]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/sparc64/mm/init.c
4e821b3ecb039faa71991809c0d4139354ee2a8d
[linux-2.6-omap-h63xx.git] / arch / sparc64 / mm / init.c
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/percpu.h>
27 #include <linux/lmb.h>
28 #include <linux/mmzone.h>
29
30 #include <asm/head.h>
31 #include <asm/system.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/sstate.h>
50 #include <asm/mdesc.h>
51 #include <asm/cpudata.h>
52
53 #define MAX_PHYS_ADDRESS        (1UL << 42UL)
54 #define KPTE_BITMAP_CHUNK_SZ    (256UL * 1024UL * 1024UL)
55 #define KPTE_BITMAP_BYTES       \
56         ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
57
58 unsigned long kern_linear_pte_xor[2] __read_mostly;
59
60 /* A bitmap, one bit for every 256MB of physical memory.  If the bit
61  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
62  * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
63  */
64 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
65
66 #ifndef CONFIG_DEBUG_PAGEALLOC
67 /* A special kernel TSB for 4MB and 256MB linear mappings.
68  * Space is allocated for this right after the trap table
69  * in arch/sparc64/kernel/head.S
70  */
71 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
72 #endif
73
74 #define MAX_BANKS       32
75
76 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
77 static int pavail_ents __initdata;
78
79 static int cmp_p64(const void *a, const void *b)
80 {
81         const struct linux_prom64_registers *x = a, *y = b;
82
83         if (x->phys_addr > y->phys_addr)
84                 return 1;
85         if (x->phys_addr < y->phys_addr)
86                 return -1;
87         return 0;
88 }
89
90 static void __init read_obp_memory(const char *property,
91                                    struct linux_prom64_registers *regs,
92                                    int *num_ents)
93 {
94         int node = prom_finddevice("/memory");
95         int prop_size = prom_getproplen(node, property);
96         int ents, ret, i;
97
98         ents = prop_size / sizeof(struct linux_prom64_registers);
99         if (ents > MAX_BANKS) {
100                 prom_printf("The machine has more %s property entries than "
101                             "this kernel can support (%d).\n",
102                             property, MAX_BANKS);
103                 prom_halt();
104         }
105
106         ret = prom_getproperty(node, property, (char *) regs, prop_size);
107         if (ret == -1) {
108                 prom_printf("Couldn't get %s property from /memory.\n");
109                 prom_halt();
110         }
111
112         /* Sanitize what we got from the firmware, by page aligning
113          * everything.
114          */
115         for (i = 0; i < ents; i++) {
116                 unsigned long base, size;
117
118                 base = regs[i].phys_addr;
119                 size = regs[i].reg_size;
120
121                 size &= PAGE_MASK;
122                 if (base & ~PAGE_MASK) {
123                         unsigned long new_base = PAGE_ALIGN(base);
124
125                         size -= new_base - base;
126                         if ((long) size < 0L)
127                                 size = 0UL;
128                         base = new_base;
129                 }
130                 if (size == 0UL) {
131                         /* If it is empty, simply get rid of it.
132                          * This simplifies the logic of the other
133                          * functions that process these arrays.
134                          */
135                         memmove(&regs[i], &regs[i + 1],
136                                 (ents - i - 1) * sizeof(regs[0]));
137                         i--;
138                         ents--;
139                         continue;
140                 }
141                 regs[i].phys_addr = base;
142                 regs[i].reg_size = size;
143         }
144
145         *num_ents = ents;
146
147         sort(regs, ents, sizeof(struct linux_prom64_registers),
148              cmp_p64, NULL);
149 }
150
151 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
152
153 /* Kernel physical address base and size in bytes.  */
154 unsigned long kern_base __read_mostly;
155 unsigned long kern_size __read_mostly;
156
157 /* Initial ramdisk setup */
158 extern unsigned long sparc_ramdisk_image64;
159 extern unsigned int sparc_ramdisk_image;
160 extern unsigned int sparc_ramdisk_size;
161
162 struct page *mem_map_zero __read_mostly;
163 EXPORT_SYMBOL(mem_map_zero);
164
165 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
166
167 unsigned long sparc64_kern_pri_context __read_mostly;
168 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
169 unsigned long sparc64_kern_sec_context __read_mostly;
170
171 int num_kernel_image_mappings;
172
173 #ifdef CONFIG_DEBUG_DCFLUSH
174 atomic_t dcpage_flushes = ATOMIC_INIT(0);
175 #ifdef CONFIG_SMP
176 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
177 #endif
178 #endif
179
180 inline void flush_dcache_page_impl(struct page *page)
181 {
182         BUG_ON(tlb_type == hypervisor);
183 #ifdef CONFIG_DEBUG_DCFLUSH
184         atomic_inc(&dcpage_flushes);
185 #endif
186
187 #ifdef DCACHE_ALIASING_POSSIBLE
188         __flush_dcache_page(page_address(page),
189                             ((tlb_type == spitfire) &&
190                              page_mapping(page) != NULL));
191 #else
192         if (page_mapping(page) != NULL &&
193             tlb_type == spitfire)
194                 __flush_icache_page(__pa(page_address(page)));
195 #endif
196 }
197
198 #define PG_dcache_dirty         PG_arch_1
199 #define PG_dcache_cpu_shift     32UL
200 #define PG_dcache_cpu_mask      \
201         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
202
203 #define dcache_dirty_cpu(page) \
204         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
205
206 static inline void set_dcache_dirty(struct page *page, int this_cpu)
207 {
208         unsigned long mask = this_cpu;
209         unsigned long non_cpu_bits;
210
211         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
212         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
213
214         __asm__ __volatile__("1:\n\t"
215                              "ldx       [%2], %%g7\n\t"
216                              "and       %%g7, %1, %%g1\n\t"
217                              "or        %%g1, %0, %%g1\n\t"
218                              "casx      [%2], %%g7, %%g1\n\t"
219                              "cmp       %%g7, %%g1\n\t"
220                              "membar    #StoreLoad | #StoreStore\n\t"
221                              "bne,pn    %%xcc, 1b\n\t"
222                              " nop"
223                              : /* no outputs */
224                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
225                              : "g1", "g7");
226 }
227
228 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
229 {
230         unsigned long mask = (1UL << PG_dcache_dirty);
231
232         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
233                              "1:\n\t"
234                              "ldx       [%2], %%g7\n\t"
235                              "srlx      %%g7, %4, %%g1\n\t"
236                              "and       %%g1, %3, %%g1\n\t"
237                              "cmp       %%g1, %0\n\t"
238                              "bne,pn    %%icc, 2f\n\t"
239                              " andn     %%g7, %1, %%g1\n\t"
240                              "casx      [%2], %%g7, %%g1\n\t"
241                              "cmp       %%g7, %%g1\n\t"
242                              "membar    #StoreLoad | #StoreStore\n\t"
243                              "bne,pn    %%xcc, 1b\n\t"
244                              " nop\n"
245                              "2:"
246                              : /* no outputs */
247                              : "r" (cpu), "r" (mask), "r" (&page->flags),
248                                "i" (PG_dcache_cpu_mask),
249                                "i" (PG_dcache_cpu_shift)
250                              : "g1", "g7");
251 }
252
253 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
254 {
255         unsigned long tsb_addr = (unsigned long) ent;
256
257         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
258                 tsb_addr = __pa(tsb_addr);
259
260         __tsb_insert(tsb_addr, tag, pte);
261 }
262
263 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
264 unsigned long _PAGE_SZBITS __read_mostly;
265
266 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
267 {
268         struct mm_struct *mm;
269         struct tsb *tsb;
270         unsigned long tag, flags;
271         unsigned long tsb_index, tsb_hash_shift;
272
273         if (tlb_type != hypervisor) {
274                 unsigned long pfn = pte_pfn(pte);
275                 unsigned long pg_flags;
276                 struct page *page;
277
278                 if (pfn_valid(pfn) &&
279                     (page = pfn_to_page(pfn), page_mapping(page)) &&
280                     ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
281                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
282                                    PG_dcache_cpu_mask);
283                         int this_cpu = get_cpu();
284
285                         /* This is just to optimize away some function calls
286                          * in the SMP case.
