoc = 1;
1613         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1614         ktsb_descr[1].ctx_idx = 0;
1615         ktsb_descr[1].tsb_base = ktsb_pa;
1616         ktsb_descr[1].resv = 0;
1617 #endif
1618 }
1619
1620 void __cpuinit sun4v_ktsb_register(void)
1621 {
1622         unsigned long pa, ret;
1623
1624         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1625
1626         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1627         if (ret != 0) {
1628                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1629                             "errors with %lx\n", pa, ret);
1630                 prom_halt();
1631         }
1632 }
1633
1634 /* paging_init() sets up the page tables */
1635
1636 extern void central_probe(void);
1637
1638 static unsigned long last_valid_pfn;
1639 pgd_t swapper_pg_dir[2048];
1640
1641 static void sun4u_pgprot_init(void);
1642 static void sun4v_pgprot_init(void);
1643
1644 /* Dummy function */
1645 void __init setup_per_cpu_areas(void)
1646 {
1647 }
1648
1649 void __init paging_init(void)
1650 {
1651         unsigned long end_pfn, shift, phys_base;
1652         unsigned long real_end, i;
1653
1654         /* These build time checkes make sure that the dcache_dirty_cpu()
1655          * page->flags usage will work.
1656          *
1657          * When a page gets marked as dcache-dirty, we store the
1658          * cpu number starting at bit 32 in the page->flags.  Also,
1659          * functions like clear_dcache_dirty_cpu use the cpu mask
1660          * in 13-bit signed-immediate instruction fields.
1661          */
1662
1663         /*
1664          * Page flags must not reach into upper 32 bits that are used
1665          * for the cpu number
1666          */
1667         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1668
1669         /*
1670          * The bit fields placed in the high range must not reach below
1671          * the 32 bit boundary. Otherwise we cannot place the cpu field
1672          * at the 32 bit boundary.
1673          */
1674         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1675                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1676
1677         BUILD_BUG_ON(NR_CPUS > 4096);
1678
1679         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1680         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1681
1682         sstate_booting();
1683
1684         /* Invalidate both kernel TSBs.  */
1685         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1686 #ifndef CONFIG_DEBUG_PAGEALLOC
1687         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1688 #endif
1689
1690         if (tlb_type == hypervisor)
1691                 sun4v_pgprot_init();
1692         else
1693                 sun4u_pgprot_init();
1694
1695         if (tlb_type == cheetah_plus ||
1696             tlb_type == hypervisor)
1697                 tsb_phys_patch();
1698
1699         if (tlb_type == hypervisor) {
1700                 sun4v_patch_tlb_handlers();
1701                 sun4v_ktsb_init();
1702         }
1703
1704         lmb_init();
1705
1706         /* Find available physical memory...
1707          *
1708          * Read it twice in order to work around a bug in openfirmware.
1709          * The call to grab this table itself can cause openfirmware to
1710          * allocate memory, which in turn can take away some space from
1711          * the list of available memory.  Reading it twice makes sure
1712          * we really do get the final value.
1713          */
1714         read_obp_translations();
1715         read_obp_memory("reg", &pall[0], &pall_ents);
1716         read_obp_memory("available", &pavail[0], &pavail_ents);
1717         read_obp_memory("available", &pavail[0], &pavail_ents);
1718
1719         phys_base = 0xffffffffffffffffUL;
1720         for (i = 0; i < pavail_ents; i++) {
1721                 phys_base = min(phys_base, pavail[i].phys_addr);
1722                 lmb_add(pavail[i].phys_addr, pavail[i].reg_size);
1723         }
1724
1725         lmb_reserve(kern_base, kern_size);
1726
1727         find_ramdisk(phys_base);
1728
1729         if (cmdline_memory_size)
1730                 lmb_enforce_memory_limit(phys_base + cmdline_memory_size);
1731
1732         lmb_analyze();
1733         lmb_dump_all();
1734
1735         set_bit(0, mmu_context_bmap);
1736
1737         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1738
1739         real_end = (unsigned long)_end;
1740         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1741         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1742                num_kernel_image_mappings);
1743
1744         /* Set kernel pgd to upper alias so physical page computations
1745          * work.
1746          */
1747         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1748         
1749         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1750
1751         /* Now can init the kernel/bad page tables. */
1752         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1753                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1754         
1755         inherit_prom_mappings();
1756         
1757         init_kpte_bitmap();
1758
1759         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1760         setup_tba();
1761
1762         __flush_tlb_all();
1763
1764         if (tlb_type == hypervisor)
1765                 sun4v_ktsb_register();
1766
1767         /* We must setup the per-cpu areas before we pull in the
1768          * PROM and the MDESC.  The code there fills in cpu and
1769          * other information into per-cpu data structures.