287                          */
288                         if (cpu == this_cpu)
289                                 flush_dcache_page_impl(page);
290                         else
291                                 smp_flush_dcache_page_impl(page, cpu);
292
293                         clear_dcache_dirty_cpu(page, cpu);
294
295                         put_cpu();
296                 }
297         }
298
299         mm = vma->vm_mm;
300
301         tsb_index = MM_TSB_BASE;
302         tsb_hash_shift = PAGE_SHIFT;
303
304         spin_lock_irqsave(&mm->context.lock, flags);
305
306 #ifdef CONFIG_HUGETLB_PAGE
307         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
308                 if ((tlb_type == hypervisor &&
309                      (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
310                     (tlb_type != hypervisor &&
311                      (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
312                         tsb_index = MM_TSB_HUGE;
313                         tsb_hash_shift = HPAGE_SHIFT;
314                 }
315         }
316 #endif
317
318         tsb = mm->context.tsb_block[tsb_index].tsb;
319         tsb += ((address >> tsb_hash_shift) &
320                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
321         tag = (address >> 22UL);
322         tsb_insert(tsb, tag, pte_val(pte));
323
324         spin_unlock_irqrestore(&mm->context.lock, flags);
325 }
326
327 void flush_dcache_page(struct page *page)
328 {
329         struct address_space *mapping;
330         int this_cpu;
331
332         if (tlb_type == hypervisor)
333                 return;
334
335         /* Do not bother with the expensive D-cache flush if it
336          * is merely the zero page.  The 'bigcore' testcase in GDB
337          * causes this case to run millions of times.
338          */
339         if (page == ZERO_PAGE(0))
340                 return;
341
342         this_cpu = get_cpu();
343
344         mapping = page_mapping(page);
345         if (mapping && !mapping_mapped(mapping)) {
346                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
347                 if (dirty) {
348                         int dirty_cpu = dcache_dirty_cpu(page);
349
350                         if (dirty_cpu == this_cpu)
351                                 goto out;
352                         smp_flush_dcache_page_impl(page, dirty_cpu);
353                 }
354                 set_dcache_dirty(page, this_cpu);
355         } else {
356                 /* We could delay the flush for the !page_mapping
357                  * case too.  But that case is for exec env/arg
358                  * pages and those are %99 certainly going to get
359                  * faulted into the tlb (and thus flushed) anyways.
360                  */
361                 flush_dcache_page_impl(page);
362         }
363
364 out:
365         put_cpu();
366 }
367
368 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
369 {
370         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
371         if (tlb_type == spitfire) {
372                 unsigned long kaddr;
373
374                 /* This code only runs on Spitfire cpus so this is
375                  * why we can assume _PAGE_PADDR_4U.
376                  */
377                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
378                         unsigned long paddr, mask = _PAGE_PADDR_4U;
379
380                         if (kaddr >= PAGE_OFFSET)
381                                 paddr = kaddr & mask;
382                         else {
383                                 pgd_t *pgdp = pgd_offset_k(kaddr);
384                                 pud_t *pudp = pud_offset(pgdp, kaddr);
385                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
386                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
387
388                                 paddr = pte_val(*ptep) & mask;
389                         }
390                         __flush_icache_page(paddr);
391                 }
392         }
393 }
394
395 void mmu_info(struct seq_file *m)
396 {
397         if (tlb_type == cheetah)
398                 seq_printf(m, "MMU Type\t: Cheetah\n");
399         else if (tlb_type == cheetah_plus)
400                 seq_printf(m, "MMU Type\t: Cheetah+\n");
401         else if (tlb_type == spitfire)
402                 seq_printf(m, "MMU Type\t: Spitfire\n");
403         else if (tlb_type == hypervisor)
404                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
405         else
406                 seq_printf(m, "MMU Type\t: ???\n");
407
408 #ifdef CONFIG_DEBUG_DCFLUSH
409         seq_printf(m, "DCPageFlushes\t: %d\n",
410                    atomic_read(&dcpage_flushes));
411 #ifdef CONFIG_SMP
412         seq_printf(m, "DCPageFlushesXC\t: %d\n",
413                    atomic_read(&dcpage_flushes_xcall));
414 #endif /* CONFIG_SMP */
415 #endif /* CONFIG_DEBUG_DCFLUSH */
416 }
417
418 struct linux_prom_translation {
419         unsigned long virt;
420         unsigned long size;
421         unsigned long data;
422 };
423
424 /* Exported for kernel TLB miss handling in ktlb.S */
425 struct linux_prom_translation prom_trans[512] __read_mostly;
426 unsigned int prom_trans_ents __read_mostly;
427
428 /* Exported for SMP bootup purposes. */
429 unsigned long kern_locked_tte_data;
430
431 /* The obp translations are saved based on 8k pagesize, since obp can
432  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
433  * HI_OBP_ADDRESS range are handled in ktlb.S.
434  */
435 static inline int in_obp_range(unsigned long vaddr)
436 {
437         return (vaddr >= LOW_OBP_ADDRESS &&
438                 vaddr < HI_OBP_ADDRESS);
439 }
440
441 static int cmp_ptrans(const void *a, const void *b)
442 {
443         const struct linux_prom_translation *x = a, *y = b;
444
445         if (x->virt > y->virt)
446                 return 1;
447         if (x->virt < y->virt)
448                 return -1;
449         return 0;
450 }
451
452 /* Read OBP translations property into 'prom_trans[]'.  */
453 static void __init read_obp_translations(void)
454 {
455         int n, node, ents, first, last, i;
456
457         node = prom_finddevice("/virtual-memory");
458         n = prom_getproplen(node, "translations");
459         if (unlikely(n == 0 || n == -1)) {
460                 prom_printf("prom_mappings: Couldn't get size.\n");
461                 prom_halt();
462         }
463         if (unlikely(n > sizeof(prom_trans))) {
464                 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
465                 prom_halt();
466         }
467
468         if ((n = prom_getproperty(node, "translations",
469                                   (char *)&prom_trans[0],
470                                   sizeof(prom_trans))) == -1) {
471                 prom_printf("prom_mappings: Couldn't get property.\n");
472                 prom_halt();
473         }
474
475         n = n / sizeof(struct linux_prom_translation);
476
477         ents = n;
478
479         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
480              cmp_ptrans, NULL);
481
482         /* Now kick out all the non-OBP entries.  */
483         for (i = 0; i < ents; i++) {
484                 if (in_obp_range(prom_trans[i].virt))
485                         break;
486         }
487         first = i;
488         for (; i < ents; i++) {
489                 if (!in_obp_range(prom_trans[i].virt))
490                         break;
491         }
492         last = i;
493
494         for (i = 0; i < (last - first); i++) {
495                 struct linux_prom_translation *src = &prom_trans[i + first];
496                 struct linux_prom_translation *dest = &prom_trans[i];
497
498                 *dest = *src;
499         }
500         for (; i < ents; i++) {
501                 struct linux_prom_translation *dest = &prom_trans[i];
502                 dest->virt = dest->size = dest->data = 0x0UL;
503         }
504
505         prom_trans_ents = last - first;
506
507         if (tlb_type == spitfire) {
508                 /* Clear diag TTE bits. */
509                 for (i = 0; i < prom_trans_ents; i++)
510                         prom_trans[i].data &= ~0x0003fe0000000000UL;
511         }
512 }
513
514 static void __init hypervisor_tlb_lock(unsigned long vaddr,
515                                        unsigned long pte,
516                                        unsigned long mmu)
517 {
518         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
519
520         if (ret != 0) {
521                 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
522                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
523                 prom_halt();
524         }
525 }
526
527 static unsigned long kern_large_tte(unsigned long paddr);
528
529 static void __init remap_kernel(void)
530 {
531         unsigned long phys_page, tte_vaddr, tte_data;
532         int i, tlb_ent = sparc64_highest_locked_tlbent();
533
534         tte_vaddr = (unsigned long) KERNBASE;
535         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
536         tte_data = kern_large_tte(phys_page);
537
538         kern_locked_tte_data = tte_data;
539
540         /* Now lock us into the TLBs via Hypervisor or OBP. */
541         if (tlb_type == hypervisor) {
542                 for (i = 0; i < num_kernel_image_mappings; i++) {
543                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
544                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
545                         tte_vaddr += 0x400000;
546                         tte_data += 0x400000;
547                 }
548         } else {
549                 for (i = 0; i < num_kernel_image_mappings; i++) {
550                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
551                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
552                         tte_vaddr += 0x400000;
553                         tte_data += 0x400000;
554                 }
555                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
556         }
557         if (tlb_type == cheetah_plus) {
558                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
559                                             CTX_CHEETAH_PLUS_NUC);
560                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
561                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
562         }
563 }
564
565
566 static void __init inherit_prom_mappings(void)
567 {
568         /* Now fixup OBP's idea about where we really are mapped. */
569         printk("Remapping the kernel... ");
570         remap_kernel();
571         printk("done.\n");
572 }
573
574 void prom_world(int enter)
575 {
576         if (!enter)
577                 set_fs((mm_segment_t) { get_thread_current_ds() });
578
579         __asm__ __volatile__("flushw");
580 }
581
582 void __flush_dcache_range(unsigned long start, unsigned long end)
583 {
584         unsigned long va;
585
586         if (tlb_type == spitfire) {
587                 int n = 0;
588
589                 for (va = start; va < end; va += 32) {
590                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
591                         if (++n >= 512)
592                                 break;
593                 }
594         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
595                 start = __pa(start);
596                 end = __pa(end);
597                 for (va = start; va < end; va += 32)
598                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
599                                              "membar #Sync"
600                                              : /* no outputs */
601                                              : "r" (va),
602                                                "i" (ASI_DCACHE_INVALIDATE));
603         }
604 }
605
606 /* get_new_mmu_context() uses "cache + 1".  */
607 DEFINE_SPINLOCK(ctx_alloc_lock);
608 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
609 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
610 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
611 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
612
613 /* Caller does TLB context flushing on local CPU if necessary.