1770          */
1771         real_setup_per_cpu_areas();
1772
1773         prom_build_devicetree();
1774
1775         if (tlb_type == hypervisor)
1776                 sun4v_mdesc_init();
1777
1778         /* Once the OF device tree and MDESC have been setup, we know
1779          * the list of possible cpus.  Therefore we can allocate the
1780          * IRQ stacks.
1781          */
1782         for_each_possible_cpu(i) {
1783                 /* XXX Use node local allocations... XXX */
1784                 softirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
1785                 hardirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
1786         }
1787
1788         /* Setup bootmem... */
1789         last_valid_pfn = end_pfn = bootmem_init(phys_base);
1790
1791 #ifndef CONFIG_NEED_MULTIPLE_NODES
1792         max_mapnr = last_valid_pfn;
1793 #endif
1794         kernel_physical_mapping_init();
1795
1796         {
1797                 unsigned long max_zone_pfns[MAX_NR_ZONES];
1798
1799                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1800
1801                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1802
1803                 free_area_init_nodes(max_zone_pfns);
1804         }
1805
1806         printk("Booting Linux...\n");
1807
1808         central_probe();
1809         cpu_probe();
1810 }
1811
1812 int __init page_in_phys_avail(unsigned long paddr)
1813 {
1814         int i;
1815
1816         paddr &= PAGE_MASK;
1817
1818         for (i = 0; i < pavail_ents; i++) {
1819                 unsigned long start, end;
1820
1821                 start = pavail[i].phys_addr;
1822                 end = start + pavail[i].reg_size;
1823
1824                 if (paddr >= start && paddr < end)
1825                         return 1;
1826         }
1827         if (paddr >= kern_base && paddr < (kern_base + kern_size))
1828                 return 1;
1829 #ifdef CONFIG_BLK_DEV_INITRD
1830         if (paddr >= __pa(initrd_start) &&
1831             paddr < __pa(PAGE_ALIGN(initrd_end)))
1832                 return 1;
1833 #endif
1834
1835         return 0;
1836 }
1837
1838 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1839 static int pavail_rescan_ents __initdata;
1840
1841 /* Certain OBP calls, such as fetching "available" properties, can
1842  * claim physical memory.  So, along with initializing the valid
1843  * address bitmap, what we do here is refetch the physical available
1844  * memory list again, and make sure it provides at least as much
1845  * memory as 'pavail' does.
1846  */
1847 static void setup_valid_addr_bitmap_from_pavail(void)
1848 {
1849         int i;
1850
1851         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1852
1853         for (i = 0; i < pavail_ents; i++) {
1854                 unsigned long old_start, old_end;
1855
1856                 old_start = pavail[i].phys_addr;
1857                 old_end = old_start + pavail[i].reg_size;
1858                 while (old_start < old_end) {
1859                         int n;
1860
1861                         for (n = 0; n < pavail_rescan_ents; n++) {
1862                                 unsigned long new_start, new_end;
1863
1864                                 new_start = pavail_rescan[n].phys_addr;
1865                                 new_end = new_start +
1866                                         pavail_rescan[n].reg_size;
1867
1868                                 if (new_start <= old_start &&
1869                                     new_end >= (old_start + PAGE_SIZE)) {
1870                                         set_bit(old_start >> 22,
1871                                                 sparc64_valid_addr_bitmap);
1872                                         goto do_next_page;
1873                                 }
1874                         }
1875
1876                         prom_printf("mem_init: Lost memory in pavail\n");
1877                         prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1878                                     pavail[i].phys_addr,
1879                                     pavail[i].reg_size);
1880                         prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1881                                     pavail_rescan[i].phys_addr,
1882                                     pavail_rescan[i].reg_size);
1883                         prom_printf("mem_init: Cannot continue, aborting.\n");
1884                         prom_halt();
1885
1886                 do_next_page:
1887                         old_start += PAGE_SIZE;
1888                 }
1889         }
1890 }
1891
1892 void __init mem_init(void)
1893 {
1894         unsigned long codepages, datapages, initpages;
1895         unsigned long addr, last;
1896         int i;
1897
1898         i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1899         i += 1;
1900         sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1901         if (sparc64_valid_addr_bitmap == NULL) {
1902                 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1903                 prom_halt();
1904         }
1905         memset(sparc64_valid_addr_bitmap, 0, i << 3);
1906
1907         addr = PAGE_OFFSET + kern_base;
1908         last = PAGE_ALIGN(kern_size) + addr;
1909         while (addr < last) {
1910                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1911                 addr += PAGE_SIZE;
1912         }
1913
1914         setup_valid_addr_bitmap_from_pavail();
1915
1916         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1917
1918 #ifdef CONFIG_NEED_MULTIPLE_NODES
1919         for_each_online_node(i) {
1920                 if (NODE_DATA(i)->node_spanned_pages != 0) {
1921                         totalram_pages +=
1922                                 free_all_bootmem_node(NODE_DATA(i));
1923                 }
1924         }
1925 #else
1926         totalram_pages = free_all_bootmem();
1927 #endif
1928
1929         /* We subtract one to account for the mem_map_zero page
1930          * allocated below.