614  * The caller also ensures that CTX_VALID(mm->context) is false.
615  *
616  * We must be careful about boundary cases so that we never
617  * let the user have CTX 0 (nucleus) or we ever use a CTX
618  * version of zero (and thus NO_CONTEXT would not be caught
619  * by version mis-match tests in mmu_context.h).
620  *
621  * Always invoked with interrupts disabled.
622  */
623 void get_new_mmu_context(struct mm_struct *mm)
624 {
625         unsigned long ctx, new_ctx;
626         unsigned long orig_pgsz_bits;
627         unsigned long flags;
628         int new_version;
629
630         spin_lock_irqsave(&ctx_alloc_lock, flags);
631         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
632         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
633         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
634         new_version = 0;
635         if (new_ctx >= (1 << CTX_NR_BITS)) {
636                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
637                 if (new_ctx >= ctx) {
638                         int i;
639                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
640                                 CTX_FIRST_VERSION;
641                         if (new_ctx == 1)
642                                 new_ctx = CTX_FIRST_VERSION;
643
644                         /* Don't call memset, for 16 entries that's just
645                          * plain silly...
646                          */
647                         mmu_context_bmap[0] = 3;
648                         mmu_context_bmap[1] = 0;
649                         mmu_context_bmap[2] = 0;
650                         mmu_context_bmap[3] = 0;
651                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
652                                 mmu_context_bmap[i + 0] = 0;
653                                 mmu_context_bmap[i + 1] = 0;
654                                 mmu_context_bmap[i + 2] = 0;
655                                 mmu_context_bmap[i + 3] = 0;
656                         }
657                         new_version = 1;
658                         goto out;
659                 }
660         }
661         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
662         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
663 out:
664         tlb_context_cache = new_ctx;
665         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
666         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
667
668         if (unlikely(new_version))
669                 smp_new_mmu_context_version();
670 }
671
672 static int numa_enabled = 1;
673 static int numa_debug;
674
675 static int __init early_numa(char *p)
676 {
677         if (!p)
678                 return 0;
679
680         if (strstr(p, "off"))
681                 numa_enabled = 0;
682
683         if (strstr(p, "debug"))
684                 numa_debug = 1;
685
686         return 0;
687 }
688 early_param("numa", early_numa);
689
690 #define numadbg(f, a...) \
691 do {    if (numa_debug) \
692                 printk(KERN_INFO f, ## a); \
693 } while (0)
694
695 static void __init find_ramdisk(unsigned long phys_base)
696 {
697 #ifdef CONFIG_BLK_DEV_INITRD
698         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
699                 unsigned long ramdisk_image;
700
701                 /* Older versions of the bootloader only supported a
702                  * 32-bit physical address for the ramdisk image
703                  * location, stored at sparc_ramdisk_image.  Newer
704                  * SILO versions set sparc_ramdisk_image to zero and
705                  * provide a full 64-bit physical address at
706                  * sparc_ramdisk_image64.
707                  */
708                 ramdisk_image = sparc_ramdisk_image;
709                 if (!ramdisk_image)
710                         ramdisk_image = sparc_ramdisk_image64;
711
712                 /* Another bootloader quirk.  The bootloader normalizes
713                  * the physical address to KERNBASE, so we have to
714                  * factor that back out and add in the lowest valid
715                  * physical page address to get the true physical address.
716                  */
717                 ramdisk_image -= KERNBASE;
718                 ramdisk_image += phys_base;
719
720                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
721                         ramdisk_image, sparc_ramdisk_size);
722
723                 initrd_start = ramdisk_image;
724                 initrd_end = ramdisk_image + sparc_ramdisk_size;
725
726                 lmb_reserve(initrd_start, sparc_ramdisk_size);
727
728                 initrd_start += PAGE_OFFSET;
729                 initrd_end += PAGE_OFFSET;
730         }
731 #endif
732 }
733
734 struct node_mem_mask {
735         unsigned long mask;
736         unsigned long val;
737         unsigned long bootmem_paddr;
738 };
739 static struct node_mem_mask node_masks[MAX_NUMNODES];
740 static int num_node_masks;
741
742 int numa_cpu_lookup_table[NR_CPUS];
743 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
744
745 #ifdef CONFIG_NEED_MULTIPLE_NODES
746
747 struct mdesc_mblock {
748         u64     base;
749         u64     size;
750         u64     offset; /* RA-to-PA */
751 };
752 static struct mdesc_mblock *mblocks;
753 static int num_mblocks;
754
755 static unsigned long ra_to_pa(unsigned long addr)
756 {
757         int i;
758
759         for (i = 0; i < num_mblocks; i++) {
760                 struct mdesc_mblock *m = &mblocks[i];
761
762                 if (addr >= m->base &&
763                     addr < (m->base + m->size)) {
764                         addr += m->offset;
765                         break;
766                 }
767         }
768         return addr;
769 }
770
771 static int find_node(unsigned long addr)
772 {
773         int i;
774
775         addr = ra_to_pa(addr);
776         for (i = 0; i < num_node_masks; i++) {
777                 struct node_mem_mask *p = &node_masks[i];
778
779                 if ((addr & p->mask) == p->val)
780                         return i;
781         }
782         return -1;
783 }
784
785 static unsigned long nid_range(unsigned long start, unsigned long end,
786                                int *nid)
787 {
788         *nid = find_node(start);
789         start += PAGE_SIZE;
790         while (start < end) {
791                 int n = find_node(start);
792
793                 if (n != *nid)
794                         break;
795                 start += PAGE_SIZE;
796         }
797
798         return start;
799 }
800 #else
801 static unsigned long nid_range(unsigned long start, unsigned long end,
802                                int *nid)
803 {
804         *nid = 0;
805         return end;
806 }
807 #endif
808
809 /* This must be invoked after performing all of the necessary
810  * add_active_range() calls for 'nid'.  We need to be able to get
811  * correct data from get_pfn_range_for_nid().
812  */
813 static void __init allocate_node_data(int nid)
814 {
815         unsigned long paddr, num_pages, start_pfn, end_pfn;
816         struct pglist_data *p;
817
818 #ifdef CONFIG_NEED_MULTIPLE_NODES
819         paddr = lmb_alloc_nid(sizeof(struct pglist_data),
820                               SMP_CACHE_BYTES, nid, nid_range);
821         if (!paddr) {
822                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
823                 prom_halt();
824         }
825         NODE_DATA(nid) = __va(paddr);
826         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
827
828         NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
829 #endif
830
831         p = NODE_DATA(nid);
832
833         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
834         p->node_start_pfn = start_pfn;
835         p->node_spanned_pages = end_pfn - start_pfn;
836
837         if (p->node_spanned_pages) {
838                 num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
839
840                 paddr = lmb_alloc_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid,
841                                       nid_range);
842                 if (!paddr) {
843                         prom_printf("Cannot allocate bootmap for nid[%d]\n",
844                                   nid);
845                         prom_halt();
846                 }
847                 node_masks[nid].bootmem_paddr = paddr;
848         }
849 }
850
851 static void init_node_masks_nonnuma(void)
852 {
853         int i;
854
855         numadbg("Initializing tables for non-numa.\n");
856
857         node_masks[0].mask = node_masks[0].val = 0;
858         num_node_masks = 1;
859
860         for (i = 0; i < NR_CPUS; i++)
861                 numa_cpu_lookup_table[i] = 0;
862
863         numa_cpumask_lookup_table[0] = CPU_MASK_ALL;
864 }
865
866 #ifdef CONFIG_NEED_MULTIPLE_NODES
867 struct pglist_data *node_data[MAX_NUMNODES];
868
869 EXPORT_SYMBOL(numa_cpu_lookup_table);
870 EXPORT_SYMBOL(numa_cpumask_lookup_table);
871 EXPORT_SYMBOL(node_data);
872
873 struct mdesc_mlgroup {
874         u64     node;
875         u64     latency;
876         u64     match;
877         u64     mask;
878 };
879 static struct mdesc_mlgroup *mlgroups;
880 static int num_mlgroups;
881
882 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
883                                    u32 cfg_handle)
884 {
885         u64 arc;
886
887         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
888                 u64 target = mdesc_arc_target(md, arc);
889                 const u64 *val;
890
891                 val = mdesc_get_property(md, target,
892                                          "cfg-handle", NULL);
893                 if (val && *val == cfg_handle)
894                         return 0;
895         }
896         return -ENODEV;
897 }
898
899 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
900                                     u32 cfg_handle)
901 {
902         u64 arc, candidate, best_latency = ~(u64)0;
903
904         candidate = MDESC_NODE_NULL;
905         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
906                 u64 target = mdesc_arc_target(md, arc);
907                 const char *name = mdesc_node_name(md, target);
908                 const u64 *val;
909
910                 if (strcmp(name, "pio-latency-group"))
911                         continue;
912
913                 val = mdesc_get_property(md, target, "latency", NULL);
914                 if (!val)
915                         continue;
916
917                 if (*val < best_latency) {
918                         candidate = target;
919                         best_latency = *val;
920                 }
921         }
922
923         if (candidate == MDESC_NODE_NULL)
924                 return -ENODEV;
925
926         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
927 }
928
929 int of_node_to_nid(struct device_node *dp)
930 {
931         const struct linux_prom64_registers *regs;
932         struct mdesc_handle *md;
933         u32 cfg_handle;
934         int count, nid;
935         u64 grp;
936
937         if (!mlgroups)
938                 return -1;
939
940         regs = of_get_property(dp, "reg", NULL);
941         if (!regs)
942                 return -1;
943
944         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
945
946         md = mdesc_grab();
947
948         count = 0;
949         nid = -1;
950         mdesc_for_each_node_by_name(md, grp, "group") {
951                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
952                         nid = count;
953                         break;
954                 }
955                 count++;
956         }
957
958         mdesc_release(md);
959
960         return nid;
961 }
962
963 static void add_node_ranges(void)
964 {
965         int i;
966
967         for (i = 0; i < lmb.memory.cnt; i++) {
968                 unsigned long size = lmb_size_bytes(&lmb.memory, i);
969                 unsigned long start, end;
970
971                 start = lmb.memory.region[i].base;
972                 end = start + size;
973                 while (start < end) {
974                         unsigned long this_end;
975                         int nid;
976
977                         this_end = nid_range(start, end, &nid);
978
979                         numadbg("Adding active range nid[%d] "
980                                 "start[%lx] end[%lx]\n",
981                                 nid, start, this_end);
982
983                         add_active_range(nid,
984                                          start >> PAGE_SHIFT,
985                                          this_end >> PAGE_SHIFT);
986
987                         start = this_end;
988                 }
989         }
990 }
991
992 static int __init grab_mlgroups(struct mdesc_handle *md)
993 {
994         unsigned long paddr;
995         int count = 0;
996         u64 node;
997
998         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
999                 count++;
1000         if (!count)
1001                 return -ENOENT;
1002
1003         paddr = lmb_alloc(count * sizeof(struct mdesc_mlgroup),
1004                           SMP_CACHE_BYTES);
1005         if (!paddr)
1006                 return -ENOMEM;
1007
1008         mlgroups = __va(paddr);
1009         num_mlgroups = count;
1010
1011         count = 0;
1012         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1013                 struct mdesc_mlgroup *m = &mlgroups[count++];
1014                 const u64 *val;
1015
1016                 m->node = node;
1017
1018                 val = mdesc_get_property(md, node, "latency", NULL);
1019                 m->latency = *val;
1020                 val = mdesc_get_property(md, node, "address-match", NULL);
1021                 m->match = *val;
1022                 val = mdesc_get_property(md, node, "address-mask", NULL);
1023                 m->mask = *val;
1024
1025                 numadbg("MLGROUP[%d]: node[%lx] latency[%lx] "
1026                         "match[%lx] mask[%lx]\n",
1027                         count - 1, m->node, m->latency, m->match, m->mask);
1028         }
1029
1030         return 0;
1031 }
1032
1033 static int __init grab_mblocks(struct mdesc_handle *md)
1034 {
1035         unsigned long paddr;
1036         int count = 0;
1037         u64 node;
1038
1039         mdesc_for_each_node_by_name(md, node, "mblock")
1040                 count++;
1041         if (!count)
1042                 return -ENOENT;
1043
1044         paddr = lmb_alloc(count * sizeof(struct mdesc_mblock),
1045                           SMP_CACHE_BYTES);
1046         if (!paddr)
1047                 return -ENOMEM;
1048
1049         mblocks = __va(paddr);
1050         num_mblocks = count;
1051
1052         count = 0;
1053         mdesc_for_each_node_by_name(md, node, "mblock") {
1054                 struct mdesc_mblock *m = &mblocks[count++];
1055                 const u64 *val;
1056
1057                 val = mdesc_get_property(md, node, "base", NULL);
1058                 m->base = *val;
1059                 val = mdesc_get_property(md, node, "size", NULL);
1060                 m->size = *val;
1061                 val = mdesc_get_property(md, node,
1062                                          "address-congruence-offset", NULL);
1063                 m->offset = *val;
1064
1065                 numadbg("MBLOCK[%d]: base[%lx] size[%lx] offset[%lx]\n",
1066                         count - 1, m->base, m->size, m->offset);
1067         }
1068
1069         return 0;
1070 }
1071
1072 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1073                                                u64 grp, cpumask_t *mask)
1074 {
1075         u64 arc;
1076
1077         cpus_clear(*mask);
1078
1079         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1080                 u64 target = mdesc_arc_target(md, arc);
1081                 const char *name = mdesc_node_name(md, target);
1082                 const u64 *id;
1083
1084                 if (strcmp(name, "cpu"))
1085                         continue;
1086                 id = mdesc_get_property(md, target, "id", NULL);
1087                 if (*id < NR_CPUS)
1088                         cpu_set(*id, *mask);
1089         }
1090 }
1091
1092 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1093 {
1094         int i;
1095
1096         for (i = 0; i < num_mlgroups; i++) {
1097                 struct mdesc_mlgroup *m = &mlgroups[i];
1098                 if (m->node == node)
1099                         return m;
1100         }
1101         return NULL;
1102 }
1103
1104 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1105                                       int index)
1106 {
1107         struct mdesc_mlgroup *candidate = NULL;
1108         u64 arc, best_latency = ~(u64)0;
1109         struct node_mem_mask *n;
1110
1111         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1112                 u64 target = mdesc_arc_target(md, arc);
1113                 struct mdesc_mlgroup *m = find_mlgroup(target);
1114                 if (!m)
1115                         continue;
1116                 if (m->latency < best_latency) {
1117                         candidate = m;
1118                         best_latency = m->latency;
1119                 }
1120         }
1121         if (!candidate)
1122                 return -ENOENT;
1123
1124         if (num_node_masks != index) {
1125                 printk(KERN_ERR "Inconsistent NUMA state, "
1126                        "index[%d] != num_node_masks[%d]\n",
1127                        index, num_node_masks);
1128                 return -EINVAL;
1129         }
1130
1131         n = &node_masks[num_node_masks++];
1132
1133         n->mask = candidate->mask;
1134         n->val = candidate->match;
1135
1136         numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%lx])\n",
1137                 index, n->mask, n->val, candidate->latency);
1138
1139         return 0;
1140 }
1141
1142 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1143                                          int index)
1144 {
1145         cpumask_t mask;
1146         int cpu;
1147
1148         numa_parse_mdesc_group_cpus(md, grp, &mask);
1149
1150         for_each_cpu_mask(cpu, mask)
1151                 numa_cpu_lookup_table[cpu] = index;
1152         numa_cpumask_lookup_table[index] = mask;
1153
1154         if (numa_debug) {
1155                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1156                 for_each_cpu_mask(cpu, mask)