1931          */
1932         totalram_pages -= 1;
1933         num_physpages = totalram_pages;
1934
1935         /*
1936          * Set up the zero page, mark it reserved, so that page count
1937          * is not manipulated when freeing the page from user ptes.
1938          */
1939         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1940         if (mem_map_zero == NULL) {
1941                 prom_printf("paging_init: Cannot alloc zero page.\n");
1942                 prom_halt();
1943         }
1944         SetPageReserved(mem_map_zero);
1945
1946         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1947         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1948         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1949         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1950         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1951         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1952
1953         printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1954                nr_free_pages() << (PAGE_SHIFT-10),
1955                codepages << (PAGE_SHIFT-10),
1956                datapages << (PAGE_SHIFT-10), 
1957                initpages << (PAGE_SHIFT-10), 
1958                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1959
1960         if (tlb_type == cheetah || tlb_type == cheetah_plus)
1961                 cheetah_ecache_flush_init();
1962 }
1963
1964 void free_initmem(void)
1965 {
1966         unsigned long addr, initend;
1967
1968         /*
1969          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1970          */
1971         addr = PAGE_ALIGN((unsigned long)(__init_begin));
1972         initend = (unsigned long)(__init_end) & PAGE_MASK;
1973         for (; addr < initend; addr += PAGE_SIZE) {
1974                 unsigned long page;
1975                 struct page *p;
1976
1977                 page = (addr +
1978                         ((unsigned long) __va(kern_base)) -
1979                         ((unsigned long) KERNBASE));
1980                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1981                 p = virt_to_page(page);
1982
1983                 ClearPageReserved(p);
1984                 init_page_count(p);
1985                 __free_page(p);
1986                 num_physpages++;
1987                 totalram_pages++;
1988         }
1989 }
1990
1991 #ifdef CONFIG_BLK_DEV_INITRD
1992 void free_initrd_mem(unsigned long start, unsigned long end)
1993 {
1994         if (start < end)
1995                 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1996         for (; start < end; start += PAGE_SIZE) {
1997                 struct page *p = virt_to_page(start);
1998
1999                 ClearPageReserved(p);
2000                 init_page_count(p);
2001                 __free_page(p);
2002                 num_physpages++;
2003                 totalram_pages++;
2004         }
2005 }
2006 #endif
2007
2008 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2009 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2010 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2011 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2012 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2013 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2014
2015 pgprot_t PAGE_KERNEL __read_mostly;
2016 EXPORT_SYMBOL(PAGE_KERNEL);
2017
2018 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2019 pgprot_t PAGE_COPY __read_mostly;
2020
2021 pgprot_t PAGE_SHARED __read_mostly;
2022 EXPORT_SYMBOL(PAGE_SHARED);
2023
2024 pgprot_t PAGE_EXEC __read_mostly;
2025 unsigned long pg_iobits __read_mostly;
2026
2027 unsigned long _PAGE_IE __read_mostly;
2028 EXPORT_SYMBOL(_PAGE_IE);
2029
2030 unsigned long _PAGE_E __read_mostly;
2031 EXPORT_SYMBOL(_PAGE_E);
2032
2033 unsigned long _PAGE_CACHE __read_mostly;
2034 EXPORT_SYMBOL(_PAGE_CACHE);
2035
2036 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2037
2038 #define VMEMMAP_CHUNK_SHIFT     22
2039 #define VMEMMAP_CHUNK           (1UL << VMEMMAP_CHUNK_SHIFT)
2040 #define VMEMMAP_CHUNK_MASK      ~(VMEMMAP_CHUNK - 1UL)
2041 #define VMEMMAP_ALIGN(x)        (((x)+VMEMMAP_CHUNK-1UL)&VMEMMAP_CHUNK_MASK)
2042
2043 #define VMEMMAP_SIZE    ((((1UL << MAX_PHYSADDR_BITS) >> PAGE_SHIFT) * \
2044                           sizeof(struct page *)) >> VMEMMAP_CHUNK_SHIFT)
2045 unsigned long vmemmap_table[VMEMMAP_SIZE];
2046
2047 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2048 {
2049         unsigned long vstart = (unsigned long) start;
2050         unsigned long vend = (unsigned long) (start + nr);
2051         unsigned long phys_start = (vstart - VMEMMAP_BASE);
2052         unsigned long phys_end = (vend - VMEMMAP_BASE);
2053         unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2054         unsigned long end = VMEMMAP_ALIGN(phys_end);
2055         unsigned long pte_base;
2056
2057         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2058                     _PAGE_CP_4U | _PAGE_CV_4U |
2059                     _PAGE_P_4U | _PAGE_W_4U);
2060         if (tlb_type == hypervisor)
2061                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2062                             _PAGE_CP_4V | _PAGE_CV_4V |
2063                             _PAGE_P_4V | _PAGE_W_4V);
2064
2065         for (; addr < end; addr += VMEMMAP_CHUNK) {
2066                 unsigned long *vmem_pp =
2067                         vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2068                 void *block;
2069
2070                 if (!(*vmem_pp & _PAGE_VALID)) {
2071                         block = vmemmap_alloc_block(1UL << 22, node);
2072                         if (!block)
2073                                 return -ENOMEM;
2074
2075                         *vmem_pp = pte_base | __pa(block);
2076
2077                         printk(KERN_INFO "[%p-%p] page_structs=%lu "
2078                                "node=%d entry=%lu/%lu\n", start, block, nr,