1157                         printk("%d ", cpu);
1158                 printk("]\n");
1159         }
1160
1161         return numa_attach_mlgroup(md, grp, index);
1162 }
1163
1164 static int __init numa_parse_mdesc(void)
1165 {
1166         struct mdesc_handle *md = mdesc_grab();
1167         int i, err, count;
1168         u64 node;
1169
1170         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1171         if (node == MDESC_NODE_NULL) {
1172                 mdesc_release(md);
1173                 return -ENOENT;
1174         }
1175
1176         err = grab_mblocks(md);
1177         if (err < 0)
1178                 goto out;
1179
1180         err = grab_mlgroups(md);
1181         if (err < 0)
1182                 goto out;
1183
1184         count = 0;
1185         mdesc_for_each_node_by_name(md, node, "group") {
1186                 err = numa_parse_mdesc_group(md, node, count);
1187                 if (err < 0)
1188                         break;
1189                 count++;
1190         }
1191
1192         add_node_ranges();
1193
1194         for (i = 0; i < num_node_masks; i++) {
1195                 allocate_node_data(i);
1196                 node_set_online(i);
1197         }
1198
1199         err = 0;
1200 out:
1201         mdesc_release(md);
1202         return err;
1203 }
1204
1205 static int __init numa_parse_sun4u(void)
1206 {
1207         return -1;
1208 }
1209
1210 static int __init bootmem_init_numa(void)
1211 {
1212         int err = -1;
1213
1214         numadbg("bootmem_init_numa()\n");
1215
1216         if (numa_enabled) {
1217                 if (tlb_type == hypervisor)
1218                         err = numa_parse_mdesc();
1219                 else
1220                         err = numa_parse_sun4u();
1221         }
1222         return err;
1223 }
1224
1225 #else
1226
1227 static int bootmem_init_numa(void)
1228 {
1229         return -1;
1230 }
1231
1232 #endif
1233
1234 static void __init bootmem_init_nonnuma(void)
1235 {
1236         unsigned long top_of_ram = lmb_end_of_DRAM();
1237         unsigned long total_ram = lmb_phys_mem_size();
1238         unsigned int i;
1239
1240         numadbg("bootmem_init_nonnuma()\n");
1241
1242         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1243                top_of_ram, total_ram);
1244         printk(KERN_INFO "Memory hole size: %ldMB\n",
1245                (top_of_ram - total_ram) >> 20);
1246
1247         init_node_masks_nonnuma();
1248
1249         for (i = 0; i < lmb.memory.cnt; i++) {
1250                 unsigned long size = lmb_size_bytes(&lmb.memory, i);
1251                 unsigned long start_pfn, end_pfn;
1252
1253                 if (!size)
1254                         continue;
1255
1256                 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
1257                 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
1258                 add_active_range(0, start_pfn, end_pfn);
1259         }
1260
1261         allocate_node_data(0);
1262
1263         node_set_online(0);
1264 }
1265
1266 static void __init reserve_range_in_node(int nid, unsigned long start,
1267                                          unsigned long end)
1268 {
1269         numadbg("    reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1270                 nid, start, end);
1271         while (start < end) {
1272                 unsigned long this_end;
1273                 int n;
1274
1275                 this_end = nid_range(start, end, &n);
1276                 if (n == nid) {
1277                         numadbg("      MATCH reserving range [%lx:%lx]\n",
1278                                 start, this_end);
1279                         reserve_bootmem_node(NODE_DATA(nid), start,
1280                                              (this_end - start), BOOTMEM_DEFAULT);
1281                 } else
1282                         numadbg("      NO MATCH, advancing start to %lx\n",
1283                                 this_end);
1284
1285                 start = this_end;
1286         }
1287 }
1288
1289 static void __init trim_reserved_in_node(int nid)
1290 {
1291         int i;
1292
1293         numadbg("  trim_reserved_in_node(%d)\n", nid);
1294
1295         for (i = 0; i < lmb.reserved.cnt; i++) {
1296                 unsigned long start = lmb.reserved.region[i].base;
1297                 unsigned long size = lmb_size_bytes(&lmb.reserved, i);
1298                 unsigned long end = start + size;
1299
1300                 reserve_range_in_node(nid, start, end);
1301         }
1302 }
1303
1304 static void __init bootmem_init_one_node(int nid)
1305 {
1306         struct pglist_data *p;
1307
1308         numadbg("bootmem_init_one_node(%d)\n", nid);
1309
1310         p = NODE_DATA(nid);
1311
1312         if (p->node_spanned_pages) {
1313                 unsigned long paddr = node_masks[nid].bootmem_paddr;
1314                 unsigned long end_pfn;
1315
1316                 end_pfn = p->node_start_pfn + p->node_spanned_pages;
1317
1318                 numadbg("  init_bootmem_node(%d, %lx, %lx, %lx)\n",
1319                         nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1320
1321                 init_bootmem_node(p, paddr >> PAGE_SHIFT,
1322                                   p->node_start_pfn, end_pfn);
1323
1324                 numadbg("  free_bootmem_with_active_regions(%d, %lx)\n",
1325                         nid, end_pfn);
1326                 free_bootmem_with_active_regions(nid, end_pfn);
1327
1328                 trim_reserved_in_node(nid);
1329
1330                 numadbg("  sparse_memory_present_with_active_regions(%d)\n",
1331                         nid);
1332                 sparse_memory_present_with_active_regions(nid);
1333         }
1334 }
1335
1336 static unsigned long __init bootmem_init(unsigned long phys_base)
1337 {
1338         unsigned long end_pfn;
1339         int nid;
1340
1341         end_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
1342         max_pfn = max_low_pfn = end_pfn;
1343         min_low_pfn = (phys_base >> PAGE_SHIFT);
1344
1345         if (bootmem_init_numa() < 0)
1346                 bootmem_init_nonnuma();
1347
1348         /* XXX cpu notifier XXX */
1349
1350         for_each_online_node(nid)
1351                 bootmem_init_one_node(nid);
1352
1353         sparse_init();
1354
1355         return end_pfn;
1356 }
1357
1358 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1359 static int pall_ents __initdata;
1360
1361 #ifdef CONFIG_DEBUG_PAGEALLOC
1362 static unsigned long __ref kernel_map_range(unsigned long pstart,
1363                                             unsigned long pend, pgprot_t prot)
1364 {
1365         unsigned long vstart = PAGE_OFFSET + pstart;
1366         unsigned long vend = PAGE_OFFSET + pend;
1367         unsigned long alloc_bytes = 0UL;
1368
1369         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1370                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1371                             vstart, vend);
1372                 prom_halt();
1373         }
1374
1375         while (vstart < vend) {
1376                 unsigned long this_end, paddr = __pa(vstart);
1377                 pgd_t *pgd = pgd_offset_k(vstart);
1378                 pud_t *pud;
1379                 pmd_t *pmd;
1380                 pte_t *pte;
1381
1382                 pud = pud_offset(pgd, vstart);
1383                 if (pud_none(*pud)) {
1384                         pmd_t *new;
1385
1386                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1387                         alloc_bytes += PAGE_SIZE;
1388                         pud_populate(&init_mm, pud, new);
1389                 }
1390
1391                 pmd = pmd_offset(pud, vstart);
1392                 if (!pmd_present(*pmd)) {
1393                         pte_t *new;
1394
1395                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1396                         alloc_bytes += PAGE_SIZE;
1397                         pmd_populate_kernel(&init_mm, pmd, new);
1398                 }
1399
1400                 pte = pte_offset_kernel(pmd, vstart);
1401                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1402                 if (this_end > vend)
1403                         this_end = vend;
1404
1405                 while (vstart < this_end) {
1406                         pte_val(*pte) = (paddr | pgprot_val(prot));
1407
1408                         vstart += PAGE_SIZE;
1409                         paddr += PAGE_SIZE;
1410                         pte++;
1411                 }
1412         }
1413
1414         return alloc_bytes;
1415 }
1416
1417 extern unsigned int kvmap_linear_patch[1];
1418 #endif /* CONFIG_DEBUG_PAGEALLOC */
1419
1420 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1421 {
1422         const unsigned long shift_256MB = 28;
1423         const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1424         const unsigned long size_256MB = (1UL << shift_256MB);
1425
1426         while (start < end) {
1427                 long remains;
1428
1429                 remains = end - start;
1430                 if (remains < size_256MB)
1431                         break;
1432
1433                 if (start & mask_256MB) {
1434                         start = (start + size_256MB) & ~mask_256MB;
1435                         continue;
1436                 }
1437
1438                 while (remains >= size_256MB) {
1439                         unsigned long index = start >> shift_256MB;
1440
1441                         __set_bit(index, kpte_linear_bitmap);
1442
1443                         start += size_256MB;
1444                         remains -= size_256MB;
1445                 }
1446         }
1447 }
1448
1449 static void __init init_kpte_bitmap(void)
1450 {
1451         unsigned long i;
1452
1453         for (i = 0; i < pall_ents; i++) {
1454                 unsigned long phys_start, phys_end;
1455
1456                 phys_start = pall[i].phys_addr;
1457                 phys_end = phys_start + pall[i].reg_size;
1458
1459                 mark_kpte_bitmap(phys_start, phys_end);
1460         }
1461 }
1462
1463 static void __init kernel_physical_mapping_init(void)
1464 {
1465 #ifdef CONFIG_DEBUG_PAGEALLOC
1466         unsigned long i, mem_alloced = 0UL;
1467
1468         for (i = 0; i < pall_ents; i++) {
1469                 unsigned long phys_start, phys_end;
1470
1471                 phys_start = pall[i].phys_addr;
1472                 phys_end = phys_start + pall[i].reg_size;
1473
1474                 mem_alloced += kernel_map_range(phys_start, phys_end,
1475                                                 PAGE_KERNEL);
1476         }
1477
1478         printk("Allocated %ld bytes for kernel page tables.\n",
1479                mem_alloced);
1480
1481         kvmap_linear_patch[0] = 0x01000000; /* nop */
1482         flushi(&kvmap_linear_patch[0]);
1483
1484         __flush_tlb_all();
1485 #endif
1486 }
1487
1488 #ifdef CONFIG_DEBUG_PAGEALLOC
1489 void kernel_map_pages(struct page *page, int numpages, int enable)
1490 {
1491         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1492         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1493
1494         kernel_map_range(phys_start, phys_end,
1495                          (enable ? PAGE_KERNEL : __pgprot(0)));
1496
1497         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1498                                PAGE_OFFSET + phys_end);
1499
1500         /* we should perform an IPI and flush all tlbs,
1501          * but that can deadlock->flush only current cpu.
1502          */
1503         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1504                                  PAGE_OFFSET + phys_end);
1505 }
1506 #endif
1507
1508 unsigned long __init find_ecache_flush_span(unsigned long size)
1509 {
1510         int i;
1511
1512         for (i = 0; i < pavail_ents; i++) {
1513                 if (pavail[i].reg_size >= size)
1514                         return pavail[i].phys_addr;
1515         }
1516
1517         return ~0UL;
1518 }
1519
1520 static void __init tsb_phys_patch(void)
1521 {
1522         struct tsb_ldquad_phys_patch_entry *pquad;
1523         struct tsb_phys_patch_entry *p;
1524
1525         pquad = &__tsb_ldquad_phys_patch;
1526         while (pquad < &__tsb_ldquad_phys_patch_end) {
1527                 unsigned long addr = pquad->addr;
1528
1529                 if (tlb_type == hypervisor)
1530                         *(unsigned int *) addr = pquad->sun4v_insn;
1531                 else
1532                         *(unsigned int *) addr = pquad->sun4u_insn;
1533                 wmb();
1534                 __asm__ __volatile__("flush     %0"
1535                                      : /* no outputs */
1536                                      : "r" (addr));
1537
1538                 pquad++;
1539         }
1540
1541         p = &__tsb_phys_patch;
1542         while (p < &__tsb_phys_patch_end) {
1543                 unsigned long addr = p->addr;
1544
1545                 *(unsigned int *) addr = p->insn;
1546                 wmb();
1547                 __asm__ __volatile__("flush     %0"
1548                                      : /* no outputs */
1549                                      : "r" (addr));
1550
1551                 p++;
1552         }
1553 }
1554
1555 /* Don't mark as init, we give this to the Hypervisor.  */
1556 #ifndef CONFIG_DEBUG_PAGEALLOC
1557 #define NUM_KTSB_DESCR  2
1558 #else
1559 #define NUM_KTSB_DESCR  1
1560 #endif
1561 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1562 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1563
1564 static void __init sun4v_ktsb_init(void)
1565 {
1566         unsigned long ktsb_pa;
1567
1568         /* First KTSB for PAGE_SIZE mappings.  */
1569         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1570
1571         switch (PAGE_SIZE) {
1572         case 8 * 1024:
1573         default:
1574                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1575                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1576                 break;
1577
1578         case 64 * 1024:
1579                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1580                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1581                 break;
1582
1583         case 512 * 1024:
1584                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1585                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1586                 break;
1587
1588         case 4 * 1024 * 1024:
1589                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1590                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1591                 break;
1592         };
1593
1594         ktsb_descr[0].assoc = 1;
1595         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1596         ktsb_descr[0].ctx_idx = 0;
1597         ktsb_descr[0].tsb_base = ktsb_pa;
1598         ktsb_descr[0].resv = 0;
1599
1600 #ifndef CONFIG_DEBUG_PAGEALLOC
1601         /* Second KTSB for 4MB/256MB mappings.  */
1602         ktsb_pa = (kern_base +
1603                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1604
1605         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1606         ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1607                                    HV_PGSZ_MASK_256MB);
1608         ktsb_descr[1].assoc = 1;
1609         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1610         ktsb_descr[1].ctx_idx = 0;
1611         ktsb_descr[1].tsb_base = ktsb_pa;
1612         ktsb_descr[1].resv = 0;
1613 #endif
1614 }
1615
1616 void __cpuinit sun4v_ktsb_register(void)
1617 {
1618         unsigned long pa, ret;
1619
1620         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1621
1622         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1623         if (ret != 0) {
1624                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1625                             "errors with %lx\n", pa, ret);
1626                 prom_halt();
1627         }
1628 }
1629
1630 /* paging_init() sets up the page tables */
1631
1632 extern void central_probe(void);
1633
1634 static unsigned long last_valid_pfn;
1635 pgd_t swapper_pg_dir[2048];
1636
1637 static void sun4u_pgprot_init(void);
1638 static void sun4v_pgprot_init(void);
1639
1640 /* Dummy function */
1641 void __init setup_per_cpu_areas(void)
1642 {
1643 }
1644
1645 void __init paging_init(void)
1646 {
1647         unsigned long end_pfn, shift, phys_base;
1648         unsigned long real_end, i;
1649
1650         /* These build time checkes make sure that the dcache_dirty_cpu()
1651          * page->flags usage will work.
1652          *
1653          * When a page gets marked as dcache-dirty, we store the
1654          * cpu number starting at bit 32 in the page->flags.  Also,
1655          * functions like clear_dcache_dirty_cpu use the cpu mask
1656          * in 13-bit signed-immediate instruction fields.
1657          */
1658
1659         /*
1660          * Page flags must not reach into upper 32 bits that are used
1661          * for the cpu number
1662          */
1663         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1664
1665         /*
1666          * The bit fields placed in the high range must not reach below
1667          * the 32 bit boundary. Otherwise we cannot place the cpu field
1668          * at the 32 bit boundary.
1669          */
1670         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1671                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1672
1673         BUILD_BUG_ON(NR_CPUS > 4096);
1674
1675         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1676         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1677
1678         sstate_booting();
1679
1680         /* Invalidate both kernel TSBs.  */
1681         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1682 #ifndef CONFIG_DEBUG_PAGEALLOC
1683         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1684 #endif
1685
1686         if (tlb_type == hypervisor)
1687                 sun4v_pgprot_init();
1688         else
1689                 sun4u_pgprot_init();
1690
1691         if (tlb_type == cheetah_plus ||
1692             tlb_type == hypervisor)
1693                 tsb_phys_patch();
1694
1695         if (tlb_type == hypervisor) {
1696                 sun4v_patch_tlb_handlers();
1697                 sun4v_ktsb_init();
1698         }
1699
1700         lmb_init();
1701
1702         /* Find available physical memory...
1703          *
1704          * Read it twice in order to work around a bug in openfirmware.
1705          * The call to grab this table itself can cause openfirmware to
1706          * allocate memory, which in turn can take away some space from
1707          * the list of available memory.  Reading it twice makes sure
1708          * we really do get the final value.
1709          */
1710         read_obp_translations();
1711         read_obp_memory("reg", &pall[0], &pall_ents);
1712         read_obp_memory("available", &pavail[0], &pavail_ents);
1713         read_obp_memory("available", &pavail[0], &pavail_ents);
1714
1715         phys_base = 0xffffffffffffffffUL;
1716         for (i = 0; i < pavail_ents; i++) {
1717                 phys_base = min(phys_base, pavail[i].phys_addr);
1718                 lmb_add(pavail[i].phys_addr, pavail[i].reg_size);
1719         }
1720
1721         lmb_reserve(kern_base, kern_size);
1722
1723         find_ramdisk(phys_base);
1724
1725         if (cmdline_memory_size)
1726                 lmb_enforce_memory_limit(phys_base + cmdline_memory_size);
1727
1728         lmb_analyze();
1729         lmb_dump_all();
1730
1731         set_bit(0, mmu_context_bmap);
1732
1733         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1734
1735         real_end = (unsigned long)_end;
1736         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1737         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1738                num_kernel_image_mappings);
1739
1740         /* Set kernel pgd to upper alias so physical page computations
1741          * work.
1742          */
1743         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1744         
1745         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1746
1747         /* Now can init the kernel/bad page tables. */
1748         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1749                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1750         
1751         inherit_prom_mappings();
1752         
1753         init_kpte_bitmap();
1754
1755         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1756         setup_tba();
1757
1758         __flush_tlb_all();
1759
1760         if (tlb_type == hypervisor)
1761                 sun4v_ktsb_register();
1762
1763         /* We must setup the per-cpu areas before we pull in the
1764          * PROM and the MDESC.  The code there fills in cpu and
1765          * other information into per-cpu data structures.