2079                                node,
2080                                addr >> VMEMMAP_CHUNK_SHIFT,
2081                                VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
2082                 }
2083         }
2084         return 0;
2085 }
2086 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2087
2088 static void prot_init_common(unsigned long page_none,
2089                              unsigned long page_shared,
2090                              unsigned long page_copy,
2091                              unsigned long page_readonly,
2092                              unsigned long page_exec_bit)
2093 {
2094         PAGE_COPY = __pgprot(page_copy);
2095         PAGE_SHARED = __pgprot(page_shared);
2096
2097         protection_map[0x0] = __pgprot(page_none);
2098         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2099         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2100         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2101         protection_map[0x4] = __pgprot(page_readonly);
2102         protection_map[0x5] = __pgprot(page_readonly);
2103         protection_map[0x6] = __pgprot(page_copy);
2104         protection_map[0x7] = __pgprot(page_copy);
2105         protection_map[0x8] = __pgprot(page_none);
2106         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2107         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2108         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2109         protection_map[0xc] = __pgprot(page_readonly);
2110         protection_map[0xd] = __pgprot(page_readonly);
2111         protection_map[0xe] = __pgprot(page_shared);
2112         protection_map[0xf] = __pgprot(page_shared);
2113 }
2114
2115 static void __init sun4u_pgprot_init(void)
2116 {
2117         unsigned long page_none, page_shared, page_copy, page_readonly;
2118         unsigned long page_exec_bit;
2119
2120         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2121                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2122                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2123                                 _PAGE_EXEC_4U);
2124         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2125                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2126                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2127                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2128         PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
2129
2130         _PAGE_IE = _PAGE_IE_4U;
2131         _PAGE_E = _PAGE_E_4U;
2132         _PAGE_CACHE = _PAGE_CACHE_4U;
2133
2134         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2135                      __ACCESS_BITS_4U | _PAGE_E_4U);
2136
2137 #ifdef CONFIG_DEBUG_PAGEALLOC
2138         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2139                 0xfffff80000000000;
2140 #else
2141         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2142                 0xfffff80000000000;
2143 #endif
2144         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2145                                    _PAGE_P_4U | _PAGE_W_4U);
2146
2147         /* XXX Should use 256MB on Panther. XXX */
2148         kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2149
2150         _PAGE_SZBITS = _PAGE_SZBITS_4U;
2151         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2152                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2153                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2154
2155
2156         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2157         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2158                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2159         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2160                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2161         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2162                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2163
2164         page_exec_bit = _PAGE_EXEC_4U;
2165
2166         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2167                          page_exec_bit);
2168 }
2169
2170 static void __init sun4v_pgprot_init(void)
2171 {
2172         unsigned long page_none, page_shared, page_copy, page_readonly;
2173         unsigned long page_exec_bit;
2174
2175         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2176                                 _PAGE_CACHE_4V | _PAGE_P_4V |
2177                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2178                                 _PAGE_EXEC_4V);
2179         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2180         PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
2181
2182         _PAGE_IE = _PAGE_IE_4V;
2183         _PAGE_E = _PAGE_E_4V;
2184         _PAGE_CACHE = _PAGE_CACHE_4V;
2185
2186 #ifdef CONFIG_DEBUG_PAGEALLOC
2187         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2188                 0xfffff80000000000;
2189 #else
2190         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2191                 0xfffff80000000000;
2192 #endif
2193         kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2194                                    _PAGE_P_4V | _PAGE_W_4V);
2195
2196 #ifdef CONFIG_DEBUG_PAGEALLOC
2197         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2198                 0xfffff80000000000;
2199 #else
2200         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2201                 0xfffff80000000000;
2202 #endif
2203         kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2204                                    _PAGE_P_4V | _PAGE_W_4V);
2205
2206         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2207                      __ACCESS_BITS_4V | _PAGE_E_4V);
2208
2209         _PAGE_SZBITS = _PAGE_SZBITS_4V;