1766          */
1767         real_setup_per_cpu_areas();
1768
1769         prom_build_devicetree();
1770
1771         if (tlb_type == hypervisor)
1772                 sun4v_mdesc_init();
1773
1774         /* Setup bootmem... */
1775         last_valid_pfn = end_pfn = bootmem_init(phys_base);
1776
1777 #ifndef CONFIG_NEED_MULTIPLE_NODES
1778         max_mapnr = last_valid_pfn;
1779 #endif
1780         kernel_physical_mapping_init();
1781
1782         {
1783                 unsigned long max_zone_pfns[MAX_NR_ZONES];
1784
1785                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1786
1787                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1788
1789                 free_area_init_nodes(max_zone_pfns);
1790         }
1791
1792         printk("Booting Linux...\n");
1793
1794         central_probe();
1795         cpu_probe();
1796 }
1797
1798 int __init page_in_phys_avail(unsigned long paddr)
1799 {
1800         int i;
1801
1802         paddr &= PAGE_MASK;
1803
1804         for (i = 0; i < pavail_ents; i++) {
1805                 unsigned long start, end;
1806
1807                 start = pavail[i].phys_addr;
1808                 end = start + pavail[i].reg_size;
1809
1810                 if (paddr >= start && paddr < end)
1811                         return 1;
1812         }
1813         if (paddr >= kern_base && paddr < (kern_base + kern_size))
1814                 return 1;
1815 #ifdef CONFIG_BLK_DEV_INITRD
1816         if (paddr >= __pa(initrd_start) &&
1817             paddr < __pa(PAGE_ALIGN(initrd_end)))
1818                 return 1;
1819 #endif
1820
1821         return 0;
1822 }
1823
1824 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1825 static int pavail_rescan_ents __initdata;
1826
1827 /* Certain OBP calls, such as fetching "available" properties, can
1828  * claim physical memory.  So, along with initializing the valid
1829  * address bitmap, what we do here is refetch the physical available
1830  * memory list again, and make sure it provides at least as much
1831  * memory as 'pavail' does.
1832  */
1833 static void setup_valid_addr_bitmap_from_pavail(void)
1834 {
1835         int i;
1836
1837         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1838
1839         for (i = 0; i < pavail_ents; i++) {
1840                 unsigned long old_start, old_end;
1841
1842                 old_start = pavail[i].phys_addr;
1843                 old_end = old_start + pavail[i].reg_size;
1844                 while (old_start < old_end) {
1845                         int n;
1846
1847                         for (n = 0; n < pavail_rescan_ents; n++) {
1848                                 unsigned long new_start, new_end;
1849
1850                                 new_start = pavail_rescan[n].phys_addr;
1851                                 new_end = new_start +
1852                                         pavail_rescan[n].reg_size;
1853
1854                                 if (new_start <= old_start &&
1855                                     new_end >= (old_start + PAGE_SIZE)) {
1856                                         set_bit(old_start >> 22,
1857                                                 sparc64_valid_addr_bitmap);
1858                                         goto do_next_page;
1859                                 }
1860                         }
1861
1862                         prom_printf("mem_init: Lost memory in pavail\n");
1863                         prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1864                                     pavail[i].phys_addr,
1865                                     pavail[i].reg_size);
1866                         prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1867                                     pavail_rescan[i].phys_addr,
1868                                     pavail_rescan[i].reg_size);
1869                         prom_printf("mem_init: Cannot continue, aborting.\n");
1870                         prom_halt();
1871
1872                 do_next_page:
1873                         old_start += PAGE_SIZE;
1874                 }
1875         }
1876 }
1877
1878 void __init mem_init(void)
1879 {
1880         unsigned long codepages, datapages, initpages;
1881         unsigned long addr, last;
1882         int i;
1883
1884         i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1885         i += 1;
1886         sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1887         if (sparc64_valid_addr_bitmap == NULL) {
1888                 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1889                 prom_halt();
1890         }
1891         memset(sparc64_valid_addr_bitmap, 0, i << 3);
1892
1893         addr = PAGE_OFFSET + kern_base;
1894         last = PAGE_ALIGN(kern_size) + addr;
1895         while (addr < last) {
1896                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1897                 addr += PAGE_SIZE;
1898         }
1899
1900         setup_valid_addr_bitmap_from_pavail();
1901
1902         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1903
1904 #ifdef CONFIG_NEED_MULTIPLE_NODES
1905         for_each_online_node(i) {
1906                 if (NODE_DATA(i)->node_spanned_pages != 0) {
1907                         totalram_pages +=
1908                                 free_all_bootmem_node(NODE_DATA(i));
1909                 }
1910         }
1911 #else
1912         totalram_pages = free_all_bootmem();
1913 #endif
1914
1915         /* We subtract one to account for the mem_map_zero page
1916          * allocated below.
1917          */
1918         totalram_pages -= 1;
1919         num_physpages = totalram_pages;
1920
1921         /*
1922          * Set up the zero page, mark it reserved, so that page count
1923          * is not manipulated when freeing the page from user ptes.
1924          */
1925         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1926         if (mem_map_zero == NULL) {
1927                 prom_printf("paging_init: Cannot alloc zero page.\n");
1928                 prom_halt();
1929         }
1930         SetPageReserved(mem_map_zero);
1931
1932         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1933         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1934         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1935         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1936         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1937         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1938
1939         printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1940                nr_free_pages() << (PAGE_SHIFT-10),
1941                codepages << (PAGE_SHIFT-10),
1942                datapages << (PAGE_SHIFT-10), 
1943                initpages << (PAGE_SHIFT-10), 
1944                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1945
1946         if (tlb_type == cheetah || tlb_type == cheetah_plus)
1947                 cheetah_ecache_flush_init();
1948 }
1949
1950 void free_initmem(void)
1951 {
1952         unsigned long addr, initend;
1953
1954         /*
1955          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1956          */
1957         addr = PAGE_ALIGN((unsigned long)(__init_begin));
1958         initend = (unsigned long)(__init_end) & PAGE_MASK;
1959         for (; addr < initend; addr += PAGE_SIZE) {
1960                 unsigned long page;
1961                 struct page *p;
1962
1963                 page = (addr +
1964                         ((unsigned long) __va(kern_base)) -
1965                         ((unsigned long) KERNBASE));
1966                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1967                 p = virt_to_page(page);
1968
1969                 ClearPageReserved(p);
1970                 init_page_count(p);
1971                 __free_page(p);
1972                 num_physpages++;
1973                 totalram_pages++;
1974         }
1975 }
1976
1977 #ifdef CONFIG_BLK_DEV_INITRD
1978 void free_initrd_mem(unsigned long start, unsigned long end)
1979 {
1980         if (start < end)
1981                 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1982         for (; start < end; start += PAGE_SIZE) {
1983                 struct page *p = virt_to_page(start);
1984
1985                 ClearPageReserved(p);
1986                 init_page_count(p);
1987                 __free_page(p);
1988                 num_physpages++;
1989                 totalram_pages++;
1990         }
1991 }
1992 #endif
1993
1994 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
1995 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
1996 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1997 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1998 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1999 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2000
2001 pgprot_t PAGE_KERNEL __read_mostly;
2002 EXPORT_SYMBOL(PAGE_KERNEL);
2003
2004 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2005 pgprot_t PAGE_COPY __read_mostly;
2006
2007 pgprot_t PAGE_SHARED __read_mostly;
2008 EXPORT_SYMBOL(PAGE_SHARED);
2009
2010 pgprot_t PAGE_EXEC __read_mostly;
2011 unsigned long pg_iobits __read_mostly;
2012
2013 unsigned long _PAGE_IE __read_mostly;
2014 EXPORT_SYMBOL(_PAGE_IE);
2015
2016 unsigned long _PAGE_E __read_mostly;
2017 EXPORT_SYMBOL(_PAGE_E);
2018
2019 unsigned long _PAGE_CACHE __read_mostly;
2020 EXPORT_SYMBOL(_PAGE_CACHE);
2021
2022 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2023
2024 #define VMEMMAP_CHUNK_SHIFT     22
2025 #define VMEMMAP_CHUNK           (1UL << VMEMMAP_CHUNK_SHIFT)
2026 #define VMEMMAP_CHUNK_MASK      ~(VMEMMAP_CHUNK - 1UL)
2027 #define VMEMMAP_ALIGN(x)        (((x)+VMEMMAP_CHUNK-1UL)&VMEMMAP_CHUNK_MASK)
2028
2029 #define VMEMMAP_SIZE    ((((1UL << MAX_PHYSADDR_BITS) >> PAGE_SHIFT) * \
2030                           sizeof(struct page *)) >> VMEMMAP_CHUNK_SHIFT)
2031 unsigned long vmemmap_table[VMEMMAP_SIZE];
2032
2033 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2034 {
2035         unsigned long vstart = (unsigned long) start;
2036         unsigned long vend = (unsigned long) (start + nr);
2037         unsigned long phys_start = (vstart - VMEMMAP_BASE);
2038         unsigned long phys_end = (vend - VMEMMAP_BASE);
2039         unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2040         unsigned long end = VMEMMAP_ALIGN(phys_end);
2041         unsigned long pte_base;
2042
2043         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2044                     _PAGE_CP_4U | _PAGE_CV_4U |
2045                     _PAGE_P_4U | _PAGE_W_4U);
2046         if (tlb_type == hypervisor)
2047                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2048                             _PAGE_CP_4V | _PAGE_CV_4V |
2049                             _PAGE_P_4V | _PAGE_W_4V);
2050
2051         for (; addr < end; addr += VMEMMAP_CHUNK) {
2052                 unsigned long *vmem_pp =
2053                         vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2054                 void *block;
2055
2056                 if (!(*vmem_pp & _PAGE_VALID)) {
2057                         block = vmemmap_alloc_block(1UL << 22, node);
2058                         if (!block)
2059                                 return -ENOMEM;
2060
2061                         *vmem_pp = pte_base | __pa(block);
2062
2063                         printk(KERN_INFO "[%p-%p] page_structs=%lu "
2064                                "node=%d entry=%lu/%lu\n", start, block, nr,
2065                                node,
2066                                addr >> VMEMMAP_CHUNK_SHIFT,
2067                                VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