2210         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2211                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2212                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2213                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2214
2215         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2216         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2217                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2218         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2219                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2220         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2221                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2222
2223         page_exec_bit = _PAGE_EXEC_4V;
2224
2225         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2226                          page_exec_bit);
2227 }
2228
2229 unsigned long pte_sz_bits(unsigned long sz)
2230 {
2231         if (tlb_type == hypervisor) {
2232                 switch (sz) {
2233                 case 8 * 1024:
2234                 default:
2235                         return _PAGE_SZ8K_4V;
2236                 case 64 * 1024:
2237                         return _PAGE_SZ64K_4V;
2238                 case 512 * 1024:
2239                         return _PAGE_SZ512K_4V;
2240                 case 4 * 1024 * 1024:
2241                         return _PAGE_SZ4MB_4V;
2242                 };
2243         } else {
2244                 switch (sz) {
2245                 case 8 * 1024:
2246                 default:
2247                         return _PAGE_SZ8K_4U;
2248                 case 64 * 1024:
2249                         return _PAGE_SZ64K_4U;
2250                 case 512 * 1024:
2251                         return _PAGE_SZ512K_4U;
2252                 case 4 * 1024 * 1024:
2253                         return _PAGE_SZ4MB_4U;
2254                 };
2255         }
2256 }
2257
2258 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2259 {
2260         pte_t pte;
2261
2262         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2263         pte_val(pte) |= (((unsigned long)space) << 32);
2264         pte_val(pte) |= pte_sz_bits(page_size);
2265
2266         return pte;
2267 }
2268
2269 static unsigned long kern_large_tte(unsigned long paddr)
2270 {
2271         unsigned long val;
2272
2273         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2274                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2275                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2276         if (tlb_type == hypervisor)
2277                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2278                        _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2279                        _PAGE_EXEC_4V | _PAGE_W_4V);
2280
2281         return val | paddr;
2282 }
2283
2284 /* If not locked, zap it. */
2285 void __flush_tlb_all(void)
2286 {
2287         unsigned long pstate;
2288         int i;
2289
2290         __asm__ __volatile__("flushw\n\t"
2291                              "rdpr      %%pstate, %0\n\t"
2292                              "wrpr      %0, %1, %%pstate"
2293                              : "=r" (pstate)
2294                              : "i" (PSTATE_IE));
2295         if (tlb_type == hypervisor) {
2296                 sun4v_mmu_demap_all();
2297         } else if (tlb_type == spitfire) {
2298                 for (i = 0; i < 64; i++) {
2299                         /* Spitfire Errata #32 workaround */
2300                         /* NOTE: Always runs on spitfire, so no
2301                          *       cheetah+ page size encodings.
2302                          */
2303                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2304                                              "flush     %%g6"
2305                                              : /* No outputs */
2306                                              : "r" (0),
2307                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2308
2309                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2310                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2311                                                      "membar #Sync"
2312                                                      : /* no outputs */
2313                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2314                                 spitfire_put_dtlb_data(i, 0x0UL);
2315                         }
2316
2317                         /* Spitfire Errata #32 workaround */
2318                         /* NOTE: Always runs on spitfire, so no
2319                          *       cheetah+ page size encodings.
2320                          */
2321                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2322                                              "flush     %%g6"
2323                                              : /* No outputs */
2324                                              : "r" (0),
2325                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2326
2327                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2328                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2329                                                      "membar #Sync"
2330                                                      : /* no outputs */
2331                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2332                                 spitfire_put_itlb_data(i, 0x0UL);
2333                         }
2334                 }
2335         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2336                 cheetah_flush_dtlb_all();
2337                 cheetah_flush_itlb_all();
2338         }
2339         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2340                              : : "r" (pstate));
2341 }