2068                 }
2069         }
2070         return 0;
2071 }
2072 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2073
2074 static void prot_init_common(unsigned long page_none,
2075                              unsigned long page_shared,
2076                              unsigned long page_copy,
2077                              unsigned long page_readonly,
2078                              unsigned long page_exec_bit)
2079 {
2080         PAGE_COPY = __pgprot(page_copy);
2081         PAGE_SHARED = __pgprot(page_shared);
2082
2083         protection_map[0x0] = __pgprot(page_none);
2084         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2085         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2086         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2087         protection_map[0x4] = __pgprot(page_readonly);
2088         protection_map[0x5] = __pgprot(page_readonly);
2089         protection_map[0x6] = __pgprot(page_copy);
2090         protection_map[0x7] = __pgprot(page_copy);
2091         protection_map[0x8] = __pgprot(page_none);
2092         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2093         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2094         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2095         protection_map[0xc] = __pgprot(page_readonly);
2096         protection_map[0xd] = __pgprot(page_readonly);
2097         protection_map[0xe] = __pgprot(page_shared);
2098         protection_map[0xf] = __pgprot(page_shared);
2099 }
2100
2101 static void __init sun4u_pgprot_init(void)
2102 {
2103         unsigned long page_none, page_shared, page_copy, page_readonly;
2104         unsigned long page_exec_bit;
2105
2106         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2107                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2108                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2109                                 _PAGE_EXEC_4U);
2110         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2111                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2112                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2113                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2114         PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
2115
2116         _PAGE_IE = _PAGE_IE_4U;
2117         _PAGE_E = _PAGE_E_4U;
2118         _PAGE_CACHE = _PAGE_CACHE_4U;
2119
2120         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2121                      __ACCESS_BITS_4U | _PAGE_E_4U);
2122
2123 #ifdef CONFIG_DEBUG_PAGEALLOC
2124         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2125                 0xfffff80000000000;
2126 #else
2127         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2128                 0xfffff80000000000;
2129 #endif
2130         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2131                                    _PAGE_P_4U | _PAGE_W_4U);
2132
2133         /* XXX Should use 256MB on Panther. XXX */
2134         kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2135
2136         _PAGE_SZBITS = _PAGE_SZBITS_4U;
2137         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2138                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2139                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2140
2141
2142         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2143         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2144                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2145         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2146                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2147         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2148                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2149
2150         page_exec_bit = _PAGE_EXEC_4U;
2151
2152         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2153                          page_exec_bit);
2154 }
2155
2156 static void __init sun4v_pgprot_init(void)
2157 {
2158         unsigned long page_none, page_shared, page_copy, page_readonly;
2159         unsigned long page_exec_bit;
2160
2161         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2162                                 _PAGE_CACHE_4V | _PAGE_P_4V |
2163                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2164                                 _PAGE_EXEC_4V);
2165         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2166         PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
2167
2168         _PAGE_IE = _PAGE_IE_4V;
2169         _PAGE_E = _PAGE_E_4V;
2170         _PAGE_CACHE = _PAGE_CACHE_4V;
2171
2172 #ifdef CONFIG_DEBUG_PAGEALLOC
2173         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2174                 0xfffff80000000000;
2175 #else
2176         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2177                 0xfffff80000000000;
2178 #endif
2179         kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2180                                    _PAGE_P_4V | _PAGE_W_4V);
2181
2182 #ifdef CONFIG_DEBUG_PAGEALLOC
2183         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2184                 0xfffff80000000000;
2185 #else
2186         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2187                 0xfffff80000000000;
2188 #endif
2189         kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2190                                    _PAGE_P_4V | _PAGE_W_4V);
2191
2192         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2193                      __ACCESS_BITS_4V | _PAGE_E_4V);
2194
2195         _PAGE_SZBITS = _PAGE_SZBITS_4V;
2196         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2197                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2198                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2199                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2200
2201         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2202         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2203                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2204         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2205                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2206         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2207                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2208
2209         page_exec_bit = _PAGE_EXEC_4V;
2210
2211         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2212                          page_exec_bit);
2213 }
2214
2215 unsigned long pte_sz_bits(unsigned long sz)
2216 {
2217         if (tlb_type == hypervisor) {
2218                 switch (sz) {
2219                 case 8 * 1024:
2220                 default:
2221                         return _PAGE_SZ8K_4V;
2222                 case 64 * 1024:
2223                         return _PAGE_SZ64K_4V;
2224                 case 512 * 1024:
2225                         return _PAGE_SZ512K_4V;
2226                 case 4 * 1024 * 1024:
2227                         return _PAGE_SZ4MB_4V;
2228                 };
2229         } else {
2230                 switch (sz) {
2231                 case 8 * 1024:
2232                 default:
2233                         return _PAGE_SZ8K_4U;
2234                 case 64 * 1024:
2235                         return _PAGE_SZ64K_4U;
2236                 case 512 * 1024:
2237                         return _PAGE_SZ512K_4U;
2238                 case 4 * 1024 * 1024:
2239                         return _PAGE_SZ4MB_4U;
2240                 };
2241         }
2242 }
2243
2244 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2245 {
2246         pte_t pte;
2247
2248         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2249         pte_val(pte) |= (((unsigned long)space) << 32);
2250         pte_val(pte) |= pte_sz_bits(page_size);
2251
2252         return pte;
2253 }
2254
2255 static unsigned long kern_large_tte(unsigned long paddr)
2256 {
2257         unsigned long val;
2258
2259         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2260                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2261                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2262         if (tlb_type == hypervisor)
2263                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2264                        _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2265                        _PAGE_EXEC_4V | _PAGE_W_4V);
2266
2267         return val | paddr;
2268 }
2269
2270 /* If not locked, zap it. */
2271 void __flush_tlb_all(void)
2272 {
2273         unsigned long pstate;
2274         int i;
2275
2276         __asm__ __volatile__("flushw\n\t"
2277                              "rdpr      %%pstate, %0\n\t"
2278                              "wrpr      %0, %1, %%pstate"
2279                              : "=r" (pstate)
2280                              : "i" (PSTATE_IE));
2281         if (tlb_type == hypervisor) {
2282                 sun4v_mmu_demap_all();
2283         } else if (tlb_type == spitfire) {
2284                 for (i = 0; i < 64; i++) {
2285                         /* Spitfire Errata #32 workaround */
2286                         /* NOTE: Always runs on spitfire, so no
2287                          *       cheetah+ page size encodings.
2288                          */
2289                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2290                                              "flush     %%g6"
2291                                              : /* No outputs */
2292                                              : "r" (0),
2293                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2294
2295                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2296                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2297                                                      "membar #Sync"
2298                                                      : /* no outputs */
2299                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2300                                 spitfire_put_dtlb_data(i, 0x0UL);
2301                         }
2302
2303                         /* Spitfire Errata #32 workaround */
2304                         /* NOTE: Always runs on spitfire, so no
2305                          *       cheetah+ page size encodings.
2306                          */
2307                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2308                                              "flush     %%g6"
2309                                              : /* No outputs */
2310                                              : "r" (0),
2311                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2312
2313                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2314                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2315                                                      "membar #Sync"
2316                                                      : /* no outputs */
2317                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2318                                 spitfire_put_itlb_data(i, 0x0UL);
2319                         }
2320                 }
2321         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2322                 cheetah_flush_dtlb_all();
2323                 cheetah_flush_itlb_all();
2324         }
2325         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2326                              : : "r" (pstate));
2327 }